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BILINEAR SPACE-TIME ESTIMATES FOR
HOMOGENEOUS WAVE EQUATIONS

DAMIANO FOSCHI AND SERGIU KLAINERMAN

ABSTRACT. - In this paper, we pursue a systematic treatment of the regularity theory for products
and bilinear forms of solutions of the homogeneous wave equation. We discuss necessary and sufficient
conditions for the validity of bilinear estimates, based on -L2 norms in space and time, of derivatives
of products of solutions. Also, we give necessary conditions and formulate some conjectures for similar
estimates based on L^L^ norms. © 2000 Editions scientifiques et medicales Elsevier SAS

RESUME. - Dans cet article, nous effectuons une etude systematique de la regularite necessaire pour
obtenir des estimations de type produit ou formes bilineaires de solutions d'une equation d'onde homogene.
Nous formulons des conditions necessaires et suffisantes a la validite de telles estimations, dans Ie cas
de normes L2 en espace-temps, pour des derivees de produits de solutions. De plus, nous donnons des
conditions necessaires et posons diverses conjectures pour des estimations similaires basees sur des normes
L^L;. © 2000 Editions scientifiques et medicales Elsevier SAS

1. Introduction

The goal of this paper is to investigate bilinear space-time estimates for solutions to
homogeneous wave equations. The main part of the paper concerns L2 estimates where we give
a complete set of necessary and sufficient conditions for their validity. In the second part of the
paper we discuss more general estimates in L^L^ spaces for which we find necessary conditions.
These lead us to make a few selected conjectures concerning estimates for quadratic null forms
whose solution, we feel, will be important in applications to nonlinear wave equations. We expect
however that the complete solution will require an entirely new set of techniques than those now
available.

Consider two solutions, <j) and ^, of the homogeneous wave equation in M1^,

(1) D^=0, D^=0, (D=-^+A^ teR, . rG]R n ) ,

subject to the initial conditions at t = 0,

(2) (/>(0,.) = ̂  9^(0, •) = <^i, ^(0, •) = ̂  9i^(0, •) = ̂ i.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE. - 0012-9593/00/02/© 2000 Editions scientifiques et
medicales Elsevier SAS. All rights reserved



212 D. FOSCHI AND S. KLAINERMAN

We want to investigate the space-time regularity properties of the product <^ in terms of
the regularity of the initial data ((J)Q,(J)\) and (^0^1). In particular we want to find the set of
exponents a\, 02, (3o,(3-^-,f3- G M for which we have the estimate:1

\\D^D^D^-W)\\^^

(3) ^(ll^^oll^OT+ll^-^lll^n^ll^^oll^OT+ll^2-1^!!^^^^^

Here, D and P+ are homogeneous "elliptic" operators of fractional differentiation on W1 and
R^, corresponding to the multipliers |$| and (|r| + |^|), with r e R and ^ e V1,

^?(0=kr/(a
^F(T,O=(|T +1^1)^,0.

The operator D-, instead, corresponds to the degenerate symbol ||T| — |^||, and reflects the
"hyperbolic" features of the wave operator D,

(DaF)~(r^)=\\r -|^I|^(T,O.

With the signs ^ and ^ we denote the Fourier transform in R^ and in R^71, respectively.
When n = 3, the case (f) = '0, a\ = 02 = 1/2, /^o = /?+=/?-= 0 reduces to the classical

inequality of Strichartz [18],

IHkw+3) $ p^olkw + H^-1/2^!!^^.

Bilinear homogeneous estimates similar to (3) have first appeared in [6] and formulated as
estimates for null forms. That paper contains some estimates of type (3) in dimension n = 3,
corresponding to cases where f3- = 1/2 or /3_ = 1. In [II], Klainerman and Machedon have
proved the following symmetric cases of (3):

n^3, al=^=n-^+/|t-, l- j</?+^0, /?o=^-=0,

n=2, a i=a2=|+^, -^</3+^0, A)=O, ft-=\

In [14], Klainerman and Selberg have obtained, and made use of, the following cases:

n^2, ai=0, ^=^ (30=^=0, f3-=^

n 1
7^2, ai=0, 02=1, /?+=!", f3-=^ A)=0.

Further special cases2 of estimates of type (3) have appeared in [8-10,13,12,15]. In this paper
we pursue a systematic analysis of the estimates (3), which can be summarized in the following
theorem.

THEOREM 1.1. - Let n ̂  2. Let 0, ̂  be the solutions of(\), (2). Then the estimate (3) holds
if and only ifa\, 02»A), /3+, /?- satisfy the following conditions'.

1 For an explanation of the notation see Section 2.
2 See also the work ofBeals and Bezard in [1].
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213BILINEAR SPACE-TIME ESTIMATES FOR HOMOGENEOUS WAVE EQUATIONS

n-1
A) + /?+ + /3- = ai + on -(4)

(5)

(6)

(7)

(8)

(9)

(10)

2 '
n — 3

4 '
n-1

2 '

/3-^-

A)>-
n-1

a,^ /3- + % = 1 , 2 ,

a\ +02^ ^,

^n+1 n-3'
I , z = l , 2 ,(a,,/?-)^

(ai+c^-)^

4 ? 4

1 n-3^r~ 4 /
Remark 1.2. - The necessity of Eq. (4) follows easily by a straightforward scaling argument.

This restricts our parameters to a four dimensional polyhedral region in the (ai, a^ A). /3+, /?-)
space.

Remark 1.3. - The best way to understand the structure of the conditions in Theorem 1.1 is
to start by fixing the values of /?- and f3o in the range allowed by (5) and (6). With these values
fixed, the conditions (7) and (8) constrain the pair (ai, 02) to stay inside the triangle determined
by the vertices

( n-\ „ n-\\Ao= /?-+——-,/?-+—^ ,
\ z z /
/ n-1 . n-2\

A,= ̂ - + - ,̂ -/3- - -^}

/ n-2 _ n-l\
A2=(-^---^,/3-+^).

Finally, for (ai.02) fixed, we determine /3+ from the scaling condition (4). The sides of the
triangle are allowed, except in the most critical case when we have equality in (5), /?- =
-(n - 3)/4. In that case the sides are entirely forbidden by the conditions (9) and (10).

Fig. 1. Allowed region for a i, 0:2.
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214 D. FOSCHI AND S. KLAINERMAN

Remark 1.4. - In applications to nonlinear wave equations the most useful cases seem to be
those with /?_ = 0 or f3- == 1/2. These appear in connection with nonlinear equations which
contain null bilinear forms [7-10,12,14,15].

In particular, when n •= 3 the value /3- = 0 is critical and the range for the parameters a\, a^
is restricted to the interior of the triangle,

1 , 1
— <ai ,a2< 1, a\ +02 > ..

In the case f3- =1/2 the sides of the corresponding triangle are also included,

3 1
-1 ̂ ai.o^ ., ai +o'2> ^.

Notice that for n = 2 the value /3- = 0 is ruled out, we need in fact /3_ ^ 1/4 > 0. This is
related to the fact that in the case of the classical Strichartz inequality,

11^||L3(R^)$(1|^1/^0||LW+11^-1/^1||LW)2,

the L3 norm is optimal, i.e. it cannot be replaced by a L13 norm with p < 3.
On the other hand, estimates with negative values for (3- are allowed when n > 3, they

have not appeared in the previous literature. They are important to treat generic nonlinear wave
equations whose nonlinear terms contain derivatives.3 Consider for example the equation

(11) Ou=\Du\2,

with initial data in H8. Our estimates give a precise description of the regularity of the
corresponding first iterate u\, which satisfies the equation nu\ = \Duo\2, where UQ solves the
homogeneos wave equation with data in H8. Indeed, for 0 > 1/2 we have

hilkr^ ̂  IÎ Sil̂  $ ll^-1^-1^)2!!^

and we can use our bilinear estimates with (3- = 0 — 1, /3+ = s — 1, a\ = 02 ^ s — 1, to
control the first estimate u\ in terms of the initial data, whenever s — n/2 ̂  0 — 1/2 > 0 and
0 ^ —(n — 7)/4. This suggests that the correct range for the wellposedness of (11) should be4

s > max{n/2, (n + 5)/4}.

The paper is organized as follows:
Section 3 contains some preliminary remarks concerning the L2 theory. Section 4 contains

some simple lemmas which are repeatedly used in the following sections.
In Section 5 we discuss the basic counterexamples, which show the necessity of the conditions

(5)-(8). In Section 6 we provide more refined counterexamples in frequency space to justify the
need for the exceptions (9), (10) and the strict inequality in (6).

The proof of the L2 estimates is broken down into several cases according to different types
of interactions of solutions, this is done in Sections 7-11. The techniques used here refine, and at
the same time simplify, those contained in [6,11] and [14]. In Section 12 we discuss the dyadic
version of these estimates. The importance of these lies in the fact that they hold even in those

3 And don't satisfy the null condition.
4 Recently this was proved by Tataru [22].

46 SERIE - TOME 33 - 2000 - N° 2



BILINEAR SPACE-TIME ESTIMATES FOR HOMOGENEOUS WAVE EQUATIONS 215

exceptional cases excluded by the conditions (9) and (10). On the other hand they imply most of
the cases covered by Theorem 1.1, with the exception of some limiting cases. Such estimates have
recently appeared also in [21]. In Section 13 we will apply Theorem 1.1 to study L2 estimates
for null forms.

In Section 14 we take on the question of the existence of similar estimates in LP spaces. We
find a set of inequalities for the indices q, r, ai, 02, f3o, /?+, ft- € R, which are necessary for the
validity of estimates of the type,

\D^D^D^-(W\\^

(12) ^ (P^oll^ + H^-^iM (P^oll^ + P îM,

and raise the question whether these condition are also sufficients (modulo borderline cases).
These lead us to some specific conjectures concerning estimates for null quadratic forms.5 The
special case of (12) with q = oo and r = 2 is relatively easy and is treated in Sections 15 and 16.

Finally, for completeness, we conclude the paper with a section on the so called bilinear
restriction conjecture,6 which generalize the restriction theorem of Stein and Tomas [23]. As
the restriction theorem is intimately tied to the Strichartz inequalities, in a similar fashion we
expect that the solution of the bilinear restriction conjecture, which is much easier to formulate,
will shed light on the above mentioned bilinear conjectures for the wave equation.

2. Notation

To simplify the expression of our inequalities, we will use the symbols ^, ̂ , ̂  to denote
relations ^, =, ̂  up to a multiplicative constant, which may depend on n, a\, a^ A). ft-\-, ft-, but
not on the initial data (J)Q, ^o (or the L2 functions /, g). Also, if X ̂  Y and X ̂  Y we will write
X w V. If in the inequality ̂  the multiplicative constant is, or can be, much smaller than 1 then
we use the symbols <C; similarly, if in ^ the constant is, or can be, much greater than 1 then we
use ^>.

By S^ we denote the /c-dimensional unit sphere, canonically imbedded in R^, and by dS its
standard volume element.

Fourier transforms on 1̂  and IR^72 are denoted by^and^:

f(^) = f e^x^f(x) dx, F(r, 0 = ( e^+^F^, x) dx dt.

R" Rl+n

The Lp norms are defined in the usual way,

/ r \ I/P
\\f\\L^=( \ {fW^dx} , l^<oo,

\ u /R71

and since we mostly deal with L2 theory, we will often suppress the subscript and simply write
11/11 = 11/ I IL2 . We also write (f,g) = f f(x)g(x)dx for the inner product on L2, while with x • y
we denote the standard scalar product of vectors in M^.

