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We present a Petrov–Galerkin reduced basis (RB) approximation for the parameterized 
Stokes equation. Our method, which relies on a reduced solution space and a parameter-
dependent test space, is shown to be stable (in the sense of Babuška) and algebraically 
stable (a bound on the condition number of the online system can be established). 
Compared to other stable RB methods that can also be shown to be algebraically stable, our 
approach is among those with the smallest online time cost and it has general applicability 
to linear non-coercive problems without assuming a saddle-point structure.
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r é s u m é

Nous présentons une méthode d’éléments finis de type Petrov–Galerkin pour l’approxima-
tion en « bases réduites » du problème de Stokes. La stabilité de notre méthode est établie 
à l’aide de la théorie inf–sup de Babuška et nous prouvons une borne sur la condition 
numérique de la matrice du système linéaire « en ligne ». Comparée aux méthodes de 
type bases réduites existantes, qui sont à la fois stable et dont la condition numérique 
du système linéaire en ligne peut être controlée, notre méthode a un coût en ligne 
considerablement plus faible et est applicable à des formulations générales non coercives 
ne nécessitant pas de structure de type point-selle.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Les équations aux dérivées partielles qui dépendent de paramètres sont utilisées dans beaucoup d’applications. Dans cette 
Note, nous nous intéressons à l’équation de Stokes posée dans un domaine dont la géométrie dépend d’un ou de plusieurs 
paramètres. L’idée est alors de sélectionner (par exemple par un algorithme glouton) des paramètres représentatifs de la 
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642 A. Abdulle, O. Budáč / C. R. Acad. Sci. Paris, Ser. I 353 (2015) 641–645
géométrie et de résoudre l’équation de Stokes de façon précise pour ce jeu de paramètres. Ces calculs sont effectués dans 
une étape « hors ligne ». La résolution de l’équation pour de nouveaux paramètres lors d’une application particulière (phase 
« en ligne ») sera alors obtenue de façon beaucoup moins couteuse en « interpolant » la base de solutions préalablement 
calculées (pour plus de détails, voir, par exemple, [5,9]).

Pour que de telles méthodes soient efficaces, il est important que le système linéaire en ligne soit de dimension aussi pe-
tite que possible, tout en étant bien conditionné (algébriquement stable). Or, pour les méthodes les plus efficaces rapportées 
dans la littérature (voir [9, Paragraphe 4]), la stabilité ne peut pas être établie.

Dans cette Note, nous proposons une méthode de base réduite pour le problème de Stokes dont la stabilité (au sens 
d’une condition inf–sup) et la stabilité algébrique peuvent être établies, et dont la taille du système linéaire en ligne est 
comparable à celles des méthodes les plus efficaces [9]. De plus, notre méthode est applicable à des formulations générales 
non coercives ne nécessitant pas de structure de type point-selle.

1. Introduction

Consider a weak formulation of a differential equation and an output of interest (function of the solution) that depend 
on a parameter. For any allowed parameter value, one can numerically approximate the solution (e.g., using finite elements) 
and then compute an approximation of the output. A repeated evaluation of the output of interest for different parameters 
(needed for example in optimization) can become prohibitively time consuming. Reduced basis (RB) methods can be applied 
to speed up this evaluation by projecting the problem to a low-dimensional RB space (see [10] for a general review). This 
RB space is spanned by solutions (or other related functions) computed for a sample set of parameter points. Efficiency is 
achieved via splitting of the computation into two parts. In the offline part, performed only once, the RB space is constructed. 
In the online part, which can be performed repeatedly and for any parameter value, precomputed values from the offline 
part are used for a fast evaluation of the output of interest and a posteriori error estimates.

