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r é s u m é

Nous annonçons quelques résultats récents sur la régularité höldérienne globale pour les 
solutions faibles d’équations coercitives quasi linéaires avec des données appartenant à des 
espaces de Morrey.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The note deals with global boundedness and Hölder continuity for the weak solutions to the Dirichlet problem for 
quasilinear operators whose prototype is the m-Laplacean. Precisely, we consider the problem{

u ∈ W 1,m
0 (�)

div
(
a(x, u,Du)

) = b(x, u,Du) weakly in �,
(1)

where � ⊂ R
n , n ≥ 2, is a bounded domain, m ∈ (1, n] and a: � × R × R

n → R
n and b: � × R × R

n → R are Carathéodory 
maps, the x-behavior of which is controlled in terms of Morrey functional scales. Setting m∗ for the Sobolev conjugate of m, 
we assume controlled growths of a and b with respect to u and |Du|. That is, there exist a constant � > 0 and non-negative 
measurable functions ϕ and ψ such that

|a(x, z, ξ)| ≤ �

(
ϕ(x) + |z|m∗(m−1)

m + |ξ |m−1
)

,
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|b(x, z, ξ)| ≤ �

(
ψ(x) + |z|m∗−1 + |ξ |m(m∗−1)

m∗
)

(2)

for almost all (a.a.) x ∈ � and all (z, ξ) ∈ R × R
n . Let us note that (2), together with ϕ ∈ L

m
m−1 (�) and ψ ∈ L

nm
nm+m−n (�), 

are the minimal hypotheses giving sense to the concept of W 1,m
0 (�)-weak solution to (1). However, these integrability 

requirements on ϕ and ψ are far from being sufficient to ensure the continuity and even the boundedness of the solution. 
That is why ϕ and ψ will be taken hereafter as belonging to suitable Morrey spaces (cf. [12] for their definitions and basic 
embedding properties). Namely,

ϕ ∈ Lp,λ(�) with p >
m

m − 1
, λ ∈ (0,n) and (m − 1)p + λ > n

ψ ∈ Lq,μ(�) with q >
mn

mn + m − n
, μ ∈ (0,n) and mq + μ > n. (3)

We will assume also the coercivity of the differential operator considered,

a(x, z, ξ) · ξ ≥ γ |ξ |m − �|z|m∗ − �ϕ(x)
m

m−1 (4)

for a.a. x ∈ � and all (z, ξ) ∈ R ×R
n , with a constant γ > 0.

As for the generally non-smooth boundary of �, we suppose that it satisfies a density condition given in terms of varia-
tional m-capacity, which requires the complement Rn \ � to be uniformly m-thick: there exist positive constants A� and r0 such 
that

Capm

((
R

n \ �
) ∩ Br(x), B2r(x)

) ≥ A� Capm

(
Br(x), B2r(x)

)
(5)

for all x ∈ R
n \ � and all r ∈ (0, r0). Here Br(x) stands for the ball of radius r and centered at x, and the right-hand side 

behaves as rn−m . Replacing the capacity above with the Lebesgue measure, (5) reduces to the well-known measure density 
condition that holds, for instance, when � supports the uniform exterior cone property. Thus, each domain with at least 
Lipschitz continuous boundary has an m-thick complement, while the vice versa is not true in general. Moreover, if a given 
set satisfies the measure density condition, then it is uniformly P -thick for each P > 1, whereas each nonempty set is 
uniformly P -thick if P > n. Further on, a uniformly Q -thick set is also uniformly P -thick for all P > Q and, as proved 
in [8], the uniformly P -thick sets have a deep self-improving property to be uniformly Q -thick for some Q < P , depending 
on n, P and the constant of the P -thickness. Yet another example of P -thick set for all P > 1 is given by those satisfying 
the uniform corkscrew condition: a set E is uniformly corkscrew if there exist constants C > 0 and r0 > 0 such that for any 
x ∈ E and any r ∈ (0, r0) there is a point y ∈ Br(x) \ E with the property that Br/C (y) ⊂R

n \ E .
The question of Hölder continuity of the weak solutions to (1) has been a long-standing problem in the PDEs theory, 

related to the Hilbert 19th Problem. It has been brilliantly solved by De Giorgi in [4] for W 1,2
0 -weak solutions to linear

equations over Lipschitz continuous domains when m = 2, ϕ ∈ Lp , with p > n and ψ ∈ Lq with 2q > n, and this provided 
the initial breakthrough in the modern theory of nonlinear equations in more than two independent variables. The De Giorgi 
result was extended to general linear operators within Lp -framework by Stampacchia in [14], and in the non-Lp settings (i.e., 
when a sort of (3) holds) by Morrey in [11] and Lewy and Stampacchia in [9] to equations with measures at the right-hand 
side, assuming ϕ ∈ L2,λ , ψ ∈ L1,μ with λ, μ > n − 2. Moving to the quasilinear equation (1), we dispose of the seminal 
Lp-result of Serrin [13], which provides interior boundedness and Hölder continuity of the W 1,m

