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A hom-associative algebra is an algebra whose associativity is twisted by an algebra 
homomorphism. We show that the Hochschild type cochain complex of a hom-associative 
algebra carries a homotopy G-algebra structure. As a consequence, we get a Gerstenhaber 
algebra structure on the cohomology of a hom-associative algebra. We also find similar 
results for hom-dialgebras.
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r é s u m é

Une algèbre hom-associative est une algèbre dont l’associativité est tordue par un 
homomorphisme d’algèbre. Nous montrons que le complexe des co-chaînes de type 
Hochschild d’une algèbre hom-associative porte une structure de G-algèbre à homotopie 
près. Comme conséquence, nous obtenons une structure d’algèbre de Gerstenhaber sur 
la cohomologie des algèbres hom-associatives. Nous arrivons également à des résultats 
similaires pour les hom-dialgèbres.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In [4], Gerstenhaber showed that the Hochschild cohomology H•(A, A) of an associative algebra A carries a certain 
algebraic structure. This algebraic structure is now known as Gerstenhaber algebra. A Gerstenhaber algebra is a graded 
commutative associative algebra together with a degree −1 graded Lie bracket that are compatible in the sense of a suitable 
Leibniz rule. An alternative proof of the same fact has been carried out by Gerstenhaber and Voronov [5]. More precisely, 
they prove a more general statement, that is, the Hochschild complex C•(A, A) carries a homotopy G-algebra structure.
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A homotopy G-algebra is a brace algebra (O = ⊕O(n), {−}{−, . . . , −}) together with a differential graded associative 
algebra structure on O satisfying some compatibility conditions [5]. The brace algebra structure on C•(A, A) is given by the 
classical braces introduced by Getzler–Jones [6], the differential graded associative algebra structure on C•(A, A) is given by 
the usual cup product and the Hochschild coboundary (up to some signs). In [5], the authors showed that the existence of 
the homotopy G-algebra structure on C•(A, A) is based on the non-symmetric endomorphism operad structure on C•(A, A)

together with a multiplication on that operad. The same idea has been used to define a homotopy G-algebra structure on 
the dialgebra complex C Y •(D, D) of a dialgebra D [9].

In this paper, we deal with certain types of algebras, called hom-type algebras. In these algebras, the identities defining 
the structures are twisted by homomorphisms. Recently, hom-type algebras have been studied by many authors. The notion 
of hom-Lie algebras was first introduced by Hartwig, Larsson, and Silvestrov [7]. Hom-Lie algebras appeared in examples of 
q-deformations of the Witt and Virasoro algebras. Another type of algebras (e.g., associative, Leibniz, Poisson, Hopf...) twisted 
by homomorphisms have also been studied. See [10,11] (and references there in) for more details. Our main objective in 
this paper is the notion of hom-associative algebra introduced by Makhlouf and Silvestrov [10]. A hom-associative algebra 
is an algebra (A, μ) whose associativity is twisted by an algebra homomorphism α : A → A (cf. Definition 3.1). When α is 
the identity map, we recover the classical notion of associative algebras as a subclass.

In [1,11], the authors studied the formal one-parameter deformation of hom-associative algebras and introduced a 
Hochschild-type cohomology theory for hom-associative algebras. Given a hom-associative algebra (A, μ, α), its n-th cochain 
group Cn

α(A, A) consists of multilinear maps f : A⊗n → A that satisfy α ◦ f = f ◦ α⊗n , and the coboundary operator δα is 
similar to the Hochschild coboundary, but suitably twisted by α. In [1], the authors also introduce a degree −1 graded 
Lie bracket [−, −]α on the cochain groups C•

α(A, A), which passes on to cohomology. In [2], the present author defines a 
cup product ∪α on the cochain groups C•

α(A, A) and shows that it induces a graded commutative, associative product on 
the cohomology H•

α(A, A). Moreover, it was shown that the induced structures on the cohomology H•
α(A, A) makes it a 

Gerstenhaber algebra.
In this paper, we follow the method of Gerstenhaber and Voronov [5]. We show that the cochain complex C•

α(A, A) car-
ries a non-symmetric operad structure. This operad structure is similar to the endomorphism operad on A, however, twisted 
by α. Moreover, the multiplication defining the hom-associative structure gives a multiplication in the above operad. Hence, 
by a result of [5], it follows that the cochain complex C•

α(A, A) carries a homotopy G-algebra structure. As a consequence, 
we get a Gerstenhaber algebra structure on cohomology. This gives an alternative approach to the same result proved by 
the author [2].

