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r é s u m é

Nous présentons un raffinement du théorème de Gauss–Lucas, d’après une idée de 
W.P. Thurston.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

This article, although self contained, can be considered as a completion of the article [1], where the statements and ideas 
of proofs have been exposed.

Let f be a polynomial with complex coefficients of degree m ≥ 1. By the fundamental theorem of algebra, f has exactly 
m complex roots counting multiplicities. The derivative f ′ is a polynomial of degree m − 1 and its roots of are called the 
critical points of f .

The following theorem by Gauss and rediscovered by Lucas describes a beautiful relationship between the roots of a 
polynomial and the roots of its derivative.

Theorem 1.1 (Classical version of the Gauss–Lucas theorem). If f is a polynomial of degree at least two, then the convex hull of the 
roots of f contains the roots of f ′ .

The proof of this theorem is fairly elementary and can be found in many text books. W. Thurston gave a purely geometric 
proof of the theorem eliminating all the calculations except the fact that a polynomial is a product of linear factors. We 
present his proof in Section 2. He also showed another version of this theorem, which goes as follows.
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Fig. 1. (Color online.) Bijective region of f .

Fig. 2. (Color online.) Gradient direction of z �→ |z − a|.

Proposition 1.1 (A surjective version of the Gauss–Lucas theorem). Let f be any polynomial of degree at least two. Denote by C the 
convex hull of the critical points of f . Then f : E → C is surjective for any closed half-plane E intersecting C .

This is an equivalent statement to the Gauss–Lucas theorem. In fact, if the convex hull of the roots of f does not con-
tain C , there would exist a closed half-plane E intersecting C , but avoiding all roots of f . Hence f |E would be non-surjective 
and hence Proposition 1.1 implies Theorem 1.1. Conversely, one sees that Theorem 1.1 implies Proposition 1.1 by considering 
the convex hull of roots of f − w for all complex constants w .

By this proposition, if we want to cover the whole plane with a half-plane containing the least possible points, we should 
take the one just touching C . To achieve this covering more efficiently, one may look for a connected region D such that 
f is surjective on D and injective on the interior of D . Thurston, in private communications, indicated to us the following 
result, which is more powerful than the classical Gauss–Lucas theorem.

Theorem 1.2 (The Gauss–Lucas–Thurston theorem). Let f be any polynomial of degree at least two, and denote by C the convex hull of 
the critical points of f . Let L be a straight line intersecting C and that bounds an open half plane H disjoint from C . If c ∈ L is a critical 
point of f , then there exists a set of geodesics for the metric | f ′(z)| · |dz| starting at c and with directions in H that forms an open 
subset U of H for which f (U ) =C. Furthermore, f maps U bijectively onto C minus a radial line from f (c) to ∞ (see Fig. 1).

We had never seen such statement elsewhere. We have completed a proof of it following the guidelines of Thurston. The 
proof will be presented in Section 3.

2. A geometric proof of the Gauss–Lucas theorem, due to Thurston

Proof. Let a ∈ C. Consider the distance function z �→ |z − a|. The level curves of this function are concentric circles with 
center a, so the gradient direction of the function at any point z �= a is the radial direction from a to z (see Fig. 2). Let L
be the line through z and perpendicular to the segment [a, z]. Denote by H the open half-plane determined by L disjoint 
from a. Then the function z �→ |z − a| has a strictly positive directional derivation at z in any direction pointing into H .
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Fig. 3. (Color online.) The intersection of all H j .

Let f be a polynomial of degree at least two. Denote by Z the convex hull of the roots of f and let z be a point 
outside Z . For each root a j of f , we can draw a line L j through z and perpendicular to the segment [z, a j]. Denote by 
H j the open half-planes determined by L j disjoint from a j (see Fig. 3). By the argument above, each distance function 
z �→ |z − a j | has a strictly positive directional derivation at z in any direction pointing into H j .

The fact that z /∈Z is equivalent to say that the point z admits a cone of angle α < π containing all roots of f . Then the 
intersection of all H j is a cone based at z with angle β = π − α > 0 (the shadow region in Fig. 3). Therefore, there exists 
a direction in which the directional derivative of z �→ |z − a j| is strictly positive for each root a j of f . We see that, in this 
direction, the directional derivative of the function z �→ | f (z)| is still strictly positive, hence non-zero. Then we conclude 
that f ′(z) �= 0. Otherwise, if f ′(z) = 0, the directional derivative of f in each direction at z is 0, so is the one of | f |, which 
is a contradiction to the argument above. �
3. The proof of Theorem 1.2

Proof. We firstly treat the case of simple critical points, i.e., f ′′(c) �= 0. In this case, we will show that the region U in 
Theorem 1.2 consists of all geodesics starting at c and with directions in H .

We may assume that c = 0, f (0) = f ′(0) = 0, H = H+ , the upper half-plane, and f ′′(0) = 1. Note that the conformal 
metric | f ′(z)||dz|, which is a Riemannian metric with the singularities at critical points of f , is obtained by pulling-back 
the Euclidean metric by f , so that the geodesics in this metric are pullback by f of straight lines. Then we just need to 
prove that there exist two branches of f −1(R+) emanating from 0, belonging to H+ := H+ ∪ R, and such that the open 
region U ⊂ H+ bounded by these two curves contains no curves of f −1(R+). If so, the map f : U → C \R+ is a covering, 
and hence must be bijective by the Riemann–Hurwitz formula.

