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Let (M, F ) be a compact boundaryless Finsler manifold. In this work, a sufficient condition 
for a vector field on (M, F ) to be harmonic is obtained. Next the harmonic vector fields on 
Finsler manifolds are characterized and an upper bound for the first horizontal de Rham 
cohomology group of the sphere bundle SM is obtained.
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r é s u m é

Soit (M, F ) une variété finslérienne compacte sans bord. Dans cet article, nous donnons 
une condition suffisante pour qu’un champ de vecteurs sur (M, F ) soit harmonique. Par 
ailleurs, nous obtenons une caractérisation des champs de vecteurs harmoniques sur les 
variétés finslériennes, ainsi qu’une borne supérieure pour le premier groupe horizontal de 
cohomologie de de Rham du fibré en sphères SM .

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

On a Riemannian manifold a harmonic vector field is a vector field for which the Hodge Laplacian operator of its cor-
responding 1-form vanishes. Harmonic vector fields are extensively studied by different authors in Riemannian geometry, 
regarding its applications, see for instance, [5,6,8] and [9]. Akbar–Zadeh has considered a natural horizontal Laplacian opera-
tor on S M and generalized the Bochner and Yano’s techniques for Finsler manifolds cf., [1] and [2] page 241. Bao and Lackey 
in [4] construct a Laplace operator on differential forms and study harmonic forms on the underlying Finsler manifold.

Recently, the present authors have studied harmonic vector fields on Landsberg manifolds and found a necessary and 
sufficient condition for a vector field to be harmonic. Furthermore the harmonic vector fields on Landsberg manifolds are 
characterized, cf., [7].

In the present work we characterize the harmonic vector fields on Finsler manifolds through the two scalar functions 
I and J with significant geometric interpretations defined by (9) and (10), respectively. More intuitively, the following 
theorems are proved.
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Theorem 1. Let (M, F ) be a compact Finsler manifold without boundary and X a vector field on M. If I ≥ 0 and ∂ Xi
∂ y j = 0, then X is a 

harmonic vector field.

Theorem 2. Let (M, F ) be a compact Finsler manifold without boundary.

• If J = 0 for a harmonic vector field X, then X is parallel in Berwald connection.
• If J > 0, then there is no non-zero harmonic vector field.

Theorem 3. Let (M, F ) be an n-dimensional compact Finsler manifold without boundary and H1
dR(S M) the first horizontal de Rham 

cohomology group of S M.

• If J = 0 for all harmonic vector fields, then dim H1
dR(S M) ≤ n.

• If J > 0, then H1
dR(S M) = 0.

We show also, if the complete lift of a harmonic vector field X coincides with its canonical lift on S M , then X is Killing.

2. Preliminaries

Let (M, F ) be a Finsler manifold, π : T M0 → M the bundle of non-zero tangent vectors and π∗T M the pullback bundle. 
We often use notations and terminologies of [2] and sometimes those of [3]. The covariant derivatives of Cartan and Berwald 
connections are denoted here by ∇ and D , respectively. Let T T M0 = H T M ⊕ V T M , be the Whitney sum, where H T M and 
V T M are horizontal and vertical bundle respectively and for any X̂ ∈ T T M0, X̂ = H X̂ + V X̂ . If X and Y are sections of π∗T M , 
then the Cartan and Berwald connections are related by

D H X̂ Y = ∇H X̂ Y + yi(∇i T )(X, Y ), (1)

D V X̂ Y = V X̂ .Y , (2)

where T is the Cartan tensor with the components Tki j = 1
2

∂ gij

∂ yk and y = yi ∂

∂xi ∈ TxM . The Finsler manifold (M, F ) is called 
Landsberg manifold if the hv-curvature of the Cartan connection vanishes everywhere or equivalently ∇0 T = 0. By means 
of (1), we have Dk gij = −2∇0Tki j , where the index 0 denotes the contracted multiplication by y, hence D0 gij = yk Dk gij =
−2yk∇0Tki j = 0. Equation (2) is written locally D∂•

j
Y i = ∂Y i

∂ y j , which leads to the following Ricci identities for the Berwald 
connection:

