Mathematical analysis

Non-uniformly hyperbolic horseshoes in the standard family

Fers à cheval hyperboliques non uniformes dans la famille standard

Carlos Matheus ${ }^{\text {a }}$, Carlos Gustavo Moreira ${ }^{\text {b }}$, Jacob Palis ${ }^{\text {b }}$
${ }^{\text {a }}$ Université Paris-13, Sorbonne Paris Cité, LAGA, CNRS (UMR 7539), 93439 Villetaneuse, France
${ }^{\text {b }}$ IMPA, Estrada D. Castorina, 110, CEP 22460-320, Rio de Janeiro, RJ, Brazil

A R T I C L E I N F O

Article history:

Received 14 December 2017
Accepted 22 December 2017
Available online 9 January 2018
Presented by Pierre-Louis Lions

Abstract

We show that the non-uniformly hyperbolic horseshoes of Palis and Yoccoz occur in the standard family of area-preserving diffeomorphisms of the two-torus.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

R É S U M É

Nous montrons que les fers à cheval hyperboliques non uniformes de Palis et Yoccoz apparaissent dans la famille standard des difféomorphismes du tore de dimension 2 préservant l'aire.
© 2018 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In their tour-de-force work about the dynamics of surface diffeomorphisms, Palis and Yoccoz [2] proved that the so-called non-uniformly hyperbolic horseshoes are very frequent in the generic unfolding of a first heteroclinic tangency associated with periodic orbits in a horseshoe with Hausdorff dimension slightly bigger than one.

In the same article, Palis and Yoccoz gave an ad hoc example of a 1-parameter family of diffeomorphisms of the twosphere fitting the setting of their main results, and thus exhibiting non-uniformly hyperbolic horseshoes: see page 3 (and, in particular, Figure 1) of [2].

In this note, we show that the standard family $f_{k}: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}, k \in \mathbb{R}$,

$$
f_{k}(x, y):=(-y+2 x+k \sin (2 \pi x), x)
$$

of area-preserving diffeomorphisms of the two-torus $\mathbb{T}^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2}$ displays non-uniformly hyperbolic horseshoes.
More precisely, our main theorem is:
Theorem 1.1. There exists $k_{0}>0$ such that, for all $|k|>k_{0}$, the subset of parameters $r \in \mathbb{R}$ such that $|r-k|<4 / k^{1 / 3}$ and f_{r} exhibits a non-uniformly hyperbolic horseshoe (in the sense of Palis-Yoccoz [2]) has positive Lebesgue measure.

[^0]The remainder of this text is divided into three sections: in Section 2, we briefly recall the context of Palis-Yoccoz work [2]; in Section 3, we revisit some elements of Duarte's construction [1] of tangencies associated with certain (uniformly hyperbolic) horseshoes of f_{k}; finally, we establish Theorem 1.1 in Section 4 by modifying Duarte's constructions (from Section 3) in order to apply the Palis-Yoccoz results (from Section 2).

2. Non-uniformly hyperbolic horseshoes

Suppose that F is a smooth diffeomorphism of a compact surface M displaying a first heteroclinic tangency associated with periodic points of a horseshoe K, that is:

- $p_{s}, p_{u} \in K$ belong to distinct periodic orbits of F;
- $W^{s}\left(p_{s}\right)$ and $W^{u}\left(p_{u}\right)$ have a quadratic tangency at a point $q \in M \backslash K$;
- for some neighborhoods U of K and V of the orbit $\mathcal{O}(q)$, the maximal invariant set of $U \cup V$ is precisely $K \cup \mathcal{O}(q)$.