The notion of (diassociative) dialgebras was introduced by Loday as a generalization of associative algebras [8]. The 
hom-analogue of a dialgebra is known as a hom-dialgebra [13]. We discuss the above results for hom-dialgebras. Given 
a hom-dialgebra D , we show that the cochain complex C Y •

α(D, D) defining the cohomology of a hom-dialgebra carries a 
non-symmetric operad structure. Moreover, the operations defining the hom-dialgebra structure induces a multiplication 
on the operad. Hence, we conclude that the cochain complex C Y •

α(D, D) inherits a homotopy G-algebra structure and the 
corresponding cohomology HY •

α(D, D) carries a Gerstenhaber algebra structure.
In Section 2, we recall some basic preliminaries on operads, braces, and homotopy G-algebras. In Section 3, we first 

revise hom-associative algebras and prove our results for hom-associative algebras. Finally, in Section 4, we deal with hom-
dialgebras.

2. Preliminaries

In this section, we recall some basic definitions. See [5,6] for more details.

2.1. Definition. A non-symmetric operad (non-
∑

operad in short) in the category of vector spaces is a collection of vector 
spaces {O(k)| k ≥ 1} together with compositions

γ : O(k) ⊗O(n1) ⊗ · · · ⊗O(nk) → O(n1 + · · · + nk)

f ⊗ g1 ⊗ · · · ⊗ gk �→ γ ( f ; g1, . . . , gk)

which is associative in the sense that

γ
(
γ ( f ; g1, . . . , gk);h1, . . . ,hn1+···+nk

)
= γ

(
f ; γ (g1;h1, . . . ,hn1), γ (g2;hn1+1, . . . ,hn1+n2), . . . , γ (gk;hn1+···+nk−1+1, . . . ,hn1+···+nk )

)
and there is an identity element id ∈O(1) such that

γ ( f ; id, . . . , id︸ ︷︷ ︸
k times

) = f = γ (id; f ), for f ∈ O(k).
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A non-
∑

operad can also be described by compositions (called partial compositions)

◦i : O(m) ⊗O(n) → O(m + n − 1), 1 ≤ i ≤ m

satisfying{
( f ◦i g) ◦i+ j−1 h = f ◦i (g ◦ j h), for 1 ≤ i ≤ m, 1 ≤ j ≤ n,

( f ◦i g) ◦ j+n−1 h = ( f ◦ j h) ◦i g, for 1 ≤ i < j ≤ m,

for f ∈ O(m), g ∈ O(n), h ∈ O(p), and an identity element satisfying f ◦i id = f = id ◦1 f , for all f ∈ O(k) and 1 ≤ i ≤ m. 
The two definitions of non-

∑
operad are related by

f ◦i g = γ ( f ;
m-tuple︷ ︸︸ ︷

id, . . . , id, g︸︷︷︸
i-th place

, id, . . . , id), for f ∈ O(m), (1)

γ ( f ; g1, . . . , gk) = (· · · (( f ◦k gk) ◦k−1 gk−1) · · · ) ◦1 g1, for f ∈ O(k). (2)

A toy example of an operad is given by the endomorphisms of a vector space. Let A be a vector space and define 
O(k) = Hom(A⊗k, A), for k ≥ 1. The compositions γ are substitutions of the values of k operations in a k-ary operation as 
inputs.

Next, consider the graded vector space O = ⊕k≥1O(k) of an operad. If f ∈ O(n), we define deg f = n and | f | = n − 1. 
We use the same notation for any graded vector space as well. Consider the braces

{ f }{g1, . . . , gn} :=
∑

(−1)ε γ ( f ; id, . . . , id, g1, id, . . . , id, gn, id, . . . , id)

where the summation runs over all possible substitutions of g1, . . . , gn into f in the prescribed order and ε := ∑n
p=1 |gp|ip , 

ip is the total number of inputs in front of gp . The multilinear braces { f }{g1, . . . , gn} are homogeneous of degree −n. 
Moreover, they satisfy the following identities.

• Higher pre-Jacobi identities:

{ f }{g1, . . . , gm}{h1, . . . ,hn}
=

∑
0≤i1≤···≤im≤n

(−1)ε { f }{h1, . . . ,hi1 , {g1}{hi1+1, . . . ,h j1},h j1+1, . . . ,him ,

{gm}{him+1, . . . ,h jm },h jm+1, . . . ,hn},
where ε := ∑m

p=1

(|gp| ∑ip
q=1 |hq|

)
.

