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We characterize homotopy classes of rational proper holomorphic Shilov maps from the 
unit disc to bounded symmetric domains of type I through rational proper holomorphic 
Shilov discs. This characterization generalizes results of D’Angelo–Huo–Xiao and D’Angelo–
Lebl, where the codomains are the unit balls.
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r é s u m é

Nous caractérisons les classes homotopiques de fonctions de Shilov rationnelles propres 
holomorphiques du disque unité à valeurs dans les domaines bornés symétriques à l’aide 
de disques de Shilov rationnels propres holomorphiques. Cette caractérisation généralise 
des résultats de D’Angelo–Huo–Xiao et de D’Angelo–Lebl, où les codomaines sont les boules 
unité.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let � = {z ∈C : |z| < 1} denote the unit disc. Let �r,s with r ≤ s be the irreducible bounded symmetric domain of type I 
defined by

�r,s = {Z ∈ MC
r,s : Ir − Z Z∗ > 0} (1.1)

where MC
r,s denotes the set of complex-valued r × s matrices. Here Z∗ = Z

t
. In this paper, we study rational proper holomor-

phic maps from the unit disc to bounded symmetric domains of type I. We will call such maps rational proper holomorphic 
discs of �r,s . Here we say that a map f : � → �r,s is proper if f −1(K ) ⊂ � is compact for any compact subset K ⊂ �r,s . In 
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the case where r = 1 and s = 1, any proper holomorphic self-map of � has the form of the Blaschke product [1]. However, 
if r �= 1 or s �= 1, there is no fixed form of the proper holomorphic discs. For instance, if r ≥ 2, we may observe that any 

map given by z 	→
(

z 0
0 h(z)

)
with a holomorphic map h : � → �r−1,s−1 is proper. However, if we consider homotopy 

classes of proper holomorphic discs through proper holomorphic discs, one has interesting results, as D’Angelo–Huo–Xiao 
([2]) and D’Angelo–Lebl [3] gave proofs for rational proper holomorphic discs of the higher-dimensional balls. These authors 
established the following results.

Theorem 1.1 (Theorem 5.1 in [2] and Proposition 2.1 in [3]). Let f : � →Bs be a proper holomorphic disc.

(1) If s = 1, then there exists a unique positive integer m such that f is homotopic to the map z 	→ zm through rational proper 
holomorphic discs.

(2) If s ≥ 2 and f is rational, then f is homotopic to z 	→ (z, 0) through rational proper holomorphic discs.

Let �1 ⊂ Cn1 , �2 ⊂ Cn2 be bounded domains and S1, S2 be their Shilov boundaries. We will say that a holomorphic 
map f : �1 → �2 that is holomorphic near S1 is a Shilov map if f maps S1 to S2. The Shilov boundary of �r,s is given by

Sr,s = {Z ∈ MC
r,s : Ir − Z Z∗ = 0}. (1.2)

Any automorphism of �r,s extends holomorphically over the boundary and preserves Sr,s . Note that the Shilov boundaries of 
the balls coincide with their topological boundaries. Define a rational proper holomorphic Shilov map Dm1,...,mr : � → �r,s

by

z 	→
⎛
⎜⎝

zm1 0

0
. . .

0 zmr

⎞
⎟⎠ (1.3)

for some m1, . . . , mr ∈ N . Note that if r = s, there is no zero entries on the left side of (1.3). The aim of this article is to 
prove the following theorem.

Theorem 1.2. Let �r,s be an irreducible bounded symmetric domain of type I. Then all nonconstant rational proper holomorphic Shilov 
maps from � to �r,s are homotopic, through rational proper holomorphic Shilov maps, to the following:

(1) D1,...,1 if r < s,
(2) Dm1,...,mr for some m1, . . . , mr ∈ N if r = s. Furthermore, Dm1,...,mr and Dl1,...,lr are homotopically equivalent through rational 

proper holomorphic Shilov maps if and only if

m1 + · · · + mr = l1 + · · · + lr . (1.4)

At this point, it is worth mentioning the dimension of the codomain, a subtle aspect addressed in [2,3]. For a proper 
holomorphic disc f : � → Bs , if one identifies f with ( f , 0) as a proper holomorphic disc into Bs+1, f is always homo-
topically equivalent to the map z 	→ (0, z) through the homotopy Ht : � → Bs+1 defined by z 	→ (√