First, we deal with the case that at least one critical point is in the open lower half plane H− . As 0 is a simple critical 
point, then there are two branches R1, R2 in f −1(R+) emanating from 0, and each component of C \ (R1 ∪ R2) has the 
angle π/2 at 0. We want to show that R1 ∪ R2 ⊂ H+ ∪ {0}.

For this we study, the behavior of the vector field 1/ f ′(z) on L =R near 0, because the two curves R1, R2 are trajectories 
of the vector field 1

f ′(z)
∂
∂z .

We have f ′(z) = z
A · ∏ j(c j − z) with A = ∏

c j and �(c j) ≤ 0 for any non-zero critical point c j of f .

Fix x ∈ R close to 0. Write c j − x = r j(x)eiθ j(x) with r j(x) > 0 and 0 ≤ θ j(x) < 2π . In particular, c j = r j(0)eiθ j(0) . So 
A = ∏

r j(0)eiθ j(0) . Then, for x �= 0, there is some r(x) > 0 so that

1

f ′(x)
= A

x

⎛
⎝∏

j

(c j − x)

⎞
⎠

−1

= r(x)

x
ei

∑
(θ j(0)−θ j(x)).

Note that for x close to 0, the quantity θ j(0) − θ j(x) is either 0 (c j ∈ R) or close to 0 and has the same sign as x (c j ∈ H−) 
(see Fig. 4). Since at least one critical point is in H− , then � 1

f ′(x) > 0 for any x �= 0 close to 0. It follows that for z close 
to 0, the vector 1/ f ′(z) points into H+ . Since the two curves R1, R2 are trajectories of the vector field 1

f ′(z)
∂
∂z , according to 

Gronwall’s comparison lemma, we conclude that they belong locally to H+ .
We now show that the two trajectories stay entirely in H+ . Let a ∈ H+ be a point of the two trajectories. Let γ (t) be 

either R1 or R2 so that f (γ (t)) = t · f (a), t ∈ R
+ . Then γ ′(t) · f ′(γ (t)) = f (a) and γ ′′(t) · f ′(γ (t)) + γ ′(t)2 f ′′(γ (t)) ≡ 0. It
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Fig. 4. (Color online.) The same sign of θ1(0) − θ1(x) and x.

Fig. 5. (Color online.) Bijective region of f = 1
2 z2 − 1

6 z3 − 1
8 z4.

follows that

d

dt
(� 1

γ ′(t)
) = �(− γ ′′(t)

γ ′(t)2
) = � f ′′(γ (t))

f ′(γ (t))
= � 1

γ (t)
+

∑
j

� 1

γ (t) − c j
< 0.

This means that � 1
γ ′(t) is decreasing and therefore �γ ′(t) is increasing. Write γ (t) = x(t) + iy(t). We know that y′(t) > 0

for small t and y′(t) is increasing. So y′(t) > 0 for all t ∈R
+∗ := R

+ \ {0}. It follows that y(t) is also increasing. But y(t) > 0
for t small. So y(t) > 0 for all t ∈ R

+∗ .
It remains to show that the open region U ⊂ H+ bounded by R1, R2 contains no branches in f −1(R+). As no critical 

points of f are in H+ , the region U \ f −1(R+) is connected and simply-connected, and the map f : U \ f −1(R+) →C \R+
is bijective by the Riemann–Hurwitz formula. Assume that a branch R of f −1(R+) belongs to U . Since f (R) = f (R1) =R

+ , 
there exists a point in a neighborhood of R+ having two pre-images in U \ f −1(R+) that belong to the neighborhoods of R
and R1 respectively. It is a contradiction. So we obtain that U ∩ f −1(R+) = ∅.

Now we assume that all critical points of f are in R. Then f is a polynomial with real coefficients. For each t ∈ R
+

close to 0, there is a unique positive (resp. negative) number a(t) (resp. b(t)) such that f (a(t)) = t (resp. f (b(t)) = t). The 
function a(t) (resp. b(t)) is increasing (resp. decreasing) in the interval (0, v) (resp. (0, w)), where a(v) (resp. b(w)) is the 
minimal positive (resp. maximal negative) critical point of f . Suppose the multiplicity as a critical point of a(v) (resp. b(w)) 
is k ≥ 1, then there is a curve γ1 in f −1[v, +∞) (resp. γ2 in f −1[w, +∞)) such that the angle between γ1 and [0, a(v)]
at a(v) (resp. γ2 and [b(w), 0] at b(w)) is π

k+1 and γ1 (resp. γ2) belongs locally to H+ . With the same argument as in the 
first case, we get that γ1 and γ2 stay entirely in H+ (see Fig. 5).

Set R1 := [0, a(v)] ∪ γ1 and R2 := [b(w), 0] ∪ γ2. Under our construction, the open region U ⊂ H+ bounded by R1 and 
R2 is not disconnected by f −1(R+). So we have U ∩ f −1(R+) = ∅ by the same reason as in the first case. Then the proof 
of the case of simple critical points is completed.
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For the case of multiple critical points, if c ∈ L is a critical point of f with multiplicity k ≥ 2, we conclude that a set of 
geodesics from c with directions in a cone in H of angle 2π

k+1 at c forms a region U with the properties in Theorem 1.2. The 
proof is very similar to the case of simple critical points, where the local part is somehow simpler and the global part is 
completely the same. �
Remark 1. In fact, it is not difficult to find the bijective regions, and we have a lot of choices for the image of their interior 
by f . The interest of this theorem is that one of the bijective regions is in the half-plane H supported by C .
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