EI SEVIER

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Algebraic geometry

Diagonal property of the symmetric product of a smooth curve *

Propriété de la diagonale pour les produits symétriques d'une courbe lisse

Indranil Biswas a, Sanjay Kumar Singh b

ARTICLE INFO

Article history: Received 14 January 2015 Accepted 25 February 2015 Available online 11 March 2015

Presented by Claire Voisin

ABSTRACT

Let C be an irreducible smooth projective curve defined over an algebraically closed field. We prove that the symmetric product $\operatorname{Sym}^d(C)$ has the diagonal property for all $d \geq 1$. For any positive integers n and r, let $\mathcal{Q}_{\mathcal{O}_{C}^{\oplus n}}(nr)$ be the Quot scheme parameterizing all the torsion quotients of $\mathcal{O}_{C}^{\oplus n}$ of degree nr. We prove that $\mathcal{Q}_{\mathcal{O}_{C}^{\oplus n}}(nr)$ has the weak-point property.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Soit C une courbe irréductible, lisse, définie sur un corps algébriquement clos. Nous montrons que le produit symétrique $\operatorname{Sym}^d(C)$ a la propriété de la diagonale, pour tout $d \geq 1$. Pour tous entiers n et r, soit $\mathcal{Q}_{\mathcal{C}_{C}^{\oplus n}}(nr)$ le schéma Quot paramétrant tous les quotients de torsion de $\mathcal{O}_{C}^{\oplus n}$ de degré nr. Nous montrons que $\mathcal{Q}_{\mathcal{O}_{C}^{\oplus n}}(nr)$ a la propriété du point, faible.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In [8], Pragacz, Srinivas and Pati introduced the diagonal and (weak) point properties of a variety, which we recall. Let X be a variety of dimension d over an algebraically closed field k. It is said to have the *diagonal property* if there is a vector bundle $E \longrightarrow X \times X$ of rank d, and a section $s \in H^0(X \times X, E)$, such that the zero scheme of s is the diagonal in $X \times X$. The variety X is said to have the *weak point property* if there is a vector bundle F on X of rank d, and a section $t \in H^0(X, F)$, such that the zero scheme of t is a (reduced) point of X. The diagonal property implies the weak-point property because the restriction of the above section s to $X \times \{x_0\}$ vanishes exactly on x_0 .

These properties were extensively studied in [8] and [5]. In particular, it was shown that:

^a School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India

^b Institute of Mathematics, Polish Academy of Sciences, Warsaw, 00656, Poland

[†] The first named author is supported by the J.C. Bose Fellowship. The second named author is supported by IMPAN Postdoctoral Research Fellowship. E-mail addresses: indranil@math.tifr.res.in (I. Biswas), s.singh@impan.pl (S.K. Singh).

- they impose strong conditions on the variety,
- on the other hand there are many example of varieties with these properties.

Here we investigate these conditions for some varieties associated with a smooth projective curve.

Let C be an irreducible smooth projective curve over k. For any positive integer d, let $Sym^d(C)$ be the quotient of C^d for the natural action of the group of permutations of $\{1, \dots, d\}$. It is a smooth projective variety of dimension d. We prove the following (Theorem 3.1).

Theorem 1.1. The variety $Sym^d(C)$ has the diagonal property.

Theorem 1 in [8, p. 1236] contains several examples of surfaces satisfying the diagonal property. We note that the surface $Sym^2(C)$ is not among them.

For positive integers n and d, let $\mathcal{Q}_{\mathcal{O}_{C}^{\oplus n}}(d)$ be the Quot scheme parameterizing the torsion quotients of $\mathcal{O}_{C}^{\oplus n}$ of degree d. Quot schemes were constructed in [6] (see [7] for an exposition on [6]). The variety $\mathcal{Q}_{\mathcal{O}_{C}^{\oplus n}}(d)$ is smooth projective, and its dimension is nd. Note that $\mathcal{Q}_{\mathcal{O}_{C}}(d) = \operatorname{Sym}^{d}(C)$. These varieties $\mathcal{Q}_{\mathcal{O}_{C}^{\oplus n}}(d)$ are extensively studied in algebraic geometry and mathematical physics (see [3,2,1,4] and references therein).