5 Some particular cases of these conjectures were first considered in [6]. See Section 14 for precise references.
6 The conjecture, which surfaced in discussions between Klainerman and Machedon many years ago, was first

announced by Klainerman at a conference on Harmonic Analysis and Applications to PDE's at MSRI, Berkeley, July
1997.
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216 D. FOSCHI AND S. KLAINERMAN

By L^L^ we denote the Lebesque space with mixed exponents denned through the norm

/+?0/ r \ q / r x l / 9

\\F\\L^=[J [y \F^x)\^x\ dt\ .

With ̂ (z) and Q(z) we denote the real and imaginary parts of the complex number z.

3. Preliminaries

The solutions to (1) and (2) can be decomposed into their (+) and (—) parts: <j) = (f)^~ + (f)~,
where

0±(r,0^(TT 1^1)^(0,

where <^ are linear combinations of (J)Q and D~^(J)\, and similarly for ^. The product then
decomposes into four pieces:

(f)^ = <^+'0+ + 0+^- + (J)~^ + (f)~^~ .

By symmetry, it is enough to prove the estimate only for the (+ +) and (4- —) cases, since the
(— —) becomes (+ +) reversing the direction of time and (— +) becomes (+ —) exchanging <^o
with '00-

Fourier transforms of products become convolutions, and we have:

(13) ^^(T,O ̂  ( 6(r - \T]\ - ̂  - ̂ |)^(^(^ - rj)d^

(14) ^^(T.O ̂  [ 6(r - \T]\ + |$ - r]\}^(r])^^ - 77) drj.

The two integrals look similar but have different behaviors: (13) is an integration over the
ellipsoid of revolution with foci at 0 and ^,

(15) £(r^)={^eRn: ^ |+|^-77|=T},

which is a compact manifold; (14) is an integration over the hyperboloid of revolution with foci
at 0 and ^,

(16) mr^)={rieRn: \r]\ - |$ - T]\ =r},

which is an unbounded manifold with infinite volume. Also, notice that </>+^+ is supported on
the region r ^ |^|, while c^^" is supported on the region r ^ |^|.

Remark 3.1. -The delta functions in the integrals (13) and (14) can be viewed as the pull-
backs of standard delta distributions, or equivalently as measures supported on hypersurfaces
(see [4, Theorem 6.1.5]). Let S be the hypersurface defined by (f)(x) = 0, where (f) is a smooth
function with \/(f)(x) ̂  0 for x e S D supp /, and denote by dSx the induced area element on 5,
then we have

(17) Jf(^w)dx=Jf(x)^^.x)o[(p{x))dx =
'S

4® SERIE - TOME 33 - 2000 - N° 2



BILINEAR SPACE-TIME ESTIMATES FOR HOMOGENEOUS WAVE EQUATIONS 217

Observe also that if g is a smooth function which doesn't vanish on S then, as a consequence of
(17), we have

(18) 6{(f)(x))=g(x)6(g(x)^(x)).

By PlancherePs theorem, the main estimate (3) will follow from the following estimates in
frequency space,

||1^°(M + I^D^IM - ̂ ^-^(T.OII^ $ | bTW I^IIICI-WOlH.

which are equivalent to the L2 boundedness of the bilinear operators

D D . 7'2/'rn)n\ v . 7"2/"rn>n\ , r2/-in>l+^-\^(++),^(+_).ly ^K J X L [K ) —> L [K ' ^),

denned as the inverse Fourier transforms of

(19) 5(++)(/^)(r,0 = f6(r - \rj\ - \d - 77!)1^1^^^ - ̂ ,

(20) A+-)(/^XT,O = f6(r - \rj\ + |^ - ̂ |) ̂ ^^^^)^ - ̂ dr;.

Remark 3.2. - Since these are positive operators, in the sense that B(+±)(/, g) ̂  0 when / ^ 0
and ^ ^ 0, we can always assume, without loss of generality that / ^ 0 and g ^ 0 are non-
negative functions. This will simplify the notation and we won't have to worry about absolute
values.

To construct counterexamples it will be useful to consider also the representation of the
operators -S(+±) m physical space:

(21) ^^(/^X^^^y/e^^^^^O/W^O^d^

(22) (^(^;77,0^(l^|±|Cl)+;r.(77+0,

i^+ci^d^i+lcD^d^i+ici-i^+ci^-(23) W^Q=

(24) W-(^0=

H^-^2

l^+CI^^^+CI-llr/l-ICll)^-
H^-^2

4. Integration on ellipsoids and hyperboloids

In this section we collect various results about the geometry of the ellipsoids and hyperboloids
defined in (15) and (16), which will be needed in the sequel.

To deal with integrations over the ellipsoid S(r, ̂ ) we introduce a convenient parameterization.

LEMMA 4.1.- Consider the integral

W)(T,O = / 6 { r - \r^\ -\d- ̂ |)F(H, [^ - rj\) drj,

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



218 D. FOSCHI AND S. KLAINERMAN

defined in the space-time region r ^ |^|, then

i

(25)/(^)(T,0^(T2-|^|2)2^2yF(/^^.^^)(T2-|$^2)(l-a•2)^da•.
-1

Pw6^ - Using formula (18) we can multiply the argument of the delta function by the quantity
^ - 1 ^ 1 + 1 ^ - ^

^{r - \rj\ - |$ - 7;|) = (r - |^| + ̂  - ri\)6{(r - |^)2 - |$ - ̂ |2)

=2(T-|r?|)^(T2- |$|2-2TH+2^r7).
Introduce polar coordinate for r], p=\r]\, u; = rf/\rj\, then d^ = //l-l dSa; dp; set also the cosine
a = u j ' ^/|^|, then d6^ = (1 — a^^dS^d^- With these transformations our integral becomes

00 1

J(F)(r,0 ̂  /l [ F ( p , r - p)6(r2 - |$|2 - 2rp + 2\^\pa)(r - p^-^l - a2)^ dadp.
o -i

We use the delta function to set the value of a to

-^i^-
with the condition -1 ̂  a < 1 that forces (r - |^|)/2 ̂  p ^ (r 4-1^|)/2,

T+|g|

2 ^ n—3

J(F)(T,0^^ y ^^T-pXT-p)^-2^-^^-^2^)] 2 dp.

With a little bit of algebraic manipulation we see that this is

z(^,0.<^^7F(p'T-p)(T-p)p[(^-p)(p-L^)]^dp•^1

As a last step, performing the change of variable p i—> x = (2p — r)/|^| we reduce the integral to
the form (25). D

As a byproduct of this proof, notice that inverting formula (26) we have the following polar
coordinate representation for r] 6 £(r, f^):

-i^OT^^]'
LEMMA 4.2. - Let a G M and m > -1. Define

1 I/A

H^(\)= [(\+t)atrndt=\a^rn+l [(l^s)asrnds

0 0

4e SERIE - TOME 33 - 2000 - N° 2



BILINEAR SPACE-TIME ESTIMATES FOR HOMOGENEOUS WAVE EQUATIONS 219

for A > 0. Then

(A", as A -> oo;
H^(X) ̂  ^min(a+m+l,0)^ ^ A ̂  0, ^a + m + 1 ̂  0;

| logA|, as A -^ 0, if a + m + 1 = 0.

In particular, if a ̂  b then H^(\) ̂  H^(\) as A -^ 0.

Now we are ready to determine the precise asymptotic behaviour of the integrals on <?(r, ̂ ) as
r/1^1 —)• 1, which we will be needed in the following sections.

PROPOSITION 4.3. - Let a, b G R, a^ r > |$|. D^^ ̂  integral

^(T-|^|-
ATQ-^-l^-^d.( ' ^ "y ?1^-^ ^

W^ /z^v^ the following estimate for I:

(28) ^O^r^T-l^l)5,

w/?^r^

. f , n + l 1 , „ , f , n+11A = max< a, 6, —^— > — a — o, B =n— 1 — max^ a, 6, ——— >,

except when max {a, b] = n^}-, in which case we have

(29) J(^0^^-nun^}^_|^^^^/^^^\

Proof. - We use Lemma 4.1 with F(5, t) = s~at~b and we reduce to

i

^T.O^I2-0-^2-^2)^ /(-+.r) ~a(-\-^ ~ (l-x^-dx.
J \ Is I / \ s I /

Split the integration in two pieces, J_i = J_i + Jo • ^)n ̂  lnterva! — 1 ^ ^ ^ 0 , s e t ^ = l + a ;
and use

_____ 1 /Y. ~ / _____ ___ 1 \ I + ____ ___ rv 1^1 ____ 1 /T.2 ^^ J..

1^1 ll^l J ' 1 ^ 1 1^ ' '

while on 0 ̂  x ^ 1, set ^ = 1 — a; and use

____ I ry <-^ ____ ____ r^ l^ [ ___ 1 \ I + 1 /y>2 ̂  <^+ i^i' ki ^ - J + '
We obtain

^T.O^I2-0-^2-^2)^

xf^V"0^1-^7 ' i ^+^Vf f -^ I'll'[{w H^{w\~l)+{w\) ^-[w-1^
ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



220 D. FOSCHI AND S. KLAINERMAN

and to conclude use Lemma 4.2 with A = (r/|^|) — 1. Indeed, when r/|^| is large we have

^o^i^-^^-i^^^-ya+l ^^-i-^;
while when 1 ̂  r/|^| ^2, suppose max (a, b] = a, we deduce that

AT,O ̂  l^l2-0-^2 - $|2) ̂  [^t(A) + H^(\)]

^ r^——\r - l^^^f^V^T^-- ^T-\^\)^H^[ -
——\ T

The behavior of the function H is then determined by the sign of the quantity
—— \ T /

n — 3 n + 1
(l-a)+-^-+l=^-a,

according to the statement of Lemma 4.2. D

We can try to prove a similar proposition for integrations over the hyperboloids T-^(T, ̂ ).
LEMMA 4.4. - Consider the integral

I(F)(r^) =/6(r- \rj\ + |$ - rj\)F(\^ ̂  - rj\) ̂

defined in the space-time region \r\ ̂  |^|, then

00

(30)J(I-1)(T,0^(K|2-T2)2^2ylF(/^^,^^')(|^2-T2)(..2-l)2^2da'.
1

Pw6^ - The proof follows precisely the same steps as in the proof of Lemma 4.1. We only
observe that Eq. (26) remains unchanged,

ajf^-
except that now we have the restriction T/|^| ^ a ̂  1. D

Inverting (31) we obtain the polar coordinate representation for T] e H(r, Q:

^-^^-
The analog of Proposition 4.3 for H(r^) is possible only if we restrict the integration on

the "elliptic" portion of the hyperboloid. More precisely, if 77 € H(r, Q is in the region where
|^| <^ |^[ then the geometry of H(r, Q near rj, in terms of curvature, is not too different from that
of an ellipsoid.

