Dynamical systems

# Exponential decay of correlations for a real-valued dynamical system embedded in $\mathbb{R}^{2}$ 

# Décroissance des corrélations pour une récurrence à deux termes 

Lisette Jager, Jules Maes, Alain Ninet<br>Laboratoire de mathématiques, FR CNRS 3399, EA 4535, Université de Reims Champagne-Ardenne, Moulin de la Housse, BP 1039, 51687 Reims, France

## A R T I CLE IN F O

## Article history:

Received 20 February 2015
Accepted 16 July 2015
Available online 23 October 2015
Presented by the Editorial Board


#### Abstract

We study the real valued process $\left\{X_{t}, t \in \mathbb{N}\right\}$ defined by $X_{t+2}=\varphi\left(X_{t}, X_{t+1}\right)$, where the $X_{t}$ are bounded. We aim at proving the decay of correlations for this model, under regularity assumptions on the transformation $\varphi$.


© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

## R É S U M É

On étudie le processus réel $\left\{X_{t}, t \in \mathbb{N}\right\}$ défini par $X_{t+2}=\varphi\left(X_{t}, X_{t+1}\right)$, les $X_{t}$ étant bornés. Sous des hypothèses de régularité sur la transformation $\varphi$, on établit la décroissance des corrélations pour ce modèle.
© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

## 1. Introduction

Since the 1980s, the study by statisticians of nonlinear time series has allowed one to model a great number of phenomena in Physics, Economics, and Finance [5], [6]. Then, in the 1990s, the theory of Chaos became an essential axis of research for the study of these processes [5]. For an exhaustive review on this subject, one can consult Collet-Eckmann [2] about chaos theory and Chan-Tong [8,9] about nonlinear time series. Within this framework, a general model could be written as

$$
X_{t+1}=\varphi\left(X_{t}, \ldots, X_{t-d+1}\right)+\varepsilon_{t}
$$

where $\varphi$ is nonlinear and $\varepsilon_{t}$ is a noise. We propose a first study of the "skeleton" of this model, as Tong calls it, beginning with $d=2$ and, more precisely, of the dynamical system induced by this model. Indeed, we consider the model with bounded variables, $X_{t+2}=\varphi\left(X_{t}, X_{t+1}\right)$, with $\varphi: \mathcal{U}^{2} \rightarrow \mathcal{U}$ for $\mathcal{U}=[-L, L]$ and $L \in \mathbb{R}_{+}^{*}, \varphi$ being defined piecewisely on $\mathcal{U}^{2}$. This model gives rise to a dynamical system ( $\Omega, \tau, \mu, T$ ) where $\mu$ is a measure on the $\sigma$-algebra $\tau$, invariant under the transformation $T: \Omega \rightarrow \Omega$ and $\Omega$ is a compact subset of $\mathbb{R}^{2}$. Under hypotheses on $\varphi$, which imply that $T$ satisfies the hypotheses of Saussol [7], and if we suppose that $T$ is mixing, we obtain the exponential decay of correlations. More precisely, for well-chosen applications $f$ and $h$, there exist constants $C=C(f, h)>0,0<\rho<1$ such that:

[^0]$$
\left|\int_{\Omega} f \circ T^{k} h \mathrm{~d} \mu-\int_{\Omega} f \mathrm{~d} \mu \int_{\Omega} h \mathrm{~d} \mu\right| \leqslant C \rho^{k} .
$$

This result can be seen as a covariance inequality of the following kind:

$$
\left|\operatorname{Cov}\left(f\left(X_{k}\right), h\left(X_{0}\right)\right)\right| \leqslant C \rho^{k} .
$$

Other ways could certainly be used to get the same result, under different hypotheses on the induced system, for example the method of Young's towers [10]. To have a general view on these different technics, one can read the article of Alves-Freitas-Luzzato-Vaienti [1] and [3], [4], [6].