Assume that K is slightly thick in the sense that its stable and unstable dimensions d^{s} and d^{u} satisfy $d_{s}+d_{u}>1$ and

$$
\left(d_{s}+d_{u}\right)^{2}+\max \left(d_{s}, d_{u}\right)^{2}<d_{s}+d_{u}+\max \left(d_{s}, d_{u}\right)
$$

Remark 2.1. Since the stable and unstable dimensions of a horseshoe of an area-preserving diffeomorphism F always coincide, a slightly thick horseshoe K of an area-preserving diffeomorphism F has stable and unstable dimensions:

$$
0.5<d_{s}=d_{u}<0.6
$$

In this setting, the results proved by Palis and Yoccoz [2] imply the following statement.

Theorem 2.2 (Palis-Yoccoz). Given a 1-parameter family $\left(F_{t}\right)_{|t|<t_{0}}$ with $F_{0}=F$ and generically unfolding the heteroclinic tangency at q, the subset of parameters $t \in\left(-t_{0}, t_{0}\right)$ such that F_{t} has a non-uniformly hyperbolic horseshoe ${ }^{1}$ has positive Lebesgue measure.

3. Horseshoes and tangencies in the standard family

The standard family f_{k} generically unfolds tangencies associated with very thick horseshoes Λ_{k} : this phenomenon was studied in details by Duarte [1] during his proof of the almost denseness of elliptic islands of f_{k} for large generic parameters k.

In the sequel, we review some facts from Duarte's article about Λ_{k} and its tangencies (for later use in the proof of our Theorem 1.1).

For technical reasons, it is convenient to work with the standard family f_{k} and their singular perturbations

$$
g_{k}(x, y)=\left(-y+2 x+k \sin (2 \pi x)+\rho_{k}(x), x\right)
$$

where ρ_{k} is defined in Section 4 of [1]. Here, it is worth to recall that the key features of ρ_{k} are:

- ρ_{k} has poles at the critical points $\nu_{ \pm}= \pm 1 / 4+O(1 / k)$ of the function $2 x+k \sin (2 \pi x)$;
- ρ_{k} vanishes outside $\left|x \pm \frac{1}{4}\right| \leq \frac{2}{k^{1 / 3}}$.

In Section 2 of [1], Duarte constructs the stable and unstable foliations \mathcal{F}^{s} and \mathcal{F}^{u} for g_{k}. As it turns out, \mathcal{F}^{s}, resp. \mathcal{F}^{u}, is an almost vertical, resp. horizontal, foliation in the sense that it is generated by a vector field ($\left.\alpha^{s}(x, y), 1\right)$, resp. $\left(1, \alpha^{u}(x, y)\right)$, satisfying all properties described in Section 2 of Duarte's paper [1]. In particular, \mathcal{F}^{s}, resp. \mathcal{F}^{u}, describe the local stable, resp. unstable, manifolds for the standard map f_{k} at points whose future, resp. past, orbits stay in the region $\left\{f_{k}=g_{k}\right\}$, resp. $\left\{f_{k}^{-1}=g_{k}^{-1}\right\}$.

In Section 3 of [1], Duarte analyzes the projections π^{s} and π^{u} obtained by thinking the foliations \mathcal{F}^{s} and \mathcal{F}^{u} as fibrations over the singular circles $C_{s}=\left\{\left(x, v_{+}\right) \in \mathbb{T}^{2}\right\}$ and $C_{u}=\left\{\left(v_{+}, y\right) \in \mathbb{T}^{2}\right\}$. Among many things, Duarte shows that the circle map $\Psi_{k}: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ defined by

$$
\left(\Psi_{k}(x), v_{+}\right):=\pi^{s}\left(g_{k}\left(x, v_{+}\right)\right) \text {or, equivalently, }\left(v_{+}, \Psi_{k}(y)\right)=\pi^{u}\left(g_{k}^{-1}\left(v_{+}, y\right)\right)
$$

is singular expansive with small distortion.

