
C. R. Acad. Sci. Paris, Ser. I 357 (2019) 263–271
Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Partial differential equations

Exact controllability to trajectories for entropy solutions to 

scalar conservation laws in several space dimensions

Contrôlabilité exacte aux trajectoires pour des lois de conservation scalaires 

multidimensionnelles

Carlotta Donadello a, Vincent Perrollaz b

a Université de Bourgogne Franche-Comté, Laboratoire de mathématiques, CNRS UMR6623, 16, route de Gray, 25000 Besançon, France
b Université de Tours, Institut Denis-Poisson, CNRS UMR 7013, Parc de Grandmont, 37000 Tours, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 13 July 2018
Accepted after revision 4 February 2019
Available online 14 February 2019

Presented by Jean-Michel Coron

We describe a new method that allows us to obtain a result of exact controllability to 
trajectories of multidimensional conservation laws in the context of entropy solutions and 
under a mere non-degeneracy assumption on the flux and a natural geometric condition.
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r é s u m é

On décrit dans cet article une nouvelle méthode permettant d’obtenir un résultat de 
contrôlabilité exacte aux trajectoires pour des lois de conservation scalaires en plusieurs 
dimensions d’espace dans le cadre des solutions entropiques et sous une simple hypothèse 
de non-dégénérescence du flux et une hypothèse géométrique naturelle.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In this paper, we consider a scalar conservation law in several space dimensions, i.e. a partial differential equation of the 
form

∂t u + divx ( f (u)) = 0, t ∈R
+, x ∈ � ⊂ R

d, d ≥ 1, (1)

where � is an open set with smooth boundary (C2 is sufficient), and f , the flux function, is in C1(R, Rd).
We are interested in the following controllability problem. Given an initial datum u0 ∈ L∞(�), a suitable target profile u1, 

and a positive time T , we aim at constructing an entropy weak solution u ∈ L∞(R+ ×R
d; R) of
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⎧⎪⎨
⎪⎩

∂t u + divx ( f (u)) = 0, in (0, T ) × �,

u(0, x) = u0(x), on �,

u(T , x) = u1(x), on �,

(2)

by using the boundary data on (0, T ) × ∂� as controls.
Given any extensive quantity u defined on a domain �, such as mass or energy, a conservation law for u translates into 

a partial differential equation the physical observation that the total amount of u in � changes at a rate that corresponds to 
the net flux of u, f (u), through the boundary ∂�. This kind of equations is widely used in modeling phenomena such as gas 
dynamics (Euler equations), electromagnetism, magneto-hydrodynamics, shallow water, combustion, road traffic, population 
dynamics, and petroleum engineering.

It is well known that even starting from initial data in C∞
c (Rd), the classical solutions to (1) can develop singularities 

(jump discontinuities) in finite time, see [20] for a very complete introduction to the field.
The most general wellposedness result for classical solutions to the Cauchy problem states that, for any initial datum u0

in Hs , with s > 1 + d
2 , there exists a solution to (1) in C0([0, T ], Hs) ∩ C1([0, T ], Hs−1), whose life span T can be estimated 

depending on f and u0.
However, most of the literature devoted to conservation laws focuses on a class of weak (distributional) solutions that 

satisfies an additional selection criterium, necessary to ensure uniqueness, called entropy condition. In the case of a scalar 
conservation law in several space dimensions, a complete wellposedness theory for entropy solutions to the Cauchy problem 
is due to Kruzhkov [25].

The problem we aim at solving, see (2), can be addressed both in the framework of classical or of entropy solutions. 
In the first case, controls, besides driving the state to the target, are also responsible for preventing the formation of 
singularities. Several results exist in this framework, see [13], [28], and [16] for a survey. Unfortunately, this approach does 
not allow one to attain many physically relevant states involving jump discontinuities and leads to control strategies that 
are in general not very robust. Indeed very small perturbations of the control might lead to blow up of the derivatives of 
the solution before time T .

