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Let F be a finite field of odd cardinality q, A = F [T ] the polynomial ring over F , k = F (T )

the rational function field over F and H the set of square-free monic polynomials in A of 
degree odd. If D ∈ H, we denote by OD the integral closure of A in k(

√
D). In this Note, 

we give a simple proof for the average value of the size of the groups K2(OD ) as D varies 
over the ensemble H and q is kept fixed. The proof is based on character sums estimates 
and on the use of the Riemann hypothesis for curves over finite fields.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Soit F un corps fini de cardinalité impaire q, A = F [T ] l’anneau de polynômes sur F , k =
F (T ) le corps des fonctions rationnelles sur F et H l’ensemble des polynômes unitaires et 
sans facteur carré en A de degré impair. Si D ∈ H, on note par OD la clóture intégrale de 
A en k(

√
D). Dans cette Note, nous donnons une preuve simple de la valeur moyenne de 

la taille des groupes K2(OD) quand D varie dans l’ensemble H et quand q est maintenu 
fixe. La preuve est basée sur des estimations des sommes de caractères et sur l’utilisation 
de l’hypothèse de Riemann pour les courbes sur les corps finis.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In [10], the author established average value results for the size of the algebraic K groups K2(O) over function fields. His 
proof crucially depends on the mean value of quadratic Dirichlet L-functions over function fields, which in turn was first 
obtained with the help of functions defined on the metaplectic two-fold cover of GL(2, k∞), where k∞ is the completion of 
k = Fq(T ) at the prime at infinity.

In this paper, we provide a simple proof for the mean value of the size of the groups K2(O) over the rational function 
field Fq(T ). Our proof is simpler in the sense that we avoid the Eisenstein series construction involved in the proof given 
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by Hoffstein and Rosen [6], and we do this by computing the mean value of the required quadratic Dirichlet L-function in 
Fq(T ) through character sum estimates.

We start by setting the notation. Let F = Fq be a finite field with q elements (q odd), A = Fq[T ], and k = Fq(T ). For 
f ∈ A, we define | f | = qdeg( f ) if f �= 0 and |0| = 0. If D ∈ A is square-free, then OD is the integral closure of A in the 
quadratic function field K D = k(

√
D).

The zeta function associated with A is defined by

ζA(s) =
∑
f ∈ A

monic

| f |−s =
∏

P ∈ A
monic

irreducible

(1 − |P |−s)−1. (1.1)

A straightforward calculation shows that ζA(s) = (1 − q1−s)−1. If D ∈ A is square-free, we set χD ( f ) = (D/ f ), where (D/ f )
is the Kronecker symbol in A, and we form the quadratic Dirichlet L-function L(s, χD ) = ∑

f χD( f )| f |−s . Lastly, the zeta 
function of the ring OD is defined by ζOD (s) = ∑

a Na−s , where a runs through the nonzero ideals of OD = A[√D] and 
Na denotes the norm of a, i.e., the number of elements in OD/a. In a similar fashion to the case of number fields [11, 
Proposition 17.7], one has the relation

ζOD (s) = ζA(s)L(s,χD). (1.2)

Making use of (1.2) together with the results of Quillen [9] and Tate [12], Rosen [10] was able to relate the number 
L(2, χD) to the size of the group K2(OD). We will use such a relationship to prove our main result.

2. The algebraic K groups K2(OD) and a theorem of Rosen

Let D ∈ A be a monic and square-free polynomial. For ease of discussion, we only consider the case where the degree of 
D is odd since the case with an even degree of D is similar and there are no important differences. Let F = Fq and K/F be 
a function field in one variable with a finite constant field Fq . The primes in K are denoted by v , and Ov is the valuation 
ring at v . We denote by Pv the maximal ideal of Ov and by F v the residue class field at v . The tame symbol (∗, ∗)v is a 
mapping from K ∗ × K ∗ to F ∗

v defined by

(a,b)v = (−1)v(a)v(b)av(b)/bv(a) modulo Pv . (2.1)

Let a ∈ K ∗ such that a �= 0, 1 so the group K2(K ) is defined to be K ∗ ⊗ K ∗ modulo the subgroup generated by the 
elements a ⊗ (1 − a). Moore (see [12] for more details) proved that the following sequence is exact

(0) −→ ker(λ) −→ K2(K )
λ−→

⊕
v

F ∗
v

μ−→ F ∗ −→ (0), (2.2)

where λ : K2(K ) → ⊕
v F ∗

v is the sum of the tame symbol maps, and μ : ⊕
v F ∗

v → F ∗ is the map given by μ(. . . , av , . . .) =∏
v amv/m

v where mv = NPv − 1 and m = |F ∗| = q − 1.
By making use of the above discussion with Tate’s proof [12] of the Birch–Tate conjecture concerning the size of ker(λ), 

i.e.,

|ker(λ)| = (q − 1)(q2 − 1)ζK (−1), (2.3)

where ζK (s) = ∏
v(1 − NP−s

v )−1, the product being over all the primes v of the function field K , Rosen [10, Proposition 2]
established that

#K2(OD) = q(3/2) deg(D)q−3/2L(2,χD). (2.4)

With this in hand Rosen [10, Proposition 2(a)] proves the following theorem.