Dl Dk Xi − Dk Dl Xi = Xr Ri
rlk − ∂ Xi

∂ yr
Rr

0lk , (3)

Di Dk X j − Dk Di X j = −Xl R
l
jik − ∂ X j

∂ yr
Rr

0ik , (4)

where Ri
rlk is the hh-curvature tensor of the Berwald connection, cf., [2], page 19. Let X = Xi(x) ∂

∂xi be a vector field on M . 
We associate with X the 1-form X̃ on S M defined by X̃ = Xi(z) dxi + Ẋi dyi , where Ẋi = 1

F (D0 Xi − yi D0(y j X j)F −2), cf., 
[2] page 231. The horizontal part of the associated 1-form on S M is denoted again in this paper by X = Xi(z) dxi , where 
z ∈ S M . The differential and co-differential operators of the horizontal 1-form X are given by

dX = 1

2
(Di X j − D j Xi)dxi ∧ dx j − ∂ Xi

∂ y j
dxi ∧ dy j, (5)

δX = −(∇ j X j − X j∇0T j) = −gij Di X j , (6)

respectively, where the co-differential operator δ is the formal adjoint of d, in the global scalar product over S M , cf. [2], 
pages 223 and 239. Let (M, F ) be a compact Finsler manifold without boundary, the divergence formula for a horizontal 
1-form X = Xi(z) dxi is given by

∫

S M

(δX)η = −
∫

S M

(gij Di X j)η = 0, (7)

where η is a volume form on S M , cf., [2], page 66.
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3. Harmonic vector fields on Finsler manifolds

Let (M, F ) be a Finsler manifold. A vector field X on M is said to be harmonic if its corresponding horizontal 1-form on 
S M satisfies �X = dδ(X) + δ d(X) = 0 or dX = 0 and δX = 0, equivalently

Di X j = D j Xi, gij Di X j = 0,
∂ Xi

∂ y j
= 0 . (8)

Let us consider the two significant scalar function I and J defined respectively by

I = Xi{g jk Dk D j Xi − (Ri
k + T it

r Rr
0kt)Xk − 2

(
D j(Xk∇0T ji

k ) + 2X j∇0T jk
t ∇0T it

k − Xl D
i∇0T l)}, (9)

J = (R jk + T t
r j Rr

0kt)X j Xk + 2Xt{∇0T l Dt Xl + Xl D j∇0T t jl}. (10)

On Landsberg manifolds, for the canonical lift of a harmonic vector field X on S M , these scalar functions reduce to I =
g jk Xi Dk D j Xi − R jk X j Xk and J = R jk X j Xk . Therefore on a Landsberg manifold of positive Ricci directional curvature (i.e. 
R jk X j Xk > 0), we have J > 0.

Now we are in a position to prove Theorem 1.

Proof of Theorem 1. A straightforward computation using the Ricci identities leads to the following formula. For more 
details see [7], Eq. (14):

D j(Xk Dk X j) − Dk(Xk D j X j) = (R jk + T t
r j Rr

0kt)X j Xk + Dk X j D j Xk − Dk Xk D j X j . (11)

The first and second terms in the left-hand side are written respectively:

D j(Xk Dk X j) = D j(Xk Dk(g jl Xl)) = D j[Xk g jl Dk Xl + Xk Xl Dk g jl]
= g jl D j(Xk Dk Xl) + D j g jl Xk Dk Xl + D j(Xk Xl Dk g jl)

= g jl D j(Xk Dk Xl) − 2(∇0T l)(Xk Dk Xl) − 2D j(Xk Xl∇0T jl
k ), (12)

and

Dk(Xk D j X j) = Dk(gkt Xt D j X j) = gkt Dk(Xt D j X j) + Xt D j X j(Dk gkt)

= gkt Dk(Xt D j X j) − 2Xt D j X j∇0T t . (13)

Plugging (12) and (13) into (11) yields

D j(Xk Dk X j) − Dk(Xk D j X j) = g jl D j(Xk Dk Xl) − gkt Dk(Xt D j X j)

− 2(∇0T l)(Xk Dk Xl) − 2D j(Xk Xl∇0T jl
k ) + 2Xt D j X j∇0T t . (14)