In the present paper, we are interested in the controllability of entropy solutions. The literature in this framework is 
less abundant also due to specific technical difficulties, even if we can notice a growing interest of researchers in this 
field. The classical methodology for exact controllability relies heavily on linearization, which is not possible (or at least 
horribly technical) anymore around discontinuous solutions. Moreover, Bressan and Coclite showed in [12] that nonlinear 
conservation laws may fail the linear test. Indeed, they provided a system for which the linearized approximation around a 
constant state is controllable, while the original nonlinear system cannot reach that same constant state in finite time.

A separate issue is related to the irreversibility of entropy solutions: the set of admissible target states in time T is 
reduced and its description, often involving a number of highly technical conditions, is in itself an open problem in most 
cases, see [3,4,6,7,14].

In the existing literature, we can distinguish essentially three approaches toward the study of exact controllability for 
conservation laws in one space dimension (consider equation (1) with d = 1).

Starting from the pioneering work by Ancona and Marson [4], several results have been obtained using the theory 
of generalized characteristics introduced by Dafermos in [19], as [4,7,14,24,32] or the explicit Lax–Oleinik representation 
formula, as [1,6]. The latter technique is applicable only when the flux function f is strictly convex/concave, while the 
theory of generalized characteristics covers also the (slightly) more general case of a flux function f with one inflection 
point.

The return method introduced by Coron [16] is the basis of the approach developed by Horsin in [24] and, combined 
with the classical vanishing viscosity method, plays a key role in [23] and in the only paper to our knowledge in which the 
flux function f is allowed to have a finite number of inflection points [26].

The asymptotic stabilization of entropy solutions to scalar conservation laws is the topic of [10,33,34].
The only available tool for investigating the exact controllability of systems of conservation laws in one space dimension 

is the wave front tracking algorithm [11], which has been successfully applied in [3,12,21,22,29].
The asymptotic stabilization of entropy solutions to systems has been studied in [5,9,18].
It seems difficult to investigate the exact controllability of entropy solutions of scalar conservation laws in several space 

dimensions using the techniques designed for the one-dimensional case. In the present paper, we propose a new approach, 
inspired by the work on stabilization by Coron [15] and by Coron, Bastin, and d’Andéa Novel [17]; see also the monography 
[9] for a comprehensive presentation of the method. The conditions we impose on the flux function are technical and will 
be detailed in the next Section, but we stress that in the special case d = 1 they are not related to convexity (or concavity). 
This means that, even in the one-dimensional case, our result is new, although for this case stronger results are available 
under more restrictive hypotheses.

The first of our conditions, called later nondegeneracy condition, says that the range of u does not contain any interval on 
which f is affine. This condition is necessary to ensure the existence of traces at the boundary of �, see [35].

The second condition, called later replacement condition, involves f together with T and �. Roughly speaking, once we 
reduce to the one-dimensional case, it says that all generalized characteristics issued from points (t, x) in {0} × � leave the 
cylinder (0, T ) × � before time T , so that the dynamics in the domain only depends on the boundary data and not on the 
initial data for t large enough.
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2. Preliminary definitions and notations

In the following, u �→ sign(u) is the function given by

∀u ∈R, sign(u) :=

⎧⎪⎨
⎪⎩

1 if u > 0,

0 if u = 0,

−1 if u < 0,

〈·|·〉 denotes the scalar product between two vectors and χE is the indicator function of the set E .

Definition 2.1. Given f ∈ C1
(
R;Rd

)
and u0 ∈ L∞ (�), we consider the equation

∂t u + div( f (u)) = 0, for (t, x) ∈ (0,+∞) × �, (3)

supplemented with the initial condition

u(0, x) = u0(x), for x ∈ �. (4)

A function u ∈ L∞ ([0,+∞) × �) is an entropy solution to (3)–(4) in [0, T ) × � if, for any real number k and any 
non-negative function φ in C1

c ([0, +∞) × �), we have∫
(0,T )×�

|u(t, x) − k|∂tφ(t, x) + sign(u(t, x) − k)〈 f (u(t, x)) − f (k)|∇φ(t, x)〉dt dx

+
∫
�

sign(u0(x) − k)φ(0, x)dx ≥ 0.