PROPOSITION 4.5. - Let a, b € R and \r\ < |^|. Define the integral

T ( r ^ ( ^-H+l^-^1)J(T90= 1 ma-^ ^'
l^+l^l^l

4e SERIE - TOME 33 - 2000 - N° 2



BILINEAR SPACE-TIME ESTIMATES FOR HOMOGENEOUS WAVE EQUATIONS 221

We have the following estimates for I: in the region where 0 ̂  r ^ |^|,

(33) AT.O^I^I-r)3,

where

A = max< 6, —— > - a - &, B=n-l - max< 6, —— >,

except when b = (n + 1)/2, m which case we have

(34) ^O^kl-^l^l-^^fl+logf,^));
\ \lsl — T / /

similarly, in the region —|^| < r ̂  0,

^(T.O^I^I+r)5,

where

A \ n + l 1 L D 1 f n + l 1A = max< a, —.— > — a— o, B =n— 1 — max< a, ——— >,

except when a = (n + 1)/2, m w/n'c/z c^5'̂  w^ /z^v^

(35) J^O^I^I-^l^l+^^^l+logj'^^^V

Pwo/^ - We use Lemma 4.4 with F(5, Q = s~at~b and we reduce to

2 ^_^ ^_,

J(r,0^|^|2-a-;)(|^|2-T2)^y>^+^ -a^-^) - (^2-l)a^'d^.
1

Let's assume r > 0. Set ^ = x — 1 and use

^wr1' '-irO'lii)^ a;2-l't•
We obtain

AT,0^|€|2-a-('(|^|2-T2)2^'^fl--V

and to conclude use Lemma 4.2. D

5. Basic examples

Throughout this section L will denote a large positive parameter, L > 1. If ^ = (^i , . . . , ̂ ) e
R71 is a generic point, we will use the notations ^/ =: (^2,..., ̂ n) € R71"1 and ^// = ($3,..., ̂ ) e
R71-2 (if n = 2 then ^/ - ̂ 2 and ^// = 0).

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



222 D. FOSCHI AND S. KLAINERMAN

x2

2
1

-1
-2

F

L

G

2L xl

Fig. 2. Example 5.1.

The basic idea behind the examples below is to choose appropriate sets F and G in R72, take
as data f = XF and g = \o their characteristic functions, and then restrict B(++), B(+_), with
the representation given by (21), to the largest possible sets in t,x for which the corresponding
exponential factors are essentially constant.

Example 5.1 (Necessity of (5)). - We first check the estimates (3) by testing the boundedness
of B(++) when the data / and g concentrate along the same direction and in the same frequency
scale. We consider the function B = B(++)(^, \c), where F and G are the sets (see Fig. 2):

F={r]: L < ^ < 2 L , 1<772<2 , |7/'|<l},

G={(:: L < C l < 2 L , - 2 < C 2 < - l , | C / / <!}.
Take T] e F, C, € G and let 0 be the angle between T] and ^, then we have

I^ICM^+CM^I+KI^ ^^
1 ^ 1 + I C I - I ^ + C I

IT/P
1 ^ 1 -^—%^ I C I - C i

1^+C^l.771 + Ci ^ L,

I^IICI •^L-1

1 ^ 1 + I C I
KT

I C I ;L-i

From (21) we have

B(t,x)= [ [^+(^OH+(77,Od77dC.
^ G

The weight W^. given by (23) is then of order

... L^L^L-^- ^ ^/3o+/3+-/3--ai-Q2 ^ ^-2/3_-^—W^
L^L^

We write the phase function (22) as

^+=^1^1+ICI)+^+0
= ^ ( l ^ l - ^ + l c l - C l ) + a + ^ l X ^ + C l ) + ^ • ( ^ + c / )
= ^0(L-1) + (t + a:i)0(L) + ̂ / < 0(1).

It is then possible to choose a region R in M1"^, defined by the conditions

M^ |^+^i|^L-1,
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such that we have |(^+1 < Tr/3, when 77 e F, (^ G G and (^, x) € J?. Therefore we can neglect the
oscillating factor, since in that case |e^+ - 1 < 1/2 and ̂ (e^) ̂  1/2. Thus we have

B(t,x) ^(B(^))^ ( (w^a^^L-^—1—^^
F G

whenever (t, x) e R. Consequently

F^G^W/^L-^—^L.>^-2/3_~

\\XF\\\\XG\\

We let L -^ oo and therefore, to have the desired inequality we need,

^--^-l+KO,

which is equivalent to (5).

Example 5.2 (Necessity of (7)).- We still look at the (++) case, but this time we stretch
only one of the data along one direction, keeping the other fixed. We consider the function
B = £?(++)(^j?, ̂ cO, where now F and G are defined as follow (see Fig. 3):

F={rj: L<?7i <2L, 1 < 772 < 2, IT/' < l},

G={(:: l < C i < 2 , - 2 < C 2 < - l , IC^l}.

Take 77 e I7', C G G and let (9 be the angle between 77 and ^, then we have

i^
1^1 H

I'?! '/i ~ 1 1 -^ ' i s i

»|?H

H C I -

^Ch

-|r?-

,1^

.h

+c
2

?1+|CI^,
1., I ^ I I C I ^2,I ' ^ i + i c r '
^ 7--1 I/'!

I C I ^
^1,

(^1 ^-Sl ^-

»l ,

JC7

^ 1C
7 7 i + C i ^ L , l ^ + C ' l ^ l .

The weight W+ is then of order

^/3o+/3+-ai ^^Q2-/3--1^1

x2

2
1

-1

-2

: 1 : 2

:::B

F

L 2L xl

Fig. 3. Example 5.2.
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We write the phase function as

^ + = ^ 1 ^ 1 + 1 0 1 ) + ^ ( 7 7 + 0
= t{\rj\ - m + |C| - Ci) + (t + ;ri)(77i + Ci) + x ' • (T/ + 0
= 10(1) + (t + a-i) 0(L) + ̂  • 0(1).

It is then possible to choose a region R in R1^, defined by

M ^ l . |^+^i|;$L-1, ^|;$1,

on which, as in the previous example, we can make the oscillating factor e^y+ as close to 1 as we
want. Thus we have

\B(t^)\^L^-^—^\F\\G\^

whenever (t, x) e R. Consequently

1 1 ^ 1 1 > La2~(3-~I]~Tl\F\^2\G\l/2\n\{/2- T^-^--"—
\\XF\\\\XG\\- I I I I 1 1 ~

Taking the limit L -^ oo, we find the necessary condition,

02 -/l.-^——^O.

Similarly, exchanging the role of F and G we get

^-/3--"y^0.

Hence, we obtain the necessity of condition (7).

Remark 5.3. - Condition (7) follows also by considering a slightly different scaling, with F
obtained by a parabolic rescaling (instead of a linear rescaling along one dimension) and G still
fixed:

F={rj: L<ra <2L, ^L<772<2v /L, |̂ | < l},

G = { C : l < C l < 2 , - 2 < C 2 < - l J C ' / <!}.

This example implies the same condition in the contest of L2 norms, but will provide different
information when we shall consider the U" theory later on.

Example 5.4 (Necessity of (6) with ^). - Again look at the (++) case and this time
consider the interaction of data supported in opposite directions. We consider the function
B = B(^^F,XG), where F and G are the balls of radius 1/4 centered at 77* = (L, 1,0) and
C* =(-L,l,0)(seeFig.4).

Take rj e F, < G G, we have

I ^ I C I ^ H + K I ^ , 1 ^ + C I ^ L
h ? l + | C I - l ^ + C I ^
1^1-1^*1^1. I C I - I C * l ^ i .
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x2|

G

-L L xl

Fig. 4. Examples 5.4 and 5.5.
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The weight W-\- is then of order

^/3++/3_-ai-Q2 =^-A)-—1 _

We subtract from the phase function an innocuous term that doesn't depend on rj or ^,

^+ -t{\C + IC*1) =t(\rj\ - |^*| + |C| - |C*1 ) +.T- (ry+0

=t0(l)-^-x'0(l).

As in the previous examples, it is possible to choose a region R in R^77', defined by

1^1, 1^1.

on which we can make the oscillating factor ^^-^I^H^I) as close to 1 as we want. Thus we
have

IB^I^L-^——IFIIGI,

whenever (t, x) e R. Consequently

——^—— ^ L-^-^\F\^\G\^\R\^1 ̂  L-^°——1.
\\XF\\\\XG\\

We let L — oo and we get the necessary condition,

-A-^o,

which is a non sharp version of (6).

Example 5.5 ((8)). - This time we look at the (+ —) case when the data concentrate along
opposite directions. Consider the function B = £?(+-)(;Y^, ̂ cO, where F and G are the balls of
radius 1/4 centered at (L, 1,0) and (-L, 1,0) (see Fig. 4).

Take rj C F, C ^ G ̂ d let 0 be the angle between 77 and —C, then we have

H^|C|^, 1 ^ + C I ^ L ^L-1,

1^+CI - IH - IC I HICI . 2 .-——————(7 ~ 1,
1^+C I

|,,|-^^L-1,
|/^|2

1/"1 _L- /" ~ Is I ~ r-1
I s l ~rsi ~ "177- ~ 1J .ICI

^ i + C i ^ l , 1^+C ' l ^ i .
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el

e2

Fig. 5. Example 6.1.

The weight W- given by (24) is then of order L"0'1 -a2. We write the phase function as

^-^(H-KD+^+O
= t(\rj\ - m - ICI - Ci) + (t + ̂ i)(^i + Ci) + x ' ' (r/ + 0
= ^0(L-1) + (^ + .ri)O(l) + x1 ' 0(1).

It is then possible to choose a region R in R^^, defined by

N ^ ^ l ^ + ^ i l ^ i , ^ l ^ i ,
on which we can control the phase (^-. Thus we have

B(t,x) ^L-^-^^G^

whenever (t, x) € R. Consequently

1 1 ^ 1 1 ^-ai-02^1/2^1/2^1/2 ^-ai-02+1/2^
\\XF\\\\XG\\

We let L -^ oo and we get the necessary condition,

-01 - 02 + ^ ^ 0,

which is (8).

6. Counterexamples for the critical cases

The counterexamples in the previous section were easy to find in physical space, however for
the critical cases (9) and (10) it is essential to take into account the interaction between different
frequency scales. This is easier to do in frequency space, where we have the advantage of working
with quantities which are, essentially, positive.

The following example is a straightforward generalization of the counterexample given in [6]
adapted here to any dimension n ̂  2.

Example 6.1 (Necessity of'(9)).- Assume that

(36) n+ 1 n-3
<^2=/3o+/3+, /?-=-ai =
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Consider the function B = B(++)(/, g), with

AO-^II. g^)=XE^\
1 ^ 1 4

where E is the interior of the ellipsoid <?(! + 2s2, (1,0,..., 0)). We can compute the norms of /
and g with the aid of Proposition 4.3. Use (29) with a = (n + 1)/2 and b = 0 to get

^ _ T /^(T-M-|(I,O,..,O)^J^ ^
/^-= / ^
7 \n\^ J J

^+l
, 1 ^ 1 2 ^ H 2
jb i

l+2e2

/^ (r-1)—1 log^-l^dr^^-1 log£|;

use (28) with a = b = 0 to get

l+2e2 l+2e2

(37) ^7?= /* /^(T- |7? |-[( l ,0, . . . ,0)-77[)d^dT^ /* (T-l)^dT^£n- l .

£' 1 1

We obtain

ll/H^^llog^ 11^11^^.

Let Ef be the interior of the ellipsoid <?(! + £2, (1,0,..., 0)) and consider the region

D=< f(T,0:$eE /,|$|>^<T-|$|<^l.

We have <?(r, Q C E for every (r, Q € D. Indeed, if 77 € <?(r, Q then

|r;|+ (1,0,...,0)-^ ^|^|+|$-7; |+ (1,0,...,0)-$
=^-1^1)+(1^1+|(1.0, . . . ,0)-^)

< £ - 2 + ( l + £ 2 ) = l + 2 £ 2 .