0 -weak solutions to (1) in 
the sub-controlled case when the nonlinearities grow as |u|m−1 + |Du|m−1, and the behavior with respect to x of a(x, u, Du)

and b(x, u, Du) is controlled in terms of ϕ and ψ , respectively, that satisfy

ϕ ∈ Lp(�) with p >
m

m − 1
, (m − 1) p > n

ψ ∈ Lq(�) with q >
mn

mn + m − n
, mq > n. (6)

Global boundedness of the W 1,m
0 -weak solutions to (1) with general nonlinearities of controlled growths has been ob-

tained by Ladyzhenskaya and Ural’tseva (cf. [7]) under the hypotheses (6) and for domains with exterior cone property. In 
the case m = 2, the paper [2] extends their result to the problem (1) with Morrey data satisfying (3). Assuming natural 
growths of the data (that is, a(x, u, Du) =O(ϕ(x) + |Du|m−1) and b(x, u, Du) =O(ψ(x) + |Du|m)) and (6), Ladyzhenskaya and 
Ural’tseva proved also Hölder continuity up to the boundary for the bounded weak solutions of (1), and Gariepy and Ziemer 
extended in [5] that result in domains with m-thick complements. It was Trudinger [15] the first to get global Hölder conti-
nuity of the bounded solutions in the non-Lp settings under the natural structure hypotheses of Ladyzhenskaya and Ural’tseva 
with ϕ ∈ Ln/(m−1),ε , ψ ∈ Ln/m,ε for a small ε > 0, while Lieberman derived in [10] a very general result on interior Hölder 
continuity when ϕ and ψ are suitable measures.

We announce here our recent results from [3] regarding global boundedness (Theorem 2.1) and Hölder continuity up to the 
boundary (Theorem 3.1) for each W 1,m

0 (�)-weak solution to the coercive Dirichlet problem (1) over domains with m-thick
complements, assuming controlled growths of the nonlinearities and Morrey data ϕ and ψ satisfying (3). Apart from the 
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more general class of domains considered, we extend this way the classical L p -results of Ladyzhenskaya and Ural’tseva to 
the non-Lp-settings by weakening the hypotheses on ϕ and ψ to the scales of Morrey type. Comparing (3) with (6), it is clear 
that the decrease of the degrees p and q of Lebesgue integrability of the data ϕ and ψ is at the expense of increase of the 
Morrey exponents λ and μ, and the range of these variations is always controlled by the relations (m − 1) p + λ > n and 
mq + μ > n. Indeed, in the particular case λ = μ = 0 and domains with exterior cone property, our results reduce to these 
of Ladyzhenskaya and Ural’tseva [7]. However, our Theorems 2.1 and 3.1 generalize substantially the results of [7] because, 
even if (m − 1)p ≤ n and mq ≤ n, there exist functions ϕ ∈ Lp,λ with (m − 1) p + λ > n and ψ ∈ Lq,μ with mq + μ > n for 
which (3) hold, but ϕ /∈ Lp′ ∀p′ > n/(m − 1) and ψ /∈ Lq′ ∀q′ > n/m and therefore (6) fail. Moreover, the controlled growths 
and the restrictions (3) on the Lebesgue–Morrey exponents turn out to be optimal for the global boundedness and the 
subsequent Hölder continuity of the weak solutions to (1).

We refer the reader to [3] for the full proofs of the results here announced.

2. Global boundedness

Our first result claims essential boundedness of the weak solutions to (1).

Theorem 2.1. Under the assumptions (2)–(5), each W 1,m
0 (�)-weak solution to the Dirichlet problem (1) is globally essentially 

bounded. That is, there exists a constant M, depending on known quantities,1 on ‖Du‖Lm(�) and on the uniform integrability of |Du|m, 
such that

‖u‖L∞(�) ≤ M. (7)

A crucial starting point of proving Theorem 2.1 is ensured by the next Gehring–Giaquinta–Modica type result, which 
asserts better integrability for the gradient of the weak solution over domains with m-thick complements.

Lemma 2.2. (See [3, Lemma 3.8].) Assume (2), (4), (5), and let u ∈ W 1,m
0 (�) be a weak solution to (1). Then there exist exponents 

m0 > m and m1 > m∗ such that u ∈ W 1,m0(�) ∩ Lm1 (�) with ‖Du‖Lm0 (�) + ‖u‖Lm1 (�) bounded in terms of known quantities, of 
‖Du‖Lm(�) and of the uniform integrability of |Du|m in �.