[^1]In Section 4 of [1], Duarte considers a Cantor set

$$
K_{k}=\bigcap_{n \in \mathbb{N}} \Psi_{k}^{-1}\left(J_{0} \cup J_{1}\right)
$$

of the circle map Ψ_{k} associated with a Markov partition $J_{0} \cup J_{1} \subset[-1 / 4,3 / 4]$ with the following properties:

- the extremities of the intervals $J_{0}=[a, b]$ and $J_{1}=\left[b^{\prime}, a^{\prime}+1\right]$ satisfy $a+\frac{1}{4}, \frac{1}{4}-b,-\frac{1}{4}-a^{\prime}, b^{\prime}-\frac{1}{4}, \in\left(\frac{3}{k^{1 / 3}}, \frac{4}{k^{1 / 3}}\right)$, so that J_{0} and J_{1} are contained in the region $\left\{\rho_{k}=0\right\}$;
- $\Psi_{k}(a)=a=\Psi_{k}\left(a^{\prime}\right), \Psi_{k}(b)=a^{\prime}=\Psi_{k}\left(b^{\prime}\right)$.

In particular, Duarte uses these features of K_{k} to prove that

$$
\Lambda_{k}=\left(\pi^{s}\right)^{-1}\left(K_{k}\right) \cap\left(\pi^{u}\right)^{-1}\left(K_{k}\right)
$$

is a horseshoe of both g_{k} and f_{k}.
In Section 5 of [1], Duarte studies the tangencies associated with the invariant foliations of Λ_{k}. More concretely, denote by $\mathcal{G}^{u}=\left(f_{k}\right)_{*}\left(\mathcal{F}^{u}\right)$ the foliation obtained by pushing the almost horizontal foliation \mathcal{F}^{u} by the standard map f_{k}. The vector fields $\left(\beta^{u}(x, y), 1\right)$ defining \mathcal{G}^{u} and $\left(\alpha^{s}(x, y), 1\right)$ defining \mathcal{F}^{s} coincide along two (almost horizontal) circles of tangencies $\left\{\left(x, \sigma_{+}(x): x \in \mathbb{S}^{1}\right\} \cup\left\{\left(x, \sigma_{-}(x): x \in \mathbb{S}^{1}\right\}\right.\right.$ (with $\left|\sigma_{ \pm}(x)-v_{ \pm}\right| \leq \frac{1}{270 k^{5 / 3}}$ and $\left|\sigma_{ \pm}^{\prime}(x)\right| \leq \frac{1}{12 k^{4 / 3}}$ for all $x \in \mathbb{S}^{1}$). The projections of Λ_{k} along \mathcal{F}^{s} and \mathcal{G}^{u} on the circle of tangencies $\left\{\left(x, \sigma_{+}(x)\right): x \in \mathbb{S}^{1}\right\}$ define two Cantor sets

$$
K_{h}^{S}=\left\{\left(x, \sigma_{+}(x)\right): x \in \mathbb{S}^{1}\right\} \cap\left(\pi^{S}\right)^{-1}\left(K_{k}\right)
$$

and

$$
K_{h}^{u}=\left\{\left(x, \sigma_{+}(x)\right): x \in \mathbb{S}^{1}\right\} \cap f_{k}\left(\left(\pi^{u}\right)^{-1}\left(K_{k}\right)\right)
$$

whose intersection points $x \in K_{h}^{S} \cap K_{h}^{u}$ are points of tangencies between the invariant manifolds of Λ_{k}. Furthermore, it is shown in Propositions 18 and 20 of [1] that these tangencies are quadratic ${ }^{2}$ and unfold generically ${ }^{3}$.

