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For a hyperbolic generalized Hénon mapping (in the sense of [3]), J+, the boundary of the 
set of points with bounded orbit is known as a complicated set and also known to admit 
a lamination by biholomorphic images of C (see [3,6]). We prove that there exists a leaf, 
which is an injective Brody curve in P2, in the lamination of J+ for certain generalized 
Hénon mappings (for Brody curves and injective Brody curves, see Subsection 2.2).

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

L’ensemble J+ des points d’orbite bornée est connu, pour une application de Hénon 
généralisée hyperbolique (dans le sens de [3]), comme étant un ensemble compliqué 
admettant une lamination par images biholomorphes de C (voir [3,6]). Nous montrons 
que, pour certaines applications de Hénon généralisées hyperboliques, une feuille de cette 
lamination J+ est une courbe de Brody injective dans P2 (voir la sous-section 2.2 pour les 
notions de courbes de Brody et courbes de Brody injectives).

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

A generalized Hénon mapping f is defined simply by a polynomial diffeomorphism f (z, w) = (p(z) − aw, z) of C2, 
where p is a monic polynomial of one complex variable and a is a non-zero constant. Then, f −1(z, w) = (w, (p(w) − z)/a). 
Define

K ± = {p ∈C
2: { f ±n(p)} is a bounded sequence of n},

and J± = ∂ K ± , K = K + ∩ K − , J = J+ ∩ J− and U± = C
2 \ K ± . Let g+ : C2 → R denote the Green function associated 

with f . Then U+ = {g+ > 0} and K + = {g+ = 0}, and U+ is open and K + is closed.
In [7], it was proved that the level set {g+ = c} for c > 0 is foliated by biholomorphic images of C and that each leaf is 

dense in {g+ = c}. In [1] and [2], it was proved that every leaf is actually an injective Brody curve.
In this note, we study the same or a similar property for J+ . In [3,4] and [6], the lamination structure of J+ was 

studied. In particular, in [3], Bedford and Smillie proved that J+ admits a lamination F+ by biholomorphic images of C for 
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a hyperbolic generalized Hénon mapping f . Then, one might ask “Is J+ foliated by injective Brody curves as U+ is?” Since 
U+ and J+ have completely different dynamical natures, we cannot apply the method of [1] and [2]. So, we rather consider 
a preceding question in this note: “Is there any leaf of J+ which is injective Brody?”

The purpose of this note is to prove the following:

Theorem 1.1. Let f (z, w) = (p(z) − aw, z) where p is a monic polynomial of one complex variable and a is a non-zero constant. 
Assume that f is hyperbolic (in the sense of [3]) and |a| ≤ 1. Then, in the natural lamination F+ of J+ , there exists a leaf that is an 
injective Brody curve of P2.

Remark 1. If we restrict Theorem 1.1 to the Hénon mappings in [6], then J+ has fractional Hausdorff dimension and, as in 
[1] and [2], the injective Brody curve leaf is dense in J+ .

Remark 2. Since J+ is closed in C2, due to Theorem 2.1, it is not difficult to find a Brody curve in J+ for an arbitrary 
generalized Hénon mapping by applying the Brody reparametrization lemma with Theorem 2.1. However, it is not clear 
whether this Brody curve stays inside a single leaf, whether the Brody curve is injective, and whether Remark 1 is true for 
this Brody curve. The main point of Theorem 1.1 is that we have these properties.

The main ingredients for Theorem 1.1 are the hyperbolicity of f and flow-boxes of the lamination of J+ and they are 
quite different from those for [1] and [2].

Notation. We use �(a, r) for the disc in C centered at a ∈ C and of radius r > 0 and � for the standard unit disc in C. We 
denote by ‖ · ‖ the standard Euclidean metric of C2 and by ds(P , V ) the standard Fubini–Study metric on P2 of V ∈ T PP

2

at P ∈ P
2. In this note, we are interested in the Fubini–Study metric on C2 ⊂ P

2. With respect to the affine coordi-
nate chart (z, w) ∈ C

2 ⊂ P
2, the standard Fubini–Study metric is defined by ds((z, w), (z′, w ′)) = (|z′|2 + |w ′|2 + |zw ′ −

z′w|2)/(1 + |z|2 + |w|2)2) for (z′, w ′) ∈ T(z,w)P
2. For a holomorphic curve γ : U → P

2 and for θ ′ ∈ U , ‖γ ‖F S,θ ′ denotes 
ds(γ (θ ′), dγ |θ=θ ′ ( d

dθ
)), where U is an open set in C.