(5)

We will also say that a function u is an entropy solution (without referring to any initial data) in (0, +∞) × � when it 
satisfies (5) for any non-negative φ ∈ C1

c ((0, +∞) × �).
We now introduce a simple geometric condition which is sufficient (though clearly not necessary) to obtain our control-

lability result.

Definition 2.2. Let � be a smooth open set of Rd , I be a segment of R and f : R → R
d a C1 flux function. We say that 

the triple ( f ,�, I) satisfies the replacement condition in time t > 0 if there exists a vector w ∈R
d and a positive number c

such that

L := sup
x∈�

〈w|x〉 − inf
x∈�

〈w|x〉 < +∞, (6)

∀u ∈ I, 〈 f ′(u)|w〉 ≥ c, and t= L

c
. (7)

Definition 2.3. We say that the flux f is non-degenerate if, for any couple (τ , ζ ) ∈ R ×R
d \ {(0, 0)}, we have

L
({z ∈R : τ + 〈ζ | f ′(z)〉 = 0}) = 0,

where L is the Lebesgue measure.

We can now state our main theorem on exact controllability to trajectories for a conservation law in any space dimension.

Theorem 1. Let v ∈ C0((0, +∞); L1(�)) ∩ L∞((0, +∞) × �) be an entropy solution to (3) and u0 be a function in L∞(�).
We suppose that both u0 and v take values in a segment I such that ( f ,�, I) satisfies the replacement condition in time t. We also 

suppose that the flux f is non-degenerate.
Then, for any times T1 and T2 larger than t, there exists an entropy solution u to (3) satisfying

u(0, x) = u0(x), u(T1, x) = v(T2, x) for almost every x ∈ �.

Remark 1. For the sake of simplicity, we omit to write here the exact form of the controls we use. In the next Section, we 
precise in which sense the boundary conditions on ∂� are taken into account by entropy solutions and in the last Section, 
in the proof of Theorem 1, we write our controls in a fully explicit way.



266 C. Donadello, V. Perrollaz / C. R. Acad. Sci. Paris, Ser. I 357 (2019) 263–271
Remark 2. A characterization of the set of admissible target profiles at fixed time T ≥ 0 for a scalar conservation law in 
several space dimensions is not available in the literature. We stress, however, that in the statement of Theorem 1, we 
really need to assume that v is an entropy solution on the cylinder (0, +∞) × � because the complete knowledge of v is 
necessary in our proof.

3. Boundary conditions and entropy solutions

We have so far avoided the precise formulation of boundary conditions for (3). In general, given the initial boundary 
value problem⎧⎪⎨

⎪⎩
∂t u + div( f (u)) = 0, (0,+∞) × �,

u(t, x) = ub(t, x), (t, x) ∈ (0,+∞) × ∂�,

u(0, x) = u0(x), x ∈ �,

(8)

its entropy solution u does not satisfy the boundary condition in the usual sense, as the trace of u on ∂� does not coincide 
with the prescribed Dirichlet datum. The situation is easier to visualize in the one-dimensional case, as we can see in the 
following example.

Example 1. Assume d = 1, � = (0, +∞), f (u) = u2

2
and impose in (8) constant initial and boundary data, u0 = −1 and 

ub = −1

2
. Then the initial condition is transported along characteristic curves with negative slope up to the boundary, 

while no characteristic can spring out of the boundary itself. The trace of the solution at x = 0 can only take the value 
u(t, 0+) = u0, and ub can not be attained.

For this reason, the boundary conditions should be interpreted in a broader sense, made precise by Leroux [27], and 
Bardos, Leroux, and Nédélec [8]. In the setting of the example above, we say that the boundary condition is fulfilled in the 
sense of Bardos–Leroux–Nédélec as soon as the solution to the Riemann problem with data uL = ub and uR = u(t, 0+) only 
contains waves of non-positive speed (i.e. waves which do not enter the domain). In the general multidimensional case, this 
takes the following form.