1 − t f (z),
√

tz
)

for 
t ∈ [0, 1]. Moreover, if the dimension of the codomain is bigger than two, then, by Theorem 1.1, all rational proper holo-
morphic discs are homotopically equivalent. Similar to the situation of the ball, when f is a rational proper holomorphic 
Shilov disc into �r,s , we may identify f with ( f |0), which is also a proper Shilov map into �r,s+1. But, if r ≥ 2, we do not 
have a simple homotopy that induces the homotopy equivalence to one specific rational proper holomorphic Shilov disc. 
However, by Theorem 1.2, we see that f is always homotopically equivalent to D1,...,1 in �r,s+1. Furthermore, all rational 
proper holomorphic Shilov discs into �r,s with r < s are homotopically equivalent.

2. Proof of Theorem 1.2

Lemma 2.1. Let f : � → �r,s be a rational proper holomorphic Shilov map. For any φ ∈ SU (r, s), f and φ ◦ f are homotopically 
equivalent through rational proper holomorphic Shilov maps.

Proof. Since SU (r, s) is connected, we can take a path γ : [0, 1] → SU (r, s) such that γ (0) is the identity map and γ (1) = φ. 
Since any automorphism of �r,s preserves the Shilov boundary, z 	→ γ (t) ◦ f gives a homotopy between f and φ ◦ f , which 
is what we want. �
Proposition 2.2 (cf. Proposition 2.2 in [2]). Let F be a rational proper holomorphic disc of �r,s such that F (z j) → Sr,s whenever 
z j → ∂�. Then F extends holomorphically over ∂�.
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Proof. The proof given here is the same as that of the ball case given in [2]. We write it for the reader’s convenience. 
Denote F = p/q, where p is a matrix-valued polynomial and q is a scalar-valued polynomial. We may assume that F is 
reduced to the lowest terms. Suppose q(z0) = 0 for some z0 ∈ ∂�. Since q is a polynomial, it is divisible by (z − z0). Since 
F (z j) → Sr,s whenever z j → ∂�, one has p(z j)p(z j)

∗ → |q(z0)|2 Ir = 0 as j → ∞. This implies p(z0) = 0 and hence each 
component of p is divisible by (z − z0). Therefore, f is not reduced to lowest terms. Hence q is not zero on the circle, and 
F extends holomorphically past the circle. �
Remark 2.3. In general proper holomorphic discs of �r,s cannot extend holomorphically over the circle. Indeed let f : � →
�I

3,3 be a proper holomorphic disc given by z 	→
(

z 0
0 h(z)

)
for a holomorphic map h : � → �I

2,2. If we choose h, which 

cannot be extended holomorphically over the circle, f also cannot extend over the circle.

Remark 2.4. Let � and �′ be irreducible bounded symmetric domains such that � is a characteristic subspace of �′; see 
[4] for the definition. All proper holomorphic discs of � are homotopically equivalent through proper holomorphic discs in 
�′ for the following reason. Let f be a proper holomorphic disc in �. Since � is a characteristic subspace of �′ , there exists 
a minimal disc �α such that �α × � can be totally geodesically embedded into �′ . Take Ht(z) = (2tz, f (z)) ∈ �α × � ⊂ �′
for t ∈ [0, 1/2] and Ht(z) = (z, (2 − 2t) f (z)) ∈ �α × � ⊂ �′ for t ∈ [1/2, 1].

Lemma 2.5 (D’Angelo–Huo–Xiao [2]).

(1) Let f : C →Cn be a rational map of degree d. Denote f by p/q, where p(z) = ∑d
j=0 P j z j with P j ∈Cn and q(z) = ∑d

j=0 q j z j

with q j ∈C. Then f |� is a proper map from � to Bn if and only if {P0, . . . , Pd} and {q1, . . . , qd} satisfy the following:

d−l∑
k=0

qk+lqk =
d−l∑
k=0

〈Pk+l, Pk〉 for l = 0,1, . . . ,d (2.1)

where 〈 , 〉 denotes the standard inner product of Cn.
(2) Let f = p

q : � → �r,s be a rational proper holomorphic map with f (0) = 0. Then deg(p) > deg(q).

