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We introduce the notion of a confluent Vandermonde matrix over quaternions and present 
the formula to compute its rank. This extends a result of T.Y. Lam (A general theory of 
Vandermonde matrices, Expo. Math. 4 (3) (1986) 193–215). Another contribution is the 
representation formula for divided differences of quaternion polynomials which extends a 
result of G. Gentili and D.C. Struppa (A new theory of regular functions of a quaternionic 
variable, Adv. Math. 216 (1) (2007) 279–301).
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r é s u m é

Nous introduisons la notion de matrice de Vandermonde confluente sur les quaternions 
et nous calculons son rang. Ceci étend les résultats de T.Y. Lam (A general theory of 
Vandermonde matrices, Expo. Math. 4 (3) (1986) 193–215). Ensuite, nous montrons une 
formule de représentation d’ordre supérieur pour les différences divisées de polynômes 
à coefficients quaternions, généralisant un résultat de G. Gentili et D.C. Struppa (A new 
theory of regular functions of a quaternionic variable, Adv. Math. 216 (1) (2007) 279–301).

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Let H denote the skew field of quaternions α = x0 + ix1 + jx2 + kx3, where x0, x1, x2, x3 ∈ R and where i, j, k are the 
imaginary units commuting with R and satisfying i2 = j2 = k2 = ijk = −1. For α ∈ H as above, its real and imaginary parts, 
the quaternion conjugate and the absolute value are defined as Re(α) = x0, Im(α) = ix1 + jx2 + kx3, α = Re(α) − Im(α) and 
|α|2 = αα = |Re(α)|2 + |Im(α)|2, respectively. Two quaternions α and β are called equivalent (conjugate to each other) if 
α = h−1βh for some nonzero h ∈ H; in notation, α ∼ β . It turns out that α ∼ β if and only if Re(α) = Re(β) and |α| = |β|, 
so that the conjugacy class of a given α ∈H form a 2-sphere (of radius |Im(α)| around Re(α)), which will be denoted by [α].

Given elements α1, . . . , αn ∈ H, we denote by Vm =
[
α

j−1
i

] j=1,...,m

i=1,...,n
the associated n × m Vandermonde matrix. Recall 

that the rank of a quaternion matrix is defined as the dimension of the left linear span of its rows or equivalently (by [4, 
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Theorem 7]) the dimension of the right span of its columns. For a set �, we will write �(�) for its cardinality. The following 
result is due to T.-Y. Lam [4]:

Theorem 1. Let S1, . . . , S� be all distinct conjugacy classes having non-empty intersection with the set � = {α1, . . . , αn}, and let

κ = μ1 + . . . + μ�, where μ j =
{

1, if �(S j ∩ �) = 1,

2, if �(S j ∩ �) ≥ 2.

Then rank Vm = min(m, κ). In particular, the square Vandermonde matrix Vn is invertible if and only if all elements in � are distinct 
and none three of them belong to the same conjugacy class.

The theorem was established in [4] in a more general setting of division rings with a fixed endomorphism and the 
integer κ was identified with the minimally possible degree of a nonzero polynomial having left zeros at α1, . . . , αn . Further 
extensions of this result to the setting of a division ring K endowed with an endomorphism S and an S-derivation D , along 
with their interactions with skew polynomials from the Ore domain K [z, S, D], were obtained in [5]. The objective of this 
paper is to present the extension of Theorem 1 in a different direction: we will introduce a meaningful notion of a confluent 
Vandermonde matrix (over H only, for the sake of simplicity) and establish the “confluent” version of Theorem 1.

