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We discuss a multiplicative version of the Verschiebung map of Witt vectors that we call 
the norm.
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r é s u m é

On définit une application multiplicative sur l’anneau des vecteurs de Witt.
© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Witt vectors are ubiquitous in algebraic geometry and number theory, and also appear in algebraic topology when 
studying fixed points of the topological Hochschild homology spectrum. Most of the structure maps that are present have 
been exploited with great success, see, e.g., Hesselholt and Madsen’s paper [8].

In this short note, we discuss a structure map of Witt vectors that appears implicitly in [2], but to the best of our 
knowledge has never been made explicit. We also briefly discuss the connection with topological Hochschild homology. For 
a different perspective on how the norm map fits with the rest of the Witt vector structure maps, see [1]. We hope to 
return to further applications of the norm map elsewhere.

Let k be a commutative ring and let W(k) denote the ring of big Witt vectors of k. Fix a prime p. Recall (e.g., from [9, 
1.4.8]) that the Frobenius F p :W(k) → W(k) satisfies

F p(a) ≡ ap mod p,

and define θp : W(k) → W(k) by requiring that the equation

F p(a) = ap + pθp(a)

holds functorially in the ring k.

Definition 1.1. For a prime p, define Np :W(k) → W(k) by
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Np(a) = a − V pθp(a).

For a composite integer d, define Nd inductively by factoring d = d1 · d2 and setting Nd = Nd1 ◦ Nd2 .

Recall that a truncation set is a set S ⊂ N = {1, 2, . . .} that is closed under division, and that given a truncation set S it 
is possible to define the Witt vectors WS (k) (see, e.g., [7, §3]). Given d ∈ N, let 〈d〉 denote the set of divisors of d. Given a 
truncation set S , let

T = 〈d〉S = {t ∈ N | t = es for some e | d, s ∈ S}.
Note that with this definition S = T /d, where T /d is defined as in Section 2 below. We will prove the following result.

Theorem 1.2. The map Nd is a multiplicative map. Moreover, if S is any truncation set, then Nd restricts to a multiplicative map

Nd : WS(k) →W〈d〉S(k),

and the composite Fd ◦ Nd is the dth power map a 	→ ad.

This result is perhaps surprising, because Nd does not look multiplicative and in the definition of Np as Np = id − V pθp

both id and V pθp map WS (k) to itself and W〈d〉S (k) is larger.
One natural question is to what extent the map Nd is unique. We answer what follows.

Theorem 1.3. Suppose N : W(k) → W(k) is multiplicative, natural in k, restricts to a map WS(k) → W〈d〉S(k) for any truncation 
set S, and suppose Fd ◦ N is the dth power map. Then N = Nd.

The key to proving Theorems 1.2 and 1.3 is to understand what happens on ghost coordinates. In fact, the formula for 
Nd on ghost coordinates is very simple, as our next result shows.

Theorem 1.4. On ghost coordinates, the map Nd is given by 〈xs〉 	→ 〈yt〉 with

yt = xg
t/g with g = gcd(d, t).

For example, consider the case when d = p is prime and S = {1, p, . . . , pn−1}. Then 〈p〉S = {1, p, . . . , pn}, and Theorem 1.2
gives a map

Np : Wn−1(k; p) → Wn(k; p)

which by Theorem 1.4 is given on ghost coordinates by

Np〈x0, x1, . . . , xn−1〉 = 〈x0, xp
0 , xp

1 , . . . , xp
n−1〉.

Remark 1.5. The relation Fd ◦Nd(a) = ad is analogous to the relation Fd ◦Vd(a) = da between the Verschiebung and Frobenius 
maps. But while the Verschiebung map Vd : WS (k) → WT (k) is defined for any truncation sets S and T with S = T /d, we 
need the stronger condition that T = 〈d〉S for the norm map.

To see this, consider the following example. Let T = {1, 2, 3} and let d = 2. Then S = T /2 = {1}. But then there is no way 
to define a map N :WS (k) → WT (k) such that the diagram

W(k)
N2

RN

S

W(k)

RN

T

WS(k)
N WT (k)

commutes, because on ghost coordinates RN

T ◦ N2 is given by 〈xn〉 	→ 〈x1, x2
1, x3〉 and this does not factor through WS (k).

(This is not a problem when defining the Verschiebung as the map given on ghost coordinates by 〈xn〉 	→ 〈0, 2x1, 0〉 does 
factor through WS (k).)
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1.1. Relations to previous work

The existence of a norm map on Witt vectors has been known for some time by some people in the field, but the only 
published reference is the paper [2] by Brun, which gives a norm map in a more roundabout way. Given a finite group G
and a commutative ring k, Brun regards k as a functor from the category U fG to sets, where the objects of U fG are finite free 
G-sets and the morphisms are bispans of such. For formal reasons there is a functor Fun(U fG, Set) → Fun(U G , Set), where U G

is the category of all finite G-sets and bispans. Hence k gives rise to a G-Tambara functor.
His result [2, Theorem B] then says that evaluating this G-Tambara functor on G/H gives WH (k), where WH (k) denotes 

the generalized Witt vectors of Dress and Siebeneicher [4]. Because a G-Tambara functor has norm maps this then gives a 
norm map NG

H : WH (k) → WG(k).
We can put ourselves in a situation where the norm maps can be compared as follows. Given natural numbers n and d, 

let G = Cdn and H = Cn . Also let S = 〈n〉 and T = 〈dn〉. Then WH (k) = WS (k) and WG (k) = WT (k), so our norm map 
Nd : WS (k) → WT (k) and the norm map NG

H : WH (k) → WG(k) implicit in Brun’s paper have the same source and target. It 
follows from Theorem 1.3 that they must agree.