Both first two terms on the right-hand side of (14) are divergence. In fact, considering ωl = Xk Dk Xl as a 1-form, Dlωl is a 
divergence function. Integrating (11) over S M , using (14) and the divergence formula (7) we obtain:∫

S M

[(R jk + T t
r j Rr

0kt)X j Xk + Dk X j D j Xk − Dk Xk D j X j

+ 2
(
(∇0T l)(Xk Dk Xl) + D j(Xk Xl∇0T jl

k ) − Xt D j X j∇0T t)]η = 0. (15)

Consider the scalar function φ = Xi Xi on S M . Contracting its second Berwald covariant derivative yields

g jk Dk D jφ = g jk[Dk Xi D j Xi + Xi Dk D j Xi + Dk Xi D j Xi + Xi Dk D j Xi]. (16)

Note that

g jk Xi Dk D j Xi = g jk Xi Dk[git D j Xt + Xt D j git]
= g jk Xi[git Dk D j Xt + (Dk git)(D j Xt) + Dk(Xt D j git)]
= g jk Xt Dk D j Xt + g jk[Xi(Dk git)(D j Xt) + Dk(Xi Xt D j git) − (Dk Xi)Xt D j git]
= g jk Xt Dk D j Xt + Xi(D j git)(D j Xt) + g jk Dk(Xi Xt D j git) − Xt(Dk Xi)Dk git

= g jk Xt Dk D j Xt + g jk Dk(Xi Xt D j git). (17)

On the other hand,
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g jk Dk Xi D j Xi = Dk Xi Dk Xi = g jk D j Xi Dk Xi . (18)

Therefore plugging (17) and (18) in (16) we get

g jk Dk D jφ = 2Xi g jk Dk D j Xi + 2D j Xi D j Xi − g jk Dk(Xi Xt D j git). (19)

A moment’s thought shows that in the equation (19) the left-hand side and the last term of the right-hand side are diver-
gence. Hence, by integration over S M and using the divergence formula (7), we obtain∫

S M

[Xi g jk Dk D j Xi + D j Xk D j Xk]η = 0. (20)

Therefore by means of equations (15) and (20), we obtain∫

S M

[Xi g jk Dk D j Xi − (R jk + T t
r j Rr

0kt)X j Xk + (D j Xk D j Xk − Dk X j D j Xk)

+ Dk Xk D j X j − 2
(

Xk Dk Xl∇0T l + D j(Xk Xl∇0T jl
k ) − Xt D j X j∇0T t)]η = 0. (21)

On the other hand (R jk + T t
r j Rr

0kt)X j Xk = (Ri
k + T it

r Rr
0kt)Xi Xk , and D j(Xk Xl∇0T jl

k ) = Xi D j(Xk∇0T ji
k ) + Xi∇0T jli(D j Xl). Direct 

computations show that

D j Xk D j Xk − Dk X j D j Xk = 1

2
(D j Xk − Dk X j)(D j Xk − Dk X j) + 2Xi∇0T it

k Dt Xk,

and

∇0T it
k Dt Xk = Dt X j∇0T jit − 2X j∇0T jk

t ∇0T it
k .

Replacing these terms in (21) leads to∫

S M

[Xi{g jk Dk D j Xi − (Ri
k + T it

r Rr
0kt)Xk − 2D j(Xk∇0T ji

k ) − 4X j∇0T jk
t ∇0T it

k

− 2(∇0T l)(Di Xl) + 2D j X j∇0T i} + 1

2
(D j Xk − Dk X j)(D j Xk − Dk X j) + Dk Xk D j X j]η = 0. (22)

Consider the following norm on S M

‖ (D j Xk − Dk X j) ‖2 := glj gtk(Dl Xt − Dt Xl)(D j Xk − Dk X j)

= (glj[Dl Xk − Xt(Dl g
tk)] − gtk[Dt X j − Xl(Dt glj)])[D j Xk − Dk X j]

= [D j Xk − Xt D j gtk − Dk X j + Xl D
k glj][D j Xk − Dk X j]