4. Proof of Theorem 1.1

After these preliminaries on the works of Palis-Yoccoz and Duarte, we are ready to prove the main result of this note.
The standard map f_{k} has fixed points at $p_{s}=(0,0) \in \Lambda_{k}$ and $p_{u}=\left(-\frac{1}{12}+O\left(\frac{1}{k}\right),-\frac{1}{12}+O\left(\frac{1}{k}\right)\right) \in \Lambda_{k}$.
The local stable leaf $\mathcal{F}^{s}\left(p_{s}\right)$ is tangent to some leaf of \mathcal{G}^{u} at a point q. Since K_{k} is $\frac{2}{k^{1 / 3}}$-dense in \mathbb{S}^{1} (cf. page 394 of [1]), and f_{k} sends the vertical circle $f_{k}^{-1}\left(\left\{\left(x, \sigma_{+}(x)\right): x \in \mathbb{S}^{1}\right\}\right):=\left\{\left(\rho_{+}(x), x\right): x \in \mathbb{S}^{1}\right\}$ into the horizontal circle $\left\{\left(x, \sigma_{+}(x)\right): x \in \mathbb{S}^{1}\right\}$ as a C^{1}-perturbation of size $\frac{1}{81 k^{2}}$ of a rigid rotation (cf. page 397 of [1]), we can find a point of K_{h}^{u} in the $\frac{7}{2 k^{1 / 3}}$-neighborhood of the tangency point $q \in\left\{\left(x, \sigma_{+}(x)\right): x \in \mathbb{S}^{1}\right\}$.

Therefore, the fact that the tangency at q unfolds generically (cf. footnote 3) permits to take a parameter $|\bar{k}-k|<\frac{4}{k^{1 / 3}}$ such that the local stable leaf $\mathcal{F}^{s}\left(p_{s}\right)$ is tangent to the unstable manifold of some point of $\Lambda_{\bar{k}}$.

Because the unstable manifold of the fixed point p_{u} is dense in $\Lambda_{\bar{k}}$ (and the tangencies unfold generically), we can replace \bar{k} by a parameter $|r-k|<\frac{4}{k^{1 / 3}}$ such that the local stable manifold $\mathcal{F}^{s}\left(p_{s}\right)$ has a quadratic tangency with the unstable manifold of p_{u} at q, which is unfolded generically.

Next, we observe that the right part of a small neighborhood of q in the circle of tangencies is transversal to leaves of \mathcal{F}^{s} to the right of p_{s}, and the left part of a small neighborhood of q in the circle of tangencies is transversal to a certain (fixed) iterate of the leaves of \mathcal{F}^{u} which are either all above or all below p_{u}. In the former, resp. latter, case, we consider a Markov partition $I_{-} \cup I_{0} \cup I_{1}$ for the singular expansive map $\Psi_{r}: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ where:

- I_{0} has extremities $\pi^{s}\left(p_{s}\right)$ and $a \in\left[\frac{1}{8}, \frac{1}{8}+\frac{1}{k^{1 / 3}}\right]$;
- I_{1} has extremities $b \in\left[\frac{15}{32}-\frac{1}{k^{1 / 3}}, \frac{15}{32}\right]$ and $c \in\left[\frac{19}{32}, \frac{19}{32}+\frac{1}{k^{1 / 3}}\right]$;
- I_{-}has extremities $\pi^{u}\left(p_{u}\right)$ and $d \in\left[-\frac{1}{48},-\frac{1}{48}+\frac{1}{k^{1 / 3}}\right]$, resp. $d \in\left[-\frac{7}{48}-\frac{1}{k^{1 / 3}},-\frac{7}{48}\right]$;
- $\Psi_{r}(c)=\pi^{u}\left(p_{u}\right), \Psi_{r}(b)=c=\Psi_{r}(d)$ and $\Psi_{r}(a)=d$, resp. $\Psi_{r}(a)=\pi^{u}\left(p_{u}\right), \Psi_{r}(d)=\pi^{s}\left(p_{s}\right), \Psi_{r}(c)=d$ and $\Psi_{r}(b)=c$.