Definition 3.1. Let I(a, b) denote the interval of extrema a and b, and let η(x) be the outer unit normal of ∂� at (t, x) ∈
(0, T ) × ∂�. Then we say that the boundary condition ub in the IBVP (8) is fulfilled at (t, x) ∈ (0, T ) × ∂� if for any 
k ∈ I(ub(t, x), u(t, x))

sign(u(t, x) − ub(t, x)) ( f (u(t, x)) · η(x) − f (k) · η(x)) ≥ 0.

We have to precise, however, that the above definition is not exactly the one we adopt in the present work as existence 
of traces is not guaranteed for the solution to (8) in the L∞ setting. The first results dealing with this problem were by 
Otto [31], see also [30]. We use more recent results by Ammar, Carillo, and Wittbold [2], which build upon those ideas. We 
also recall a (simplified version of a) result by Vasseur [35], showing that if the flux satisfies the non-degeneracy condition, 
then any entropy solution u ∈ L∞ admits a trace at the boundary.

Let us recall some definitions and results in [2]. We use the following notations. For any real numbers α and k, and any 
point x ∈ ∂�, we call η(x) the outer unit normal at x and introduce

ω+(x,k,α) := max
k≤r,s≤max(α,k)

|〈 f (r) − f (s)|η(x)〉|,
ω−(x,k,α) := max

min(α,k)≤r,s≤k
|〈 f (r) − f (s)|η(x)〉|.

For integrals on the boundary, we denote the surface measure at x ∈ ∂� by dσ(x).

Definition 3.2. Given a boundary condition ub ∈ L∞((0, +∞) × ∂�) and an initial data u0 ∈ L∞(�) we say that u is an 
entropy solution to (8) when the following hold for any k ∈ R and any non-negative function ζ ∈ C∞

c ([0, +∞) ×R
d)

T∫
0

∫
�

(u(t, x) − k)+∂tζ(t, x) + χ{u(t,x)>k}〈 f (u(t, x)) − f (k))|∇ζ(t, x)〉dx dt

+
∫
∂�

T∫
0

ζ(t, x)ω+(x,k, ub(t, x))dt dσ(x) +
∫
�

(u0(x) − k)+ζ(0, x)dx ≥ 0, (9)
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T∫
0

∫
�

(k − u(t, x))+∂tζ(t, x) + χ{u(t,x)<k}〈 f (u(t, x)) − f (k))|∇ζ(t, x)〉dx dt

+
∫
∂�

T∫
0

ζ(t, x)ω−(x,k, ub(t, x))dt dσ(x) +
∫
�

(k − u0(x))+ζ(0, x)dx ≥ 0. (10)

The following two theorems were proven in [2] (see [2], Theorem 2.3 and 2.4).

Theorem 2. Given initial and boundary data u0 ∈ L∞(�) and ub ∈ L∞((0, +∞) × ∂�), there exists a unique entropy solution 
to (8).

Theorem 3. Given initial data u0, v0 in L∞(�) and boundary data ub , vb in L∞((0, +∞) × ∂�), the corresponding entropy solutions 
u and v satisfy

T∫
0

∫
�

(u(t, x) − v(t, x))+∂tζ(t, x) + χ{u(t,x)>v(t,x)}〈 f (u(t, x)) − f (v(t, x)))|∇ζ(t, x)〉dx dt

+
∫
∂�

T∫
0

ω−(x, ub(t, x), vb(t, x))ζ(t, x)dt dσ(x) +
∫
�

(u0(x) − v0(x))+ζ(0, x)dx ≥ 0, (11)

for any non-negative function ζ ∈ C∞
c ([0, +∞) ×R

d).

Let us finally recall a simplified version of the result obtained by Vasseur in [35], which is sufficient for our use.

