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RESUME

Soit Tcy(d) la taille maximale du sous-groupe de torsion d'une courbe elliptique a
multiplications complexes, définie sur un corps de nombres de degré d. Nous montrons
qu’il existe C une constante absolue, effective, telle que Tcy(d) < Cdloglog(d) pour tout
d>3.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

For a commutative group G, we denote by G[tors] the torsion subgroup of G.
1. Introduction
The aim of this note is to prove the following result.

Theorem 1. There is an absolute, effective constant C such that for all number fields F of degree d > 3 and all elliptic curves E /r with
complex multiplication,

#E(F)[tors] < Cdloglogd.
It is natural to compare this result with the following one.

Theorem 2. (See Hindry-Silverman [9].) For all number fields F of degree d > 2 and all elliptic curves E ;¢ with j-invariant j(E) € OF,
we have

#E(F)[tors] < 1977408dlogd.
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Every CM elliptic curve E,r has j(E) € OF, and only finitely many j € Of are j-invariants of CM elliptic curves E,r. But
the improvement of loglogd over logd is interesting in view of the following result.

Theorem 3. (See Breuer [4].) Let E ¢ be an elliptic curve over a number field. There exists a constant c(E, F) > 0, integers 3 < d; <
dy < ...<dy < ...and number fields F, O F with [Fy, : F] = d, such that for alln € Z we have

c(E, F)d,loglogd, if E has CM,

c(E, F),/dyloglogd, otherwise.

Let Tem(d) be the maximum size of the torsion subgroup of a CM elliptic curve over a degree d number field. Theorems 1
and 3 tell us that Tem(d) has upper order dloglogd:

#E(F,)[tors] > {

0 < limsup M < 00.
d—oo dloglogd

To our knowledge, this is the first instance of an upper order result for torsion points on a class of abelian varieties over
number fields of varying degree.

Define T(d) as for Tcm(d) but replacing “CM elliptic curve” with “elliptic curve”, and define T_¢m(d) as for Tem(d)
but replacing “CM elliptic curve” with “elliptic curve without CM”. Hindry and Silverman ask whether T—cm(d) has upper
order /dloglogd. If so, the upper order of T(d) would be dloglogd [5, Conjecture 1].

2. Proof of the Main Theorem
2.1. Torsion points and ray class containment
Let K be a number field. Let Ok be the ring of integers of K, Ag the discriminant of K, wi the number of roots of

unity in K and hg the class number of K. By an “ideal of Ok” we shall always mean a nonzero ideal. For an ideal a of O,
we write K® for the a-ray class field of K. We also put |a| = #Oy/a and

1
(@) = #Ox/* =al [ <1 _ m) .
pla

An elliptic curve E defined over a field of characteristic 0 has complex multiplication (CM) if EndE D Z; then EndE is an
order in an imaginary quadratic field. We say E has O-CM if End E = O and K-CM if End E is an order in K.

Lemma 4. Let K be an imaginary quadratic field and a an ideal of Ok. Then

hl(‘PK(a)<hK(/)K(a)
6 T wg

<[K®: K] <hgok(a).

Proof. This follows from [6, Corollary 3.2.4]. O

Theorem 5. Let K be an imaginary quadratic field, F O K a number field, E ;¢ a K-CM elliptic curve and N € Z*. If (Z/NZ)? — E(F),
then F > KNOK,

Proof. The result is part of classical CM theory when End E = Oy is the maximal order in K [15, I1.5.6]. We shall reduce
to that case. There is an Og-CM elliptic curve E}F and a canonical F-rational isogeny ¢: E — E’ [5, Prop. 25]. There is a
field embedding F < C such that the base change of ¢ to C is, up to isomorphisms on the source and target, given by
C/O — C/Ok. If we put

P=1/N+O€E[N], P'=1/N+ Ok €E'[N],

then ((P) = P’ and P’ generates E'[N] as an Og-module. By assumption P € E(F), so ¢«(P) = P’ € E/(F). It follows that
(Z/NZ)* — E'(F)[tors]. O

Remark 6. In fact one can show — e.g., using adelic methods — that for any K-CM elliptic curve E defined over C, the field
obtained by adjoining to K (j(E)) the values of the Weber function at the N-torsion points of E contains K NOx),
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2.2. Squaring the torsion subgroup of a CM elliptic curve

Theorem 7. Let K be an imaginary quadratic field, let F O K a field extension, and let E /¢ be a K-CM elliptic curve. Suppose that for
positive integers a and b we have an injection Z/aZ x Z/abZ — E(F). Then [F (E[ab]) : F] <b.