In this paper, we are interested in the parameterized Stokes problems solved by the RB method. Efficiency and reliability 
of the RB approximation depend on two stability properties of the reduction: the approximation stability (inf–sup condition 
in the reduced problem) and the algebraic stability (bounded condition number of the reduced linear system). For a recent 
review of the RB method for the Stokes equation, we refer to [5,9], where it is shown how a saddle-point structure can 
be exploited to derive RB methods for the Stokes equation. The common principle of these methods is to build the RB 
space with separate velocity and pressure samples and then enrich the velocity space to achieve the inf–sup stability of the 
reduction in the sense of Brezzi. These methods are further discussed at the end of Section 2.

In this paper, we treat the Stokes equation as a non-coercive problem with no structural assumptions (as a saddle-point 
structure). Such an approach is indeed useful, e.g., when we have a nested saddle-point structure, where additional Lagrange 
multipliers are used to enforce boundary conditions. It is also useful when combining the reduced basis method with a nu-
merical homogenization method for Stokes to Darcy problem such as proposed in [1] (see [2] for details). One can then 
completely abandon the Brezzi stability theory and concentrate solely on the inf–sup condition in the sense of Babuška. We 
present an a priori stable RB method for the Stokes equation that uses a Petrov–Galerkin projection with a fixed solution 
space and a parameter-dependent test space. This approach has several advantages:

– a priori (approximation and algebraic) stability,
– size of the online linear system equal to the number of selected parameter samples,
– simple description (allowing black-box usage) that does not assume any structure (e.g., saddle point).

We note that RB methods for parameterized linear non-coercive problems have been proposed in [8], but have not yet been 
derived for the Stokes equation.

The article is structured as follows. In Section 2 we describe the transformation of the Stokes equation from a parameter-
ized domain to a reference domain. Section 3 presents the mentioned RB method for the Stokes equation and we conclude 
by a numerical experiment in Section 4.

2. Parameterized Stokes equation

Let d ∈ {2, 3} and � ⊂ R
d be an open connected domain with Lipschitz boundary ∂� divided into a Dirichlet part �D and 

a Neumann part �N. Assume that both �D and �N are non-empty and define a velocity space V = {v ∈ H1(�)d : v|�D ≡ 0}
and a pressure space Q = L2(�). For the sake of simplicity, assume that a constant forcing term f ∈ R

d is given and consider 
a weak formulation of the well-posed homogeneous Stokes equation in �. Find u ∈ V and p ∈ Q such that∫

�

∇u : ∇v dx −
∫

�

p(div v)dx =
∫

�

f · v ∀v ∈ V ,

−
∫

�

q(div u)dx = 0 ∀q ∈ Q , (1)

where ∇u : ∇v = ∑n
i=1 ∇ui · ∇vi .



A. Abdulle, O. Budáč / C. R. Acad. Sci. Paris, Ser. I 353 (2015) 641–645 643
Let us call � the reference domain and consider a class of Stokes problems in domains �μ ⊂ R
d (with ∂�μ = �

μ
D ∪ �

μ
N ) 

parameterized by μ ∈D, where D ⊂ R
P is a parametric space and P ∈ N. Instead of studying (1) in a different domain �μ

for every μ ∈D, we map the Stokes equation from �μ to � via change of variables. Assume that a mapping ϕ : �×D →R
d

is known such that for every μ ∈ D the map ϕ(·; μ) : � → �μ is a homeomorphism with ϕ(�D; μ) = �
μ
D . Moreover, let 

R ∈ N and assume that {�r}R
r=1 is a disjoint decomposition of � such that for r ∈ {1, . . . , R} the map ϕ(·; μ)|�r is affine, 

that is, there are Cr : D → R
d and Gr : D → R

d×d such that ϕ(x; μ)|x∈�r = Gr(μ)x + Cr(μ). Taking (1) in the domain �μ

and using the change of variables xnew = ϕ(xold; μ)−1 we obtain the following formulation: find u(μ) ∈ V and p(μ) ∈ Q
such that

a(u(μ),v;μ) + b(v, p(μ);μ) = f (v;μ) ∀v ∈ V ,

b(u(μ),q;μ) = 0 ∀q ∈ Q , (2)

where the parametric bilinear forms a : V × V ×D → R and b : V × Q ×D →R and the parametric linear form f : V ×D →
R can be expressed as

a(w,v;μ) =
R∑

r=1

d∑
i, j=1

νr
i j(μ)