2. Background on Witt vectors

In [10] Witt defined the p-typical Witt vectors as a way of lifting commutative rings from characteristic p to character-
istic 0. Later Cartier [3] generalized Witt’s construction to what has become known as the big Witt vectors. For a summary 
of the basic properties of Witt vectors, see, e.g., [7, §3] or Hesselholt’s article [6]. Here we give a very short summary of 
some of the properties of Witt vectors.

Given a truncation set S and a commutative ring k, the ring WS (k) of Witt vectors is defined to be kS as a set, and 
addition and multiplication are defined by the requirement that the ghost map w : WS (k) → kS defined by

w(a)s =
∑
d|s

das/d
d

is a ring homomorphism, functorially in k. We will write a Witt vector as a = (as) and the image of a Witt vector under the 
ghost map as x = 〈xs〉.

Given T ⊂ S we have a restriction map R S
T : WS (k) → WT (k) defined on Witt coordinates by (R S

T (a))t = at , or equiva-
lently on ghost coordinates by (R S

T 〈x〉)t = xt . Given a natural number d and a truncation set S , it is customary to define

S/d = {n ∈N | dn ∈ S}.
Then the Frobenius Fd : WS (k) → WS/d(k) is defined on ghost coordinates by (Fd〈x〉)n = xdn , while the formula on Witt 
coordinates is more complicated. The Verschiebung can be defined either on Witt coordinates by (Vd(a))s = as/d if d | s
and 0 otherwise, or on ghost coordinates by (Vd〈x〉)s = dxs/d if d | s and 0 otherwise. These satisfy Fd ◦ Vd = d, while 
Fd ◦ V e = V e ◦ Fd for gcd(d, e) = 1. The composite Vd ◦ Fd is multiplication by Vd(1). Both Fd and Vd commute with 
restriction maps, in the sense that the two superimposed diagrams

WS/d(k)
Vd

R S/d
T /d

WS(k)n
Fd

R S
T

WT /d(k)
Vd

WT (k)
Fd

commute for any T ⊂ S .
From Theorem 1.4 it follows that the norm map Nd commutes with restriction maps in the sense that the diagram

WS(k)
Nd

R S
T

W〈d〉S(k)

R〈d〉S
〈d〉T

WT (k)
Nd W〈d〉T (k)

commutes for any T ⊂ S .

3. Proofs

In addition to proving Theorems 1.2, 1.3 and 1.4, we need to prove that Definition 1.1 is independent of the factorization 
of d. We start with the description of the norm map on ghost coordinates.
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Proof of Theorem 1.4. Suppose first that d = p is prime. We start by computing N p(a) = a − V pθp(a) on ghost coordinates. 
To begin with, θp〈x〉 is given by

(θp〈x〉)s =
( F p〈x〉 − 〈x〉p

p

)
s
= xps − xp

s

p
.

We then get

(Np〈x〉)s = xs − (
V p

〈
t 	→ xpt − xp

t

p

〉)
s = xs −

{
xs − xp

s/p if p | s
0 if p � s

so

(Np〈x〉)s =
{

xp
s/p if p | s

xs if p � s.

Now suppose d = d1 · d2 and that Nd1 and Nd2 are given on ghost coordinates by the formula in Theorem 1.4. Using 
Definition 1.1 we get

(Nd〈x〉)s = (Nd1 ◦ Nd2〈x〉)s = (Nd2〈x〉)g
s/g = (xg

(s/g)/h)
h = xgh

s/gh,

where g = gcd(d1, s) and h = gcd(d2, s/g). But then gh = gcd(d, s). This provides the induction step to proving Theorem 1.4, 
as well as proving that the definition of Nd in Definition 1.1 is independent of the factorization of d. �

With the formula for Nd on ghost coordinates in hand the proof of Theorem 1.2 is easy.

Proof of Theorem 1.2. It follows immediately from the fact that Nd is multiplicative on ghost coordinates that Nd is multi-
plicative. Moreover, if S is any truncation set and t ∈ 〈d〉S , then (Nd〈xn〉)t depends only on xs for s ∈ S . It then follows that 
Nd restricts to a multiplicative map WS (k) → W〈d〉S(k) because it does so on ghost coordinates.

Finally, the composite Fd ◦ Nd is given on ghost coordinates by 〈xs〉 	→ 〈xd
s 〉. Since the composite is the dth power map 

on ghost coordinates, it must also be so on Witt coordinates. �
Finally we prove uniqueness.