One also assumes the following conventions in an operad:

{ f }{ } := f and f ◦ g := { f }{g}.

2.2. Remark. The higher pre-Jacobi identities imply that

[ f , g] = f ◦ g − (−1)| f ||g|g ◦ f , for f , g ∈ O, (3)

defines a degree −1 graded Lie bracket on O.

2.3. Definition. A multiplication on an operad O is an element m ∈O(2) such that m ◦ m = 0.

If m is a multiplication on an operad O, then the dot product

f · g = (−1)| f |+1{m}{ f , g}, f , g ∈ O,

defines a graded associative algebra structure on O. Moreover, the degree one map d :O →O, f �→ m ◦ f − (−1)| f | f ◦ m is 
a differential on O and the triple (O, ·, d) is a differential graded associative algebra [5]. Moreover, the following identities 
hold.

• Distributivity:

{ f · g}{h1, . . . ,hn} =
n∑

(−1)ε ({ f }{h1, . . . ,hk}) · ({g}{hk+1, . . . ,hn}), where ε = |g|
k∑

|hp|.

k=0 p=1
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• Higher homotopies:

d({ f }{g1, . . . , gn+1}) − {df }{g1, . . . , gn+1} − (−1)| f |
n+1∑
i=1

(−1)|g1|+···+|gi−1|{ f }{g1, . . . ,dgi, . . . , gn+1}

=(−1)| f ||g1|+1 g1 · ({ f }{g2, . . . , gn+1}) + (−1)| f |
n∑

i=1

(−1)|g1|+···+|gi−1|{ f }{g1, . . . , gi · gi+1, . . . , gn+1}

− { f }{g1, . . . , gn} · gn+1.

Summarizing the properties of braces and multiplications on an operad, one gets the following algebraic structures [5,6].

2.4. Definition. A brace algebra is a graded vector space O = O(n) together with a collection of braces { f }{g1, . . . , gn} of 
degree −n satisfying the higher pre-Jacobi identities.

A brace algebra as above may be denoted by (O =O(n), {−}{−, . . . , −}).

2.5. Definition. A homotopy G-algebra is a brace algebra (O = O(n), {−}{−, . . . , −}) endowed with a differential graded 
associative algebra structure (O = O(n), ·, d) satisfying the distributivity and higher homotopies. A homotopy G-algebra is 
denoted by (O =O(n), {−}{−, . . . , −}), ·, d).

As a summary, we get the following [5].

2.6. Theorem. A multiplication on an operad O defines the structure of a homotopy G-algebra on O = ⊕O(n).

Next, we recall Gerstenhaber algebras (G-algebras in short).

2.7. Definition. A (left) Gerstenhaber algebra is a graded commutative associative algebra (A = ⊕Ai, ·) together with a 
degree −1 graded Lie bracket [−, −] on A satisfying the following Leibniz rule

[a,b · c] = [a,b] · c + (−1)|a|(|b|+1)b · [a, c],
for all homogeneous elements a, b, c ∈A.

2.8. Remark. Given a homotopy G-algebra (O = O(n), {−}{−, . . . , −}), ·, d), the product · induces a graded commutative 
associative product · on the cohomology H•(O, d). The degree −1 graded Lie bracket as defined in (3) also passes on to the 
cohomology H•(O, d). Moreover, the induced product and the bracket on the cohomology satisfy the graded Leibniz rule to 
becomes a Gerstenhaber algebra [5].

3. Hom-associative algebras

In this section, we first recall hom-associative algebras and their Hochschild cohomology. Then we show that the 
Hochschild complex of hom-associative algebras carries a natural operad structure together with a multiplication. Finally, 
we deduce a Gerstenhaber algebra structure on the cohomology.

3.1. Definition. A hom-associative algebra over K is a triple (A, μ, α) consists of a K-vector space A together with a 
K-bilinear map μ : A × A → A and a K-linear map α : A → A satisfying α(μ(a, b)) = μ(α(a), α(b)) and

μ(α(a),μ(b, c)) = μ(μ(a,b),α(c)), for all a,b, c ∈ A. (4)

In [1] the authors called such a hom-associative algebra ‘multiplicative’. By a hom-associative algebra, they mean a triple 
(A, μ, α) of a vector space A, a bilinear map μ : A × A → A and a linear map α : A → A satisfying condition (4). See [1,10]
for examples of hom-associative algebras.