When (r,0 € D we have |^| w r w 1 and r - |$[ ^ £2, hence, using Lemma 4.3 with
a = (n + 1)/2 ̂  & = /3o + /?+, we find

,_^ /^(T-H- |^-77|)

^_^|/3o+/3+
^0-.-^ ^^l^-l^^d^^llog.l.I l l n^ 1 | .1- | /o i Q ' I D I

^ H— —6-77A )+ / 3+

By a computation analogous to (37), the measure of D is of order £2£n~l and hence

-a-> ^-\^\^ ^1^.1/2
1 1 / 1 1 1 1 ^ 1 1 "^^5^|log^|V2 1 g l '

which becomes unbounded as e —> 0.

The next example proves the necessity of condition (10). This is, essentially, the example given
first in [2] for the case of dimension n = 3.
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Fig. 6. Example 6.2.

Example 6.2 (Necessity of (10)).- Assume that

(38) 1 n — 1
Q - i + ^ 2 ^ ^ , /3o+^+=-——, 13-=- Ti-3

Let B(r,0 = B^^(f,g)(r^), with f = g = E^-TvXfc, where, for each integer A:, ^^ is
the characteristic function of the ball Bk of center (k, 1,0,.. .,0) and radius 1/4 We have
1 1 / H =||̂  7V1/2,

The support of £?(+-)0a, Xj) is contained in the ball of center (k + j, 2,0, . . . , 0) and radius
1/2. Summing over all such disjoint balls, by orthogonality we have

(39) \\Bf= ̂  I(j^m\ I(j^m)= (A+-)to,Xm-^A+-)(Xm+,,X-,)>,
j,k,m

where the indices in the sum are restricted by the condition

(40) -N ^ A;, k - mJJ + m ̂  N.

Each addendum in the sum in (39) is positive, hence we get a lower bound if we further restrict
the indices to a subset of (40).

Let's look at a single term I(j, k, m) (see Fig. 6). From the definition (20) of B(+_) we have

I(j,k,m) = //!
ri^Bk

^-rjeBm-k
^-CCB^+,

CGB-,

^+ICl-|^|-|$-C|)d^dC
1 ^ 1 — ( 1 ^ 1 - IH-1^ -^ID^M^M^ -CMCh

If we require that 1 < 2m < j < k then we have the following estimates,

H^-7?|^, 1^-CI^ICI^ 1 ^ 1 ^m, \^-\\ri\-\^-ri\\^m-1.

Also, let Be,k be the ball of center (A-, 1,0,..., 0) and radius e, where £ is a positive constant to
be fixed later, and B^ be the ball of center (m, 2,0,.... 0) and radius 1 /8. If e < 1 /8, then

T] e B,^ C ̂  ̂ ,-j, $ e % ̂  77 e Bfc, ^ - 77 e B^, ̂  - C ̂  ̂ m+,, C ̂  B,^
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and we obtain the lower bound

J(ĵ m)^.J^ f//6^ + K! - 1^1 - l^-CI)^d77dC.
r]^Be,k
^Be-j

^%

We use now formula (17). In our case ^(Q = \rj\ + [C| - |^ - r]\ - |$ - C| = 0 defines a surface
<?(77, 0, which is the ellipsoid of revolution with foci at 77 and C that contains the origin. We have

1/2i^_,i_cIv^nl- l^L+A-^ ^i+i^L.A_^l1^)1- |^|+|^| -^ 1 + 1^-771 |^-C|;1^1 1 ^ - C I
^ angle between ^ — T] and ^ — ^ ^ - + - % - .

J K 3
Using (17) we obtain

1 .1/2 r r / r \
W^>^ j j ( j d^dC.

B^k^B^j £(r),QnB^

LEMMA 6.3. - /^ ^ possible to choose e, X G ]0,1/2] a^ a constant C > 0, independent of
N , such that, if(j, k, m) belong to the set

(41) JN,A={o\A;,m): j^J^^. ^A;^A^, l ^m^A j^

and r] G B^,k^ ^ B£,-J' tnen tne intersection of the ellipsoid <?(?7,C) w^ r^^ ball B^ has an
area greater than C'.

inf ( d5^ C > 0.
J,k,m)eJN,\ J

inf
(j,k,m)eJN,\

77CBe,fc ^(77,OnB^
CeB,,_,

With this lemma we can fix £ and A, and for large values of N we have

|B(+-)(/^)||2^ E ^^m)
(j,k,m)eJN,\

^ E ^-1/2 E fe-l/2 E m

l/A^j^N/4 N/2^k<^N l^m^Xj

^^1/2 ^ //2 logO-) ̂  TV2 log TV.
l/A^^N/4

This shows that

"^^"^aogN)172,
and as N -^ oo disproves the estimate for the choice (38).

Proof of Lemma 6.3. - Let (j, A-, m) G JN,\ and 77 C 5e,fc, C e ̂ e,-j • To prove the lemma it is
enough to show that, for e and A small enough, the ellipsoid £(rj, Q intersects the ball of center
(m, 2,0,.... 0) and radius 1/16.
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First, we verify this when rj = (k, 1,0,..., 0) and C = (-7, 1,0,..., 0). Since 1 < 2m < j < k,
it follows that the point (m, 2,0,.. . . 0) lies inside So = S(r], Q. The plane tangent to So at the
point (0,2,0,.. .,0) makes an angle a w 1/j with the ^ direction, hence it intersects the ball
%* of center (m,2,0,.. .,0) and radius 1/32, if m/j ^ A for some positive constant A. Thus
B^ contains also points that are outside <?o, so it must intersect So.

Then, when T]= (k, 1,0,..., 0) + 0(e) and C = (-7, 1,0,.... 0) + O(^), the distance of each
point of £o from £(r], Q is at most of order e, and we can choose e small enough to make it less
than 1/32. n

Example 6.4. - The following example is a refinement of that given by Example 5.4 and shows
that the estimate (3) is in fact false when we have equality in (6). Assume that

A)=- n- l
/?++/?-=0i+0-2.2 '

Let B(r, Q = B(++)(^, ̂ XT, 0, where F and G are the sets

F={rj: \^-\\<e\\r]f <^},

G = { C : ICi+1^2,^ <2^},

with e a small positive parameter. We have \\XF\\ = \F\1/2 ̂ e^ and \\XG\\ = \G\^ ̂ e^.
The conditions r] e F, ^ - rj G G and T] <E <?(r, Q imply that

\^-r]\ ^ T - I ^ I ^ I , 1 ^ 1 ^ ^

and in particular we have

^0^1-^ / ^(T-M-[$-77|)d^

y/e^
^-^eG

The support of B contains the region D defined by

D={(r^): |61 <^|^ «^|T-2|<^2}.

If(r,0 G £> and T] e f(T,0 H F then we have < = ^ - 77 € G, since

|Ci+11^16 + -^i+l |<2^ 2 , IC^I^ +|7/ |<2£.

d^

Hence, when (r, Q G D we have

^0^1-^ /^T-M-|^-^[)d^|^|~ / I v^l + 1 ^ - ^ 1 ) 1 'r1^F £(r,^nF

The gradient in the denominator doesn't create any problem, indeed we have

TI ^ - T ]
|V,(M+[$-77|

1^1
^ angle between T] and ^ — rj w 1.
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The intersection <?(r,0 D F is a set of measure % ^n-l, indeed the conditions (r,<^) G D,
rj e <?(r, 0 and \r]'\«^£ imply 77 € F, since we have

H-^i«£ 2 , \^-r]\-r]^e\ |H+ |^ - r7 | -2 « £2 ̂  |2(^i - 1)| «^.

We obtain that for (r, Q G D we have

^O^l-2^71-1,

and consequently,

2+.2 s2

£2(n-l) / / / ————^
\\B\\l>e2^|t^>e^ I I f d^
" " ~ J J l^-1- J J j (If |+6n-1-' 7 7 7 (Ifl+^i)"-1^1^'

D ' ' 2-£2 0 |^|<£

We compute the innermost integral with the help of Lemma 4.2,

d^ /• r^dr /• ^"^df ^^-n(^y d^ /'7 (Ifl+^i)"-1 7+^l)Tl-l 7 (y+6)"-1 7 ff+^r" 1 7 l - 2^£
0 0 '' £ /IS'Ke 0

Hence, for small values of e we have

e

||B||2 ̂ ^•"-"e2 / | logC^') d{i » E2l••+"| log£|.

We finally obtain

1 1 ^ 1 1 ^i^l172^^
|| |||| ||^ n+l n+l ~ I lutoc' I '
IIX^IIIIXG'II e~e~

which diverges logarithmically as e —^ 0.

.0^)1.

7. Proof for the (++)

In this section we prove the estimate for the (+ +) case. We consider the operator B(+ +)
defined in (19). In this case we don't need to consider the conditions (8) and (10) which, as
we have learned from the examples discussed in the previous sections, are relevant only for the
(+ —) case.

The support of -£?(+ +) is contained in the region where |^| ^ r, we divide it into two part: the
region near the light cone, where |^| w r, and the inner region, where |$| <$: r. Looking at the
corresponding symbols we see that near the light cone the operator D behaves like D+, while
D- degenerates along null directions. On the other hand, in the inner region D degenerates along
the time direction, while D^. and D- behave both as time derivatives.

PROPOSITION 7.1.- We have the estimate

(42) B(++)(/,^)||^^^ ̂  1 1 / 1 1 ^ 1 1 ^ 1 1 ^

whenever a\, 02, f3o, /^+^- verify conditions (4), (5), (7) and (9).
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Proof. - By a simple application of Cauchy-Schwarz relative to the measure 6(r - \T]\ - \^ -
rj\)dr] we have

(43) |5(++)(/,^)(r,0|2 ̂  A(T,Q I f\r])g2^ - 77)^ - \r]\ - |$ - rj\) d^

where

A(.0 |̂,|̂ ^(.-|,|)^-/̂ :l̂|^2o

Integrating (43) in T and ^ gives us (42), provided that we can show that the quantity A(r, ̂ )
is uniformly bounded for r/4 ^ |$| ^ r. To do so we use Proposition 4.3 with a = 2a\ and
b=2a2. Since r/4^ |^| ^T,ifmax{o' i ,Q'2} <(n+ 1)/4, using (28), (4) and (5) we have

/T-\!-\\W-+-1

A(T,0^———^) ^1;

if max{ 01,02} > (n + 1)/4, using (28), (4) and (7) we have

( _ \^\\ -2max{Q!i,a2}+2/3_+n-l

A(T,Q^ ———^\ ^1;

ifmax{ai,o;2} = (n + 1)/4, using (29), (4), (5) and (9) we have

"̂(-T .̂-,)̂  °
Remark 7.2. - The proof of Proposition 7.1 works fine also for the inner region if /3o ^ 0,

since in that case |<^° is not singular and we can use |^| ^ r. To obtain sharp results with f3o < 0
we need however a different argument.

PROPOSITION 7.3.- We have the estimate

(44) \\^^f,g)\^^^\\fh49\\L^

whenever a\,a^ (3o, /?+,/?- verify conditions (4) and (6).

Proof. - The conditions r = \r]\ + [^ - ̂ | and |^| ^ r / 4 imply that l^ ^ |$ - 77! ^ r. In this
region we have

B(++)(/,^)(T,O^ |^o^++/3-^i-a2 ( f^)g^-r])6(r- \T]\ - |$-77|)d^.