With Lemma 2.2 at hand, our strategy relies on the De Giorgi approach to the boundedness as adapted by Ladyzhenskaya 
and Ural’tseva (cf. [7, Chapter IV]) to quasilinear equations, and consists of obtaining exact decay estimates for the total mass 
of the weak solution taken over its level sets. However, unlike the L p -approach in [7], the mass we have to do with is taken 
with respect to the Radon measure

dM :=
(
χ(x) + ϕ(x)

m
m−1 + ψ(x) + |u(x)| m2

n−m

)
dx,

where χ(x) is the characteristic function of �. (If m = n, then m is to be taken n − n2

m∗(n+1)
in the above formula.) Thanks 

to (3) and Lemma 2.2, we have

M(Br) ≤ Krn−m+ε, ε > 0

with absolute constant K ; this allows us to employ very fine inequalities of trace type due to D.R. Adams [1] in order 
to estimate the M-mass of u in terms of the m-energy of u. Precisely, setting uk(x) := max{u(x) − k, 0} and �k := {

x ∈
�: u(x) > k

}
for arbitrary k ≥ 1, and using uk as test function, we get

∫
�

uk(x)dM ≤ C(M(�k))
1− n−m

m(n−m+ε)

⎛
⎜⎝∫

�k

|Duk(x)|m dx

⎞
⎟⎠

1/m

(8)

as a consequence of [1]. On the other hand, rather technical applications of (2), (3), (4) and Lemma 2.2 lead to∫
�k

|Duk(x)|m dx ≤ CkmM(�k) ∀ k ≥ k0

with large enough k0, and this rewrites (8) into

1 The omnibus term “known quantities” means the data in hypotheses (2)–(5) that include n, m, m∗ , γ , �, p, λ, q, μ, ‖ϕ‖Lp,λ(�) , ‖ψ‖Lq,μ(�) , diam�, A�

and r0.



720 S.-S. Byun et al. / C. R. Acad. Sci. Paris, Ser. I 353 (2015) 717–721
∫
�k

uk(x)dM ≤ Ck
(
M(�k)

)1+ ε
m(n−m+ε) ∀ k ≥ k0.

This way, applying the Cavalieri principle to the left-hand side, we get

∫
�k

uk(x)dM =
∫
�k

(u(x) − k)dM =
∞∫

k

M(�t)dt ≤ Ck
(
M(�k)

)1+δ ∀k ≥ k0, δ > 0.

At this point, the Hartman–Stampacchia maximum principle (see [6]) ensures the existence of a number kmax, depending on 
known quantities and on ‖Du‖Lm(�) , such that M(�k) = 0 for all k ≥ kmax, which means

u(x) ≤ kmax a.e. �.

The same procedure, applied to −u(x), leads to a bound from below for u(x) and this gives (7).

3. Global Hölder continuity

Once having the result of Theorem 2.1, it follows under the same hypotheses that the weak solutions of (1) are Hölder 
continuous functions up to the boundary of �. Moreover, this holds true for the bounded weak solutions if the controlled 
growths (2) are relaxed to the natural structure conditions of Ladyzhenskaya and Ural’tseva. Thus, instead of (2) and (4), 
we will assume that there exist a non-decreasing function �(t) and a non-increasing function γ (t), both positive and 
continuous, such that

|a(x, z, ξ)| ≤ �(|z|)
(
ϕ(x) + |ξ |m−1

)
,

|b(x, z, ξ)| ≤ �(|z|) (
ψ(x) + |ξ |m)

,

a(x, z, ξ) · ξ ≥ γ (|z|)|ξ |m − �(|z|)ϕ(x)
m

m−1 (9)

for almost all x ∈ � and all (z, ξ) ∈ R ×R
n .

Theorem 3.1. Assume (9), (3) and (5). Then each bounded weak solution to the Dirichlet problem (1) is Hölder continuous in � with 
exponent α ∈ (0, 1) depending on the same quantities as M in (7).

The interior Hölder continuity is a direct consequence of the hypotheses (9) and the fine results obtained by Lieberman 
in [10]. To get the claim of Theorem 3.1 up to ∂�, we adopt to the Morrey framework the approach of Gariepy and Ziemer 
from [5], which relies on the Moser iteration technique in obtaining growth estimates for the gradient of the solution. 
A crucial step here is ensured by the following lemma.

