

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Dynamical systems

Exponential decay of correlations for a real-valued dynamical system embedded in \mathbb{R}^2

Décroissance des corrélations pour une récurrence à deux termes

Lisette Jager, Jules Maes, Alain Ninet

Laboratoire de mathématiques, FR CNRS 3399, EA 4535, Université de Reims Champagne-Ardenne, Moulin de la Housse, BP 1039, 51687 Reims, France

ARTICLE INFO

Article history: Received 20 February 2015 Accepted 16 July 2015 Available online 23 October 2015

Presented by the Editorial Board

ABSTRACT

We study the real valued process $\{X_t, t \in \mathbb{N}\}$ defined by $X_{t+2} = \varphi(X_t, X_{t+1})$, where the X_t are bounded. We aim at proving the decay of correlations for this model, under regularity assumptions on the transformation φ .

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

On étudie le processus réel { $X_t, t \in \mathbb{N}$ } défini par $X_{t+2} = \varphi(X_t, X_{t+1})$, les X_t étant bornés. Sous des hypothèses de régularité sur la transformation φ , on établit la décroissance des corrélations pour ce modèle.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Since the 1980s, the study by statisticians of nonlinear time series has allowed one to model a great number of phenomena in Physics, Economics, and Finance [5], [6]. Then, in the 1990s, the theory of Chaos became an essential axis of research for the study of these processes [5]. For an exhaustive review on this subject, one can consult Collet–Eckmann [2] about chaos theory and Chan–Tong [8,9] about nonlinear time series. Within this framework, a general model could be written as

$$X_{t+1} = \varphi(X_t, \ldots, X_{t-d+1}) + \varepsilon_t,$$

where φ is nonlinear and ε_t is a noise. We propose a first study of the "skeleton" of this model, as Tong calls it, beginning with d = 2 and, more precisely, of the dynamical system induced by this model. Indeed, we consider the model with bounded variables, $X_{t+2} = \varphi(X_t, X_{t+1})$, with $\varphi : \mathcal{U}^2 \to \mathcal{U}$ for $\mathcal{U} = [-L, L]$ and $L \in \mathbb{R}^*_+$, φ being defined piecewisely on \mathcal{U}^2 . This model gives rise to a dynamical system (Ω, τ, μ, T) where μ is a measure on the σ -algebra τ , invariant under the transformation $T : \Omega \to \Omega$ and Ω is a compact subset of \mathbb{R}^2 . Under hypotheses on φ , which imply that T satisfies the hypotheses of Saussol [7], and if we suppose that T is mixing, we obtain the exponential decay of correlations. More precisely, for well-chosen applications f and h, there exist constants C = C(f, h) > 0, $0 < \rho < 1$ such that:

http://dx.doi.org/10.1016/j.crma.2015.07.015

E-mail addresses: lisette.jager@univ-reims.fr (L. Jager), jules.maes@univ-reims.fr (J. Maes), alain.ninet@univ-reims.fr (A. Ninet).

¹⁶³¹⁻⁰⁷³X/© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

$$\left|\int_{\Omega} f \circ T^k h \, \mathrm{d}\mu - \int_{\Omega} f \, \mathrm{d}\mu \int_{\Omega} h \, \mathrm{d}\mu\right| \leq C \, \rho^k.$$

This result can be seen as a covariance inequality of the following kind:

$$|\operatorname{Cov}(f(X_k), h(X_0))| \leq C \rho^k$$
.

Other ways could certainly be used to get the same result, under different hypotheses on the induced system, for example the method of Young's towers [10]. To have a general view on these different technics, one can read the article of Alves–Freitas–Luzzato–Vaienti [1] and [3], [4], [6].

2. Hypotheses and results

Let $L \in \mathbb{R}^*_+$. Let $\varphi : [-L, L]^2 \to [-L, L]$ be piecewisely defined on $[-L, L]^2$. To study the process $\{X_t, t \in \mathbb{N}\}$ defined by $X_{t+2} = \varphi(X_t, X_{t+1})$, there exist different ways of choosing the induced dynamical system $Z_{t+1} = T(Z_t)$ with $Z_t \in \mathbb{R}^2$. We tried two different approaches, on the one hand the canonical method, setting $T(x, y) = (y, \varphi(x, y))$, and on the other hand a double iteration, which comes down to setting $T(x, y) = (\varphi(x, y), \varphi(y, \varphi(x, y)))$. The first approach, up to a conjugation, is the most fruitful, the second one requiring stronger hypotheses and yielding weaker results. We therefore set $T(x, y) = (\frac{y}{\gamma}, \gamma\varphi(x, \frac{y}{\gamma}))$ with $Z_t = (X_t, \gamma X_{t+1})$, for a suitable positive γ . It then became possible to work in spaces similar to Saussol's V_{α} and to use his results.

