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value of the backward component of the solution. We construct a sequence of approximat-
Presented by the Editorial Board ing controlled systems, for which we show the existence of a sequence of feedback optimal
controls. By passing to the limit, we get the existence of a feedback optimal control. Filip-
pov’s convexity condition is used to ensure that the optimal control is strict. The present
result extends those obtained in [2,4] to controlled systems of coupled SDE-BSDE.
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RESUME

Nous établissons I'existence d’'un contrdle optimal, pour un systéme modélisé par une
équation différentielle stochastique progressive-rétrograde (EDSPR) couplée, dont le coef-
ficient de diffusion peut dégénérer (i.e. est non nécessairement uniformément elliptique).
Par une double régularisation, nous construisons une suite de contrdles optimaux mar-
koviens. Nous passons ensuite a la limite pour établir I'existence d'un contrdle optimal
markovien. L'hypothése de convexité de Filippov est utilisée pour montrer que le contrdle
optimal ainsi construit est strict. Le résultat étend en un sens ceux obtenus dans [2,4] aux
systéemes d’EDS-EDSR couplés.
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Version francaise abrégée

Soit T >0 et t [0, T]. Soit (2, F, P, (F;)) un espace de probabilisé filtré et W un R¥-mouvement brownien défini sur
cet espace. On considére le systeme d'équations différentielles stochastiques progressives-rétrogrades couplées et controlées,
définie sur [t, T] par :

dXg0 = XS, VIR ZEY ug)ds 4+ o (XE, VIR ug)d Wy,
dY;,XsU — _f(X§»X5u7 st,x,u’ ZE,X,U’ us)ds + ZE,X,UdWS + C“VI?X.U7
(Mt,x,u’ W)s =0,

X =x, Y =oxEY, Mptt=o.

(1)

Le quadruplet (Xt%U, ybxu ztxu phxuy est une solution de I'équation (1), c’est a dire que (X&XU, ybxu zbxu pptx.uy
est un processus (F¢)-adapté, de carré intégrable, vérifiant I'équation (1) et M5*Y est une martingale orthogonale 3 W.
La variable controle u est un processus (F;)-adapté qui prend ses valeurs dans un espace métrique compact A de R™.
L'ensemble des controles admissibles U est I'ensemble des processus (F;)-adaptés a valeurs dans A. Un controle o est dit
optimal s'il vérifie :

Y[t""f‘ = essinf{Yf’X’u, ue U} =V(t,X). @)

Si it € U, il est alors appelé controle optimal strict.
L'objectif de ce travail est d’établir I'existence d’'un contréle optimal strict pour le probléme (1)-(2). Le résultat principal
est :

Théoréme 0.1. On suppose que les hypothéses (B1)—(B5) sont satisfaites et qu'’il y a unicité des solutions de viscosité bornées de
I'équation (4). Alors, il existe un contréle optimal strict solution du probléeme (1)-(2).

1. Introduction

Let (2, F, P, (F¢)) be a filtered probability space. Let W be a k-dimensional Brownian motion with respect to the (not
necessary Brownian) filtration (F;). We consider the controlled system of coupled FBDSE (1). A solution to equation (1) is
a quadruplet (XH%U, ytau  zexu MEXWY which is (F;)-adapted, square integrable, and Mb*" is a martingale which is orthogonal
to W. The control variable u is an (F;)-adapted process with values in some compact metric space A of R™. It should
be noted that the filtered probability space and the Brownian motion may change with the control u. The set U of ad-
missible controls is a set of F;-adapted processes with values in A. The objective is to minimize Yf”"” over the class U of
admissible controls. A control U is called optimal if it satisfies (2). If U belongs to U, we then say that U is a strict control. The
aim of the present paper is to establish the existence of a strict optimal control for the system (1)-(2). The present result
extends those obtained in [2,4] to the case where the state equation is a coupled FBSDE. In contrast to [2,4], the uniform
Lipschitz condition on the coefficients is not sufficient to ensure the existence of a unique solution to equation (1) for an
arbitrary duration. This fact is well explained in [1], where two illustrating examples are given. To ensure the existence
and uniqueness of solutions to equation (1), we moreover assume that the coefficients satisfy the so-called G-monotony
condition introduced in [11]. The second difficulty concerns the gradient estimate of the approximating value function. The
G-monotony condition combined with the comparison theorem of BSDEs allow us to overcome this second difficulty.