Proof. Step 1: Let O = EndE. For N € 7%, let Cy = (O/NO)*. Let E[N] = E[N](F). As an O/NO-module, E[N] is free
of rank 1. Let gr = Aut(F/F), and let pn:gr —> GL»(Z/NZ) be the mod N Galois representation associated with E .
Because E has O-CM and F D K, we have

ON: gF —> Auto E[N] = GL; (O/NO) = (O/NO)* = Cy.

Let A be the discriminant of O. Then e; =1, e; = A%FA is a Z-basis for O. The induced ring embedding O < M3(Z) is

. pA—pA?
b o .S
given by ae; + fer — [,3 ot+4ﬂA ] o)

A2 — A

C Ha ﬁA4ﬁA2}| B eZ/NZ, and o? + A ﬂ+<
= o, p e , dnd o o
N B o+ BA

From this we easily deduce the following useful facts:

),32 € (Z/NZ)* }

0«
(i) For all primes p and all A, B > 1, the natural reduction map Cpa+s — Cpa is surjective and its kernel has size p?B.

(i) Cy contains the homotheties {[“ 0] | € (Z/NZ)* }

Step 2: Primary decomposition reduces us to the case a = p4, b = p® with A >0 and B > 1. By induction it suffices to treat
the case B =1: i.e., we assume E(F) contains full pA-torsion and a point of order pA*! and show [F(E[pAt1]): F] < p.

Case A=0:

o If <%> =1, then C, is conjugate to {[‘; g] o, B eIF;}. If o #£1 (resp. B # 1) the only fixed points (x, y) € Ff, of [g 2}
have x =0 (resp. y = 0). Because E(F) contains a point of order p we must either have o =1 for all [g g} € pp(gr) or

B =1 for all [‘; 2] € pp(gr). Either way, #p,(gr) | p — 1.

o If (%) = —1, then Cp acts simply transitively on E[p]\ {0}, so if we have one F-rational point of order p then E[p] C
E(F), so #pp(gF) = 1.
o If (%) =0, then Cp is conjugate to {[‘; 5] laeFX, Be IE‘p} [3, §4.2]. Since E(F) has a point of order p, every element

of pp(gr) has 1 as an eigenvalue and thus pp(gr) C {[(l) ’f] |B e FP}, so has order dividing p.

Case A > 1: By (ii), K =kerCpas1 — Cpa has size p2. Since (Z/pA7)% — E(F), we have ppa+1(gr) C K. Since E(F) has a

14p4

point of order pA+!, by (i) the homothety [ )

1+0p"] lies in K\ ppa+1(gF). Therefore ppasi(gr) C K, s0 #ppasi(gr) | p. O

2.3. Uniform bound for Euler’s function in imaginary quadratic fields

Let a be an ideal in an imaginary quadratic field K. To apply the results of Section 2.1, we require a lower bound on
‘p’l‘;‘“). For fixed K, it is straightforward to adapt a classical argument of Landau (see the proof of [10, Theorem 328, p. 352]).
Replacing Landau’s use of Mertens’ Theorem with Rosen’s number field analogue [13], one obtains the following result: let

y denote the Euler-Mascheroni constant, and let x (-) = ( ﬂ) be the quadratic Dirichlet character associated with K. Then

liminfL@ =e 7. L(1, ).

lal—oco |a]/loglog|al
Alas, this result is not sufficient for our purposes. There are two sources of difficulty. First, the right-hand side depends
on K, and can in fact be arbitrarily small (see [2, (4')]). Second, it only addresses limiting behavior as |a| — co. However,
looking back at Lemma 4 we see that a lower bound on hg ‘p’l‘cfla) would suffice. The factor of hi allows us to prove a totally
uniform lower bound.

Theorem 8. There is a positive, effective absolute constant C such that, for all imaginary quadratic fields K and all nonzero ideals a
of Ok with |a| > 3, we have
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la|

C
> —
Pr (@) = hx loglog|al

Lemma 9. For a fundamental quadratic discriminant A < 0, let K = Q(+/A), and let x () = (é). There is an effective constant C > 0
such that for all x > 2,

xwy_ €
]‘[(1 p)th. (1)

p=<x

Proof. By the quadratic class number formula, hg < L(1, x)+/|A[ [7, eq. (15), p. 49]. Writing L(1, x) = l_[p(l —x()/p)~!
and rearranging, we see (1) holds iff