More precisely, we suppose that the following hypotheses are fulfilled.

- (H1) There exists $d \in \mathbb{N}^*$ such that $[-L, L]^2 = \bigcup_{k=1}^d O_k \cup \mathcal{N}$, where the O_k are nonempty open sets, \mathcal{N} is negligible for the Lebesgue measure and the union is disjoint. The edges of the O_k can be split into a finite number of smooth components, each one included in a C^1 , compact and one-dimensional submanifold of \mathbb{R}^2 .
- (H2) There exists $\varepsilon_1 > 0$ such that, for all $k \in \{1, \dots, d\}$, there exists an application φ_k defined on $B_{\varepsilon_1}(\overline{O_k}) = \{(x, y) \in \mathbb{R}^2, d((x, y), \overline{O_k}) \le \varepsilon_1\}$, with values in \mathbb{R} , such that $\varphi_k|_{O_k} = \varphi|_{O_k}$.
- **(H3)** The application φ_k is bounded, belongs to the Hölder class $C^{1,\alpha}$ on $B_{\varepsilon_1}(\overline{O_k})$ for a real $\alpha \in]0, 1]$.² We moreover suppose that there exist A > 1 and $M \in [0, A 1[$ such that:

$$\forall (u, v) \in B_{\varepsilon_1}(\overline{O_k}), \qquad \left| \frac{\partial \varphi_k}{\partial u}(u, v) \right| \ge A, \quad \left| \frac{\partial \varphi_k}{\partial v}(u, v) \right| \le M,$$

to ensure the expanding properties.

(H4) The open sets O_k satisfy the following geometrical condition³: for all (u, v) and (u', v) in $B_{\varepsilon_1}(\overline{O_k})$, there exists a C^1 path $\Gamma = (\Gamma_1, \Gamma_2) : [0, 1] \to B_{\varepsilon_1}(\overline{O_k})$ C^1 joining (u, v) and (u', v), whose gradient does not vanish, and which satisfies

$$\forall t \in \left]0, 1\right[, \left|\Gamma_1'(t)\right| > \frac{M}{A} \left|\Gamma_2'(t)\right|.$$

(H5)

(15) Let
$$Y \in \mathbb{N}^*$$
 be the maximal number of C^1 components of \mathcal{N} meeting at one point and set

$$s = \left(\frac{2A + M^2 - M\sqrt{M^2 + 4A}}{2}\right)^{-1/2} < 1.$$

One supposes that

$$\eta := s^{\alpha} + \frac{8s}{\pi \left(1-s\right)}Y < 1$$

1042

.

¹ To get similar results on [a, b] instead of [-L, L], it suffices to conjugate by an affine application.

² If φ_k is C^2 on $B_{\varepsilon_1}(\overline{O_k})$, it is $C^{1,\alpha}$ on $B_{\varepsilon_1}(\overline{O_k})$ with $\alpha = 1$.

³ In suitable cases, this hypothesis can be replaced by a weaker but simpler one: for all points (u, v) and (u', v) in $B_{\varepsilon_1}(\overline{O_k})$, the segment [(u, v), (u', v)] is included in $B_{\varepsilon_1}(\overline{O_k})$.

We set $\gamma = \frac{1}{\sqrt{A}} < 1$ and, for all $k \in \{1, ..., d\}$, we denote by U_k (resp. W_k , \mathcal{N}') the image of O_k (resp. $B_{\varepsilon_1}(\overline{O_k})$, \mathcal{N}) under the compression that associates $(u, \gamma v)$ with each $(u, v) \in \mathbb{R}^2$. The set $\Omega = [-L, L] \times [-\gamma L, \gamma L]$, on which we shall be working, is the image of $[-L, L]^2$ under the same compression.