2. Assumptions and the main result

Since the probability space can be change with the control, we then use the following notations. We put v :=
(Q, F,P, (Ft), W)teo,) and let

- Sf(t, T;R™) denote the set of R™-valued, (F;)-adapted, continuous processes (Xs,s € [t,T]) that satisfy
E[sup;<s<7 |Xs]%] < o0,

- 7—{.% (t, T; R™) be the set of R™-valued, (F;)-predictable processes (Zs, s € [t, T]) that satisfy IE[[J |Z|2ds] < oo,

- Mﬁ(t, T;R™) denote the set of all R™-valued, square integrable (F;)-martingales M = (Ms)s¢[r, 7] such that M; =0,

- U, (t) denote the set of admissible strict controls,

- R, (t) denote the set of admissible relaxed controls.

For a given 1 x d matrix G and X := (x, y, z), we put

—GTf
A(t,A) = Gb | (t,n),
Go

where GT is the transpose of G.
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Assumption (B). Throughout the paper, we assume that there exists a 1 x k full-rank matrix G such that the following
assumptions are satisfied.

- (B1) (i) A(t, ») is uniformly Lipschitz in A, and for any A, A(-, A) € H2(0, T; R¥ x R x RK),
(ii) @ is uniformly Lipschitz.
We denote by K the Lipschitz constant of A and ®.
- (B2) (i) (A(t. 1) — A(t.2), A — %) < —B1|GX2 — B2 (IGTY 2 + |Gz,
(i) (P(X) — D®), G(x —R) = w1[GR%, X=x—R, y=y—y, Z=2-7,
where 81, f2 and mu are nonnegative constants with g8y + 2 >0, B2 + u1 > 0.
- (B3) the functions b, o, f and ® are bounded.
- (B4) for every (x,y,2) € R¥ x R x R¥ the functions bx,y,z,.),0(x,y,.) and f(x,y,z,.) are continuous.

Under the previous assumptions, equation (1) has a unique solution in the space Sﬁ(t, T; R x Sg(t, T; R) x 7—[12, (¢, T; R x
M2, T; R).
The Filippov convexity assumption is given by:

For every (x, y) € R¥ x R the following set is convex: )
{((0o™) (%, y,u), zo*(x, y,u),bx, y,z,u), f(x,y,2z,u))|(u,2) € A x Bc(0)},

where B¢(0) C R¥ is the closed ball around 0 with radius C.

(B5) {

Theorem 2.1. Assume that (B1)-(B5) are satisfied and the uniqueness holds for bounded viscosity solutions of equation (4). Then, there
exists a strict optimal control which solves the problem (1)-(2) in some reference stochastic system v := (Q, F, P, (F;), W).

3. Proof
3.1. Construction of an approximating control
Let S¥ denotes the space of the real symmetric k x k matrices. Let H be defined on [0, T] x R* x R x R¥ x Sk x A by:

H(t,x,y,p,A,v):= %tr((aa*)(t,x, v, v)A) +b(t,x,y,po(t,x,y,v),v)p (3)
+ flt,x,y,po(t,x,y,v), V).
According to Li and Wei [9], the field V (t,x) possesses a continuous deterministic version which solves the following
Hamilton-Jacobi-Bellman (HJB) equation in viscosity sense on the set [0, T x Rk:
%V(t,x) + viggH(t,x, V(t,x), VyV (t,x), VixV(t,x),v) =0
V(T,x) = ®(x), xRk,

(4)

where V,V and Vi,V respectively denote the gradient and the Hessian matrix of V. For § € (0, 1], we respectively denote
by bs, 05, fs and &g the classical mollifier by convolution of b, o, f and ®. If h is K-Lipschitz, then one can show that
for every x, y e R€ and 8,8 > 0: (i) |hs (x) — h(x)| < K8, (ii) |hs (x) —hy (x)| < K|8 — &), (iii) |hs () —hs ()| < K|x— y|.
For (x,y,p, A, v) e Rk x R x R¥ x Sk x A, we put
§ . l * 2
H . y.p. A v) = 5 (tr((0505) (x.y. V) + 8%Iga ) A (5)
+bs (x, ¥, pos (x,y,v), V) p
+ fs (%, ¥, pos (x,y,v),v).