2. Preliminaries

2.1. Generalized Hénon mappings

Let P2 be the 2-dimensional complex projective space. We denote by I+ := [0 : 1 : 0] in the homogeneous coordinate 
system of P2. Then, f has the natural extension to f̃ : P2 \ {I+} → P

2 \ {I+} by

f̃ ([z : w : t]) =
[
td p(

z

t
) − awtd−1 : ztd−1 : td

]
.

The following proposition and theorem describe the behavior of J+ .

Proposition 2.1. (See [9].) K + = K + ∪ I+ in P2 .

Theorem 2.1. (See Theorem 1.3 in [2].) There is no non-trivial holomorphic curve, which passes through I+, and is supported in 
K + ⊆ P

2 .

We recall hyperbolicity for generalized Hénon mappings in [3] (see [8] and also [6]). Recall that J is an invariant set 
for f . If a generalized Hénon mapping f is hyperbolic, there are continuous subbundles Eu and Es such that TC2

J = Es ⊕ Eu , 
and D f (Es) = Es and D f (Eu) = Eu , and there exist constants c > 0 and 0 < λ < 1 such that

‖D f n|Es ‖ < cλn,n ≥ 0 and ‖D f −n|Eu ‖ < cλn,n ≥ 0.

The Stable Manifold Theorem and Theorem 5.4 in [3] imply that, for every x ∈ J , there exists a leaf Lx in F+ such that 
x ∈Lx and TxLx = Es

x where F+ is the natural lamination of J+ .

2.2. Brody curves

In this subsection, we briefly introduce Brody curves and injective Brody curves.

Definition 2.2 (Brody curve). Let M be a compact complex manifold with a smooth metric dsM . Let ψ : C → M be a non-
constant holomorphic map.

The map ψ is said to be Brody if supθ ′∈C dsM(ψ(θ ′), dψ |θ=θ ′ ( ∂
∂θ

)) < Cψ for some constant Cψ > 0. We call the image 
ψ(C) a Brody curve in M . The curve ψ(C) is said to be injective Brody if the parameterization ψ is injective.
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Remark 3. Note that since M is assumed to be compact, Brodyness is independent of the choice of the metric dsM . For the 
purpose of simpler computations, in the remainder of the note, we will consider the Fubini–Study metric ds on P2.

Below, we consider some trivial examples. The proofs are all straightforward and so, we omit them.

Proposition 2.3. Let α be a complex constant and p, q polynomials of one complex variable z. Then, all curves of the form [z : p(z) : 1]
and of the form [p(z) exp(z) : q(z) exp(αz) : 1] are Brody.

However, not all holomorphic curves from C to P2 are Brody. The mapping z → [exp(z) : exp(iz2) : 1] is not Brody. The 
following gives us some examples of injective but non-Brody curves.

Proposition 2.4. The map fn : z → (z, exp(zn)) is not Brody in C2 ⊂ P
2 for n ≥ 3. In particular, not all holomorphic images of C in 

P
2 are Brody.

We close this section by pointing out a property of the injective Brody curves. Since the proof is straightforward, we 
omit it.

Proposition 2.5. For an injective Brody curve C in P2 , every parameterization of C has uniformly bounded Fubini–Study metrics. In 
short, the injective Brodyness property does not depend on the choice of the parameterization.

3. Proof of Theorem 1.1

Proof of Theorem 1.1. We first define a family of analytic discs. From Corollary 6.13 in [3], periodic points are dense in J . 
Pick a periodic point P ∈ J and say N its period. Let LP be a leaf in the lamination F+ of J+ passing through P as 
discussed in Section 2. Fix an analytic disc ψ : � → LP such that ψ(0) = P and ‖ψ‖F S,0 > 0. Then we consider a family of 
analytic discs as follows:

ϕn := f −Nn ◦ ψ : � → LP .

Then, since LP is a stable manifold of P , from the hyperbolicity of f , ‖ϕn‖F S,0 → ∞ as n → ∞.