For every non-negligible Borel set *S* of \mathbb{R}^2 , for every $f \in L^1_m(\mathbb{R}^2, \mathbb{R})$, set

$$Osc(f, S) = Esup_S f - Einf_S f$$

where $Esup_S$ and $Einf_S$ are the essential supremum and infimum with respect to the Lebesgue measure m. One then defines:

$$|f|_{\alpha} = \sup_{0<\varepsilon<\varepsilon_1} \varepsilon^{-\alpha} \int_{\mathbb{R}^2} \operatorname{Osc}(f, B_{\varepsilon}(x, y)) \, \mathrm{d}x \, \mathrm{d}y \, , \ \|f\|_{\alpha} = \|f\|_{L^1_m} + |f|_{\alpha}$$

and the set $V_{\alpha} = \{ f \in L^1_m(\mathbb{R}^2, \mathbb{R}), \|f\|_{\alpha} < +\infty \}.$

Let us introduce similar notions on Ω : for every $0 < \varepsilon_0 < \gamma \varepsilon_1$, for every $g \in L^{\infty}_m(\Omega, \mathbb{R})$, one defines

$$N(g,\alpha,L) = \sup_{0 < \varepsilon < \varepsilon_0} \varepsilon^{-\alpha} \int_{\Omega} \operatorname{Osc}(g, B_{\varepsilon}(x, y) \cap \Omega) \, \mathrm{d}x \, \mathrm{d}y.$$

One then sets:

$$||g||_{\alpha,L} = N(g,\alpha,L) + 16(1+\gamma)\varepsilon_0^{1-\alpha}L||g||_{\infty} + ||g||_{L^1_m}$$

The function g is said to belong to $V_{\alpha}(\Omega)$ if the above expression is finite. The set $V_{\alpha}(\Omega)$ does not depend on the choice of ε_0 , whereas N and $\|.\|_{\alpha,L}$ do.

There exist relationships between these two sets. Indeed, thanks to Proposition 3.4 of [7], one can prove the following result.

Proposition 2.1.

(i) If $g \in V_{\alpha}(\Omega)$ and if one extends g as a function denoted by f, setting f(x, y) = 0 if $(x, y) \notin \Omega$, then $f \in V_{\alpha}$ and

$$\|f\|_{\alpha} \leq \|g\|_{\alpha,L}.$$

(ii) Let f be in V_{α} . Set $g = f \mathbf{1}_{\Omega}$. Then $g \in V_{\alpha}(\Omega)$ and one has

$$\|g\|_{\alpha,L} \leq \left(1 + 16(1+\gamma)L\frac{\max(1,\varepsilon_0^{\alpha})}{\pi\varepsilon_0^{1+\alpha}}\right)\|f\|_{\alpha}.$$

Under the above hypotheses (H1) to (H5), one obtains a first result.

Theorem 2.2. *Let T be the transformation defined on* Ω *by:* \forall (*x*, *y*) \in *U*_{*k*}*:*

$$T(x, y) = T_k(x, y) = \left(\frac{y}{\gamma}, \gamma \varphi_k(x, \frac{y}{\gamma})\right).$$

Keeping the same formula, one extends the definition of T_k to W_k . Then

- (i) the Frobenius–Perron operator $P: L_m^1(\Omega) \to L_m^1(\Omega)$ associated with T has a finite number of eigenvalues $\lambda_1, \ldots, \lambda_r$ of modulus one;
- (ii) for each $i \in \{1, ..., r\}$, the eigenspace $E_i = \{f \in L_m^1(\Omega) : Pf = \lambda_i f\}$ associated with the eigenvalue λ_i is finite dimensional and included in $V_\alpha(\Omega)$;
- (iii) the operator P decomposes as

$$P = \sum_{i=1}^{r} \lambda_i P_i + Q$$

where the P_i are projections on the spaces E_i , $|||P_i|||_1 \le 1$ and Q is a linear operator defined on $L_m^1(\Omega)$, satisfying $Q(V_\alpha(\Omega)) \subset V_\alpha(\Omega)$, $\sup_{n \in \mathbb{N}^*} |||Q^n|||_1 < \infty$ and $|||Q^n|||_{\alpha,L} = O(q^n)$ when $n \to +\infty$ for an exponent $q \in]0, 1[$. Moreover, $P_iP_j = 0$ if $i \ne j$, $P_i \cap Q_i = 0$ for all i:

$$P_i Q = Q P_i = 0$$
 for all i;