## 2. Hypotheses and results

Let $L \in \mathbb{R}_{+}^{*}$. Let $\varphi:[-L, L]^{2} \rightarrow[-L, L]$ be piecewisely defined on ${ }^{1}[-L, L]^{2}$. To study the process $\left\{X_{t}, t \in \mathbb{N}\right\}$ defined by $X_{t+2}=\varphi\left(X_{t}, X_{t+1}\right)$, there exist different ways of choosing the induced dynamical system $Z_{t+1}=T\left(Z_{t}\right)$ with $Z_{t} \in \mathbb{R}^{2}$. We tried two different approaches, on the one hand the canonical method, setting $T(x, y)=(y, \varphi(x, y))$, and on the other hand a double iteration, which comes down to setting $T(x, y)=(\varphi(x, y), \varphi(y, \varphi(x, y)))$. The first approach, up to a conjugation, is the most fruitful, the second one requiring stronger hypotheses and yielding weaker results. We therefore set $T(x, y)=$ $\left(\frac{y}{\gamma}, \gamma \varphi\left(x, \frac{y}{\gamma}\right)\right)$ with $Z_{t}=\left(X_{t}, \gamma X_{t+1}\right)$, for a suitable positive $\gamma$. It then became possible to work in spaces similar to Saussol's $V_{\alpha}$ and to use his results.

More precisely, we suppose that the following hypotheses are fulfilled.
(H1) There exists $d \in \mathbb{N}^{*}$ such that $[-L, L]^{2}=\bigcup_{k=1}^{d} O_{k} \cup \mathcal{N}$, where the $O_{k}$ are nonempty open sets, $\mathcal{N}$ is negligible for the Lebesgue measure and the union is disjoint. The edges of the $O_{k}$ can be split into a finite number of smooth components, each one included in a $C^{1}$, compact and one-dimensional submanifold of $\mathbb{R}^{2}$.
(H2) There exists $\varepsilon_{1}>0$ such that, for all $k \in\{1, \ldots d\}$, there exists an application $\varphi_{k}$ defined on $B_{\varepsilon_{1}}\left(\overline{O_{k}}\right)=\{(x, y) \in$ $\left.\mathbb{R}^{2}, d\left((x, y), \overline{O_{k}}\right) \leq \varepsilon_{1}\right\}$, with values in $\mathbb{R}$, such that $\left.\varphi_{k}\right|_{o_{k}}=\left.\varphi\right|_{o_{k}}$.
(H3) The application $\varphi_{k}$ is bounded, belongs to the Hölder class $C^{1, \alpha}$ on $B_{\varepsilon_{1}}\left(\overline{O_{k}}\right)$ for a real $\left.\left.\alpha \in\right] 0,1\right]$. ${ }^{2}$
We moreover suppose that there exist $A>1$ and $M \in] 0, A-1[$ such that:

$$
\forall(u, v) \in B_{\varepsilon_{1}}\left(\overline{O_{k}}\right), \quad\left|\frac{\partial \varphi_{k}}{\partial u}(u, v)\right| \geq A, \quad\left|\frac{\partial \varphi_{k}}{\partial v}(u, v)\right| \leq M
$$

to ensure the expanding properties.
(H4) The open sets $O_{k}$ satisfy the following geometrical condition ${ }^{3}$ : for all $(u, v)$ and $\left(u^{\prime}, v\right)$ in $B_{\varepsilon_{1}}\left(\overline{O_{k}}\right)$, there exists a $C^{1}$ path $\Gamma=\left(\Gamma_{1}, \Gamma_{2}\right):[0,1] \rightarrow B_{\varepsilon_{1}}\left(\overline{O_{k}}\right) C^{1}$ joining $(u, v)$ and $\left(u^{\prime}, v\right)$, whose gradient does not vanish, and which satisfies

$$
\forall t \in] 0,1\left[,\left|\Gamma_{1}^{\prime}(t)\right|>\frac{M}{A}\left|\Gamma_{2}^{\prime}(t)\right|\right.
$$

(H5) Let $Y \in \mathbb{N}^{*}$ be the maximal number of $C^{1}$ components of $\mathcal{N}$ meeting at one point and set

$$
s=\left(\frac{2 A+M^{2}-M \sqrt{M^{2}+4 A}}{2}\right)^{-1 / 2}<1
$$

One supposes that

$$
\eta:=s^{\alpha}+\frac{8 s}{\pi(1-s)} Y<1
$$

[^1]We set $\gamma=\frac{1}{\sqrt{A}}<1$ and, for all $k \in\{1, \ldots, d\}$, we denote by $U_{k}$ (resp. $W_{k}, \mathcal{N}^{\prime}$ ) the image of $O_{k}$ (resp. $B_{\varepsilon_{1}}\left(\overline{O_{k}}\right), \mathcal{N}$ ) under the compression that associates $(u, \gamma v)$ with each $(u, v) \in \mathbb{R}^{2}$. The set $\Omega=[-L, L] \times[-\gamma L, \gamma L]$, on which we shall be working, is the image of $[-L, L]^{2}$ under the same compression.