1. Divided differences

Let H[z] be the ring of polynomials in one formal variable z that commutes with quaternionic coefficients. The ring 
operations in H[z] are defined as in the commutative case, but as multiplication in H is not commutative, multiplication in 
H[z] is not commutative either. A straightforward computation verifies that for any α ∈ H and f ∈ H[z],

f (z) = f e�(α) + (z − α) · (Lα f )(z), (1)

where f e� (α) is the left evaluation of f at α and Lα f is the polynomial of degree m − 1 given by

f e�(α) =
m∑

k=0

αk fk, (Lα f )(z) =
m−1∑
k=0

zk

⎛
⎝m−k−1∑

j=0

α j fk+ j+1

⎞
⎠ if f (z) =

m∑
k=0

zk fk. (2)

The mapping f �→ Lα f defines a right linear operator (called in analogy to the complex case, the left backward shift) acting 
on H[z] (considered as a vector space over H).

In what follows, we will use notation ρα(z) := z − α for a fixed α ∈ H. Given a polynomial f ∈ H[z], the successive 
application of formula (1) to elements α1, . . . , αn ∈ H and polynomials f , Lα1 f , Lα2 Lα1 f , . . . leads us to the representation

f = f e�(α1) +
n−1∑
k=1

ρα1
. . .ραk

· (Lαk · · · Lα1 f )e�(αk+1) + ρα1
. . .ραn

· (Lαn · · · Lα1 f ), (3)

which, being the (left) quaternionic analog of the Newton interpolation formula, suggests to define left divided differences by 
letting

[α1; f ]� = f e�(α1), [α1, . . . ,αk; f ]� = (Lαk−1 · · · Lα1 f )e�(αk) for k > 1. (4)

If we denote by f (k) the k-th formal derivative of f ∈H[z], then for any fixed α ∈H,

f =
deg f∑
k=0

ρk
α · ( f (k))e�(α)

k! and [α, . . . ,α︸ ︷︷ ︸
(k+1) times

; f ]� = ( f (k))e�(α)

k! for k ≥ 0. (5)

The first representation is verified in a quite straightforward way, while the second equality follows by letting α j = α for 
j = 1, . . . , n in (3) and comparing the obtained representation with the first formula in (5). The difference between the 
complex and quaternionic settings becomes transparent even in the case where k = 2. It is not hard to show that if α2 �∼ α1, 
then

[α1,α2; f ]� = (α̃2 − α1)
−1( f e�(α̃2) − f e�(α1)), where α̃2 = (α2 − α1)

−1α2(α2 − α1). (6)

The formula (6) is similar to its complex counterpart, but the element α2 is replaced by the equivalent element α̃2, which 
is equal to α2 if and only if α1 and α2 commute. If α1 ∼ α2 �= α1, then the formula for [α1, α2; f ] involves not only the 
values of f at α1 and α2, but also the value of f ′:

[α1,α2; f ]� = (α2 − α2)
−1 (

f e�(α2) − f e�(α1) + (α2 − α1) f ′e�(α1)
)
).

Thus, the divided differences based on a spherical chain (different from that in (5)) is the object that does not appear in the 
commutative setting.
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2. Confluent Vandermonde matrices

Vaguely speaking, the confluent Vandermonde matrix should be defined so that it will be non-singular in cases where 
the usual Vandermonde matrix is singular, that is (according to Theorem 1) if (1) αi1 = αi2 and/or (2) αi1 ∼ αi2 ∼ αi3 . To 
achieve the latter, we introduce the notion of a spherical chain: a finite ordered collection α = (α1, . . . , αk) ⊂ H such that

α1 ∼ α2 ∼ . . . ∼ αk and α j+1 �= α j for j = 1, . . . ,k − 1. (7)

We define the confluent Vandermonde matrix Vm(α) associated with the spherical chain (7) as follows:

[Vm(α)]i j = [α1,α2, . . . ,αi; z j]�, i = 1, . . . ,k; j = 1, . . . ,m. (8)

Due to formulas (5), the matrix Vm(α) based on the spherical chain α = (α, . . . , α) has the same form as in the commutative 
complex case (see e.g., [3]). We next observe that the matrix Vm(α) can be defined more explicitly as the k × m matrix 
whose j-th column equals J j−1

α Ek:

Vm(α) = [ Ek Jα Ek . . . Jm−1
α Ek ] , where Jα =

⎡
⎢⎢⎢⎢⎢⎢⎣

α1 0 . . . 0
1 α2 0

0 1
. . .