Lemma 3.2. (See [3, Lemma 5.1].) Assume (9), (3) and let u ∈ L∞(�) ∩ W 1,m
0 (�) be a weak solution to the problem (1) extended at 

zero outside �.
Let Bρ be a ball of radius ρ ∈ (0, diam �) and centered at a point of ∂�, and η ∈ C∞

0 (Bρ/2) with |Dη| ≤ c/ρ . Define M(ρ) =
ess supBρ

u+ , u+ = max{u, 0}, A(ρ) = ρ + ‖ϕ‖
1

m−1

Lp,λ(Bρ)
+ ‖ψ‖

1
m
Lq,μ(Bρ ) and w−1 = M(ρ) + A(ρ) − u+ .

There exists a constant C depending on the same quantities as M in (7), such that∫
Bρ/2

|D(ηw−1)|m dx ≤ C
(
M(ρ) + A(ρ)

)(
M(ρ) − M

(ρ

2

)
+ A(ρ)

)m−1
ρn−m.

With Lemma 3.2 at hand, let x0 ∈ ∂� be arbitrary and set Bρ for the ball of radius ρ and centered at x0. Since (m −
1)p + λ > n and mq + μ > n, there exist positive constants λ′ and μ′ such that n < (m − 1) p + λ′ < (m − 1) p + λ, n <
mq + μ′ < mq + μ. It follows from [12] that Lp,λ(Bρ) ⊂ Lp,λ′

(Bρ), Lq,μ(Bρ) ⊂ Lq,μ′
(Bρ) and it is not hard to see that

‖ϕ‖p

L p,λ′
(Bρ)

≤ ‖ϕ‖p
L p,λ(Bρ)

ρλ−λ′
, ‖ψ‖q

Lq,μ′
(Bρ)

≤ ‖ψ‖q
Lq,μ(Bρ)

ρμ−μ′
. (10)

Take now a cutoff function η ∈ C∞
0

(
Bρ/2

)
so that 0 ≤ η ≤ 1, η = 1 on Bρ/4, and |Dη| ≤ c/ρ . The m-thickness condi-

tion (5) ensures that Rn \ � is also m-thick and, making use of Bρ/4 \ � ⊂ {
x ∈ Bρ/4: u+(x) = 0

}
, we have

Cρn−m = A� Capm

(
Bρ/4, Bρ/2

) ≤ Capm

(
Bρ/4 \ �, Bρ/2

)
≤ Capm

({
x ∈ Bρ/4: u+(x) = 0

}
, Bρ/2

)
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for all ρ ≤ r0. Further on, ηw−1 = M(ρ) + A′(ρ) on the set 
{

x ∈ Bρ/4: u+(x) = 0
}

where A′(ρ) = ρ + ‖ϕ‖
1

m−1

Lp,λ′
(Bρ )

+
‖ψ‖

1
m

Lq,μ′
(Bρ )

, and then

Capm

({
x ∈ Bρ/4: u+(x) = 0

}
, Bρ/2

)
≤

∫
Bρ/2

∣∣∣∣D

(
ηw−1

M(ρ) + A′(ρ)

)∣∣∣∣
m

dx.

Putting together all these inequalities, Lemma 3.2 gives:

ρn−m ≤ C
(
(M(ρ) + A′(ρ)

)−m
∫

Bρ/2

|D(ηw−1)|m

≤ C
(
M(ρ) + A′(ρ)

)1−m
(

M(ρ) − M
(ρ

2

)
+ A′(ρ)

)m−1
ρn−m

whence

M
(ρ

2

)
≤ C − 1

C

(
M(ρ) + A′(ρ)

)
for all ρ ≤ R with R depending on r0 from (5). At this point, a known interpolation inequality applies (cf. [7, Chapter II]) 
which, together with (10), leads to

M(ρ) ≤ Cρα ∀ρ ∈ (0, R)

with an exponent α ∈ (0, 1). Repeating the same procedure with −u(x) instead of u(x) gives finally

sup
Bρ(x0)

|u| ≤ Cρα ∀x0 ∈ ∂�, ∀ρ ∈ (0, R). (11)

Once having (11), it is a standard matter to combine it with the results of Lieberman from [10] in order to get the Hölder 
continuity up to the boundary as claimed in Theorem 3.1.

Remark 1. Lemma 3.2 remains valid for the W 1,m
0 (�)-weak solutions of (1) if one requires the controlled growths (2) and 

(4) instead of the natural ones (9), since the essential boundedness is a priori guaranteed by Theorem 2.1. As a consequence, 
the hypotheses (2), (3), (4) and (5) are sufficient to ensure global Hölder continuity for the W 1,m

0 (�)-weak solutions of the 
problem (1).
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