For every non-negligible Borel set $S$ of $\mathbb{R}^{2}$, for every $f \in L_{m}^{1}\left(\mathbb{R}^{2}, \mathbb{R}\right)$, set

$$
\operatorname{Osc}(f, S)=\operatorname{Esup}_{S} f-\operatorname{Einf}_{S} f
$$

where $\operatorname{Esup}_{S}$ and $\operatorname{Einf}_{S}$ are the essential supremum and infimum with respect to the Lebesgue measure $m$. One then defines:

$$
|f|_{\alpha}=\sup _{0<\varepsilon<\varepsilon_{1}} \varepsilon^{-\alpha} \int_{\mathbb{R}^{2}} \operatorname{Osc}\left(f, B_{\varepsilon}(x, y)\right) \mathrm{d} x \mathrm{~d} y,\|f\|_{\alpha}=\|f\|_{L_{m}^{1}}+|f|_{\alpha}
$$

and the set $V_{\alpha}=\left\{f \in L_{m}^{1}\left(\mathbb{R}^{2}, \mathbb{R}\right),\|f\|_{\alpha}<+\infty\right\}$.
Let us introduce similar notions on $\Omega$ : for every $0<\varepsilon_{0}<\gamma \varepsilon_{1}$, for every $g \in L_{m}^{\infty}(\Omega, \mathbb{R})$, one defines

$$
N(g, \alpha, L)=\sup _{0<\varepsilon<\varepsilon_{0}} \varepsilon^{-\alpha} \int_{\Omega} \operatorname{Osc}\left(g, B_{\varepsilon}(x, y) \cap \Omega\right) \mathrm{d} x \mathrm{~d} y .
$$

One then sets:

$$
\|g\|_{\alpha, L}=N(g, \alpha, L)+16(1+\gamma) \varepsilon_{0}^{1-\alpha} L\|g\|_{\infty}+\|g\|_{L_{m}^{1}}
$$

The function $g$ is said to belong to $V_{\alpha}(\Omega)$ if the above expression is finite. The set $V_{\alpha}(\Omega)$ does not depend on the choice of $\varepsilon_{0}$, whereas $N$ and $\|\cdot\|_{\alpha, L}$ do.

There exist relationships between these two sets. Indeed, thanks to Proposition 3.4 of [7], one can prove the following result.

## Proposition 2.1.

(i) If $g \in V_{\alpha}(\Omega)$ and if one extends $g$ as a function denoted by $f$, setting $f(x, y)=0$ if $(x, y) \notin \Omega$, then $f \in V_{\alpha}$ and

$$
\|f\|_{\alpha} \leq\|g\|_{\alpha, L}
$$

(ii) Let $f$ be in $V_{\alpha}$. Set $g=f \mathbf{1}_{\Omega}$. Then $g \in V_{\alpha}(\Omega)$ and one has

$$
\|g\|_{\alpha, L} \leq\left(1+16(1+\gamma) L \frac{\max \left(1, \varepsilon_{0}^{\alpha}\right)}{\pi \varepsilon_{0}^{1+\alpha}}\right)\|f\|_{\alpha}
$$

Under the above hypotheses (H1) to (H5), one obtains a first result.
Theorem 2.2. Let $T$ be the transformation defined on $\Omega$ by: $\forall(x, y) \in U_{k}$ :

$$
T(x, y)=T_{k}(x, y)=\left(\frac{y}{\gamma}, \gamma \varphi_{k}\left(x, \frac{y}{\gamma}\right)\right) .
$$