When α = identity, in any case, one gets the definition of a classical associative algebra. Next, we recall the definition 
of Hochschild-type cohomology for hom-associative algebras. Like in the classical case, this cohomology theory controls the 
deformation of hom-associative algebras [1].

Let (A, μ, α) be a hom-associative algebra. For each n ≥ 1, we define a K-vector space Cn
α(A, A) consisting of all multi-

linear maps f : A⊗n → A satisfying α ◦ f = f ◦ α⊗n , that is,

(α ◦ f )(a1, . . . ,an) = f (α(a1), . . . ,α(an)), for all ai ∈ A.
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Define δα : Cn
α(A, A) → Cn+1

α (A, A) by the following

(δα f )(a1,a2, . . . ,an+1) = μ
(
αn−1(a1), f (a2, . . . ,an+1)

)
+

n∑
i=1

(−1)i f
(
α(a1), . . . ,α(ai−1),μ(ai,ai+1),α(ai+2), . . . ,α(an+1)

)
+ (−1)n+1μ( f (a1, . . . ,an),α

n−1(an+1)).

Then we have δ2
α = 0. The cohomology of this complex is called the Hochschild cohomology of the hom-associative algebra 

(A, μ, α). The cohomology groups are denoted by Hn
α(A, A), n ≥ 2. When α = identity, one recovers the classical Hochschild 

cohomology of associative algebras.

Operad structure: Let A be a vector space and α : A → A be a linear map. For each k ≥ 1 define Ck
α(A, A) to be the space 

of all multilinear maps f : A⊗k → A satisfying

(α ◦ f )(a1, . . . ,ak) = f (α(a1), . . . ,α(ak)), for all ai ∈ A.

We define an operad structure on O = {O(k)| k ≥ 1} where O(k) = Ck
α(A, A), for k ≥ 1. Define partial compositions ◦i :

O(m) ⊗O(n) →O(m + n − 1) by

( f ◦i g)(a1, . . . ,am+n−1) = f (αn−1a1, . . . ,α
n−1ai−1, g(ai, . . . ,ai+n−1),α

n−1ai+n, . . . ,α
n−1am+n−1),

for f ∈O(m), g ∈O(n) and a1, . . . , am+n−1 ∈ A. In view of (2), the compositions

γα : O(k) ⊗O(n1) ⊗ · · · ⊗O(nk) → O(n1 + · · · + nk)

are given by

γα( f ; g1, . . . , gk)(a1, . . . ,an1+···+nk )

= f
(
α

∑k
l=2 |gl|g1(a1, . . . ,an1), . . . , α

∑k
l=1,l �=i |gl|gi(an1+···+ni−1+1, . . . ,an1+···+ni ),

. . . , α
∑k−1

l=1 |gl |gk(an1+···+nk−1+1, . . . ,an1+···+nk )
)
,

for f ∈O(k), gi ∈O(ni) and a1, . . . , an1+···+nk ∈ A.

3.2. Proposition. The partial compositions ◦i (or compositions γα) defines a non-
∑

operad structure on C•
α(A, A) with the identity 

element given by the identity map id ∈ C1
α(A, A).

Proof. For f ∈ Cm
α (A, A), g ∈ Cn

α(A, A), h ∈ C p
α(A, A) and 1 ≤ i ≤ m, 1 ≤ j ≤ n, we have

(( f ◦i g) ◦i+ j−1 h)(a1, . . . ,am+n+p−2)

= ( f ◦i g)
(
αp−1a1, . . . ,α

p−1ai+ j−2, h(ai+ j−1, . . . ,ai+ j+p−2), . . . ,α
p−1am+n+p−2

)
= f

(
αn+p−2a1, . . . ,α

n+p−2ai−1, g
(
αp−1ai, . . . ,h(ai+ j−1, . . . ,ai+ j+p−2), . . . ,α

p−1ai+n+p−2
)
,

. . . ,αn+p−2am+n+p−2
)

= f
(
αn+p−2a1, . . . ,α

n+p−2ai−1, (g ◦ j h)(ai, . . . ,ai+n+p−2), . . . ,α
n+p−2am+n+p−2

)
= ( f ◦i (g ◦ j h))(a1, . . . ,am+n+p−2).