Theorem 2.1 (Rosen). Let m be a square-free polynomial of degree M, with M odd, and ε > 0 given. Then

(q − 1)−1(qM − qM−1)−1
∑

m ∈ A
m square-free

|K2(Om)| = ζA(2)ζA(4)c(2)q−3/2q3(M/2) + O (qM(1+ε)), (2.5)

where

c(2) =
∏

P

(
1 − |P |−2 − |P |−5 + |P |−6

)
, (2.6)

the product is taken over all monic irreducible polynomials in A.
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3. The main result

Without further postponements, we present below the main result of this note.

Theorem 3.1. Let H = {D ∈ A monic, square-free and deg(D) = 2g + 1} and ε > 0. Then

1

#H
∑
D∈H

#K2(OD) = q
3
2 (2g+1)q−3/2ζA(4)P (4) + O (q(2g+1)(1+ε)), (3.1)

where

P (s) =
∏

P ∈ A
monic

irreducible

(
1 − 1

(|P | + 1)|P |s

)
. (3.2)

A theorem similar to this was previously studied by Rosen. There are essentially two differences between Rosen’s result 
(Theorem 2.1) and the main result in this paper. The first one is that the average value of |K2(OD)|, as presented by 
Rosen, is an average taken over all square-free D and in our result we only consider the monic and square-free D , i.e., 
positive and fundamental discriminants over function fields. Comparing Eqs. (2.5) and (3.1), we observe that the constants 
multiplying the main term are close, but not equal. This is due to the fact that, in our result, we are summing over monic 
and square-free while in Rosen’s result he is summing over all square-free, and in this sense Rosen’s result is more general. 
This phenomenon is not new and it has appeared when one compares the main theorem of [2] with [6, Theorem 5.2], and it 
also appears in number fields when you compare the first moment of quadratic Dirichlet L-functions at the central point as 
given by [8, Theorem 1] and [5, Theorem (1)]; in both comparisons we see again that the constants multiplying the leading 
term in the mean values are different. The second, and most important difference, is the argument used to prove such a 
result. Rosen needs to invoke a mean value of L(s, χD ) that was previously proved by himself and Hoffstein [6] through the 
use of the theory of the Eisenstein series and the metaplectic two-fold cover of GL(2, k∞), whereas our method is solely 
based on estimating characters sums and in the use of the Riemann hypothesis for curves over finite fields.

4. Preparatory results

In this section we present a few auxiliary results that will be used in the proof of the main theorem of this note.

Lemma 4.1. Let f ∈ A be a fixed monic polynomial. Then for all ε > 0 we have that

∑
D ∈H

gcd(D, f ) = 1

1 = |D|
ζA(2)

∏
P monic

irreducible
P | f

( |P |
|P | + 1

)
+ O

(
|D| 1

2 | f |ε
)

. (4.1)

Proof. See [2, Proposition 5.2]. �
We also need the following lemma.

Lemma 4.2. We have∑
f monic

deg( f ) = n

∏
P | f

(1 + |P |−1)−1 = qn
∑

d monic
deg(d) ≤ n

μ(d)

|d|
∏
P |d

(|P | + 1)−1. (4.2)

Proof. See [2, Lemma 5.7]. �
The last result that we need before proceeding to the proof of our main theorem is given below, and it has appeared in 

a different form in [2–4] and its proof, as appears here, was first given in [1].

Lemma 4.3. If f ∈ A is not a perfect square then

∑
D ∈H
f �= �

(
D

f

)

 |D|1/2| f |1/4. (4.3)
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Proof. We write

∑
D ∈H

(
D

f

)
=

∑
2α+β=2g+1

∑
deg(B)=β

∑
deg(A)=α

μ(A)

(
A2 B

f

)

=
∑

0≤α≤g

∑
deg(A)=α

μ(A)

(
A2

f

) ∑
deg(B)=2g+1−2α

(
B

f

)

≤
∑

0≤α≤g

∑
deg(A)=α

∑
deg(B)=2g+1−2α

(
B

f

)
. (4.4)

If f �= � then 
∑

deg(B)=2g+1−2α

(
B
f

)
is a character sum to a non-principal character modulo f . So using [7, Proposition 2.1]

(which is the Pólya–Vinogradov inequality for Fq[T ]), we have that

∑
deg(B)=2g+1−2α

(
B

f

)

 | f |1/2. (4.5)