Theorem 4. Assume that the flux f is non-degenerate and that the domain � is C2 . Then if u ∈ L∞((0, +∞) × �) is an entropy 
solution of (3) in the sense of Definition 2.1, i.e. (5) is satisfied for any k and any non-negative function φ in C1

c ((0, +∞) × �), then 
there exists boundary data ub ∈ L∞((0, T ) × ∂�) and initial data u0 ∈ L∞(�) such that u is the unique entropy solution to the mixed 
problem (8) in the sense of Definition 3.2.

4. Proof of the main result

Lemma 4.1. Consider J := [A, B] ⊂R and suppose that

u0(x) ∈ J , for a.e. x ∈ �,

ub(t) ∈ J , for a.e. t ≥ 0.

Then the unique entropy solution to the IBVP (8) with initial and boundary data u0 and ub , u satisfies

u(t, x) ∈ J for a.e. (t, x) in (0,+∞) × �.

Proof. We prove here in full details that u(t, x) ≤ B for a.e. (t, x) in (0, +∞) ×�. The inequality A ≤ u(t, x) can be obtained 
analogously.

By hypothesis, we have for almost every x in � and (t, y) in (0, +∞) × ∂�

u0(x) ≤ B, ub(t, y) ≤ B,

then for any fixed time t̃ ≥ 0, taking a sequence ζn ∈ C∞
c (R) → χ(−∞,t̃] and using k = B , from (9) we obtain

∫
∂�

t̃∫
0

ω+(y, B, ub(t, y))dt dσ(y) +
∫
�

(u0(x) − B)+ − (u(t̃, x) − B)+ dx ≥ 0. (12)

It is clear that for a.e. x in � and (t, y) in (0, ̃t) × ∂� we have

ω+(y, B, ub(t, y)) = 0, (u0(x) − B)+ = 0,
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then (12) implies

(u(t̃, x) − B)+ = 0, for a.e. x in �

which is indeed

u(t̃, x) ≤ B, for a.e. x in �. �
Proposition 4.2. Let u and v be entropy solutions to (8) with respective initial data u0 and v0 and the same boundary datum ub . Let 
us also suppose that all data take values in an interval I that satisfies the replacement condition in time t = L

c (with a direction w). 
Then we can conclude that

∀t ≥ t, u(t, x) = v(t, x), for almost every x in �.

Proof. Let us define for θ > 0 the functional Jθ by

∀t ≥ 0, Jθ (t) :=
∫
�

|u(t, x) − v(t, x)|e−θ〈w|x〉dx.

Given t̄ ≥ 0, we apply (11) to the ordered couples (u, v) and (v, u), then adding the inequalities we get

t̄∫
0

∫
�

(
(v(t, x) − u(t, x))+ + (u(t, x) − v(t, x))+

)
∂tζ(t, x)

+ 〈(χ{v(t,x)>u(t,x)} f (v(t, x)) − f (u(t, x))) + (χ{u(t,x)>v(t,x)} f (u(t, x)) − f (v(t, x)))|∇ζ(t, x)〉dx dt

+
∫
∂�

t̄∫
0

2ω−(x, ub(t, x), ub(t, x))ζ(t, x)dt dσ(x) +
∫
�

((v0(x) − u0(x))+ + (u0(x) − v0(x))+)ζ(0, x)dx ≥ 0,

which is actually

0 ≤
t̄∫

0

∫
�

|u(t, x) − v(t, x)|∂tζ(t, x) + sign(u(t, x) − v(t, x))〈 f (u(t, x)) − f (v(t, x))|∇ζ(t, x)〉dx dt

+
∫
�

|u0(x) − v0(x)|ζ(0, x)dx.