Similarly, for 1 ≤ i < j ≤ m, we have (( f ◦i g) ◦ j+n−1 h) = (( f ◦ j h) ◦i g). It is also easy to see that the identity map id is the 
identity element of the operad. Hence, the proof. �
3.3. Remark. When α : A → A is the identity map, one recovers the endomorphism operad on the vector space A.

Note that the corresponding braces on C•
α(A, A) are given by

{ f }{g1, . . . , gn} :=
∑

(−1)ε γα( f ; id, . . . , id, g1, id, . . . , id, gn, id, . . . , id).

Therefore, the degree −1 graded Lie bracket on C•
α(A, A) is given by

[ f , g] = f ◦ g − (−1)(m−1)(n−1)g ◦ f , (5)

where
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( f ◦ g)(a1, . . . ,am+n−1) =
m∑

i=1

(−1)(n−1)(i−1) f (αn−1a1, . . . , g(ai, . . . ,ai+n−1), . . . ,α
n−1am+n−1),

for f ∈ Cm
α (A, A), g ∈ Cn

α(A, A) and a1, . . . , am+n−1 ∈ A. See also [1,2].
Next, let (A, μ, α) be a hom-associative algebra. Then μ ∈ C2

α(A, A). Moreover, we have

{μ}{μ}(a,b, c) = γα(μ;μ, id)(a,b, c) − γα(μ; id,μ)(a,b, c)

= μ(μ(a,b),α(c)) − μ(α(a),μ(b, c)) = 0, for all a,b, c ∈ A.

Therefore, μ defines a multiplication on the operad structure on C•
α(A, A). The corresponding dot product on C•

α(A, A) is 
given by

( f · g)(a1, . . . ,am+n) = (−1)mn μ( f (αn−1a1, . . . ,α
n−1am), g(αm−1am+1, . . . ,α

m−1am+n)),

for f ∈ Cm
α (A, A), g ∈ Cn

α(A, A) and a1, . . . , am+n ∈ A. We remark that this dot product on C•
α(A, A) is same as (up to sign) 

the cup-product on C•
α(A, A) defined in [2]. Moreover, the differential d is given by

df = μ ◦ f − (−1)| f | f ◦ μ = (−1)| f |+1δα( f ).

The last equality follows from a straightforward calculation [2].
Thus, in view of Theorem 2.6 and Remark 2.8, we get the following.

3.4. Theorem. Let (A, μ, α) be a hom-associative algebra. Then its Hochschild cochain complex C•
α(A, A) inherits a homotopy 

G-algebra structure. Hence, its Hochschild cohomology H•
α(A, A) carries a Gerstenhaber algebra structure.

3.5. Remark. A direct proof of the existence of a Gerstenhaber algebra structure on the cohomology H•
α(A, A) has been 

carried out by the author in [2]. More precisely, the author defined a cup-product ∪α on C•
α(A, A) by

( f ∪α g)(a1, . . . ,am+n) = μ( f (αn−1a1, . . . ,α
n−1am), g(αm−1am+1, . . . ,α

m−1am+n)),

which is compatible with the Hochschild differential δα . Therefore, it induces a cup-product on the cohomology H•
α(A, A), 

which turns out to be graded commutative associative. Moreover, the degree −1 graded Lie bracket on C•
α(A, A) as defined 

in (5) induces a degree −1 graded Lie bracket on the cohomology. The induced cup-product and degree −1 graded Lie 
bracket give rise to a (right) Gerstenhaber algebra structure on the cohomology H•

α(A, A).
The dot product · and the differential d on C•

α(A, A) induced from the operad structure on C•
α(A, A) are the same as (up 

to some signs) the cup-product and Hochschild differential on C•
α(A, A). Due to the presence of signs, we get here a (left) 

Gerstenhaber algebra structure on the cohomology H•
α(A, A).

4. Hom-dialgebras

The notion of a (diassociative) dialgebra was introduced by Loday as a generalization of associative algebra and Leibniz 
algebra [8]. The hom-analogue of dialgebra is given by the following [13].

4.1. Definition. A hom-dialgebra is a vector space D together with two bilinear maps �, 
: D ⊗ D → D and a linear map 
α : D → D satisfying α(a � b) = α(a) � α(b) and α(a 
 b) = α(a) 
 α(b) and such that the following axioms hold

α(a) � (b � c) = (a � b) � α(c) = α(a) � (b 
 c),

(a 
 b) � α(c) = α(a) 
 (b � c),

(a � b) 
 α(c) = α(a) 
 (b 
 c) = (a 
 b) 
 α(c), for all a,b, c ∈ D.