The vectors 77 and $ - 77 are essentially of the same magnitude and their sum is comparatively
small, hence they have almost opposite directions, in the sense that the angle 0 between T] and
-(^ - 77) has to be less than a small fixed constant, say 0 ^ OQ ^ Tr/4. This means that, by
decomposing / and g into a finite number of pieces, we reduce to the case of / and g supported
in opposite conical regions.

Indeed, decompose the unit sphere into a finite number of disjoint components, S71"1 =
\Jj=i ̂  so th2it the angle between two unit vectors belonging to the same piece J7^ is always
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less than OQ . Then define the cones F,;= {$ <E W \ 0: f,/ \ $ | G J7^] and let ̂  be the characteristic
function of F^. Write / = ^Li/j, where /^ = ̂ /, and similarly for g . By the above
observation we have

||B(++)(/,^) L |̂̂ ) ̂  Y^ l^^/j^)! î î rj,fc
with the sum restricted to the pairs of indices (j,k) for which there exists a cone F of
aperture 20o such that Fj C r and F^ C —F. Since it is a finite decomposition, we also have
£ • fc 1 1 fj''\ 1119k 1 1 ^ 1 1 / 1 1 1 1 9 1 1 • Hence, we can assume / supported in a conical region F of aperture
20o and g supported in —F.

We now compute the L2 norm of B(++) using the so called doubling technique. This method,
introduced first in [11] for the (+-) case, consists of writing the square of B(++) as a double
integral,

|B(++)(/^)(T,0|2 ̂  l^"^^-———2) j j f^g^ _ ̂ f^ _ ̂ )

x s(r - \r]\ - \H - ̂ 8(r - |$ - C| - |CI) dr?dC,

and then perform the integration with respect to r and ^. Recall that by (4) we have /?+ + /3_ -
ai - 02 = -A) - "y1. We obtain

IIB(++)llL2(|^|^)

/// /^^^ ̂ (l-l - Kl ^1^ -I -1^ - <D ̂ -^^
^ {eV I^I-^I^I^-'ICI^^

Ce-r
^-C^r
e-^e-r
I^KI^I^ICI

We apply now Cauchy-Schwarz to separate the pair f(r])g(Q from /($ — C)^($ — C)'

\\B I I 2 < ( ( ( f2. .2^/( |^l - I C I + |g - ̂ 1 - |g - CD .^,||B(++)||L^|^)^ yyy J(^(o i^-2^i^/3o+^i^i/3o+-i d7?dcdq'
77er,ce-r
I^KI^I^ICI

and we only have to prove the boundedness of the quantity

,-2/3o-n+l [ ^1-KI+l^l-lg-CD
j |^|-2^o

A-2/3o-n+l ^ ^1-KI+l^-^l- lg-Cl)^

7 l^l-2^ s?

I^I^A

uniformly for |^| ̂  |C| ̂  A, with 77 e F and C € -F. By a rescaling we can take A = 1.
The delta function in the last integral restricts $ to a hypersurface ^(?7,C), which is a

hyperboloid of revolution around the line through T) and ^ with foci at T] and (^, which contains the
point 77 + C- The fact that r] and C, are almost opposite points implies a uniform upper bound on
the curvature of H(r], C) and allows us to treat 1~i(r], 0 as if it were a hyperplane. More precisely
we have

[V^d^- r / l - |$-C|)| ̂  angle between ^ - r/and ^ - C ̂  1.
Moreover, ̂  is confined on a bounded region of 1~L(r], Q by the condition \^\ ̂  1, so we don't have
to worry about divergencies coming from the unboundedness of 7Y(?7,0. Parametrizing 1~i(r], Q)
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by a projection on a hyperplane orthogonal to r] — (\ we check that

/ ^ 1 - I C I + I ^ - ^ I - I ^ - C I ) , ^ [ _d^_< ^ dg7

7 |^|-2^ c—— 7 |^|-2A)- j 1^-2/30--2A) s^ / \^\-2(3o ^ / |^/ -2/;
n — ll^i ^?^,0 ^eR

l^i |̂ i

which is a bounded quantity whenever —2/3o < n — 1. D

8. Proof for the (+-) case

Now we turn our attention to the (+ -) case. We consider the operator B(+_) defined in (20).
Since £?(+-) is supported in the region where |r| ^ |^| we have D w D^ and we can replace
the operator D^D^ by D^, f3 = /3o + /3+. It is convenient to split the integration over the
hyperboloids 7^(r, Q into two parts: B(+_) = BL + 5j^, where

/ \^\/3(\^\ — 1-rl^/3-
^(/,5)(r,Q = 6(r - \r,\ + ̂  - rj\) ̂ ^J^-/̂ )^ - ̂

W+^-rjW^

w^)- f ^-^-^^\^^-1^1+1^-^)^-,^——^A^(e-^)d^.
|^|+|^-77|^2|^|

The low frequency part BL can be treated as in the (+ +) case, since the integration is restricted
to the "elliptic" portion of H(r, ̂ ).

PROPOSITION 8.1.- We have the estimate

(45) \\W.g)\^\\f\\\\g\\

whenever a\,a^ f3o, ̂ +, /?- verify conditions (4), (5), (7) and (9).

Proof. - By a simple application of Cauchy-Schwarz with respect to the measure 6(r - \rj\ +
[^ — ?7|)d?7, we have

(46) |£W^)(T,0|2 ̂  A(T,O [ /(^|2!^ - r])\h(r - \T]\ + |^ - 77]) dr?,

where

A^^M-M)"- / ((^^2^- f ^(T-H+1^1)

|77|+|C-r7l^2|^|

d?7.

Integrating (46) in r and ^ gives us (45), provided that we can show that the quantity A(r, <Q is
uniformly bounded for r < |^|. To do so we use Proposition 4.5 with a = 2ai and b = 2a2. By
symmetry, we can assume r ^ 0. Using (33), (4) and (5) we have

/ | ^ x 2 / ? - + ^^"(V) ^
46 SERIE - TOME 33 - 2000 - N° 2
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if 02 > (n + 1)/4, using (33), (4) and (7) we have

/ i^i \-2ai+2/3_+n-i

^•^(V) ^
if 0/2 = (n + 1)/4, using (34), (4), (5) and (9) we have

--m^o-^))^ °
The high frequency part BH is more delicate and requires the use of the doubling technique.

PROPOSITION 8.2.- We have the estimate

(47) \\BH(f,g)\^\\f\\\\g\\

whenever a\, a-z, f3o, /?+,/?- verify conditions (4), (5), (8) and (10).

Proof. - Observe that rj G ̂ (r,0 and \T]\ + |$ - ̂ | ^ 2|$| implies |^| ^ 2min{|77[, \£, - T]\]
and |?7| ̂  |^ — 77!. In particular we can assume that a\ = 02, since l^l0111^ — ?7|a2 ^ H^l^ — ^l^
for a = (ai + a^)/2, and the conditions (4), (5), (8) and (10) depend only on the sum a\ + 02.
Recall also that we may assume, without loss of generality, that / and g are positive functions.

If we proceed by a direct application of the Cauchy-Schwarz inequality, as in the (+ +) case,
we encounter the difficulty that the surface 7Y(r, Q is unbounded. We circumvent this difficulty
by using the doubling technique, as it was introduced in [11]. This allows us to rewrite the
L2 norm Bf{(f,g) in a way which transforms the integration over hyperboloids to one over
ellipsoids.

To calculate the L2 norm of Bn(f, g) we first write \Bn(f, g)(r, Q|2 as a double integral and
then integrate over r, ̂ . After applying the Fubini-Tonelli theorem and rearranging the integrand,
we derive:

HR ,, ^ i 2 ^ { ( U /(^(O f^-Qg^-ri)iî î ̂ y j j kw^-w-^
|^2min{|r^|C|}

x 1^(1^1 - \r\)^~6(r - H + 1$ - rj\)6{r - |$ - Cl + ICI) drd^dC.

Now the important step is to apply Cauchy-Schwarz correctly. As it is suggested by the way we
wrote the integrand, we separate the pair f(r])g(Q from the pair /(^ — Og(£, — rj), then apply
Cauchy-Schwarz with respect to the measure

|^(|^| - \r\^-6(r - H + K - rj\)6{r - |$ - Cl + |CI) drd^dC.

After an obvious change of variables we derive,

^ i f n ^^^^\-w-\\Bn(f,g)\2^ I I I I A^cAC) I^MCI2'1a\/-\1a

|^|^2min{|»;|, |C|)

x S(r - \r)\ +^- r)\)8{r - |̂  - Cl + ICI) drd^dC.
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From this we see that (47) will follow, if we can show that the quantity

r r |<?Pf|6l - rh2^"
1(119 ° = ] ] I^IC2- 6(r ~ ̂  + ̂  ~r]})6(r - ̂  - c!+ K!)dTd^

|^|<2min{H,|C|}

is bounded uniformly in T] and (. The proof of the boundedness of I(r], Q requires several steps
and it will be treated in the following three sections. D

9. Another parameterization for ellipsoids

The integral denning I ( r ] , Q corresponds to an integration on the ellipsoid of revolution

^o={^ M+ICI=I$-^I+I^-CI} ,
with foci at T) and (, that contains the origin.

To study ^(^,C) we introduce polar coordinates. Write $ == TUJQ, T) = puj\, ( = (TUJ^, with
T < r < 2min{p,cr} and ^0,^1,^2 ^ Sn-l. Also define the cosines a = uj\ • u;o, b = uj^ • UJQ,
C= UJ\ • UJ^.

To deal with the delta functions, introduce the auxiliary variables

X = r - \rj\ + |$ - T]\ = r - p + y^"2 - 2rpa + p2,

y=T-[^-C|+|CI=T+a-^/r2 -2ra6+a2 .

The system X = 0, Y = 0 is equivalent to say that T] G U(r, Q, < e ̂ (-T, Q, and, using formula
(32) for the parameterization of our hyperboloids, we have

r^r2 _ r^r2

p - 2(-r + ra)' a - 2(r + r6)'

From these two equations we infer that (—r+ ra)p = (r + rb)(T. Hence

(48) r = rv,

where

(49) ^-a^ 7?-C
P+^ 1 ^ 1 + I C I 0'

Substituting for T in the formula for p we find that r = 2p(—v + ffl)/(l — f2), which, using (49),
simplifies to

(50) r=^———
p + a 1 —v2

where

^n a + & ^1+0:2 . / .(51) u=———=——_——• a;o^0.
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We need also to compute the jacobian of the transformation (r, r) —> (X, Y),
I ax QX i 4^-09(X,Y)\ 9r 9r

9(r,r) |x=o - 9Y 9Y
'y=o „- „-or or

\^-ri\
^ -C

J=
•CLiQk-ci

r(p + cr) — r(pa — crb) — pcr^a + b)r — pa r — ab
p—T O-+T (p - r)(o- + T)

To simplify this expression observe that by (48), (49), (50) and (51) we have

4pau 4pauv2

r(p + a) = r(pa — ab) = pa(a + b) = 2pau,^ , ' \^ ^ " ^ ) — , ^ ,1 — v2- 1 — v2-

hence r(p + cr) — r(pa — ab) — p(j(a + b) = 2po'u and

_ 2po'u
"(p-rXa+r)'

Since we know that in the region of integration p — r =\^ — r]\w\r]\= p and a + r = |^ — ^| ;
|C| = cr, the above jacobian simplifies to