Remark 2.6. Lemma 2.5 also holds for a rational proper holomorphic Shilov disc of bounded symmetric domains of type I.

(1) Let f : C → MC
r,s be a rational map of degree d. Denote f by p/q, with

p(z) =
d∑

j=0

P j z
j with P j ∈ MC

r,s and q(z) =
d∑

j=0

q j z
j with q j ∈C. (2.2)

If f is a Shilov map, then {P0, . . . , Pd} and {q1, . . . , qd} satisfy the following:(
d−l∑
k=0

qk+lqk

)
Ir =

d−l∑
k=0

Pk+l P∗
k for l = 0,1, . . . ,d. (2.3)

(2) Let f = p
q be a rational proper holomorphic Shilov map from � to �r,s with f (0) = 0. Then deg(p) > deg(q).

Lemma 2.7.

(1) Let f be a proper holomorphic Shilov disc of �r,s. Then the map z 	→ zf (z) is also a proper holomorphic Shilov disc of �r,s.
(2) Let g(z) = zf (z) be a proper holomorphic Shilov disc of �r,s with nonconstant holomorphic disc f . Then f is also a proper 

holomorphic Shilov disc of �r,s .

From now on, for any given map g : � → MC
r,s , we denote g =

⎛
⎜⎝

g1
.
.
.

gr

⎞
⎟⎠, where g j with 1 ≤ j ≤ r are 1 × s matrix-valued 

mappings from �.

Proof of Theorem 1.2. The argument involves three steps.
Step 1. Let f = p

q : � → �r,s be a rational proper holomorphic Shilov map of degree d. Since f is a Shilov map, whenever 
z ∈ ∂�, we have
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Ir = f (z) f (z)∗ =
⎛
⎜⎝

f1(z) f1(z)∗ · · · f1(z) fr(z)∗
...

. . .
...

fr(z) f1(z)∗ · · · fr(z) fr(z)∗

⎞
⎟⎠ . (2.4)

In particular, fr(z) fr(z)∗ = 1 whenever z ∈ ∂� and hence fr is a rational proper holomorphic map from � to Bs . Note that 
any element in Aut(Bs) = U (1, s) extends to an automorphism of �r,s , that is, to U (r, s). This embedding of U (1, s) into 
U (r, s) is given by

U (1, s) �
(

a b
c d

)
↪→

⎛
⎝ Ir−1 0 0

0 a b
0 c d

⎞
⎠ ∈ U (r, s). (2.5)

Let φ be an automorphism of Bs and 

⎛
⎝ Ir−1 0 0

0 a b
0 c d

⎞
⎠ denotes φ as an element in U (r, s). Note that 

(
A B
C D

)
∈ U (r, s)

acts on �r,s by Z 	→ (A + Z C)−1(B + Z D). Hence φ acts on �r,s by

Z 	→
((

Ir−1 0
0 a

)
+ Z

(
0 c

))−1 ((
0
b

)
+ Z D

)

=
(

Ir−1 − Z ′c
a+Zr c

0 1
a+Zr c

)((
0
b

)
+ Z D

)
.

(2.6)

Here we express Z by 
(

Z ′
Zr

)
with Z ′ ∈ MC

r−1,s and Zr ∈ MC
1,s . Then (φ ◦ f )r(z) is given by

(
b1 + fr(z)D1

a + fr(z)c
, · · · ,

bs + fr(z)Ds

a + fr(z)c

)
=

(
b1q(z) + pr(z)D1

aq(z) + pr(z)c
, · · · ,

bsq(z) + pr(z)Ds

aq(z) + pr(z)c

)
(2.7)

where we denote D by (D1, . . . , Ds) with columns D j . Hence (φ ◦ f )r(z) has degree less than or equal to d and (φ ◦ f )r =
φ ◦ fr .

Step 2. In this step, we will show that f is homotopic to Dm1,...,mr for some m1, . . . , mr ∈ N . One notices that it is 
enough to prove the following: any rational proper holomorphic Shilov disc is homotopic to a map

z 	→
(

f̂ 0
0 zm

)
(2.8)

through rational proper holomorphic Shilov discs where f̂ : � → �r−1,s−1 is a rational proper holomorphic Shilov map and 
m ∈N; we may repeat this process to f̂ . We will use induction to prove it.