A hom-dialgebra as above is denoted by (D, �, 
, α). When α = identity, one gets the notion of a dialgebra. A hom-
associative algebra (A, μ, α) is a hom-dialgebra where � = μ = 
.

Dialgebra cohomology with coefficients was introduced by Frabetti using planar binary trees [3]. Next, we introduce the 
cohomology of a hom-dialgebra with coefficients in itself. A planar binary tree with n-vertices (in short, an n-tree) is a 
planar tree with (n + 1) leaves, one root and each vertex trivalent. Let Yn denote the set of all n-trees (see the figure below) 
and let Y0 be the singleton set consisting
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of a root only. Therefore, in the above trees, Y0 consists of the first tree, Y1 consists of the second tree, Y2 consists of the 
third and the fourth tree, Y3 consists of the rest of the trees.

For each y ∈ Yn , the (n + 1) leaves are labelled by {0, 1, . . . , n} from left to right, the vertices are labelled by {1, . . . , n}
so that the i-th vertex is between the leaves (i − 1) and i. The only element in Y0 is denoted by [0] and the only element 
in Y1 is denoted by [1]. The grafting of a p-tree y1 and q-tree y2 is a (p + q + 1)-tree denoted by y1 ∨ y2, and is obtained 
by joining the roots of y1 and y2 and creating a new root from that vertex. This is denoted by [y1 p +q + 1 y2] with the 
convention that all zeros are deleted except for the element in Y0. With this notation, the trees in the above figure (from 
left to right) are [0], [1], [12], [21], [123], [213], [131], [312], [321].

For any fixed n ≥ 1, there are maps di : Yn → Yn−1 (0 ≤ i ≤ n), y �→ di y, where di y is obtained from y by deleting the 
i-th leaf. These maps are called face maps and satisfy the relations did j = d j−1di , for all i < j.

Before we introduce the cohomology of a hom-dialgebra, we need the following notations. For any 0 ≤ i ≤ n + 1, the 
maps •i : Yn+1 → {�, 
} are defined by

•0(y) = •y
0 :=

{
� if y is of the form | ∨ y1for some n-tree y1,


 otherwise,

•i(y) = •y
i :=

{
� if the ith leaf of y is oriented like ′\′,

 if the ith leaf of y is oriented like ′/′,

for 1 ≤ i ≤ n, and

•n+1(y) = •y
n+1 :=

{

 if y is of the form y1 ∨ |, for some n-tree y1,

� otherwise.

Let (D, �, 
, α) be a hom-dialgebra. For any n ≥ 1, the cochain group C Y n
α(D, D) consists of all linear maps

f : K [Yn] ⊗ D⊗n → D, y ⊗ a1 ⊗ · · · ⊗ an �→ f (y;a1, . . . ,an)

satisfying

(α ◦ f )(y;a1, . . . ,an) = f (y;α(a1), . . . ,α(an)), for all y ∈ Yn,ai ∈ D.

The coboundary map δα : C Y n
α(D, D) → C Y n+1

α (D, D) defined by

(δα f )(y;a1, . . . ,an+1) = αn−1(a1) •y
0 f (d0 y;a2, . . . ,an+1)

+
n∑

i=1

(−1)i f (di y; α(a1), . . . ,ai •y
i ai+1, . . . ,α(an+1))

+ (−1)n+1 f (dn+1 y; a1, . . . ,an) •y
n+1 αn−1(an+1),

for y ∈ Yn+1 and a1, . . . , an+1 ∈ D . Similar to the hom-associative case [1], one can prove the following.

4.2. Proposition. The coboundary map satisfies δ2
α = 0.

The cohomology of the complex (C Y •
α(D, D), δα) is called the cohomology of the hom-dialgebra (D, �, 
, α) and the 

cohomology groups are denoted by HY n
α(D, D), for n ≥ 2.

4.3. Remark. When (D, �, 
, α) is a dialgebra, that is, α = id, one recovers the known dialgebra cohomology [8]. When 
(D, �, 
, α) is a hom-associative algebra, that is, � = μ = 
, one recovers the cohomology of a hom-associative algebra.