This defines a Cantor set

$$
L_{r}:=\bigcap_{n \in \mathbb{N}} \Psi_{r}^{-n}\left(I_{-} \cup I_{0} \cup I_{1}\right)
$$

[^2]and a horseshoe
$$
\Theta_{r}:=\left(\pi^{s}\right)^{-1}\left(L_{r}\right) \cap\left(\pi^{u}\right)^{-1}\left(L_{r}\right)
$$
containing p_{s} and p_{u}.
By definition, we can select neighborhoods U of Θ_{r} and V of the orbit $\mathcal{O}(q)$ of q such that the f_{r}-maximal invariant set of $U \cup V$ is exactly $\Theta_{r} \cup \mathcal{O}(q)$: this happens because our choices were made so that the local stable leafs of Θ_{r} approach q only from the right, while certain (fixed) iterates of the local unstable manifolds of Θ_{r} approach q only from the left.

Therefore, we can conclude Theorem 1.1 from the Palis-Yoccoz work (cf. Theorem 2.2) once we verify that Θ_{r} is slightly thick.

In view of Remark 2.1, our task is reduced to check that the stable and unstable Hausdorff dimensions of Θ_{r} are comprised between 0.5 and 0.6 . In this direction, note that these Hausdorff dimensions coincide with the Hausdorff dimension $d(r)$ of L_{r}. Moreover, the distortion constant $C_{1}(r)$ of Ψ_{r} is small (namely, $0 \leq C_{1}(k) \leq \frac{9}{k^{1 / 3}}$, cf. page 388 of [1]). Hence, $d(r)$ is close to the solution $\kappa(r)$ to the "Bowen's equation"

$$
\left(\text { length } I_{-}\right)^{\kappa(r)}+\left(\text { length } I_{0}\right)^{\kappa(r)}+\left(\text { length } I_{1}\right)^{\kappa(r)}=(\text { length } I)^{\kappa(r)}
$$

where I is the convex hull of $I_{-} \cup I_{0} \cup I_{1}$. Since length $I_{-}=\frac{1}{16}+O\left(\frac{1}{k^{1 / 3}}\right)$, length $I_{0}=$ length $I_{1}=\frac{1}{8}+O\left(\frac{1}{k^{1 / 3}}\right)$,

$$
\text { length } I=\frac{19}{32}+\frac{1}{12}+O\left(\frac{1}{k^{1 / 3}}\right), \quad \text { resp. } \frac{19}{32}+\frac{7}{48}+O\left(\frac{1}{k^{1 / 3}}\right)
$$

and

$$
\begin{aligned}
& (1 / 16)^{0.5809 \ldots}+(1 / 8)^{0.5809 \ldots}+(1 / 8)^{0.5809 \ldots}=(65 / 96)^{0.5809 \ldots}, \text { resp. } \\
& (1 / 16)^{0.5546 \ldots}+(1 / 8)^{0.5546 \ldots}+(1 / 8)^{0.5546 \ldots}=(71 / 96)^{0.5546 \ldots}
\end{aligned}
$$

we derive that $0.554<d(r)<0.581$. This completes the argument.

References

[1] P. Duarte, Plenty of elliptic islands for the standard family of area preserving maps, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 11 (1994) $359-409$.
[2] J. Palis, J.-C. Yoccoz, Non-uniformly hyperbolic horseshoes arising from bifurcations of Poincaré heteroclinic cycles, Publ. Math. Inst. Hautes Études Sci. 110 (2009) 1-217.

[^0]: E-mail addresses: matheus@math.univ-paris13.fr (C. Matheus), gugu@impa.br (C.G. Moreira), jpalis@impa.br (J. Palis).

[^1]: ${ }^{1}$ We are not going to recall the definition of non-uniformly hyperbolic horseshoes here: instead, we refer the reader to the original article [2] for the details.

[^2]: ${ }^{2}$ The difference in curvatures at tangency points is $\geq 4 \pi^{2} k-\frac{3}{k^{1 / 3}}$.
 ${ }^{3}$ The leaves of \mathcal{F}^{s} move with speed $\leq \frac{3}{k^{2 / 3}}$ and the leaves of \mathcal{G}^{u} move with speed $\geq 1-\frac{3}{k^{2 / 3}}$.