. . .
...

...
. . .

. . .
. . . 0

0 . . . 0 1 αk

⎤
⎥⎥⎥⎥⎥⎥⎦

, Ek =

⎡
⎢⎢⎢⎣

1
0
...

0

⎤
⎥⎥⎥⎦ . (9)

Indeed, since deg(Lα f ) = deg( f ) − 1 and since the backward shift of a monic polynomial is again monic (or identical zero), 
it follows that the matrix Vm(α) is upper triangular with all diagonal entries equal to one. In particular, the leftmost column 
of the matrix (8) is indeed Ek . The rest follows from the recursion[

α1, . . . ,αk; z j
]
�
= αk

[
α1, . . . ,αk; z j−1

]
�
+

[
α1, . . . ,αk−1; z j−1

]
�

(i, j ≥ 2), (10)

which, together with equalities [α1; z j]� = α
j
1, imply that the j-th column in the matrix (8) can be obtained by multiplying 

the previous column by Jα on the left, which eventually leads to formula (9). We define the confluent Vandermonde matrix 
based on n spherical chains α1, . . . , αn by

Vm(α1, . . . ,αn) =
⎡
⎣ Vm(α1)

...

Vm(αn)

⎤
⎦ , αi = (αi,1, . . . ,αi,ki ), i = 1, . . . ,n, (11)

where the matrices Vm(α j) are defined via the formula (9). To formulate the “confluent” extension of Theorem 1, we need 
one last definition.

Let us assume that a conjugacy class S contains d ≥ 2 (not necessarily distinct) spherical chains (11). Let αi =
(αi,1 . . . , αi,ki ) be the longest chain. For any other chain α j = (α j,1 . . . , α j,k j ) ⊂ S , we define the number

ν j =
{

0, if α j,1 �= αi,1,

max{r : α j,μ = αi,μ (1 ≤ μ ≤ r)}, if α j,1 = αi,1,
and let μ(S) = ki + max

j �=i
{k j − ν j}. (12)

If the leftmost elements α1,1, . . . , αd,1 in the chains are all distinct, then μ(S) is equal to the total number of elements 
in the two longest chains. We also observe that if there are several chains of the maximal length, then the values of ν j
in (12) depend on which one of the longest chains has been chosen for comparison. It is not hard to show, however, that 
the integer max j �=i{k j − ν j} is independent of this choice. In case S contains only one chain, we let μ(S) be equal to its 
length.

Theorem 2. Let Vm(α1, . . . , αn) be the confluent Vandermonde matrix based on spherical chains (11). To each conjugacy class S j con-
taining at least one of these chains, assign the integer μ(S j) as has been explained above. Then rank (Vm(α1, . . . ,αn)) = min(m, κ), 
where κ = ∑�

j=1 μ(S j).
In particular, the square matrix Vm(α1, . . . , αn) is invertible if and only if all leftmost chain elements α1,1, α2,1, . . . , αn,1 are 

distinct and none three of them belong to the same conjugacy class.

The integer κ in Theorem 2 admits a nice interpretation in terms of certain polynomials associated with the matrix 
Vm(α1, . . . , αn). Recall that any (left or right) ideal in H[z] is principal. Let 〈h〉r := {hq : q ∈H[z]} denote the right ideal 
generated by h. Given two polynomials f , g ∈ H[z], their least right common multiple h = lrcm( f , g) is defined as a (unique) 
monic polynomial such that 〈h〉r = 〈 f 〉r ∩ 〈g〉r . Here is a more compact reformulation of Theorem 2 (which appears in [4]
for Vandermonde matrices over general division rings).
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Theorem 3. Let Vm(α1, . . . , αn) be the confluent Vandermonde matrix based on spherical chains (11). With each chain α j =
(α j,1 . . . , α j,k j ), we associate the polynomial P j = ρα j,1

ρα j,2
· · ·ρα j,k j

for j = 1, . . . , n. Then rank (Vm(α1, . . . ,αn)) = min(m, κ), 
where κ = deg(lrcm(P1, . . . , Pn)).