For (t,x) € [0, T] x R¥, let V3(t, x) be the unique bounded continuous viscosity solution to the HJB equation:

a
.V )+ inf HY (6, (V, VV2, Vi V) (6, %), v) =0
VO (T, x) = ®s(x), x € R¥.

(6)

Since H® is smooth and ((os05) (X, ¥,v) + 821Rk) is strictly elliptic, then, according to Krylov [7], the unique bounded
continuous viscosity solution to (6) belongs to C;‘z([O, T] x R¥). The regularity of V% and the compactness of the control
state A show that there exists a measurable function v® : [0, T] x R¥ — A such that, for every (t,x) € [0, T] x Rk,

H? (x, (V2, ViV2, Vi VO) (£, %), VO (£, X)) = inf H? (x, (V2, Vi V2, Vi VO) (£, %), V). (7)
ve
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Since all the coefficients and the terminal datum are bounded and uniformly Lipschitz, then standard arguments of BSDEs
show that V¢ is bounded uniformly with respect to § and there exists a constant C > 0 which depends on K, T and the
bounds of b, o, ® and f such that for every t € [0, T]; x,x’ € R¥ and 8,8’ € (0, 1]

Vo, x) = Vi, 0l <C(s =82+ |x—X)). (8)

We then deduce that:

- the gradient V,V? is uniformly bounded in (t, x, §),
- V% converges to some continuous function V uniformly on every compact sets of [0, T] x Rk.

We fix an arbitrary initial datum (t, x) € [0, T] x R¥. Let B be an R¥-Brownian motion which is independent of W. Let X°
be the solution to the forward stochastic differential equation defined on [t, T] by:

dx? =o0s5(X3, Ve(s, X%), vO(s, X3)dWs + 8dB;
+bs(X2, VO(s, X2), VxVO(s, XD)as (X2, Vo(s, X2), vO(s, X2)), vO(s, X2))ds,
X! =x,

and define the processes Y4, Z% and U? by putting:
Y3 :=Vi(s,X2), 28 :=VeVO(s, X2)os (XS, VO(s, X2), ud), U =5V, Vs, X2).
3.2. Auxiliary sequence and the passing to the limits
Let (8n)nen+ C (0, 1] be such that 8, | 0. Let (X%, Y% z% y%) be a subsequence of (X°,Y?, Z% u®). The idea consists

to define a sequence of processes (X", Y™) which will be used as an intermediate sequence, which allows us to show the
convergence of (X%, Y%). We put wl = Vy Von(s, Xf“) and define an auxiliary sequence of processes (X", Y") by:

dX" =b (xg, yn, wio (X0, Y1), ufn) ds+o (X2, Y1) dw?r, o)
Xt =x,
and
dygy =—f (XQ’, Y, wio (X2, YD), uf”) ds+ wlo (X7, YD) dw?r, (10)
Yl =Von(t, x).
Using standard arguments of BSDEs, one can show that there exists C > 0 independent of §, such that for every n e N
On
E[supsepe, 71 1Xs" — X721 < Co7, an

n
E[SUPse[t,T] |Ys" — Y?|2] = CS%-

For (x,y,2,0,u) e RK x R x Rk x R x A, we set

S(x,y.2.0,u) = (g(x’y’”) 2>, B(x,y,z,u) = (_?Eﬁ’ﬁ’?u))

n dn
Xe = (i,(?l ) = (w",0,u) and W= <V;/5n ) ,
N

and rewrite the system (9)-(10) as follows:

dxl = B(xI.rds + Z(xI rHdwir,
n_ X (12)
X=\view )
Since V,V? is uniformly bounded, we can interpret (r?,s € [0,T]) as a control which takes its values in the compact

metric space A := Bc(0) x [0, K] x A. We identify the control process r" with the random measure q" defined for (s,a) €
[0,T] x Ay, w € 2 by:

q"(w, ds, da) := 814y (da)ds. (13)