We show that the cochain groups C Y •
α(D, D) carries a homotopy G-algebra structure. Hence, the cohomology HY •

α(D, D)

inherits a Gerstenhaber algebra structure.

Operad structure: Let D be a vector space and α : D → D be a linear map. For each k ≥ 1 define C Y k
α(D, D) to be the space 

of all multilinear maps f : K [Yk] ⊗ D⊗k → D satisfying

(α ◦ f )(y;a1, . . . ,ak) = f (y;α(a1), . . . ,α(ak)), for all y ∈ Yk and ai ∈ D.

Our aim is to define an operad structure on O = {O(k)| k ≥ 1} where O(k) = C Y k
α(D, D), for k ≥ 1. For this, we closely 

follow [9].
For any k, n1, . . . , nk ≥ 1, we define maps R0(k; n1, . . . , nk) : Yn1+···+nk → Yk by

R0(k;n1, . . . ,nk) := d1 · · ·dn1−1dn1+1 · · ·dn1+n2−1dn1+n2+1 · · ·dn1+···+n −1dn1+···+n +1 · · ·dn1+···n −1.
k−1 k−1 k
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Moreover, for any 1 ≤ i ≤ k, there are maps Ri(k; n1, . . . , nk) : Yn1+···+nk → Yni defined by

Ri(k;n1, . . . ,nk) := d0d1 · · ·dn1+···+ni−1−1dn1+···+ni+1 · · ·dn1+···+nk .

In other words, the function R0(k; n1, . . . , nk) misses d0, dn1 , dn1+n2 , . . . , dn1+···+nk and the function Ri(k; n1, . . . , nk) misses 
dn1+···+ni−1 , dn1+···+ni−1+1, . . . , dn1+···+ni .

Then the collection

R = {R0(k;n1, . . . ,nk), Ri(k;n1, . . . ,nk)| k,n1, . . . ,nk ≥ 1 and 1 ≤ i ≤ k}
satisfies the following relations of a pre-operadic system [12]:

• R0(k; 1, . . . ,1︸ ︷︷ ︸
k times

) = idYk , for each k ≥ 1,

• R0(k;n1, . . . ,nk)R0(n1 + · · · + nk; m1, . . . ,mn1+···+nk )=R0(k; m1 + · · · + mn1 , mn1+1 + · · · + mn1+n2 , . . . , mn1+···+nk−1+1 + · · · + mn1+···+nk ),

• Ri(k;n1, . . . ,nk)R0(n1 + · · · + nk; m1, . . . ,mn1+···+nk ) =R0(ni;mn1+···+ni−1+1, . . . ,mn1+···+ni )

Ri(k; m1 + · · · + mn1 , mn1+1 + · · · + mn1+n2 , . . . ,mn1+···+nk−1+1 + · · · + mn1+···+nk ),

• Rn1+···+ni−1+ j(n1 + · · · + nk; m1, . . . ,mn1+···+nk ) =R j(ni;mn1+···+ni−1+1, . . . ,mn1+···+ni )

Ri(k; m1 + · · · + mn1 , mn1+1 + · · · + mn1+n2 , . . . ,mn1+···+nk−1+1 + · · · + mn1+···+nk ),

for any m1, . . . , mn1+···+nk ≥ 1.

Now, we are in a position to define an operad structure on O. Define partial compositions ◦i : O(m) ⊗ O(n) → O(m +
n − 1) by

( f ◦i g)(y;a1, . . . ,am+n−1) = f

(
R0(m;

m-tuple︷ ︸︸ ︷
1, . . . ,1, n︸︷︷︸

i-th place

,1, . . . ,1)y; αn−1a1, . . . ,α
n−1ai−1,

g
(
Ri(m;

m-tuple︷ ︸︸ ︷
1, . . . ,1, n︸︷︷︸

i-th place

,1, . . . ,1)y; ai, . . . ,ai+n−1
)
,αn−1ai+n, . . . ,α

n−1am+n−1

)
,

for f ∈ C Y m
α (D, D), g ∈ C Y n

α(D, D), y ∈ Ym+n−1 and a1, . . . , am+n−1 ∈ D . Therefore, by using (2) and the pre-operadic iden-
tities, it follows that the compositions

γα : O(k) ⊗O(n1) ⊗ · · · ⊗O(nk) → O(n1 + · · · + nk)

are given by

γα( f ; g1, . . . , gk)(y;a1, . . . ,an1+···+nk )