Keeping the same formula, one extends the definition of $T_{k}$ to $W_{k}$. Then
(i) the Frobenius-Perron operator $P: L_{m}^{1}(\Omega) \rightarrow L_{m}^{1}(\Omega)$ associated with $T$ has a finite number of eigenvalues $\lambda_{1}, \ldots, \lambda_{r}$ of modulus one;
(ii) for each $i \in\{1, \ldots, r\}$, the eigenspace $E_{i}=\left\{f \in L_{m}^{1}(\Omega): P f=\lambda_{i} f\right\}$ associated with the eigenvalue $\lambda_{i}$ is finite dimensional and included in $V_{\alpha}(\Omega)$;
(iii) the operator $P$ decomposes as

$$
P=\sum_{i=1}^{r} \lambda_{i} P_{i}+Q
$$

where the $P_{i}$ are projections on the spaces $E_{i},\left\|| | P_{i}\right\|_{1} \leq 1$ and $Q$ is a linear operator defined on $L_{m}^{1}(\Omega)$, satisfying $Q\left(V_{\alpha}(\Omega)\right) \subset$ $V_{\alpha}(\Omega), \sup _{n \in \mathbb{N}^{*}}\| \| Q^{n} \|_{1}<\infty$ and $\left\|Q^{n}\right\|_{\alpha, L}=O\left(q^{n}\right)$ when $n \rightarrow+\infty$ for an exponent $\left.q \in\right] 0,1\left[\right.$. Moreover, $P_{i} P_{j}=0$ if $i \neq j$, $P_{i} Q=\stackrel{n \in \mathbb{N}^{*}}{Q} P_{i}=0$ for all $i$;
(iv) the number 1 is an eigenvalue of $P$. Set $\lambda_{1}=1$, let $h_{*}=P_{1} \mathbf{1}_{\Omega}$ and let $\mathrm{d} \mu=h_{*} \mathrm{~d} m$. Then $\mu$ is the greatest absolutely continuous invariant measure (ACIM) of $T$, that is to say: if $v \ll m$ and if $v$ is $T$-invariant, then $v \ll \mu$;
(v) the support of $\mu$ can be decomposed into a finite number of disjoint measurable sets, on which a power of $T$ is mixing. More precisely, for all $j \in\left\{1,2, \ldots, \operatorname{dim}\left(E_{1}\right)\right\}$, there exist an integer $L_{j} \in \mathbb{N}^{*}$ and $L_{j}$ disjoint sets $W_{j, l}\left(0 \leq l \leq L_{j}-1\right)$ satisfying $T\left(W_{j, l}\right)=W_{j, l+1 \bmod \left(L_{j}\right)}$ and $T^{L_{j}}$ is mixing on every $W_{j, l}$. We denote by $\mu_{j, l}$ the normalized restriction of $\mu$ to $W_{j, l}$, defined by

$$
\mu_{j, l}(B)=\frac{\mu\left(B \cap W_{j, l}\right)}{\mu\left(W_{j, l}\right)}, \mathrm{d} \mu_{j, l}=\frac{h^{*} \mathbf{1}_{W_{j, l}}}{\mu\left(W_{j, l}\right)} \mathrm{d} m
$$

The fact that $T^{L_{j}}$ is mixing on every $W_{j, l}$ means that, for all $f \in L_{\mu_{j, l}}^{1}\left(W_{j, l}\right)$ and all $h \in L_{\mu_{j, l}}^{\infty}\left(W_{j, l}\right)$,

$$
\lim _{t \rightarrow+\infty}<T^{t L_{j}} f, h>_{\mu_{j, l}}=<f, 1>_{\mu_{j, l}}<1, h>_{\mu_{j, l}}
$$

with the notations (indifferently employed) $<f, g>_{\mu^{\prime}}=\mu^{\prime}(f g)=\int f g \mathrm{~d} \mu^{\prime}$;
(vi) moreover, there exist $C>0$ and $0<\rho<1$ such that, for all $h$ in $V_{\alpha}(\Omega)$ and $f \in L_{\mu}^{1}(\Omega)$, one has

$$
\left|\int_{\Omega} f \circ T^{k \times \operatorname{ppcm}\left(L_{i}\right)} h \mathrm{~d} \mu-\sum_{j=1}^{\operatorname{dim}\left(E_{1}\right)} \sum_{l=0}^{L_{j}-1} \mu\left(W_{j, l}\right)<f, 1>_{\mu_{j, l}}<1, h>_{\mu_{j, l}}\right| \leq C\|h\|_{\alpha, \Omega}\|f\|_{L_{\mu}^{1}(\Omega)} \rho^{k} ;
$$