Further we can estimate trivially the non-principal character sum by

∑
deg(B)=2g+1−2α

(
B

f

)

 |D|

|A|2 = q2g+1−2α. (4.6)

Thus, if f �= �, we obtain that

∑
D∈H

(
D

f

)



∑
0≤α≤g

∑
deg(A)=α

min

(
| f |1/2,

|D|
|A|2

)


 |D| 1
2 | f | 1

4 , (4.7)

upon using the first bound (4.5) for α ≤ g − deg( f )
4 and the second bound (4.6) for larger α. And this concludes the proof of 

the lemma. �
5. Proof of the Main Theorem

From now on, we are assuming that all the sums are being taken over monic polynomials and the products are over 
monic and irreducible polynomials P in Fq[T ].

By [11, Proposition 4.3], we have:∑
D∈H

L(2,χD) =
∑
D∈H

∑
deg( f )≤2g

χD( f )| f |−2

=
∑
D∈H

∑
deg( f ) ≤ 2g

f = �

χD( f )| f |−2 +
∑
D∈H

∑
deg( f ) ≤ 2g

f �= �

χD( f )| f |−2. (5.1)

For the sum above, where f is not a square of a polynomial, we use Lemma 4.3, which depends on the Riemann hypothesis 
for curves over finite fields, to obtain that∑

D∈H

∑
deg( f ) ≤ 2g

f �= �

χD( f )| f |−2 
 qg . (5.2)

For the sum with f a square of a polynomial in (5.1), we need some extra manipulations. First we use Lemma 4.1; so we 
can write:

∑
D∈H

∑
deg( f ) ≤ 2g

f = �

χD( f )| f |−2 = |D|
ζA(2)

g∑
m=0

1

q4m

∑
deg(l)=m

∏
P |l

( |P |
|P | + 1

)
+ O

⎛
⎝|D|1/2

2g∑
n=0

qnε−n

⎞
⎠ . (5.3)

From Lemma 4.2, we have:



J. Andrade / C. R. Acad. Sci. Paris, Ser. I 353 (2015) 677–682 681
∑
D∈H

∑
deg( f ) ≤ 2g

f = �

χD( f )| f |−2 = |D|
ζA(2)

∑
deg(d)≤g

μ(d)

|d|
∏
P |d

1

|P | + 1

∑
deg(d)≤m≤g

q−3m

+ O

(
q−g (q2gε+ε − q2g+1)

qε − q

)
. (5.4)

After some arithmetic manipulations and summing the geometric series we can rewrite (5.4) as

∑
D∈H

∑
deg( f ) ≤ 2g

f = �

χD( f )| f |−2 = ζA(4)
|D|

ζA(2)

⎧⎨
⎩

∑
d monic

−
∑

deg(d)>g

⎫⎬
⎭

⎛
⎝μ(d)

|d|4
∏
P |d

1

|P | + 1

⎞
⎠

− q−3g

q3 − 1

|D|
ζA(2)

⎧⎨
⎩

∑
d monic

−
∑

deg(d)>g

⎫⎬
⎭

⎛
⎝μ(d)

|d|
∏
P |d

1

|P | + 1

⎞
⎠

+ O

(
q−g (q2gε+ε − q2g+1)

qε − q

)
. (5.5)

The sums over deg(d) > g in (5.5) are respectively bounded by O (q−4g) and O (q−g) as can be seen below:∑
deg(d)>g

μ(d)

|d|4
∏
P |d

(|P | + 1)−1 

∑

deg(d)>g

1

|d|4
∏
P |d

1

|P | 

∑

deg(d)>g

1

|d|5

=
∑
n>g

q−4n 
 q−4g (5.6)

and ∑
deg(d)>g

μ(d)

|d|
∏
P |d

(|P | + 1)−1 

∑

deg(d)>g

1

|d|
∏
P |d

1

|P | 

∑

deg(d)>g

1

|d|2

=
∑
n>g

q−n 
 q−g, (5.7)

and therefore they do not contribute to the main term.
By expressing the sums over all monic d in (5.5) as Euler products we derive that

∑
D∈H

∑
deg( f ) ≤ 2g

f = �

χD( f )| f |−2 = ζA(4)
|D|

ζA(2)
P (4) + O

(
q−g (q2gε+ε − q2g+1)

qε − q

)
, (5.8)

where P (s) is given as in the statement of Theorem 3.1.
Combining (5.2) and (5.8) we get that

∑
D∈H

L(2,χD) = |D|
ζA(2)

ζA(4)P (4) + O (qg) + O

(
qg + qg(2ε−1)+ε

qε − q

)
. (5.9)

We invoke [11, Proposition 2.3], which shows that #H = |D|/ζA(2), together with Eq. (2.4) and a few arithmetic maneu-
vers to complete the proof of the main theorem in this letter. �
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