∫

�r

∂w

∂xi
· ∂v

∂x j
dx, νr(μ) = det(Gr(μ))Gr(μ)−1Gr(μ)−T,

b(v,q;μ) = −
R∑

r=1

d∑
i, j=1

θ r
i j(μ)

∫

�r

q
∂vi

∂x j
dx, θ r(μ) = det(Gr(μ))Gr(μ)−T,

f (v;μ) =
R∑

r=1

�F
r (μ)

∫

�r

f · v dx, �F
r (μ) = det(Gr(μ)). (3)

The problem (2) together with the affine decomposition (3) are instrumental to the RB methods for Stokes problems. 
A non-trivial task is now to derive an RB method that maintains approximation and algebraic stability while minimizing 
the computational cost. A number of RB methods have been derived in the literature, see [3–5,7–9,11] and the references 
therein, and we shortly describe some of them. Given N ∈ N parameter sample points μ1, . . . , μN ∈ D, the pressure RB 
space can be set to span{p(μn), 1 ≤ n ≤ N}. The velocity RB space can then be

(i) spanned by the velocity solutions u(μn) and the so-called pressure supremizers [5,11]. The online linear system is then 
of size 3N , but without a priori guarantee of stability;

(ii) constructed as in (i) but with the so-called partial pressure supremizers [5,11]. One can prove approximation and 
algebraic stability but the online linear system is of size (Q b + 2)N , where Q b is the number of terms in an affine 
decomposition of b(·, ·; μ).

We further mention the method with parameter-dependent velocity space [11], where only one of the stability properties 
(algebraic or approximation) can be provably satisfied, and double greedy methods [4,5], where approximation stability is 
controlled by a nested greedy method and algebraic stability is provided by orthogonalization of the basis. In the following 
section, we describe an RB method for the Stokes equation that has an online time cost very close to the fast method (i) for 
which one can prove approximation and algebraic stability as for the method (ii).

3. A Petrov–Galerkin RB method for the Stokes equation

Let X = V × Q and denote by (·, ·)X a scalar product on X and let ‖ ·‖X be the corresponding norm. Consider a conformal 
simplicial mesh of � and a stable pair of velocity and pressure finite elements, e.g., the P2/P1 Taylor–Hood elements. Let 
N ∈ N be the number of degrees of freedom of this discretization and denote the (product) finite element space by XN ⊂ X . 
We write an approximation to (2) as a single symmetric non-coercive problem: find U(μ) ∈ XN such that

A(U(μ),V;μ) = F (V;μ) ∀V ∈ XN , (4)

where the bilinear form A(·, ·; μ) : X × X → R is defined by A((u, p), (v, q); μ) = a(u, v; μ) + b(v, p; μ) + b(u, q; μ) and the 
linear form F (·; μ) : X →R is defined by F ((v, q); μ) = f (v; μ). The forms A(·, ·; μ) and F (·; μ) are affine in the parameter. 
Indeed, we have A(W, V; μ) = ∑Q A

q=1 �A
q (μ)Aq(W, V), where (3) ensures the existence bilinear forms Aq : X × X → R and 

functions �A
q : D → R for q ∈ {1, . . . , Q A}, where Q A ≤ 3Rd2. Similarly, F (V; μ) = ∑R

q=1 �F
q (μ)F q(V), where functionals 

F q : X → R are easily deductible from (3). Notice that (4) does not assume any special structure (as saddle point). We 
assume that (4) is uniformly continuous, i.e., there exists γmax ∈ R such that γ (μ) = ‖A(·, ·; μ)‖ ≤ γmax for every μ ∈ D
and that the following uniform inf–sup condition holds: there is βmin > 0 such that