]‘[(1—%) <Al (2)

pP>X

with an effective and absolute implied constant. By Mertens’ Theorem [10, Theorem 429, p. 466], the factors on the left-hand
side of (2) indexed by p < exp(+/]A]) make a contribution of O (y/JA]). Put y = max{x, exp(/[A])}; it suffices to show that
]_[p>y (1—x(p)/p) < 1. Taking logarithms, this will follow if we prove that Zp>y x(p)/p = 0(1). For t > exp(+/[A]), the
explicit formula gives S(t) := Zpng(P) logp = —t#/B + 0O(t/logt), where the main term is present only if L(s, x) has a
Siegel zero 8. (Cf. [7, eq. (8), p. 123].) We will assume the Siegel zero exists; otherwise the argument is similar but simpler.
By partial summation,

Zx;p): 5 +/ SO 1 4 logrydt

- 2 2
= ylogy t?(logt)
«1 +/ ——dt
t2logt
y

Haneke, Goldfeld-Schinzel, and Pintz have each shown that 8 <1 — c¢/J/|A], where the constant ¢ > 0 is absolute and
effective [8,11,12]. Using this to bound t#, and keeping in mind that y > exp(+/TA]), we see that the final integral is at most

o0
f exp(—clogt/+/]A]) dr
tlogt '
exp(v/IA])

A change of variables transforms the integral into floo exp(—cu)u~! du, which converges. Assembling our estimates com-
pletes the proof. O

Proof of Theorem 8. Write ¢k (a) = |a|[],,,(1 — 1/Ip]), and notice that the factors are increasing in [p|. So if z > 2 is such
that [}, -, p| = |al, then

pi (@) 1
a =11 <1_ |p|>' ©)

Ipl=z

We first establish a lower bound on the right-hand side, as a function of z, and then we prove the theorem by making a
convenient choice of z. We partition the prime ideals with |p| <z according to the splitting behavior of the rational prime p
lying below p. Noting that p < |p|, Mertens’ Theorem and Lemma 9 yield

[10-3)=10-3)0-5)

)
> (logz)™' ] (1 — %) > (logz)™"-hy ' (4)

p<z
With C’ a large absolute constant to be described momentarily, we set
z=(C'log|al)?. (5)

We must check that ]_[“,‘SZ |p| > |a|. The Prime Number Theorem implies
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[Tw=J]r= [] pzla.
Ipl=z p<zl/2 p=C’log]al

provided that C’ was chosen appropriately. Combining (3), (4), and (5) gives
@k (@) > |a| - (logz) ™' ' > hi' - |a| - log(log(la]) ™. O
2.4. Proof of Theorem 1

Let F be a number field of degree d > 3, and let E/r be a K-CM elliptic curve. We may assume #E(F)[tors] > 3. We have
E(FK)[tors] = Z/aZ x 7./abZ for positive integers a and b. Theorem 5 gives FK D K@) Along with Lemma 4, we get

hx ok (@Ok)
—s

By Theorem 7, there is an extension L/FK with (Z/abZ)?* — E(L) and [L : FK] < b. Applying Theorem 5 and Lemma 4 as
above we get L > K@) and

2d > [FK : Q] > [K“99%) . Q] >

[L:Q]> [K(ﬂbOK) :Q]> w’
so
[FK:Ql  [L:Q] _ [L:Q] _ hgex(abOx)
[F: Q1= 2 2[L:FK1— 2b ~— 6b (6)
Multiplying (6) through by (ab)? = |abOx| and rearranging, we get
d |abOk]|
#E(FK)[tors] =a’h <6— ————. (7)
hk ¢k (abOk)
By Theorem 8 we have
labO| 2,..2
———— < hgloglog |abOk| < hi loglog(a“b)” <« hy loglog #E (FK)[tors]. (8)
@K (abOx)

Combining (7) and (8) gives

#E (FK)[tors] < d log log #E (FK)[tors]

and thus
#E(F)[tors] < #E(FK)[tors] <« dloglogd.
3. Related work

Let E be a K-CM elliptic curve defined over a number field F, and let P € E(F)[tors]. Silverberg showed [14, Corollary
6.1] that if F D K then @(#(P)) <3[F : Q]. It follows that if F 5 K then @ #(P)) < 6[F : Q]. Later Aoki showed [1, Proposi-
tion 8.1] that if F % K then @(#(P)) < 2[F : Q]. Silverberg’s and Aoki's bounds are the real truth: there are points of order 6
when F = Q and of order 7 when F = K = Q(+/=3).

These results give an O (dloglogd) bound on the exponent of E(F)[tors] and thus imply #E(F)[tors] = O ((d loglogd)?),
which was later superseded by Theorem 2. If F % K, then E(F)[tors] has a cyclic subgroup of index at most 2. Thus the
work of Silverberg and Aoki yields Theorem 1 when F 2 K, in fact in the more explicit form

#E(F)[tors] < (4e¥ +o(1))dloglogd, asd— oc.
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