We prove the following (Theorem 2.2).

Theorem 1.2. If d is a multiple of n, then the variety $\mathcal{Q}_{\mathcal{O}_{c}^{\oplus n}}(d)$ has the weak-point property.

2. Quot scheme and the weak-point property

We continue with the notation of the introduction.

For a locally free coherent sheaf E of rank n on C, let $\mathcal{Q}_E(d)$ be the Quot scheme parameterizing all torsion quotients of E of degree d. Equivalently, $\mathcal{Q}_E(d)$ parametrizes all coherent subsheaves of E of rank e and degree degree e e0. Note that any coherent subsheaf of E is locally free because any torsion-free coherent sheaf on a smooth curve is locally free. This $\mathcal{Q}_E(d)$ is an irreducible smooth projective variety of dimension e0.

There is a natural morphism

$$\varphi': \mathcal{Q}_F(d) \longrightarrow \mathcal{Q}_{\wedge^n F}(d)$$

that sends any subsheaf $S \subset E$ of rank n and degree degree(E) -d to the subsheaf $\bigwedge^n S \subset \bigwedge^n E$. Next note that $\mathcal{Q}_{\wedge^n E}(d)$ is identified with the symmetric product $\operatorname{Sym}^d(C)$ by sending any subsheaf $S' \subset \bigwedge^n E$ to the scheme theoretic support of the quotient sheaf $(\bigwedge^n E)/S'$. Let

$$\varphi: \mathcal{Q}_E(d) \longrightarrow \operatorname{Sym}^d(C) \tag{2.1}$$

be the composition of φ' with this identification of $\mathcal{Q}_{\wedge^n E}(d)$ with $\operatorname{Sym}^d(C)$. It should be mentioned that for a subsheaf $S \subset E$ of rank n and $\operatorname{degree}(E) - d$, the image $\varphi(S) \in \operatorname{Sym}^d(C)$ does not, in general, coincide with the scheme theoretic support of the quotient sheaf E/S.

The symmetric product $Sym^d(C)$ is the moduli space of effective divisors of degree d on C. Let

$$D \subset Y := C \times \operatorname{Sym}^{d}(C) \tag{2.2}$$

be the universal divisor. So the fiber of D over a point $a \in \operatorname{Sym}^d(C)$ is the zero dimensional subscheme of C of length d defined by a. Let

$$\mathcal{D} = (\mathrm{Id}_{\mathsf{C}} \times \varphi)^{-1}(D) \subset \mathsf{C} \times \mathcal{Q}_{\mathsf{E}}(d) \tag{2.3}$$

be the inverse image of D, where φ is constructed in (2.1).

Remark 2.1. Let L be a line bundle on C. For E as above, if $S \subset E$ is a subsheaf of rank n and degree degree(E) - d, then

$$S \otimes L \subset E \otimes L$$

is a subsheaf of rank n and degree degree $(E \otimes L) - d$. Therefore, we get an isomorphism

$$\mathcal{Q}_E(d) \stackrel{\sim}{\longrightarrow} \mathcal{Q}_{E \otimes L}(d)$$

by sending any subsheaf $S \subset E$ to the subsheaf $S \otimes L \subset E \otimes L$.

Theorem 2.2. For positive integers d, n such that d is a multiple of n, the Quot scheme $\mathcal{Q}_{\mathcal{O}_{\mathcal{C}}^n}(d)$ satisfies the weak-point property.

Proof. Let $r \in \mathbb{N}$ be such that d = rn. Fix a closed point x_0 in C. The line bundle $\mathcal{O}_C(rx_0)$ on C will be denoted by L. By Remark 2.1 it is enough to prove the weak-point property for $\mathcal{Q}_{L^{\oplus n}}(d)$.