βN (μ) = inf
W∈XN

sup
N

A(W,V;μ)

‖W‖X‖V‖X
≥ βmin ∀μ ∈ D.
V∈X
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We next describe the RB spaces and a low-dimensional projection of (4). Let μ1, . . . , μN ∈ D be N ∈ N sample points 
and let

X N = span{U(μn), 1 ≤ n ≤ N}
be the reduced solution space. Stability of the RB approximation is achieved by using a parameter-dependent test space, 
which is constructed as an image of the so-called supremizer operator T μ : XN → XN applied on X N . For any W ∈ XN let 
T μ(W) ∈ XN be such that (T μ(W), V)X = A(W, V; μ) for every V ∈ XN . Define the parameter-dependent test space

X N,μ = span{T μ(U(μn)), 1 ≤ n ≤ N}.
The RB projection of (4) then reads: find UN (μ) ∈ X N such that

A(UN(μ),V;μ) = F (V;μ) ∀V ∈ X N,μ. (5)

Lemma 3.1 (Approximation stability). The formulation (5) preserves the inf–sup stability, that is,

βN(μ) = inf
W∈X N

sup
V∈X N,μ

A(W,V;μ)

‖W‖X‖V‖X
≥ βN (μ).

Proof. The proof is elementary. Using X N,μ = T μ(X N ) and A(W, V; μ) = (T μ(W), V)X ≤ ‖T μ(W)‖X‖V‖X , where equality 
occurs for V = T μ(W), we get

βN(μ) = inf
W∈X N

‖T μ(W)‖X

‖W‖X
≥ inf

W∈XN

‖T μ(W)‖X

‖W‖X
= βN (μ). �

Having defined the RB problem (5), we are left with a description of the offline–online decoupling, where the goal is to 
obtain an online time cost independent of N . This is rather technical, but also standard, the main difficulty being how to 
deal with the parameter-dependent test spaces.

Let ζ 1, . . . , ζ N be an orthonormal basis of X N . Notice that T μ(W) = ∑Q A
q=1 �A

q (μ)T q(W), where T q : XN → XN is a 
linear operator defined as a solution to the problem: find T q(W) ∈ XN such that (T q(W), V)X = Aq(W, V) for every V ∈ XN . 
Hence, the functions T μ(ζn) = ∑Q A

q=1 �A
q (μ)T q(ζn) for 1 ≤ n ≤ N span X N,μ . Writing the RB solution as a linear combination 

of basis functions UN (μ) = ∑N
n=1 U n(μ)ζn and similarly expressing the test functions, we obtain the online reduced system 

AN(μ)U (μ) = F N (μ) with the matrix AN(μ) ∈ R
N×N and the right-hand side F N(μ) ∈ R

N given by

AN
nm(μ) =

Q A∑
q,r=1

�A
q (μ)�A

r (μ)Aq(ζn, T r(ζm)), F N
n (μ) =

Q A∑
q=1

R∑
r=1

�A
q (μ)�F

r (μ)F r(T q(ζn)). (6)

The underlined quantities in (6) can be precomputed in the offline part and are obtained by a Greedy procedure controlled 
by the appropriate a posteriori error estimators mentioned below. Notice that the size of the online linear system (6) is 
only N .

Lemma 3.2 (Algebraic stability). The condition number of AN (μ) is at most γ (μ)2/βN (μ)2 .