Proof of Theorem 1.3. We can assume without loss of generality that d = p is prime. Suppose we have a map

N :W(k) →W(k)

satisfying the conditions in Theorem 1.3, and suppose N 
= Np . Let Np(an) = (bn), N(an) = (b′
n), and on ghost coordinates 

Np〈xn〉 = 〈yn〉, N〈xn〉 = 〈y′
n〉. Then yn = xn if p � n and yn = y′

n = xp
n/p if p | n.

Because N is multiplicative, it follows that y′
n is a monomial in the variables xm with constant coefficient 1 and because 

N factors as WS (k) → W〈p〉S (k) it follows that y′
n only depends on xm for m | n.

Because N is natural in the ring k, we can work with k = Z[an]n∈N and let (an) be the canonical Witt vector in W(k). 
Since we assumed N 
= Np , there must be some smallest t ∈ N with bt 
= b′

t , and it follows that p � t . Because k is torsion 
free it follows that yt 
= y′

t as well.
Now we use that ypt = y′

pt . By comparing

ypt =
∑
d|t

dbpt/d
d +

∑
d|t

pdbt/d
pd

and

y′
pt =

∑
d|t

d(b′
d)

pt/d +
∑
d|t

pd(b′
pd)

t/d

and using that bd = b′
d for d < t , we find that bt ≡ b′

t mod p and hence yt ≡ y′
t mod p. But this suffices to conclude that 

yt = y′
t because both are monomials with constant coefficient 1 in xm for m | t . �
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4. Relation to the norm in equivariant stable homotopy theory

Recall, e.g., from [7] that for any ring k, the topological Hochschild homology spectrum THH(k) is a cyclotomic spectrum, 
meaning a genuine S1-equivariant spectrum with restriction maps Rd : THH(k)Cdn → THH(k)Cn . If k is commutative then 
THH(k) comes with a multiplication map, and can be made into a commutative S-algebra in the category of equivariant 
orthogonal spectra. From now on let us once again assume that k is commutative. From [7, Addendum 3.3] we have an 
isomorphism

π0THH(k)Cn
∼=−→W〈n〉(k)

of rings, where as before 〈n〉 denotes the truncation set of divisors of n.
From the results in [5] it follows that there is a norm map

Ntop
d : π0THH(k)Cn → π0THH(k)Cdn .

Theorem 4.1. There is a commutative diagram

π0THH(k)Cn
∼=

Ntop
d

W〈n〉(k)

Nd

π0THH(k)Cdn
∼= W〈dn〉(k)

relating the Witt vector norm map to the topological norm map on THH(k).

Proof. This follows from Theorem 1.3 because the topological norm map also satisfies Fd ◦ Ntop
d (a) = ad . Here Fd :

π0THH(k)Cdn → π0THH(k)Cn is induced by inclusion of fixed points. �
One can also obtain a statement about more general truncation sets by considering

lim
n∈S

π0THH(k)Cn ,

with the maps in the diagram given by restriction. We omit the details.

5. Relations

We have already described some of the relations between the norm map and the other structure maps of Witt vectors. 
Theorem 1.2 says that

Fd ◦ Nd(a) = ad.

Lemma 5.1. If gcd(d, e) = 1 then

Fe ◦ Nd = Nd ◦ Fe.

Proof. This follows immediately from the corresponding statement on ghost coordinates, and this is easily verified using 
the explicit formula for Nd from Theorem 1.4 and the corresponding formula defining Fe . �

Note that these two relations suffice for describing Fe ◦ Nd in general. We described the relationship between Nd and 
restriction maps earlier. For completeness we restate that relation here:

Nd ◦ R S
T = R〈d〉S

〈d〉T ◦ Nd.

The norm map is of course not additive, but we can say the following.

Lemma 5.2. Suppose p is prime. We have

Np(a + b) = Np(a) + Np(b) +
p−1∑
i=1

1

p

(
p

i

)
V p(aibp−i).
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Proof. This follows from the corresponding formula on ghost coordinates, starting with

(V p〈xi yp−i〉)n =
{

pxi
n/p yp−i

n/p if p | n
0 if p � n.

The verification is straightforward and will be omitted. �
The description of how to commute the norm past the Verschiebung commute is similar:

Lemma 5.3. Suppose p is prime and gcd(p, q) = 1. Then

Np ◦ Vq(a) = Vq ◦ Np(a) + qp − q

pq
V pq(a

p).

If p = q we have

Np ◦ V p(a) = pp−2 V p2(ap).

Proof. These formulas can easily be verified in ghost coordinates, and because they are valid there they must be valid in 
Witt coordinates as well. �

Of course other relations hold as well. For example, we can say the following.

Lemma 5.4. Suppose k contains a primitive pth root of unity ξ . Then

p−1∑
i=0

Np(ξ ia) = V p(ap).

For example, we always have N2(a) + N2(−a) = V 2(a2).

Proof. Once again this can be easily verified in ghost coordinates. �
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