We consider a sequence (ζn)n ⊂ C∞
c (R) converging in L1 to χ(−∞,t̄]e−θ〈w|x〉 , so that in the limit n → ∞, we get

Jθ (t̄) ≤ Jθ (0) +
t̄∫

0

∫
�

sign(u(t, x) − v(t, x))〈 f (u(t, x)) − f (v(t, x)))| − w θ e−θ〈w|x〉〉dx dt. (13)

But since

∀(a,b) ∈ I2, sign(a − b)〈 f (a) − f (b)|w〉 = sign(a − b)〈
1∫

0

f ′(b + s(a − b))ds (a − b)|w〉

= sign(a − b) (a − b)

1∫
0

〈 f ′(b + s(a − b))|w〉ds

≥ |a − b|
1∫

0

c ds

≥ c|a − b|,
from (13), Lemma 4.1 and the replacement condition, we obtain
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Jθ (t̄) ≤ Jθ (0) − θ

t̄∫
0

Jθ (s)ds.

Thanks to the classical Gronwall’s lemma, we end up with

Jθ (t̄) ≤ e−c θ t̄ Jθ (0).

As t̄ was arbitrarily chosen, if M := sup
x∈�

〈w|x〉 and m = inf
x∈�

〈w|x〉, we can write that, for all t ≥ 0,

‖u(t) − v(t)‖L1(�)e
−θ M ≤ Jθ (t) ≤ ‖u(t) − v(t)‖L1(�)e

−θm.

So, we can compute

‖u(t) − v(t)‖L1(�) ≤ eθ M Jθ (t)

≤ eθ M−θct Jθ (0)

≤ e−θc( M−m
c −t)‖u0 − v0‖L1(�)

≤ e−θc( L
c −t)‖u0 − v0‖L1(�).

So for any t ≥ t = L

c
, letting θ → +∞, we obtain

u(t, x) = v(t, x) for almost every x in �. �
We are ready to prove Theorem 1.

Proof. We aim at proving that there exists an entropy solution to the problem⎧⎪⎨
⎪⎩

∂t u + divx ( f (u)) = 0, in (0, T1) × �,

u(0, x) = u0(x), on �,

u(T1, x) = v(T2, x), on �.

In view of the well-posedness result stated in Theorem 2, our goal is achieved once we construct suitable boundary 
conditions, which can be interpreted as controls in our setting.

Case T2 > T1 .
Thanks to Theorem 4, it makes sense to consider

w0(x) = v(T2 − T1, x), for a.e. x ∈ �,

wb(s, x) = v(T2 − T1 + s, x), for a.e. x ∈ ∂� and s ≥ 0.

We call w the unique entropy solution to the IBVP (8) with data w0, wb on (0, T1) ×�. The form of the equation implies 
that, for almost every (s, x) in (0, T1) × �, w(s, x) = v(T2 − T1 + s, x).

By hypothesis, T1 ≥ t, so, as a direct application of Proposition 4.2, we can conclude that the entropy solutions to the 
mixed problems of the form (8) with initial data u0 and w0, respectively, and common boundary datum wb satisfy

u(T1, x) = w(T1, x) for a.e. x ∈ �,

which means

u(T1, x) = v(T2, x) for a.e. x ∈ �.

Case T1 > T2 .
We define

w0(x) = v(T2 − t, x), for a.e. x ∈ �,

wb(s, x) = v(T2 − t+ s, x), for a.e. x ∈ ∂� and s ≥ 0,

where t is the time given by the replacement condition.
We call w the unique entropy solution to the IBVP (8) with data w0, wb on (0, t) × �. The form of the equation implies 

that, for almost every (s, x) in (0, t) × �, w(s, x) = v(T2 − t + s, x).
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We consider now a boundary condition of the following form

ub(t, x) =
{
b, for t ∈ (0, T1 − t), x ∈ ∂�,

wb(t − (T1 − t), x) for t ∈ (T1 − t,+∞), x ∈ ∂�,

where b is any constant state in the interval I .
The IBVP (8) with data u0, ub admits a unique entropy solution u in (0, +∞) × �.
We call ũ0 the profile of u at time t = T1 − t.
Now it is clear that if we apply Proposition 4.2 to the entropy solutions ũ et w to (8) with respective initial data ũ0 and

w0 and common boundary data wb we obtain

ũ(t, x) = w(t, x), for a.e. x ∈ �,

which means

u(T1, x) = v(T2, x), for a.e. x ∈ �. �
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