(vii) if, moreover, $T$ is mixing, ${ }^{4}$ then the preceding result can be written as follows: there exist $C>0$ and $0<\rho<1$ such that, for all $h$ in $V_{\alpha}(\Omega)$ and $f \in L_{\mu}^{1}(\Omega)$, one has:

$$
\left|\int_{\Omega} f \circ T^{k} h \mathrm{~d} \mu-\int_{\Omega} f \mathrm{~d} \mu \int_{\Omega} h \mathrm{~d} \mu\right| \leq C| | h\left\|_{\alpha, \Omega}\right\| f \|_{L_{\mu}^{1}(\Omega)} \rho^{k} .
$$

We now come back to the initial problem and deduce from this result the invariant law associated with $X_{t}$. If $\left(X_{t}\right)_{t}$ is defined by $X_{0}, X_{1}$ (valued in $[-L, L]$ ) and the recurrence relation $X_{t+2}=\varphi\left(X_{t}, X_{t+1}\right)$, one sets $Z_{t}=\left(X_{t}, \gamma X_{t+1}\right)$. Then $\left(Z_{t}\right)_{t}$ satisfies the recurrence relation $Z_{t+1}=T\left(Z_{t}\right)$, which implies the following result (by comparing the marginal distributions):

Theorem 2.3. Suppose that the random variable $Z_{0}=\left(X_{0}, \gamma X_{1}\right)$ has the density $h_{*}$. Then, for all $t \in \mathbb{N}, Z_{t}$ has the density $h_{*}$ and $X_{t}$ has the density

$$
f: x \mapsto \int_{[-\gamma L, \gamma L]} h_{*}(x, v) \mathrm{d} v=\gamma \int_{[-L, L]} h_{*}(u, \gamma x) \mathrm{d} u .
$$

If $F$ is defined on $[-L, L]$, let $\operatorname{Tr} F$ be the function defined on $\Omega$ by $\operatorname{Tr} F(x, y)=F(x)$.
One then obtains the following result, which is a direct consequence of the sixth point of Theorem 2.2, applied to $\operatorname{Tr} F$ and $\operatorname{Tr} H$ :

Theorem 2.4. For every Borel set $B$ and every interval I, if $\left(X_{0}, X_{1}\right)$ has the invariant distribution, then

$$
\begin{aligned}
& \left|P\left(X_{k \times \operatorname{ppcm}\left(L_{i}\right)} \in B, X_{0} \in I\right)-\sum_{j=1}^{\operatorname{dim}\left(E_{1}\right)} \sum_{l=0}^{L_{j}-1} \mu\left(W_{j, l}\right)<\operatorname{Tr} \mathbf{1}_{B}, 1>_{\mu_{j, l}}<1, \operatorname{Tr} \mathbf{1}_{I}>_{\mu_{j, l}}\right| \\
& \quad \leq 16(1+\gamma) C L^{3}\left(10 \varepsilon_{0}^{1-\alpha}+L\right) \rho^{k} .
\end{aligned}
$$

More generally, let $F$, defined and measurable on $[-L, L]$, be such that $\operatorname{Tr} F$ belongs to $L_{\mu}^{1}(\Omega)$. Let $H \in L_{m}^{\infty}([-L, L])$ be such that $\sup _{0<\varepsilon<\varepsilon_{0}} \varepsilon^{-\alpha} \int_{[-L, L]} \operatorname{Osc}(H] x-,\varepsilon, x+\varepsilon[\cap[-L, L])(\mathrm{d} x<+\infty$.