Let $\mathcal{D} \hookrightarrow C \times \mathcal{Q}_{L^{\oplus n}}(d)$ be the divisor constructed in (2.3). Let

$$p: \mathcal{D} \longrightarrow \mathcal{C} \text{ and } q: \mathcal{D} \longrightarrow \mathcal{Q}_{I \oplus n}(d)$$
 (2.4)

be the natural projections. Taking the direct sum of copies of the natural inclusion

$$\iota:\mathcal{O}_{\mathcal{C}}\hookrightarrow\mathcal{O}_{\mathcal{C}}(rx_0)$$

we get a short exact sequence of sheaves on C

$$0 \longrightarrow \mathcal{O}_{C}^{\oplus n} \xrightarrow{\iota^{\oplus n}} \mathcal{O}_{C}(rx_{0})^{\oplus n} \longrightarrow T \longrightarrow 0, \tag{2.5}$$

where T is a torsion sheaf on C of degree nr = d. Therefore, this quotient T is represented by a point of $\mathcal{Q}_{L^{\oplus n}}(d)$. Let

$$t_0 \in Q_I \oplus n(d)$$
 (2.6)

be the point representing T.

The direct image

$$F:=q_*p^*L^{\oplus n}\longrightarrow \mathcal{Q}_{L^{\oplus n}}(d)$$

is a vector bundle of rank nd, where p and q are the projections in (2.4). We will construct a section of F. The section of $\mathcal{O}_{\mathcal{C}}$ given by the constant function 1 will be denoted by s_0 . Consider the section

$$s := \iota^{\oplus n}(s_0^{\oplus n}) \in H^0(C, L^{\oplus n}),$$

where $\iota^{\oplus n}$ is the homomorphism in (2.5). We have

$$\widetilde{s} := q_* p^* s \in H^0(\mathcal{Q}_{I \oplus n}(d), F). \tag{2.7}$$

For the point t_0 in (2.6), the scheme theoretic inverse image

$$q^{-1}(t_0) \subset \mathcal{D} \subset \mathcal{C} \times \mathcal{Q}_{L^{\oplus n}}(d)$$

is $(rx_0) \times t_0$, where q is the projection in (2.4). Since the section $\iota(s_0)$ of L vanishes exactly on rx_0 , this implies that the section \widetilde{s} in (2.7) vanishes exactly on the reduced point t_0 . Therefore, $\mathcal{Q}_{I^{\oplus n}}(d)$ has the weak-point property. \square

3. Diagonal property for symmetric product of curves

Theorem 3.1. For any d > 1, the symmetric product Sym^d(C) of a smooth projective curve C has the diagonal property.

Proof. Consider the divisor D in (2.2). Let

$$L = \mathcal{O}_{Y}(D) \longrightarrow Y \tag{3.1}$$

be the line bundle. Now consider $Z := Y \times \operatorname{Sym}^d(C) = C \times \operatorname{Sym}^d(C) \times \operatorname{Sym}^d(C)$. Let

$$\alpha: Z \longrightarrow C, \ \beta: Z \longrightarrow \operatorname{Sym}^d(C) \ \text{ and } \ \gamma: Z \longrightarrow \operatorname{Sym}^d(C)$$
 (3.2)

be the projections defined by $(x, y, z) \mapsto x$, $(x, y, z) \mapsto y$ and $(x, y, z) \mapsto z$ respectively. Let

$$\widetilde{D} := (\alpha \times \gamma)^{-1}(D) \subset C \times \operatorname{Sym}^{d}(C) \times \operatorname{Sym}^{d}(C) = Z$$
(3.3)

be the inverse image, where D is defined in (2.2), and $\alpha \times \gamma : Z \longrightarrow C \times \operatorname{Sym}^d(C)$ sends any (x, y, z) to (x, z).

$$p: \widetilde{D} \longrightarrow \operatorname{Sym}^d(C) \times \operatorname{Sym}^d(C)$$

be the projection defined by $b \mapsto (\beta(b), \gamma(b))$, where β and γ are defined in (3.2), and \widetilde{D} is constructed in (3.3). Consider the direct image

$$V := p_*(((\alpha \times \beta)^* L)|_{\widetilde{D}}) \longrightarrow \operatorname{Sym}^d(C) \times \operatorname{Sym}^d(C), \tag{3.4}$$

where L is the line bundle in (3.1). The natural projection

$$D \longrightarrow \operatorname{Sym}^d(C), (x, y) \longmapsto y,$$

where D is defined in (2.2), is a finite morphism of degree d. This implies that p is a finite morphism of degree d. Consequently, the direct image V is a vector bundle on $\operatorname{Sym}^d(C) \times \operatorname{Sym}^d(C)$ of rank d.