9(^,^)(52) ^ u.J=
(9(T,r) x=ov / 'y=o

Now we are ready to rewrite I(r], Q using polar coordinates and formulas (48), (50), (52) (keep
in mind that by (4) we have 2/3 + 2/3- + n - 1 = 4a):

^(r-M)2^- , . _ , ^"(l - \v\)2'3-I :/1(^0= dS.,_________r^n—Y J—^AQ
,2a..2a r J ^^^o •p^a

4pa

plag-la^

2a /•(l_|y|)2/3_y4a-l

.)/ d5.,
JP+^):

^/,

(1 - ̂ 2)4a

4po- Aa-\^
-d5^o,^P+O)2; 7 (1 - |^|)4a-2/3_———o-

with the integration always restricted to the region of the unit sphere corresponding to the points
0:0 such that r = r(ujo) ̂  2min{p, a}. From identity (50) we see that this condition is equivalent
to say that u ̂  1 — v\. Hence,

(53) 1(^0^ ( A \ 2o; />_^_\ {
(p+ff)2} j

.,4o;-l

(i - H)4^-2^- dS^.

c^oes71-1

u<l-\v\

n-310. The case f3- >-n^

We prove the boundedness of ^(77, Q first in the case where we have strict inequality in (5),
which means

P->-
n-3

^4-
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Using the fact that u ̂  1 - v\, we can simplify the numerator with the denominator in the
integrand of (53) and we have,

I(ri 0 < / d^0

^^7 (1-H)1-2/3--

To estimate this last integral we write v == \w where

\ ^ -C ( , 4p<7 1+cV7 2^ 7?-C

x=W+^=\l~(P^2~^) ^' w=^-"0'

then, using the notation of Lemma 4.2,

dS^o ^ /' (l-w2)^ , ^ _, r (l-w)^^ ^o ^ / (1-w2)^ ^.^_-i / (1-w)^
7 ( 1 - z;|)1-2^- - J (1 - A|w|)1-^- Gw ̂  A J (1-A + (i _ ^))i-2/3-

-1 0

dw

^2/3_-1 rr2/3--l /^l -A^=A ^ ^J,(54) =A2/3—1

which is bounded, since (2(3- - 1) + n^ + 1 > 0.

n-311. The case/3-=-^3

Now we look at the more delicate cases where we have equality in (5), which by (10) implies
an inequality in (8),

n n—3 1 . - , , . n+1 n— 1^-=—r' ^4' /3=2a--^>—^•
These cases have already been established for n = 2 and n = 3 in [II], where it was taken
advantage of the fact that {3- is nonnegative. That method doesn't apply when (3- <0 and we
need a more precise asymptotic control of the integral denning J(^, Q in terms of the angle
between the vectors 77 and —( when this tends to zero.

To simplify the problem, observe that by symmetry and scaling invariance we can assume
|C| ^ |^| = 1. As it will become clear later, the quantity J(?7,Q then depends essentially
on two parameters: a == |C|, which measures the ratio of the magnitudes of C and 77, and
e = \uj\ + Ct?2|/2 = ̂ /(\ +c)/2, which measures the angle between rj and —(. Both parameters,
£ and a, are contained in the interval [0,1].

Remark 11.1.- We can also assume that

^4
since otherwise we can use the inequality u ̂  1 - v\ to reduce simultaneously the powers in the
numerator and denominator of the integrand in (53).

We have to prove the boundedness of the quantity

/ ^Aa—l
I(a, e) = a2" ——"———^ dS^,(i - H)4^^

u^l—\v\
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where
UJ\ + ̂ 1 UJ\ — (JUJz

U=——.——-CJQ, v=~^~,————•^0-
2 I + <7

If we follow the same steps as in the previous section, we obtain an upper bound that diverges
for e —> 0. Indeed, with our assumptions we have v = Aw, with

1/2
^ -C I ( . 4a£A = — — — — = 1-——^ , 1-A^,1 ^ 1 + I C I I Y d+^)2

and we can always assume 1/2 ^ A ^ 1, otherwise the estimate becomes trivial. By a
computation similar to (54), using u ̂  1 — \v\, we find

^.^/^^/^-^-w^)
^o^logO - X)\^e-2a(a£)2a\\og(a£)\^£-2a,

which shows that J(a, ̂ ) is bounded uniformly in a if £ is bigger than a positive constant, but
diverges logarithmically as e —r 0.

It remains to see how to control the integral J(cr, e) when e is small.
Assume n ̂  3. We can always choose a coordinate system so that

^i^vT^^, o,...,o),
^2=(-\/1-^0,...,0),

cjo = (a ,̂ v/l-^-^/V), rr2 + 7/2 ̂  1, cj" C S71-3.

It follows that
i———-, \-o

u=ey, v = V 1 — ^ a; + -,——^Al+o-

d^, = (1 - x2 - y2)^ dS^ dxdy.

It is convenient to use polar coordinates for the pair (x,y): x = RcosO, y = Rsm0, with
O^J?^ l ,0^6>^7r .Then

(55) u=R£sm0,

(56) v=RQ, Q=y/l-£2cose+——o-£sm0, \Q\ ̂  1,
1 + o

(57) d6^ =R(\-R2)^ dS^/ dJ?d(9.

With this parameterization, we have

^^^-, ] f^-^-^-1^
J J (i - filOl)4^^'-" & ^ (i-fiM)^^

<,̂ -. ̂ in^-' ( ^ - R ^ - ^Rd0
J \Q\^+^ J (1-^ + 1 - a)4"^j loi^+i ./ r ' l ^o lyl o '• IQI
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(58) ^^-, J^me^H-^-(l--M}de.
^ |Q|4"+^ ^ ^ IQI ;

We use Lemma 4.2, the fact that

n— 3 n — 4 n — 4
- 4 a - — — + — — — + l < 0 and ——> -1,

Li Z^ 2^

to reduce to
7T

(59) J^e)^^^4"-1 />-(sm^——d0.
^ d-IOI)4"-^

We split the last integral into two pieces: the contribution coming from the region where | Q \ ^ -
which is easily bounded, and that where \Q\ > ̂ , which needs more attention.

^ 2 ^ 4 0 - 1 f (sing)4"-' _
J (1-|Q|)4"-2 ~

1 0 1 ^ 5

I^^-1 I ^^——dO.
J (I- IQI)4"-!

\Q\>^
From its definition

(60) Q=Q((?)=V'l-£2cos6^+- l—CT£sm(9.
1 +0-

If £ is small enough the condition \Q\ > 1/2 requires | cos 0| to be close to 1. In particular Q and
cos 0 have the same sign, hence

(61) 1^ <W- f f (sing)4;-1. d. + / <smg)4a-l. d.) .
^ (1-Q)4"-! ^ (l+Q)4a-^ y

LEMMA 11.2.- Let

,^n^__ ^^^m^_^
y d-Q)4"-^ J (i+o)4"-!
0 TT— ^—

Then we have J+ ̂  (a£)-4Q/+l a/zJ J- ^ e-40^1.

Using this lemma, (61) becomes

h ̂  a^e^-1 ((^)-4Q+1 + ̂ -4a+l) ̂  a1-2" ̂  1 ,

which is bounded in view of the assumption made in Remark 11.1.

Proof of Lemma 11.2. - Let's look first at J_, which is easier. When 0 e [JTT, TI-] we have

1 + Q ̂  1 + Vi~^cos0 w 1 - (1 - £2)(cos<9)2

(62) = e2 + (1 - £2)(sm0)2 w (e + sin(9)2.
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Hence,
2L 1

[ (sme^de ^ r x^dx 3.+i.^-4a+i
'--y (£+sin0)^-i-y (^^-i^4--1 (£)^

0 0

When 0 e [0,7T/3] we have

1 -Q= (1 -£sin(9- \/1 -£2cos(9) + —^—^sin^

(63) ^ ((1 -£sin(9)2- (l -^(cos^)2) +a£sin(9 = (^ - sin(9)2 + as sin (9.

Hence
-"- i
y (sin^-^ ^ /' ^-Ma;

+ " J ((e- sin 0)2 + oe sin e)40- ^ "7 ((e - x)2 + asa:)40- ̂ 'sine)40-o v v / o
To understand which term is dominant in the denominator, of the last integral, observe that
(e — x)2 < aex if and only if .r- < x < x-^-, where

x± = !- (2 + cr ± \/^a + <r2) ̂  £,

and notice that

rr+ — x- ̂  a1/2^, \x^ — e w cr^^e.

We have

r x^^dx 7 x^^dx y x^^dx r x^-^dx
J ((e-^+a^)4—^ ^ 1 (aex)^-^ +7 (£-^)8a-l + ./ (o:-^8—1 '
0 a;_ 0 .r+

The first integral in the right hand side is easily estimated,

^^^^'^^^^r4-1.
J (aex)^-^ (ae2)^-^

For the second, since 8a — 1 > 1, we have
rr.__ ^__ /^ ^p__

f^^d^ /l x^-^dx ( e^-^dxr x^-'dx ^ r x^-'dx r ___e^-'dx___
j (e-rr)^-1 ~ 7 "i8^1" + 7 ((s - x-) + (a-- - .z:))8^-1

0 a;_/2

1-4^ 4a-l / ^

0 0 x-/2

e
<, l -4a , 4a-l

J (a^e^y)^-1

' / (,./2^-. - ̂ l-4° (1 + ̂ (l-8a+l)) - (^-4Q+1-

/* /-l-/-
=£ l-4a+£ l-4a / ——^——-^—-we l~^(l+o•^ i~o^ l })w(ae

o
The third is treated in a similar way,

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



242 D. FOSCHI AND S. KLAINERMAN

f x^-^dx ^ r x^-^dx 7_____e^^dx_____
j (x-e)^-1 - 7 a;8a-i + j ((;r-.^+)+(;r+-£))8a-l
0 2x+ x+

£

< l -4a, 4a-l [ ^V _ . ^-4a+l
-£ +" 7 Q/+aV^)8a-l~^) • D

0

This completes the proof when n ̂  3.
When n = 2 the above procedure can be simplified. We can always choose a coordinate system

so that

^i = (Vl -£2^), cc;2= (-\/1 -^.O), 0:0= (cos (9, sin (9), 6>e[0,7r].

We have

u=£sin0, v=Q= \/\ -^2cos6>+ ,—^sin^, d^o =d6>.
1 +cr

We obtain

i^=^ f u^ .d^<^-^ ^^-.d^
y (1-|Z,|)4«-^ 7 (l_|Q|)4a-^

U^l—|t»|

and we already know from the analysis above that the last integral is bounded.

Remark 11.3.-If we compare the formulas, we can see that the above calculations, in
practice, reduce the problem in dimension n ̂  3 to that of dimension n = 2.

12. Frequency localized estimates

There is another way of proving Theorem 1.1, with the exception of some limiting cases, by
using dyadic decompositions. This is done by following the steps below:

(1) Decompose the functions, and their product, into dyadic pieces relative to the frequency
space.

(2) Obtain sharp estimates for the product of solutions corresponding to data supported in
different dyadic regions.

(3) Sum the pieces together exploiting the orthogonality properties of the convolution
structure.