= [D j Xk − Dk X j + 2Xt∇0T jtk − 2Xl∇0T klj][D j Xk − Dk X j]
= [D j Xk − Dk X j][D j Xk − Dk X j], (23)

and

Dk Xk D j X j = (gik Dk Xi + Xi Dk gik)(g jl D j Xl + Xl D j g jl)

= (g jl D j Xl)
2 − 2Xl∇0T l gik Dk Xi − 2Xi∇0T i g jl D j Xl + 4Xi Xl∇0T i∇0T l

= (g jl D j Xl)
2 − 4Xl∇0T l gik Dk Xi + 4Xi Xl∇0T i∇0T l

= (g jl D j Xl)
2 − 4Xl∇0T l(Dk Xk − Xi Dk gik) + 4Xi Xl∇0T i∇0T l

= (g jl D j Xl)
2 − 4Xl∇0T l(Dk Xk) − 8Xi Xl∇0T i∇0T l + 4Xi Xl∇0T i∇0T l

= (g jl D j Xl)
2 − 4Xl∇0T l(D j X j) − 4Xi Xl∇0T i∇0T l. (24)

Replacing (23) and (24) in (22) yields∫

S M

[Xi{g jk Dk D j Xi − (Ri
k + T it

r Rr
0kt)Xk − 2

(
D j(Xk∇0T ji

k ) + 2X j∇0T jk
t ∇0T it

k + (∇0T l)(Di Xl) + D j X j∇0T i

+ 2Xl∇0T i∇0T l)} + 1 ‖ (D j Xk − Dk X j) ‖2 +(g jl D j Xl)
2]η = 0. (25)
2
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Finally note that

D j X j∇0T i = g jk D j Xk∇0T i − 2Xk∇0T k∇0T i . (26)

By similar computation, we get

Xi∇0T l Di Xl + Xi∇0T i Dk Xk = gik Dk(∇0T l Xi Xl) − Xi Xl D
i(∇0T l). (27)

The first term on the right-hand side of (27) is divergence. Plugging (26) and (27) into (25), we have∫

S M

[Xi{g jk Dk D j Xi − (Ri
k + T it

r Rr
0kt)Xk − 2

(
D j(Xk∇0T ji

k ) + 2X j∇0T jk
t ∇0T it

k − Xl D
i∇0T l)}

+ 1

2
‖ (D j Xk − Dk X j) ‖2 +(g jl D j Xl)

2]η = 0. (28)

By the assumption I ≥ 0 and the fact that the last two terms are non-negative, we conclude the last two terms are 
zero. Therefore, we obtain D j Xk − Dk X j = 0 and g jl D j Xl = 0. Thus X is a harmonic vector field on M . This completes the 
proof. �
Proposition 1. Let (M, F ) be a Finsler manifold and X a harmonic vector field on M. If the complete lift of X coincides with its canonical 
lift on S M, then X is Killing.

Proof. Let X = X j(x) ∂

∂x j be a harmonic vector field on (M, F ) and X j(x, y) = X j ◦ π(x, y) the canonical lift of X on 
S M , where π : S M → M is the projection map. The corresponding horizontal 1-form related to X on S M is given by 
X = Xi(x, y) dxi := gij X j(x, y) dxi . By definition of harmonic vector fields we have ∂ Xi

∂ yk = 0. The vertical derivation leads to 

T k
i j X j = 0, and by contraction we have ∇0(T i Xi) = 0. Let X̃ = Xi(z) dxi + Ẋi dyi , where Ẋi = 1

F (D0 Xi − yi D0(y j X j)F −2), be 
the 1-form corresponding to the complete lift of X on S M . If it coincides with the corresponding 1-form associated with 
the canonical lift X = Xi(x, y) dxi , then, by a proposition in [2] (page 242), we conclude that X is a conformal vector field. 
Therefore, we have L X̂ gi j = 2φgij , where φ is the potential function on M and L X̂ gi j = Di X j + D j Xi + D0(

∂ X j

∂ yi ) is the Lie 

derivative, cf., [2], page 227. Contracting with gij and using ∂ X j

∂ yi = 0, yields φ = 0, and hence X is Killing. This completes 
the proof. �
Remark 1. In Theorem 1, on a Landsberg manifold a vector field X on M with canonical lift, is harmonic if and only if 
g jk Dk D j Xi = (Ri

k)Xk and ∂ Xi
∂ yk = 0, cf. [7].