3. Representation formulas of higher order

By a result from [2], evaluations of f ∈ H[z] at any two elements in the same conjugacy class S uniquely determine the 
value of f at every element in S . More precisely, for f ∈H[z] and any three distinct equivalent elements α1, α2, α3 ∈ H,

f e�(α3) = (α3 − α2)(α1 − α2)
−1 f e�(α1) + (α1 − α3)(α1 − α2)

−1 f e�(α2). (13)

Formula (13) (termed in [2] the “representation formula”) admits a natural confluent extension. It is clear that the same 
formula holds for formal derivatives of f , that is, for divided differences of f based on the spherical chains from the same 
conjugacy class of the special form (5). Our next objective is to present the analog of formula (13) for divided differences 
based on general spherical chains from the same conjugacy class. With a spherical chain α, we associate the square matrices

Vα := Vk(α) and Tα = V −1
α J k

α Vα, α = (α1, . . . ,αk), (14)

where Jα is given in (9). The matrix Vα is invertible as the square upper triangular matrix with all diagonal entries equal 
one. Also, we will use notation

	�(α; f ) =
⎡
⎣ [α1; f ]�

...

[α1,α2, . . . ,αk; f ]�

⎤
⎦ , α = (α1, . . . ,αk), f ∈H[z] (15)

for the column of divided differences of a given polynomial f based on the chain α. The next theorem shows that the 
columns 	(α; f ) and 	(β; f ) associated with the chains of the same length k from the same conjugacy class S ⊂ H and 
with distinct leftmost entries define all divided differences of f of order up to k associated with any chain γ ⊂ S .

Theorem 4. Let αi = (αi,1, . . . , αi,k) (i = 1, 2, 3) be three spherical chains of the same length and in the same conjugacy class S ⊂ H

and let us assume that α1,1 �= α2,1 . Then for any f ∈ H[z],
	�(α3; f ) = Vα3(Tα3 − Tα2)(Tα1 − Tα2)

−1 V −1
α1

	�(α1; f )

+ Vα3(Tα3 − Tα1)(Tα2 − Tα1)
−1 V −1

α2
	�(α2; f ) (16)

where Vαi and Tαi are defined as in (14) and do not depend on f .

Although it is not obvious, the coefficient matrices

Vα3(Tα3 − Tα2)(Tα1 − Tα2)
−1 V −1

α1
and Vα3(Tα3 − Tα1)(Tα2 − Tα1)

−1 V −1
α2

in (16) are lower triangular. On can see from (14) and (9) that if k = 1 and αi = (αi), we have Vαi = 1 and Tαi = Jαi = αi , 
while formulas (15) and (4) show that 	�(αi; f ) = [αi; f ]� = f e� (αi). Now it is readily seen that in case k = 1, formula (16)
amounts to (13).

4. Left Vandermonde matrices versus right

Vandermonde matrices considered above should be termed “left” as they arise in the context of left polynomial inter-
polation [4,1]. For example, to find a polynomial f ∈ H[z] satisfying interpolation conditions f e� (αi) = ci (i = 1, . . . , n), we 
may use (2) (with m − 1 instead of m) to write these conditions as the system of linear equations

f0 + αi f1 + . . . + αm−1
i fm−1 = ci for i = 1, . . . ,n

and the matrix of this system is the Vandermonde matrix Vm =
[
α

j−1
i

] j=1,...,m

i=1,...,n
. The confluent matrix (11) appears similarly 

in the course of the Lagrange–Hermite problem with interpolation conditions

[αi,1, . . . ,αi, j; f ]� = ci, j for i = 1, . . . ,n; j = 1, . . . ,ki . (17)