Step 1: decomposition. Since we deal with L2 theory we don't need any refined Littlewood-
Paley theory, we can simply cut the frequency space into disjoint dyadic shells. Let \\ be the
characteristic function of the region { A ^ |$| < 2A} and define the operator S\: / H-> f\, where

A(o=(^/no=^(o/(o.
Each function can be decomposed into dyadic pieces, / = EA^ A. Throughout this section,
sums in A and ^ will always be taken over dyadic values, ̂ . = ̂ . .z.
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If u and v are solutions of the homogeneous wave equation, nu = \3v = 0, with initial data7

u(0) = /, 9tU(0) = 0 and v(0) = g , (9^(0) = 0, then we can write the product uv as the sum8 of
three pieces, uv = E\ + Ez + ^3, where

FI = ^ U\V^ ^2= ^ ^A^, ^3= ^ ^A^.
\,fji^ A,/^ A,/^
/2<^A /-A^A A^^

The sums Z'i and ^3 contain the interactions between high and low frequencies and, as it
was made clear by Example 5.2, their control is more critical when a\ or a^ are close to their
maximum values allowed by (7). The sum Z^ instead, takes into account of the interactions
between same frequency levels and, as it was made clear by Examples 5.4 and 5.5, its control is
more critical when /?o or a\ + a^ are close to their minimum values allowed by (8) and (6).

Step 2: dyadic estimates. This is really the main step. We prove the following:

THEOREM 12.1. - Let 0 < IJL ̂  A and 7 ̂  -(n - 3)/4. Take f and g to be functions whose
Fourier transforms have compact supports and let u and v be the solutions of the homogeneous
wave equation, nu = \3v = 0, with initial data u(0) = f, Otu(0) = 0 and v(0) = g, (9^(0) = 0.
We have the following dyadic estimates:

• suppose supp f C { | ^ | ^A} and supp^ C { [ $ [ ̂ }, then

(64) \\Dl(uv)\\^^^\\f\\\\g\^

• suppose supp /, supp^ C { |^ | ̂  A}, then

(65) \\DlS^u^) | ;$AV^ H / 1 1 II^H,

(66) , \\DlS^v-)\\ ̂  A^+^ |[/|| ||^||.

Proofof(64). - We have to prove that

IM-I^II7 I 6(r-\rj\^^-rf\)f(ri)g^-^^\\ ^ ̂ ^H/HNI.
J III/2

1^1^ ^

Applying Cauchy-Schwarz, as in the proof of Proposition 7.1, this reduces to show that

sup||T|-|^||27 / ^(r-H-Tl^-^d^/.2^-1.
T,^ J

1^1^

The case [L ̂  A is easy and can be treated precisely as in the proof of Proposition 7.1 or
Proposition 8.1, by using Lemma 4.3 or Lemma 4.5 with a = b = 0. Assume instead that ^ <C A,
then |77| ^ A, |^ - 77! ^ IJL imply r ^ |^| % A and ||r| - |^|| ^ /^. What we need is then the
following lemma, together with the condition 27 + ((n — 3)/2) > 0. D

7 For simplicity and without loss of generality we take <^o = /, <^i = 0 and ^o = 9^\ = 0-
8 This way of decomposing a product is essentially the main ingredient used in paradifferential calculus.
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LEMMA 12.2. -Let |^| > p.. Then

f ^r-\rj\^\^-rj\)drj^ \r\ - \^ ̂  .
^\<^..J

\^-r]\^

Proof. - Consider the case of integration over the ellipsoid. We make use of formula (25) in
Lemma 4.1 with F(\rj\, \^ - rj\) = ̂  - r]\ ̂  ̂

I(r^)= f 6{T-\^\-^-rj\)drj

1^1^

=(r2-\^ f {^-^x^-x^-dx.

-Kx<l
r-\fi\x^

We are in a situation where r % |^| and

0<-^T-^^«••
hence

^(^-ICD^T^ ( (l-x^dx

0<l-x^p,/W

-(^"(-^^^^(T-^l)^^.

The case of integration over the hyperboloid is done in a similar way using Lemma 4.4. D
Proofof(65). - The case fi w \ is already contained in (64), hence we can assume [i <€ A. If

|77| % |̂  - r]\ ̂  \ > [i w |^|, then r = \rj\ + |^ - T]\ > |^| and the Dl becomes essentially A7 and
doesn't create any problem (in this case 7 can take any value). More over, in this case the vectors
rj and $ - rj must occupy almost opposite positions and, since the interaction ^ takes place on a
set of size ̂  we can reduce to the case where / = /(Q) and g = ?(_Q) have supports contained
in opposite cubes Q and -Q of size w ^ at a distance ̂  A from the origin.

Indeed, let [Q}q^Q be a family of cubes of size ^ that covers the supports of / and g .
Decompose / = ̂  fq and g = ̂  gq, where fq = \QJ with \Q the characteristic function
of the cube Q. Let UQ and VQ be the solutions of the homogeneous wave equation corresponding
to initial data JQ and gq. Then S^(uv) = Y,Q^Q^ S^UQ, VQ^) and the sum can be taken over just
the pairs of cubes Q i, Q^ e Q such that Q i + Q^ is contained in the region { | ̂  | ̂  5/^}. For each
fixed Qi € Q there is at most a finite number, depending only on n, of cubes Q^ e Q so that the
pair (Q\,Qz) has that property. This implies that

E ll/Qillll^ <
Qi,Q2€Q

Qi+Q2C{|^5^}

Moreover, for each of these pairs of cubes is always possible to find a cube Q of size lO/^ such
that Q\ e Q and Qz^—Q. Hence, we just have to prove

^^Q)!!^^!^^)^^"!!^)!!!!^-^)!!Wn.V.
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If we apply directly Cauchy-Schwarz we reduce to show that

sup { 6{r-\r]\-\^-r]\}^^^-\
rw\ J
li^ l^leQ

which is a consequence of the following lemma. D

LEMMA 12.3. - Let |^| < T and Q be a cube of size fi. Then

I ^T-^l-l^-Odr^71-1.

r]^Q

Proof. - We have

/«(.-i,i-is-,i)*,- / iv,(î -,i)r
rj^Q ^(r,OnQ

The vectors 77 and ^ — 77 are almost opposite, hence

245

f i - r j|V^|r7|+|^-77|
\ri\ \^-ri\

1.

The condition |^| < r forces the shape of the ellipsoid to be close to a ball of radius much bigger
than ̂  hence |<?(r,0 H Q| ̂  ̂ n-l. D

Proof of (66). - As for the proof of (65), we can suppose that [i < A and / = /(Q) and
g = gf-Q\ have supports contained in opposite cubes Q and —Q of size IJL at a distance A from
the origin.

To treat the resulting expression we have to use again the doubling method discussed in
Proposition 8.2. This procedure works in any dimension.9 However, as it was recently observed
by Tataru in [21], there is a somewhat simpler proof of the dyadic estimate (66) in dimension
n = 2, which we sketch below for completeness.

The observation is that, in this case, we can follow the same pattern of proof as in the previous
estimates. We can in fact apply directly Cauchy-Schwarz and reduce to show that

(67) ^/^-H+^-^d^A^.

Q

Compute the gradient of the quantity inside the delta function,

^ - r ]v,(r -H+|^ -»?!)= —^-H le-^r
From the equation r= \ri\ — | ^—?? | we infer that

•n , ^-T?
\ri\ 1^1

l^l2--
b?lk-»7l'

9 For a discussion of the doubling method in the particular case of n = 1 see [11] as well as [14].
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Hence, using formula (17) and the fact that we are integrating on a piece of a curve of length
IQn^(T,o|;$^,

/^^-l^l+l^-^d^d^-T2)-172 f |^_^1/2^

Q QrW(r,0

^(l^l-Tl)-1^-1/^1/^1/2^

and, since |^| - |T| ̂  /x, we obtain the desired bound in (67) when 27 ̂  1/2.
Now assume n ^ 3. This time we perform a Cauchy-Schwarz inequality only after the

doubling of the integral, and reduce to prove that

ff ( 1^1 - \r\)^6{r - \T)\ + |^ - rj\)6(r + |C| - ̂  - Cl) drd^ ̂  A^-2.

1^1^

Using the fact that |^[ - |r| ̂  ^, it is enough to look at the most critical case 7 = -(n - 3)/4.
By scaling invariance we can also fix /z = 1. We have to show that

(68) ^i^^-i.i+k-^(T+ici-k-ci)\u ^-^~
This is an integral restricted to the ellipsoid £ = £(r], Q, of a type that we have already
encountered.

We first observe that this integral is much simpler to treat in dimension n = 3, since the
denominator in (68) disappears, and therefore we have

"V^""""'"""^'^4 / i^-^-ci)rl^1 ^^,o
1^1

Now, from the equation \T]\ + |C| = |̂  - rj\ + |̂  - C| it follows that

MICI+^C-I^-^-CI+^-^-^-O
and we have

^(i^-.i+^-cDi^'^N^ZLO^.^ff^^l
^ ' ' " q/l l^-^ll^-ci l^-^-ci A2

where (9 ̂  A-1 is the angle between rj and -C. Hence, since the region of integration has diameter
comparable to 1, we have

1^ f dS^l.
(̂77,0
|^|^i

In general for n > 3 it is not so easy to adapt this geometric argument, we opt instead for
a more analytic approach, with the help of the parameterization for £(rj, Q used in Section 11.
Choose a coordinate system so that
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^=(^TT^,o,...,o),

^(_yr-^o,...,o),
('--(Rcos0,Rsin0,\/l-R2^"), O^R^l, 0 <i0 < TT, J1 €§"-3.

By the same calculations which led to (58), taking a = 1/4, we have

R(l - R)— dRd0•<-!!^V (\-R\Q\)—

with the quantity Q still defined by (60) with

.——^+- |«1, ^-l.
2 |^| K| 1^1

The integration is restricted to the region D c { 0 < S : R < ^ l , 0 < ^ 0 < £ : 7 ^ ] corresponding to
<?(^ 0 ̂  { 1 ^ 1 ̂  1 }• Using formulas (50), (55) and (56) the condition |^| ̂  1 becomes equivalent
to

(69) l-R\Q\^XeRsm0,
which is the key to proving the desired estimate.