Now we apply the Brody reparameterization lemma as in [5]. Note that ϕn ’s are holomorphic in a slightly larger disc. 
Define Hn : � → R

+ by Hn(θ) := ‖ϕn‖F S,θ (1 − |θ |2). Then, there exists θn ∈ � with Hn(θn) = maxθ∈� Hn(θ). For each n, 
define a Möbius transformation μn(ζ ) := (ζ + θn)/(1 + θnζ ) mapping 0 to θn . Let gn := ϕn ◦ μn . Then

‖gn‖F S,ζ (1 − |ζ |2) = ‖ϕn‖F S,θ |μ′
n(ζ )|(1 − |ζ |2) = ‖ϕn‖F S,θ (1 − |θ |2).

So, ‖gn‖F S,ζ ≤ ‖gn‖F S,0/(1 − |ζ |2). Let Rn = ‖gn‖F S,0 and define kn(θ) = gn(θ/Rn). Then,

‖kn‖F S,θ = ‖gn‖F S,θ/Rn

Rn
≤ ‖gn‖F S,0

Rn(1 − |θ/Rn|2) ≤ 2,

on �(0, Rn/2). Note that ‖kn‖F S,0 = 1 and that from the hyperbolicity of f , we see that Rn → ∞ as n → ∞. Hence, from a 
normal family argument applied to {kn} and the compactness of P2, there exists a holomorphic map � :C →LP ⊆ J+ ⊂ P

2

with ‖�‖F S,0 = 1 and a subsequence {kn j } locally uniformly converging toward �. In particular, � is a Brody map. From 
Proposition 2.1, we have J+ = J+ ∪ {I+}. However, Theorem 2.1 implies that �(C) ⊂ J+ .

We prove that the Brody curve �(C) sits inside a single leaf of the lamination F+ of J+ . Suppose the contrary. Then, 
there exist two points α, β ∈ C such that �(α) and �(β) live in two different leaves and that α, β are sufficiently close so 
that some small piece of the complex curve �(C) connecting �(α) and �(β) sits in a single flow-box of the lamination of 
J+ . Let γ ⊂ �(C) denote the piece of the complex curve �(C) connecting �(α) and �(β). Then, there exists a constant 
ε > 0 such that for any plaque T in the flow-box, sup(z,w)∈γ dist ((z, w), T ) > ε where dist (·, ·) is with respect to the 
standard Euclidean distance of C2. This is a contradiction to the local uniform convergence of {kn j } to �, since the image 
of each reparameterized analytic disc sits inside a single leaf of the lamination F+ of J+ . This proves that �(C) sits in a 
single leaf of the lamination F+ of J+ .

We show that � is one-to-one. Suppose on the contrary that � is not one-to-one. Then, there are α, β ∈C and q ∈ �(C)

such that α �= β and �(α) = �(β) = q. Consider a sufficiently large Rq > 1 such that α, β ∈ �(0, Rq). Let F be a compact 
set of C2 such that its interior contains J . Consider a finite covering of J+ ∩ F consisting of flow-boxes of F+ . Note that 
since |a| ≤ 1, Theorem 5.9 in [3] says that for any leaf L in J+ , there exists a point x ∈ J such that L is a stable manifold 
of the point x. Since �(�(0, 2Rq)) lives in a single leaf, there exists sufficiently large Nq ∈ N such that the analytic disc 
f Nq (�(�(0, 2Rq))) is entirely contained in a flow-box in the finite covering. By passing to a subsequence, we may assume 
that kn converges to � locally uniformly and f Nq (kn(�(0, 2Rq))) is entirely contained in the same flow-box. Let π denote 
the projection onto the base in the flow-box. Then, since the image of each reparameterized analytic disc sits inside a single 
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leaf of the lamination F+ of J+ , π ◦ f Nq ◦ kn ’s are injective. Since the convergence of {kn} to � is locally uniform and 
� is not a constant map, the Hurwitz theorem of one complex variable implies that π ◦ f Nq ◦ � is injective. So, we have 
π ◦ f Nq ◦ �(α) �= π ◦ f Nq ◦ �(β), which contradicts �(α) = �(β) = q. Hence, we just proved that � is injective.

Note that each leaf in the lamination F+ of J+ is biholomorphic to C (see [3]). Since there is no proper biholomorphic 
image of C inside C, the leaf containing the injective Brody curve itself should be an injective Brody curve. This proves our 
theorem. �
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