Proof. Using the Cauchy–Schwartz inequality, one obtains γ (μ)‖W‖X ≥ ‖T μ(W)‖X ≥ βN (μ)‖W‖X for every W ∈ X N . Then, 
using the orthonormality of {ζn}N

n=1, we get βN (μ)2|W |2 ≤ AN(μ)W · W ≤ γ (μ)2|W |2 for any W ∈ R
N . The symmetry of 

AN(μ) then concludes the proof. �
A posteriori error evaluation and the greedy construction of the RB spaces uses these inequalities:

‖U(μ) − UN(μ)‖X ≤ ‖R N
pr(·;μ)‖(XN )′

βN (μ)
, |F (U(μ);μ) − F (UN(μ);μ)| ≤

‖R N
pr(·;μ)‖2

(XN )′

βN (μ)
, (7)

where R N
pr(W; μ) = F (W; μ) − A(W, UN (μ); μ) is the (primal) residual.

General outputs of interest. The right inequality in (7) shows that the loading F (U(μ); μ), also called the compliant output, 
can be estimated with improved (quadratic) accuracy. Consider now a general output of interest S(μ) = L(U(μ); μ), where 
L : X × D → R is affine in the parameter. To improve accuracy, we augment the system (4) with the dual problem: find 
�(μ) ∈ XN such that

A(W,�(μ);μ) = −L(W;μ), ∀W ∈ XN .
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Fig. 1. (Color online.) Numerical example from Section 4: sample plot of the horizontal velocity component (left), geometry variation (middle), and the 
convergence of greedy algorithm (right), where � ⊂ D is the training set with 10 000 points and �N (μ) = βSCM(μ)−1‖RN

pr(·; μ)‖(XN )′ and �M (μ) =
βSCM(μ)−1‖RM

du(·; μ)‖(XN )′ .

We independently use the same RB method (Lemmas 3.1 and 3.2 are still valid) to obtain a dual RB solution space X M
du and 

test space X M,μ
du based on a sample set μ1

du, . . . , μM
du ∈ D, constructed in an offline stage similarly as X N and X N,μ . Using 

the RB solution �M(μ) ∈ X M
du, we define an output estimate S N,M(μ) = L(UN (μ); μ) − R N

pr(�
M(μ); μ) that satisfies

|S(μ) − S N,M(μ)| ≤ βN (μ)−1‖R N
pr(·;μ)‖(XN )′ ‖R M

du(·;μ)‖(XN )′ ,

where the dual residual is R M
du(W; μ) = −L(W; μ) − A(W, �M(μ); μ). The evaluation of the output of interest and of the 

error bounds can be also split into an offline and an online part [8]. The inf–sup constants βN (μ) can be estimated as 
in [6].

Computational cost. In the online stage the assembling of (6) takes O(Q 2
A N2 + Q A RN) and solving the online RB system 

takes O(N3). One needs additional O(Q 2
A M2 + Q A RM + M3) to solve the dual RB problem and O(R(N + M) + Q A N M) to 

compute the output. In the offline stage of the primal problem we solve N Stokes problems and compute N Q A supremizers. 
Assembling of the online quantities used in (6) then requires O(Q 2

A N2 + Q A RN) operations, each of complexity O(N ).

4. Numerical example

We apply the proposed RB method to a contracting channel problem. Define the parameter-dependent domain by 
�μ = ((−1, μ2)) × (−μ1, μ1)) ∪ ((μ2, 1) × (−μ3, μ3)), where μ ∈ D = (0.5, 0.8) × (−0.3, 0.3) × (0.2, 0.3). We consider 
Dirichlet boundary conditions, except for the periodic connection between {−1} × (−μ3, μ3) and {1} × (−μ3, μ3). Primal-
dual formulation is used here. Finally, let f ≡ (1, 0) and define the output of interest as 

∫ μ3
−μ3

u1(μ)(μ2, y) dy, which is 
the discharge through the contraction interface. We reduced the affine decompositions to Q A = 14 and R = 4 and ran the 
successive constraints method [6] to obtain a lower bound of the inf–sup constant 0 < βSCM(μ) ≤ βN (μ). We observed an 
exponential decay during the RB greedy algorithm, which is depicted in Fig. 1 along with a geometry sketch and a sample 
solution.
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