There exists a parallel “right” theory: similarly to (1) and (2), for any α ∈H and f ∈H[z],
f (z) = f er (α) + (Rα f )(z) · (z − α),

where f er (α) is the right evaluation of f at α and Rα f is the polynomial of degree m − 1 given by

f er (α) =
m∑

k=0

fkα
k, (Rα f )(z) =

m−1∑
k=0

zk

⎛
⎝m−k−1∑

j=0

α j fk+ j+1

⎞
⎠ if f (z) =

m∑
k=0

zk fk.
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The mapping f �→ Rα f defines a left linear operator on H[z] (the right backward shift) and allows us to introduce right 
divided differences by letting

[α1; f ]r = f er (α1), [α1, . . . ,αk; f ]r = (Rαk−1 · · · Rα1 f )er (αk) for k > 1.

A polynomial f ∈ H[z] satisfying right interpolation conditions f er (αi) = di (i = 1, . . . , n) can be found from the linear 
system

f0 + f1αi + . . . + fm−1α
m−1
i = di for i = 1, . . . ,n,

and the matrix of this linear system (the right Vandermonde matrix) V r
m =

[
αi−1

j

] j=1,...,n

i=1,...,m
∈ H

m×n is the transpose of the left 

Vandermonde matrix Vm = V �
m considered above. More generally, a polynomial f satisfying “right” interpolation conditions

[αi,1, . . . ,αi, j; f ]r = ci, j for i = 1, . . . ,n; j = 1, . . . ,ki

can be found via solving a linear system whose matrix (the right confluent Vandermonde matrix based on spherical chains 
(11)) is given by

V r
m(α1, . . . ,αn) = [ V r

m(α1) . . . V r
m(αn) ] , αi = (αi,1, . . . ,αi,ki ), (18)

where (compare with (8))

V r
m(αi) =

[
[αi,1, . . . ,αi, j; z j]r

]i=1,...,ki

j=1,...,m
, i = 1, . . . ,n. (19)

In contrast to the basic case, the confluent left and right Vandermonde matrices based on the same spherical chains are not 
transposed to each other. For example, if α = (α, β) (α ∼ β �= α), then it follows from (8) and (19) that

V �
4(α) =

[
1 α α2 α3

0 1 β + α β2 + βα + α2

]
, (V r

4(α))� =
[

1 α α2 α3

0 1 β + α β2 + αβ + α2

]
.

Comparing the (2, 4) entries in the latter matrices, we conclude that V �
m(α) �= (V r

m(α))� unless αβ = βα, which occurs 
(since α ∼ β �= α) only if β = α. However, the results concerning left confluent Vandermonde matrices can be translated to 
their right counter-parts due to the following observation.

Lemma 5. Let V �
m(α1, . . . , αn) and V r

m(α1, . . . ,αn) be the left and the right confluent Vandermonde matrices based on spherical 
chains αi = (αi,1, . . . , αi,ki ) and αi := (αi,1, . . . ,αi,ki ), respectively. Then V �

m(α1, . . . , αn) = (V r
m(α1, . . . ,αn))∗ .

We recall that as in the complex case, the adjoint to the matrix A = (aij) is defined by A∗ = (a ji). Finally, it was observed 
in [4] that, although in general the quaternion matrices A and A� may have different ranks, the equality rank Vm = rank V �

m
holds for Vandermonde matrices. We do not know if this result extends to confluent Vandermonde matrices. However, since 
V �

m = V r
m , the above result can be interpreted as follows: the left and the right Vandermonde matrices have the same rank. This 

version does admit the “confluent” extension.

Remark 6. The left and right confluent Vandermonde matrices V �
m(α1, . . . , αn) and V r

m(α1, . . . , αn) based on the same 
spherical chains have the same rank.

Indeed, replacing the spherical chains α1, . . . , αn by α1, . . . ,αn , we come up with the same integer κ as for the original 
chains; therefore, rank V �

m(α1, . . . , αn) = rank V �
m(α1, . . . ,αn). Since rank A = rank A∗ for any matrix A over H, the statement 

follows by Lemma 5.
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