(iv) the number 1 is an eigenvalue of P. Set $\lambda_1 = 1$, let $h_* = P_1 \mathbf{1}_{\Omega}$ and let $d\mu = h_* dm$. Then μ is the greatest absolutely continuous invariant measure (ACIM) of T, that is to say: if $\nu < < m$ and if ν is T-invariant, then $\nu << \mu$;

(v) the support of μ can be decomposed into a finite number of disjoint measurable sets, on which a power of T is mixing. More precisely, for all $j \in \{1, 2, ..., \dim(E_1)\}$, there exist an integer $L_j \in \mathbb{N}^*$ and L_j disjoint sets $W_{j,l}$ ($0 \le l \le L_j - 1$) satisfying $T(W_{j,l}) = W_{j,l+1 \mod(L_j)}$ and T^{L_j} is mixing on every $W_{j,l}$. We denote by $\mu_{j,l}$ the normalized restriction of μ to $W_{j,l}$, defined by

$$\mu_{j,l}(B) = \frac{\mu(B \cap W_{j,l})}{\mu(W_{j,l})}, \ \mathrm{d}\mu_{j,l} = \frac{h^* \mathbf{1}_{W_{j,l}}}{\mu(W_{j,l})} \mathrm{d}m.$$

The fact that T^{L_j} is mixing on every $W_{j,l}$ means that, for all $f \in L^1_{\mu_{i,l}}(W_{j,l})$ and all $h \in L^{\infty}_{\mu_{i,l}}(W_{j,l})$,

$$\lim_{t \to +\infty} < T^{tL_j} f, h >_{\mu_{j,l}} = < f, 1 >_{\mu_{j,l}} < 1, h >_{\mu_{j,l}}$$

with the notations (indifferently employed) $\langle f, g \rangle_{\mu'} = \mu'(fg) = \int fg d\mu';$ (vi) moreover, there exist C > 0 and $0 < \rho < 1$ such that, for all h in $V_{\alpha}(\Omega)$ and $f \in L^{1}_{\mu}(\Omega)$, one has

$$\left| \int_{\Omega} f \circ T^{k \times \operatorname{ppcm}(L_i)} h \, \mathrm{d}\mu - \sum_{j=1}^{\dim(E_1)} \sum_{l=0}^{L_j-1} \mu(W_{j,l}) < f, 1 > \mu_{j,l} < 1, h > \mu_{j,l} \right| \le C ||h||_{\alpha,\Omega} ||f||_{L^1_{\mu}(\Omega)} \rho^k;$$

(vii) if, moreover, T is mixing,⁴ then the preceding result can be written as follows: there exist C > 0 and $0 < \rho < 1$ such that, for all h in $V_{\alpha}(\Omega)$ and $f \in L^{1}_{\mu}(\Omega)$, one has:

$$\left|\int_{\Omega} f \circ T^k h \, \mathrm{d}\mu - \int_{\Omega} f \, \mathrm{d}\mu \int_{\Omega} h \, \mathrm{d}\mu\right| \leq C ||h||_{\alpha,\Omega} \, ||f||_{L^1_{\mu}(\Omega)} \, \rho^k.$$

We now come back to the initial problem and deduce from this result the invariant law associated with X_t . If $(X_t)_t$ is defined by X_0 , X_1 (valued in [-L, L]) and the recurrence relation $X_{t+2} = \varphi(X_t, X_{t+1})$, one sets $Z_t = (X_t, \gamma X_{t+1})$. Then $(Z_t)_t$ satisfies the recurrence relation $Z_{t+1} = T(Z_t)$, which implies the following result (by comparing the marginal distributions):

Theorem 2.3. Suppose that the random variable $Z_0 = (X_0, \gamma X_1)$ has the density h_* . Then, for all $t \in \mathbb{N}$, Z_t has the density h_* and X_t has the density

$$f: x \mapsto \int_{[-\gamma L, \gamma L]} h_*(x, v) \, \mathrm{d}v = \gamma \int_{[-L, L]} h_*(u, \gamma x) \, \mathrm{d}u.$$

If *F* is defined on [-L, L], let Tr *F* be the function defined on Ω by Tr F(x, y) = F(x).