Then $\operatorname{Tr} H \in V_{\alpha}(\Omega)$ and

$$
\left|E\left(F\left(X_{k \times \operatorname{ppcm}\left(L_{i}\right)}\right) H\left(X_{0}\right)\right)-\sum_{j=1}^{\operatorname{dim}\left(E_{1}\right)} \sum_{l=0}^{L_{j}-1} \mu\left(W_{j, l}\right) \mu_{j, l}(\operatorname{Tr} F) \mu_{j, l}(\operatorname{Tr} H)\right| \leq C(F, H) \rho^{k}
$$

with

[^2]\[

$$
\begin{aligned}
C(F, H)= & C L\|\operatorname{Tr} F\|_{L_{\mu}^{1}}\left(2 \gamma \sup _{0<\varepsilon<\varepsilon_{0}} \varepsilon^{-\alpha} \int_{[-L, L]} \operatorname{Osc}(H,] x-\varepsilon, x+\varepsilon[\cap[-L, L])(\mathrm{d} x\right. \\
& \left.+16(1+\gamma) \varepsilon_{0}^{1-\alpha}\|H\|_{L_{m}^{\infty}([-L, L])}+2 \gamma\|H\|_{L_{m}^{1}([-L, L])}\right)
\end{aligned}
$$
\]

## If, moreover, $T$ is mixing, then:

$$
\left|\operatorname{Cov}\left(F\left(X_{k}\right), H\left(X_{0}\right)\right)\right| \leq C(F, H) \rho^{k} .
$$

## References

[1] J.F. Alves, J.M. Freitas, S. Luzatto, S. Vaienti, From rates of mixing to recurrence times via large deviations, Adv. Math. 228 (2) (2011) $1203-1236$.
[2] P. Collet, J.-P. Eckmann, Concepts and Results in Chaotic Dynamics: A Short Course, Theoretical and Mathematical Physics, Springer-Verlag, Berlin, 2006.
[3] F. Hofbauer, G. Keller, Ergodic properties of invariant measures for piecewise monotonic transformations, Math. Z. 180 (1982) 119-140.
[4] C.T. Ionescu Tulcea, G. Marinescu, Théorie ergodique pour des classes d'opérations non complètement continues, Ann. of Math. (2) 52 (1950) 140-147.
[5] A. Lasota, M.C. Mackey, Chaos, Fractals and Noise: Stochastic Aspects of Dynamics, Springer Verlag, New York, 1998.
[6] C. Liverani, Multidimensional expanding maps with singularities: a pedestrian approach, Ergod. Theory Dyn. Syst. 33 (1) (2013) 168-182.
[7] B. Saussol, Absolutely continuous invariant measures for multidimensional expanding maps, Isr. J. Math. 116 (2000) 223-248.
[8] H. Tong, Nonlinear Time Series: A Dynamical System Approach (with an appendix by K.S. Chan), Oxford Statistical Science Series, vol. 6, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1990.
[9] H. Tong, Nonlinear time series analysis since 1990: some personal reflections, Acta Math. Appl. Sin. Engl. Ser. 18 (2) (2002) 177-184.
[10] L.-S. Young, Recurrence times and rates of mixing, Isr. J. Math. 110 (1999) 153-188.


[^0]:    E-mail addresses: lisette.jager@univ-reims.fr (L. Jager), jules.maes@univ-reims.fr (J. Maes), alain.ninet@univ-reims.fr (A. Ninet).
    http://dx.doi.org/10.1016/j.crma.2015.07.015
    1631-073X/© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

[^1]:    ${ }^{1}$ To get similar results on [a,b] instead of $[-L, L]$, it suffices to conjugate by an affine application.
    ${ }^{2}$ If $\varphi_{k}$ is $C^{2}$ on $B_{\varepsilon_{1}}\left(\overline{O_{k}}\right)$, it is $C^{1, \alpha}$ on $B_{\varepsilon_{1}}\left(\overline{O_{k}}\right)$ with $\alpha=1$.
    ${ }^{3}$ In suitable cases, this hypothesis can be replaced by a weaker but simpler one: for all points $(u, v)$ and $\left(u^{\prime}, v\right)$ in $B_{\varepsilon_{1}}\left(\overline{O_{k}}\right)$, the segment $\left[(u, v),\left(u^{\prime}, v\right)\right]$ is included in $B_{\varepsilon_{1}}\left(\overline{O_{k}}\right)$.

[^2]:    ${ }^{4}$ Which is equivalent to: if 1 is the only eigenvalue of $P$ with modulus one and if is simple.