= f
(
R0(k;n1, . . . ,nk)y; α

∑k
l=2 |gl| g1

(
R1(k;n1, . . . ,nk)y; a1, . . . ,an1

)
, . . . ,

α
∑k

l=1,l �=i |gl| gi
(
Ri(k;n1, . . . ,nk)y; an1+···+ni−1+1, . . . ,an1+···+ni

)
, . . . ,

α
∑k−1

l=1 |gl| gk
(
Rk(k;n1, . . . ,nk)y; an1+···+nk−1+1, . . . ,an1+...+nk

))
,

for all y ∈ Yn1+···+nk and a1, a2, . . . , an1+···+nk ∈ D .
We also consider the identity map id ∈ C Y 1

α(D, D) defined by id([1]; a) = a, for all a ∈ D .
Using the pre-operadic identities of R, we can prove the following. The proof is similar to Proposition 3.2; hence, we 

omit the details.

4.4. Proposition. The partial compositions ◦i (or compositions γα) defines a non-
∑

operad structure on C Y •
α(D, D) with the identity 

element given by the identity map id ∈ C Y 1
α(D, D).

4.5. Remark. When α : D → D is the identity map (dialgebra case), one recovers the operad considered in [9].

Note that, the corresponding braces are given by

{ f }{g1, . . . , gn} :=
∑

(−1)ε γα( f ; id, . . . , id, g1, id, . . . , id, gn, id, . . . , id).
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The degree −1 graded Lie bracket on C Y •
α(D, D) is given by

[ f , g] = f ◦ g − (−1)(m−1)(n−1)g ◦ f ,

where

( f ◦ g)(y;a1, . . . ,am+n−1)

=
m∑

i=1

(−1)(i−1)(n−1) f

(
R0(m;

m-tuple︷ ︸︸ ︷
1, . . . ,1, n︸︷︷︸

i-th place

,1, . . . ,1)y; αn−1a1, . . . ,α
n−1ai−1,

g
(
Ri(m;

m-tuple︷ ︸︸ ︷
1, . . . ,1, n︸︷︷︸

i-th place

,1, . . . ,1)y; ai, . . . ,ai+n−1
)
,αn−1ai+n, . . . ,α

n−1am+n−1

)
,

for f ∈ C Y m
α (D, D), g ∈ C Y n

α(D, D) and a1, . . . , am+n−1 ∈ D .
Next, let (D, �, 
, α) be a hom-dialgebra. Consider the operad structure on C Y •

α(D, D) as defined above. Define an 
element π ∈ C Y 2

α(D, D) by the following

π(y;a,b) :=
{

a � b if y = [21],
a 
 b if y = [12],

for all a, b ∈ D . An easy calculation shows that

{π}{π}(y;a,b, c) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(a 
 b) 
 α(c) − α(a) 
 (b 
 c) if y = [123],
(a � b) 
 α(c) − α(a) 
 (b 
 c) if y = [213],
(a 
 b) � α(c) − α(a) 
 (b � c) if y = [131],
(a � b) � α(c) − α(a) � (b 
 c) if y = [312],
(a � b) � α(c) − α(a) � (b � c) if y = [321].

Hence, it follows from the hom-dialgebra condition that {π}{π}(y; a, b, c) = 0, for all y ∈ Y3 and a, b, c ∈ D . Therefore, π
defines a multiplication on the operad C Y •

α(D, D). The corresponding dot product on C Y •
α(D, D) is given by

( f · g)(y;a1, . . . ,am+n) = (−1)m {π}{ f , g}(y;a1, . . . ,am+n)

= (−1)mn π
(
R0(2;m,n)y;αn−1 f (R1(2;m,n)y;a1, . . . ,am),αm−1 g(R2(2;m,n)y;am+1, . . . ,am+n)

)
,

for f ∈ C Y m
α (D, D), g ∈ C Y n

α(D, D), y ∈ Ym+n and a1, . . . , am+n ∈ D . Like in the hom-associative case, the differential here is 
given by

df = (−1)| f |+1δα( f ).

Thus, in view of Theorem 2.6 and Remark 2.8, we get the following.

4.6. Theorem. Let (D, �, 
, α) be a hom-dialgebra. Then the cochain complex C Y •
α(D, D) inherits a homotopy G-algebra structure. 

Hence, its cohomology HY •
α(D, D) carries a Gerstenhaber algebra structure.
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