Consider the natural inclusion $\mathcal{O}_Y \hookrightarrow \mathcal{O}_Y(D) = L$ (see (3.1)). Let

$$\sigma_0 \in H^0(Y, L) \tag{3.5}$$

be the section given by the constant function 1 using this inclusion. Let

$$\sigma := p_*(((\alpha \times \beta)^* \sigma_0)|_{\widetilde{\Omega}}) \in H^0(\operatorname{Sym}^d(C) \times \operatorname{Sym}^d(C), V)$$

be the section of *V* (constructed in (3.4)) given by σ_0 .

We will show that the scheme theoretic inverse image

$$\sigma^{-1}(0) \subset \operatorname{Sym}^d(C) \times \operatorname{Sym}^d(C)$$

is the diagonal.

Take any point $(a, b) \in \operatorname{Sym}^d(C) \times \operatorname{Sym}^d(C)$ such that $a \neq b$. Then there is a point $z \in C$ such that the multiplicity of z in a is strictly smaller than the multiplicity of z in b. We note that the scheme theoretic inverse image

$$p^{-1}((a,b)) \subset \widetilde{D} \subset Z = C \times \text{Sym}^d(C) \times \text{Sym}^d(C)$$

is $\{(a,b)\} \times \widehat{b}$, where \widehat{b} is the zero dimensional subscheme of C of length d defined by b. On the other hand, for the section σ_0 in (3.5), the intersection $\sigma_0^{-1}(0) \cap (C \times \{a\})$ is the zero dimensional subscheme \widehat{a} of C of length d defined by a. Since the multiplicity of z in a is strictly smaller than the multiplicity of z in b, we have:

$$\sigma_0((z_0, b)) \neq 0.$$

Consequently, $\sigma((a,b)) \neq 0$.

Now take a point (a, a) on the diagonal of $\operatorname{Sym}^d(C) \times \operatorname{Sym}^d(C)$. We have observed above that the inverse image

$$p^{-1}((a,a)) \subset C$$

coincides with the intersection $\sigma_0^{-1}(0) \cap (C \times a)$. This implies that

- $\sigma((a,a)) = 0$, and
- $\sigma^{-1}(0)$ is the reduced diagonal.

Therefore, $Sym^d(C)$ has the diagonal property. \Box

References

- [1] J.M. Baptista, On the L^2 -metric of vortex moduli spaces, Nucl. Phys. B 844 (2011) 308–333.
- [2] A. Bertram, G. Daskalopoulos, R. Wentworth, Gromov invariants for holomorphic maps from Riemann surfaces to Grassmannians, J. Amer. Math. Soc. 9 (1996) 529–571.
- [3] E. Bifet, F. Ghione, M. Letizia, On the Abel-Jacobi map for divisors of higher rank on a curve, Math. Ann. 299 (1994) 641-672.
- [4] I. Biswas, N.M. Romão, Moduli of vortices and Grassmann manifolds, Commun. Math. Phys. 320 (2013) 1–20.
- [5] O. Debarre, The diagonal property for abelian varieties, in: Curves and Abelian Varieties, in: Contemporary Mathematics, vol. 465, American Mathematical Society, Providence, RI, USA, 2008, pp. 45–50.
- [6] A. Grothendieck, Techniques de construction et théorèmes d'existence en géométrie algébrique, IV. Les schémas de Hilbert. IV, in: Séminaire Bourbaki, vol. 6, Société mathématique de France, Paris, 1995, pp. 249–276, Exp. No. 221.
- [7] N. Nitsure, Construction of Hilbert and Quot schemes, in: Fundamental Algebraic Geometry, in: Mathematical Surveys and Monographs, vol. 123, American Mathematical Society, Providence, RI, USA, 2005, pp. 105–137.
- [8] P. Pragacz, V. Srinivas, V. Pati, Diagonal subschemes and vector bundles, Pure Appl. Math. Q. 4 (2008) 1233-1278.