Note that for every n, q" belongs to the space V of all Borel measures q on [0, T] x A; whose projection q(- x Ay) is the
Lebesgue measure on [0, T]. Since the set {(2(x, ¥,2,60,V), B(x,y,2,0,V)), (X, ¥,z 6, v) € Rk x R x A} is bounded (because
the coefficients are bounded) and V is compact in the topology induced by the weak convergence of measures, then the



88 K. Bahlali et al. / C. R. Acad. Sci. Paris, Ser. 1 355 (2017) 84-89

sequence of laws of (x",q")n>1 is tight in the space C([0, T]; R¥ x R) x V. According to Prokhorov’s theorem, there exists
a subsequence (still denoted by (x",q")) which converges in law to some process (), q). Assumption (B5) and the result of
[6] allow us to show that there exists a stochastic reference system v := (€, F, P, (F;), W) and an (F;)-adapted process 7
with values in A; such that the process yx solves the following equation:

dxs = B(Xs, Ts)ds + S(xs, Ts)dWs, s€[0,T],
_ X (14)

X=\vie,x )

Replacing = and B by their definitions then setting x := (X, Y), W:= (W, B) and 7 := (.0, ), we get the following

FBSDE:

d)_(s = b()_(s, ?57 237 us)ds + U()_(& {/s’ ﬁs)dv_vs,
dYs = —f(Xs, Y, Zs, ti5)ds + Z,dW;s + 6,dBs, se|t, T,

Xe=x, Yr = ®o(X7).

If we take My := [ 6;dB;, then (M, W)s = [ 6,d(B, W), = 0. It follows that (X, Y, Z, M) satisfies our original FBSDE in ¥,
that is:

dXs =b(Xs, Vs, Zs, Us)ds + o (Xs, Y, Us)dWs,
d{/s = _f()_(s’ 1?55 25, us)ds + stws + dMSa se[t, T], (15)
Xe=x, Y7 = ®(X7).

Using inequality (11), we conclude that the sequence (X%, Y®') converges in law to (X,Y) and we have Ys = V (s, X;)
for each s € [t, T], P-a.s. In particular, Y7 = ®(Xt), P-a.s. Since V is bounded, then the uniqueness of bounded viscosity
solutions for equation (4) allows us to deduce that:

V(t, x) = essinfycys, 1) J (£, x, 1), P-as,

and

J(t, x, ) = essinfycyyy ) J (£, x, u), P-as.
Therefore, u is a strict optimal control.

Some remarks. It is well known from [1] that the uniform Lipschitz condition is not sufficient to ensure the existence of a
solution to coupled FBSDEs. Nevertheless, there are results on the existence and uniqueness of solutions to coupled FBSDEs
under the uniform Lipschitz condition and supplementary assumptions on the coefficients, see, e.g., [5,10,12,13].

When the coefficients are uniformly Lipschitz and o is non-degenerate, the existence and the uniqueness of solutions
were established in [5] for equation (1); in this case, the existence of an optimal control was recently established in [3]
when the coefficients o and b are independent of z, and o is independent of the control u. The case where b depends
on z and o is independent of z and u, the existence of an optimal control can be performed as in [3]. In the case where
o depends upon (x, y,u), the problem of the existence of an optimal control seems difficult to obtain by the method
we developed here. Indeed, when the control enters the diffusion coefficient o, we lead to an FBSDE with a measurable
diffusion matrix and, in this case, the uniqueness of solution (even in the law sense) may fails. We know from [8] that
when the diffusion coefficient is merely measurable, then even the uniqueness in law fails in general for It6’s forward SDEs
in dimension strictly greater than 2.

The existence of an optimal control under the conditions used in [13] can be obtained by using the method we developed
here.

Recently, in order to study fully coupled FBSDEs, the authors of [10] consider the uniform Lipschitz condition, to which
they add a supplementary hypothesis, which consists in assuming the existence of a decoupling function. This latter hy-
pothesis seems rather implicit and of abstract nature. It can not be easily exploited for our problem.

When the coefficient o depends upon z and u, the problem of the existence of an optimal control for controlled fully
coupled FBSDEs remains open and it is a challenge. In this framework, the existence of solutions follows from [12], and the
Bellman dynamic programming principle was established in [9]. In this case, the Bellman dynamic programming principle
leads to an HJB equation coupled with a constraint given by an algebraic equation.
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