Proof of Theorem 2. Let X be a harmonic vector field on M , then

(Dk X j)(D j Xk) = (g jl Dk Xl + (Dk g jl)Xl)(gkt D j Xt + (D j gkt)Xt)

= ‖ Dk Xl ‖2 +2g jl Xt(Dk Xl)(D j gkt) + Xt Xl(Dk g jl)(D j gkt)

= ‖ Dk Xl ‖2 −4Xt(Dk Xl)(∇0T lkt) + 4Xt Xl(∇0T jl
k )(∇0T kt

j )

= ‖ Dk Xl ‖2 −4Xt(Dk Xl)(∇0T lkt) + 4 ‖ Xi∇0T ji
k ‖2 . (29)

On the other hand, we compute the following terms in (15):

(Dk Xk)(D j X j) = (gkt Dk Xt + Xt Dk gkt)(g jl D j Xl + Xl D j g jl)

= (Xt Dk gkt)(Xl D j g jl) = 4Xt Xl(∇0T t)(∇0T l). (30)

We also have

Xt D j X j∇0T t = (Xt Xl D j g jl)(∇0T t) = −2Xt Xl∇0T t∇0T l. (31)

Moreover, we have

D j(Xk Xl∇0T jl
k ) = D j(Xt Xl∇0T t jl) = 2Xt∇0T t jl(D j Xl) + Xl Xt D j(∇0T t jl). (32)

And finally

(∇0T l)(Xk Dk Xl) = Xt(∇0T l)(Dt Xl). (33)

Substituting (29), (30), (31), (32) and (33) into (15) yields
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∫

S M

[(R jk + T t
r j Rr

0kt)X j Xk + 2Xt
(
(∇0T l)(Dt Xl) + Xl D j(∇0T t jl)

)

+ ‖ Dk Xl ‖2 +4 ‖ Xi∇0T ki
j ‖2]η = 0. (34)

By definition of J or (10), the above equation is written∫

S M

[ J+ ‖ Dk Xl ‖2 +4 ‖ Xi∇0T ki
j ‖2]η = 0. (35)

If the vector field X satisfies J = 0, by means of (35) we get, Dk Xl = 0. By the definition of the harmonic vector fields, we 
have D∂•

i
X j = 0, thus X is horizontally and vertically parallel in Berwald connection. This completes the proof of the first 

assertion.
If X satisfies J > 0, then it contradicts (35) and therefore there is not any non-zero harmonic vector field satisfying 

J > 0. This completes the proof of the second assertion. �
Remark 2. In Theorem 2, on a Landsberg manifold (M, F ), the assumptions J = 0 and J > 0 for a harmonic vector field X
with canonical lift on S M , reduce to R jk X j Xk = 0 and R jk X j Xk > 0, respectively, cf. [7].

Proof of Theorem 3. Let X be a harmonic vector field on (M, F ) endowed with a Berwald connection that satisfies J = 0. 
By the definition of the harmonic vector fields and Theorem 2, we have Di X j = D∂•

i
X j = 0. Therefore, the 1-form X =

Xi(z) dxi is parallel with respect to the Berwald connection on S M . It is well known that a parallel 1-form on a manifold is 
determined by its value at a point on the underlying manifold. Hence the dimension of the vector space of parallel horizontal 
1-forms is at most equal to n, the dimension of its restriction to the horizontal 1-forms on the cotangent space T ∗

x (S M). 
Therefore, for the restriction of the first de Rham cohomology group H1

dR(S M) of these 1-forms, we have dim H1
dR(S M) ≤ n. 

This completes the proof of the first assertion.
Next, by means of Theorem 2, there is no non-zero harmonic vector field X that satisfies J > 0. Hence S M has no 

non-trivial harmonic 1-form. Thus H1
dR(S M) = 0 and this completes the proof of the second assertion. �
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