Suppose that d = 1. Choose φ ∈ SU (1, s) ⊂ SU (r, s) so that φ( fr(0)) = 0 ∈ Bs . Since (φ ◦ f )r is a degree-one rational 
proper holomorphic map from � to Bs , by Lemma 2.5 (2) (φ ◦ f )r has the form P z where P ∈Cs . Moreover, by Lemma 2.5
(1), we have P ∈ ∂Bs and hence (φ◦ f )r = (φ◦ fr) is homotopic to z 	→ (0, z) ∈Bs through U (s). In particular, f is homotopic 
through SU (r, s) to a rational proper holomorphic Shilov map of the form (2.8), with m = 1.

Now assume that d ≥ 2 and the claim holds whenever the degree of the map is smaller than d. Let φ be a rational 
proper holomorphic Shilov disc of degree d. Choose φ ∈ SU (1, s) ⊂ SU (r, s) so that φ( fr(0)) = 0 ∈ Bs . Hence, the degree 
of the numerator of (φ ◦ f )r is bigger than that of the denominator of (φ ◦ f )r . We can express (φ ◦ f )r(z) = z ˜(φ ◦ f )r(z). 
Define a map

˜φ ◦ f (z) =

⎛
⎜⎜⎜⎜⎝

1
z (φ ◦ f )1(z)

...
1
z (φ ◦ f )r−1(z)
˜(φ ◦ f )r(z)

⎞
⎟⎟⎟⎟⎠ .

Since ˜φ ◦ f is a rational proper holomorphic Shilov disc of �r,s , by the induction hypothesis ˜φ ◦ f is homotopic to (2.8) for 
some m ∈N . This implies that f is also homotopic to (2.8) for some m ∈N through rational proper holomorphic discs.

Step 3. Firstly suppose that r �= s. Let Ht : � → �r,s be a proper holomorphic Shilov map defined by

Ht(z) =

⎛
⎜⎜⎜⎝

√
1 − t2z tzm1 0

zm2

0 0 0
. . .

zmr

⎞
⎟⎟⎟⎠



532 A. Seo / C. R. Acad. Sci. Paris, Ser. I 357 (2019) 528–532
for each t ∈ [0, 1]. This map guarantees the homotopy equivalence of the map (1.3) and D1,m2,...,mr , since H0 is homotopically 
equivalent to the map D1,m2,...,mr through SU (r, s). By similar maps to Ht above for the ith row i = 2, . . . , r, one obtains 
that the map (1.3) is homotopically equivalent to D1,...,1.

Secondly suppose that r = s. Consider a homomorphism h : �r,r → � defined by Z 	→ det Z . Then it is clear that 
h ◦ Dm1,...,mr : � → � is a rational proper holomorphic self-map z 	→ zm1+···+mr . Hence if Dm1,...,mr and Dl1,...,lr are ho-
motopically equivalent to each other, then m1 + · · · + mr = l1 + · · · + lr by Theorem 1.1 (1). Now we will show that this 
condition is sufficient by using induction. When r = 1, it was proved by D’Angelo and Lebl (Proposition 2.1 in [3]). Let us 
consider the case where r = 2. Since m1 + m2 = l1 + l2, the following rational proper holomorphic Shilov homotopy maps 
Ht (0 ≤ t ≤ 1) from � to �2,2 are well defined:

z 	→
( √

1 − t2zm1 tzl1

−tzl2
√

1 − t2zm2

)
. (2.9)

Note that H0 is Dm1,m2 and H1 is homotopically equivalent to Dl1,l2 through SU (2, 2). Now assume that the claim holds 
for all r less than R and Dm1,...,mR , Dl1,...,lR are given of the form (1.3) provided m1 + · · · + mR = l1 + · · · + lR . Without loss 
of generality we may assume that m1 ≤ m2 ≤ · · · ≤ mR , l1 ≤ l2 ≤ · · · ≤ lR and m1 ≤ l1. Then by applying the homotopy map 
(2.9) to the first 2 × 2 block submatrix of Dm1,...,mR , we can show that it is homotopy equivalent to Dl1,m1+m2−l1,m3,...,mR . 
By the induction hypothesis, we obtain that Dl1,m1+m2−l1,m3,...,mR is homotopically equivalent to Dl1,...,lR through rational 
proper holomorphic discs, and hence the theorem is proved. �
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