One then obtains the following result, which is a direct consequence of the sixth point of Theorem 2.2, applied to Tr F and Tr H:

Theorem 2.4. For every Borel set B and every interval I, if (X_0, X_1) has the invariant distribution, then

$$\left| P\left(X_{k \times \text{ppcm}(L_i)} \in B, X_0 \in I \right) - \sum_{j=1}^{\dim(E_1)} \sum_{l=0}^{L_j-1} \mu(W_{j,l}) < \text{Tr} \, \mathbf{1}_B, 1 > \mu_{j,l} < 1, \text{Tr} \, \mathbf{1}_I > \mu_{j,l} \right| \\ \leq 16 \, (1+\gamma) \, C \, L^3 \, (10\varepsilon_0^{1-\alpha} + L) \, \rho^k.$$

More generally, let F, defined and measurable on [-L, L], be such that Tr F belongs to $L^1_{\mu}(\Omega)$. Let $H \in L^{\infty}_m([-L, L])$ be such that

$$\sup_{0<\varepsilon<\varepsilon_0} \varepsilon^{-\alpha} \int_{[-L,L]} \operatorname{Osc}(H,]x - \varepsilon, x + \varepsilon[\cap [-L,L]) (\mathrm{d}x < +\infty.$$

Then Tr $H \in V_{\alpha}(\Omega)$ and

$$\left| E(F(X_{k \times \text{ppcm}(L_i)})H(X_0)) - \sum_{j=1}^{\dim(E_1)} \sum_{l=0}^{L_j-1} \mu(W_{j,l})\mu_{j,l}(\text{Tr } F)\mu_{j,l}(\text{Tr } H) \right| \le C(F, H) \rho^k$$

with

⁴ Which is equivalent to: if 1 is the only eigenvalue of P with modulus one and if it is simple.

$$C(F, H) = C L ||\mathrm{Tr} F||_{L^{1}_{\mu}} \left(2\gamma \sup_{0 < \varepsilon < \varepsilon_{0}} \varepsilon^{-\alpha} \int_{[-L, L]} \mathrm{Osc}(H,]x - \varepsilon, x + \varepsilon[\cap[-L, L]) (\mathrm{d}x + 16(1 + \gamma) \varepsilon_{0}^{1-\alpha} ||H||_{L^{\infty}_{m}([-L, L])} + 2\gamma ||H||_{L^{1}_{m}([-L, L])} \right).$$

.

If, moreover, T is mixing, then:

$$|\operatorname{Cov}(F(X_k), H(X_0))| \le C(F, H) \rho^k$$
.

References

- [1] J.F. Alves, J.M. Freitas, S. Luzatto, S. Vaienti, From rates of mixing to recurrence times via large deviations, Adv. Math. 228 (2) (2011) 1203–1236.
- [2] P. Collet, J.-P. Eckmann, Concepts and Results in Chaotic Dynamics: A Short Course, Theoretical and Mathematical Physics, Springer-Verlag, Berlin, 2006.
 [3] F. Hofbauer, G. Keller, Ergodic properties of invariant measures for piecewise monotonic transformations, Math. Z. 180 (1982) 119–140.
- [4] C.T. Ionescu Tulcea, G. Marinescu, Théorie ergodique pour des classes d'opérations non complètement continues, Ann. of Math. (2) 52 (1950) 140–147.
 [5] A. Lasota, M.C. Mackey, Chaos, Fractals and Noise: Stochastic Aspects of Dynamics, Springer Verlag, New York, 1998.
- [6] C. Liverani, Multidimensional expanding maps with singularities: a pedestrian approach, Ergod. Theory Dyn. Syst. 33 (1) (2013) 168–182.
- [7] B. Saussol, Absolutely continuous invariant measures for multidimensional expanding maps, Isr. J. Math. 116 (2000) 223-248.
- [8] H. Tong, Nonlinear Time Series: A Dynamical System Approach (with an appendix by K.S. Chan), Oxford Statistical Science Series, vol. 6, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1990.
- [9] H. Tong, Nonlinear time series analysis since 1990: some personal reflections, Acta Math. Appl. Sin. Engl. Ser. 18 (2) (2002) 177-184.
- [10] L.-S. Young, Recurrence times and rates of mixing, Isr. J. Math. 110 (1999) 153-188.