In the region D\ where R ̂  1/2 or |Q| ^ 1/2 there is no singularity in the integrand and

-// R(\ - R)~ dRd0
n
Di

h= -————————$1.
(1-7?|Q|)—

Consider the region Dz where -R > 1/2, \Q\ > 1/2. From (69) we have

max{ 1 - R, 1 - IQI} ^ 1 - R\Q\ w \e sinO

and it follows that we must have sinff ̂  Xe, since, repeating the argument of (62) or (63), we
have

(e±sine)2^l-\Q\^\£sme.
We compute first the integral with respect to R over 0 ̂  1 - -R ,$ \eQ and then estimate the
integration with respect to 0 over 0 ̂  sin 6 ̂  min{ Ae, 1},

[ f (I - R)^ dRd0 . [ (Aesm^)^ min{A£j_}1/2

^ll (l-fi|Q|)^ ^ 1 (^sm^^^'^Ai)!?——-1- D

Dz sm0'^\£

Step 3: summing up. We now use the estimates proved in Step 2 to sum the pieces together.
We start with estimating E\. Since the Fourier transform of the piece p\ = ̂ ^\u\v^ has
support in a region where |$| ^ A, we infer that [p\}\^ is a sequence of almost orthogonal
functions, therefore

^D^D^-^^X^X^^-p^
x

^^-Fill^^A^A^II^-p.ll2.
X
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Using the dyadic estimate (64) of Theorem 12.1 with 7 = /?- we have

\\D^-px\\ ̂  E II^H ^ ̂  ̂ -^^A-^—II^AIIII^^II.
^<A ^<A

By (4) and (7) we have that

n — 1
^ = -(00 + /?+ - o-i) = /?- + ——— - 02 ^ 0,

hence

Jn^ii)2
[l^o^^-rill^^p-AII^E^yil^^ll)

A VSA^ / /

^Eii^AfEii^^u'Ef^)26-
A //<^ ^ ^ x V ^ /

/A |
A ^t<A ^'<^\

To ensure the boundedness of the last geometric series we need e > 0, which requires a strict
inequality in (7). In that case,

\D^D^D^-^ ^ ̂  H^AII2 ̂  P^ll2 = ll^/ll2!!^2^!2.
A ^

The term ^3 can be estimated exactly in the same way.
Now consider E^. First decompose ^2 into orthogonal dyadic pieces

ll^^^-^ii^E^II^^-^^ii^E^fEI^^-^TO)!!)2.
^ ^ A^/^ /

To be rigorous, we should have written u\ ̂ y^ v\' instead of u\v\, but we can forget about
this detail since the operators S^ = ̂ ,^ 5y behave essentially like the S^s, indeed we have

E ii^/n2 - E E ii^/n2 ̂  E ii^/n2 = ii/n2.
A X X'wX \

We have to treat the (+ +) and (+ -) cases differently because of the different behavior of the
operator D+. In the (+ +) case, D^ corresponds to T ̂  A and using (65) we find

\\D^D^S^UXVX) \^^^-^\~av~^\\D^^\\\\Da2g^

In th^ (+ -) case, D^ corresponds to |^| % p. and using (66) we find

ll^^-^^^II^^A^^+^A-^-^II^^AlIP"2^

In both cases, using the scaling condition (4) and setting e = /3o + 7—1 for the (+ +) case and
e = oji + o;2 - \ for the (+ -) case, we reduce to

ii^^^-^ii^EfEf^yii^'Aiip^ii)2.
11 ^\>,, ^ / /^ 'A^
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To estimate an expression like this we write the square of the sum over A doubling the sum, and
interchange the order of summation,

\-f\-f^Y ^\2 \-f v- ^\ ^ ^^^(^ '̂̂ Ls,,.,^)"'""-6'
^^min{Ai,A2}V

^ Y ——r\ x i a\^\^\zb\z^VrnaxtA^}/
Al,A2

<(^a,bX<(Ya2.(E )̂ ^(E^E6!)-
v A / v A / v A /

Here to ensure the convergence of the geometric series in (i we had to require that e > 0; this is
equivalent to (6) in the (+ +) case, while it requires a strict inequality in (8) for the (+ —) case.
With this assumption we finally obtain

D^D^D^-^\\2 ̂  ̂  H^AII2 E ll^^ll2 = II^/IPP^II2.
A /2

Remark 12.4. -Using the dyadic estimates of Theorem 12.1 we have been able to reprove
Theorem 1.1 except for the cases which correspond to equality in (7) and (8). These correspond
to the boundary of the triangle A^A\A^ of Fig. 1 and we know that they are allowed, in view of
our previous proof, for /3- > —(n — 3)/4.

On the other hand the estimates (64), (65), (66) of Theorem 12.1 show, roughly, that for
frequency localized data the estimate (3) is true even in the exceptional cases (9), (10) and also for
/3o = —(n — 1)/2. This explains why the examples of Section 6 had to take into consideration the
interactions among several different frequency levels to produce a weak logarithmic divergence.

13. Null form estimates

Theorem 1.1 has its roots in the study of the improved regularity properties for solutions of
nonlinear wave equations with a special null structure. Typically this structure can be described
in terms of null bilinear forms. In general a null quadratic form is an expression of the form
Q((f),^) whose symbol q(r^\\,r]) vanishes whenever the space-time vectors (r,0,(A,?7) are
null and parallel. We give below some of the main examples of bilinear null forms which have
appeared so far in the study ofLagrangean field theories, such as the Wave maps and Yang-Mills
equations.

Consider first a generic bilinear form Q((f), '0) whose symbol is given by q(r, ̂ ; A, 77). In other
words,

OO^XT, 0 = I q(r - A, ̂  - 77; A, rj)4>(r - A, ̂  - ̂ (A, 77) dA d77.

Under the assumption that (f) and ^ are solutions of the homogeneous wave equation, using
the notation of Section 3, we can take

^=^+, ^=^l;±.

Then the space-time Fourier transform of Q can be written in the form

O((^±)(T,O ̂  ( q±(r]^- r])6(r - \r]\ =p |̂  - r]\)$o(rj)^ - 77) dr?,
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where q±(rJ, ̂  - rj) = q(\f, - rj\, ̂  - 77; ±\T]\, rj) will be called the reduced symbol of the bilinear
form Q.

DEFINITION 13.1. - We define the null forms Qo, Qzj, Qoj by

Qo(^ ̂ ) = -9tW + V^ • V^,
Qzj((f), ̂ ) = 9i(f)9j^ - 9j(j)9i^, 1 ^ i < j ^ n,

Ooj(^VO = Q^Q^ - (9^<9 ,̂ 1 ^ j < n.

Their correspondent reduced bilinear symbols are

(^O^HICI-^G
^(^0=-^0+%•C^,
^•(^0=-1^10±^ICI.

These are the null forms that appear in the nonlinear structure of important lagrangean field
theories, like Wave Maps and Yang-Mills equations. Indeed, a good model problem for the
equations of wave maps is given by the equation (see [6,14])

Dn= Qo(u,u),

and the Yang-Mills equations, with an appropriate choice of a gauge condition, have a nonlinear
structure with a quadratic part that is well described by the model system of equations (see [8
15])

Ou^c^D^Q^u^u^+c^Qi^D-1^^).

These equations have better regularity properties than a semilinear wave equation with a generic
quadratic nonlinearity, like

Dn= \Du\2.

The main cancellation properties of the above null quadratic forms are summarized in the
following lemma.

LEMMA 13.2. - Let rj and ( be two vectors in W1'. Then we have-
WforQo,

(70) l ^ l l c i -^ -c^d^ i+ icDd^ i+ ic i - i ^+c i ) ,
(71) HICI+^C^+CIO^+CI-N-ICII);

WforQij,

(72) \rj A C| ;$ H^ICI172^ + Cl^d^l + |C| - \r] + Cl)1/2,

(73) I^ACI^I^I^ICI^I^+CI^I^+CI-IH-ICII)172;
WforQo,,

(74) IHC - ICIHI ̂  Î MCÎ I + icD^d^i + ici - \ri + d)172,
(75) li^ic+idMi^H^id^i^+d^d^+d- \ 1 / 2
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Proof. - Inequalities (70) and (71) follow immediately from the identities

2(l??IICI-»7-C)=(h?l+ICI+b7+CI)N+ICI- l?7+CI),
zO^IICI+^CMi^+CI+bpl-ICDd^+CI-l^l+ICI).

Inequalities (72) and (73) follow from the identity

\ri A ciMi^iici+^cKhpiici -??-c)
= \ (!»?+ Cl + l»7l - I C I ) (b? + Cl - \ri\ + |CI) (|»?|+ |C| + \r, + C|) (^ + |C| - ̂  + Cl) ,

indeed, assume \TI\ ̂  |d, then we just have to notice that

(b?+CI + h?l - ICI)" 1??+CI, (1^+CI - 1 ^ 1 + ICI) $ ICI,
(M + ICI + h? + Cl) ̂  H, (M + ICI - h? + Cl) ̂  ICI.

Inequalities (74) and (75) follow in a similar way from the identities

NC- IClrf= I^IICKI^I + ICI + [»?+CI)(H + ICI - 1^+CI),
MC + ICIHl2 = I^IICI(1»? + Cl + 1 ^ 1 - ICI)(1»? + Cl - 1^1 + ICI). a

Let n ̂  2. Let <f>, ij) be the solutions of (1), (2), and for simplicity take 4>\ = 1^1 = 0. We have
the following corollaries of Theorem 1.1.

COROLLARY 13.3.- The estimate

| D^D^D^-Qo^) |^.+")^ II^'^II^R")!!^2^!!^"),

holds when a\, a-z, f3o, /?+,/?- satisfy the following conditions:

f3o + /3+ + /3_ = o-i + 02 - "—3,

,-, - n+1 n-1
/3->--4- ^O--^-.

o' i+Q;2^^, a i^ /3_+"——,

/ i a ^ ^ ( v n-\-\\ /n+1 n+l\(ai+Q2,/3_)/^,——^-J, (a,,/?_)^^^-,-^-J.

Proo/ - We could use (70) and (71) to argue at the level of symbols, but in this case we can
just use the identity

2Qo(^V') = DW) - (D^ - </>(D^),
to deduce that Qo((j), </») behaves like D+D_(^). More precisely, let 4>' and ^ ' be the solutions
of the homogeneous wave equation with data ̂  and ipy, where

te=|^o(o|. te=|^o(o|,
then |Qo(<^)| $ (I5+£>-(^^/)^ and

||D^Z^-Qo(<^)|| $ ||25/3»^+l^-+l(<^V)|[.
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Also P^H = p^oll and P^oll = 11 ̂ ^oll. The result then follows from Theorem 1.1
with /3+ and /?- replaced by /?+ + 1 and /?- + 1.

COROLLARY 13.4.- The estimate

\\D^D^D^-Q^^) \^^ ^ II^^OIILW^II^^OIIL^),

/zo/^51 W/Z^M ai, 02, A)» /?+»/?- satisfy the following conditions:

n+3
/?0 + /?+ + /^- = O^l + 0-2 - 2 ?

/Q . ^+1 „ . ^-1A)>-^-, /3-^--^-,

^ i + Q ' 2 ^ - , a ,^/?_4- 7——, z = l , 2 ,

/ , / o x / ^ 3 n-l\ /^+3 n-l\
(ai+a2,/3-)^^,——4-J, (a,^_) + ̂ -^-,——^-J.

Pwo/: - The inequalities (72) for the (+ +) case and (73) for the (+ -), on the level of
symbols, allow us to replace 0^(0,^) by D l / 2 D l / 2 (D l / 2 ( / )D l / 2 ^ ) , and then we can apply
Theorem 1.1 with /?o, /?-, a\ and a^ replaced by

00 + ̂  /?- + ̂  al - 9 and ^2 - ^•

Doing in this way we would obtain the estimate valid in the range above except for the condition
on /?o, for which we would have only /?o > -n/2. But recall that the condition on f3o becomes
relevant only in the (++) case when we are in the region where |^| < r. (See Example 5.4
and Proposition 7.3.) There we can use the fact that \rj A <[ ^ I^I^ICI172!7? + Cl. which is a
consequence of (73), to replace Q^(0,^) by D^1/2^!)1/2^) and therefore gaining another
half power for /?o. D

COROLLARY 13.5.- The estimate

\D^D^D^-Q^^)\\^^ ̂  ̂ MW^D^MLW

holds when a\, 02, A). /?+»/?- satisfy the following conditions'.

n+3
A) +/?++/?_= Oi + 02 -

2 '
„ . ^-1 „ . n-1^o>-^-, /3-^-^—,

Q / l + a 2 > , , a , ^^_+ 7 ——,

( i / 3 ^ ^ / ^ 3 ^--^ / ^ y ^ ^ 3 n - l ^(ai+02,/?-)^^,-^-J, (a,,/?_)^(^^-,——^-J.

Pwo/: - Using inequalities (74) for the (+ +) case and (75) for the (+ -), on the level of
symbols, we can treat Ooj(^,^) as if it were Z^PY2^172^172^), and then we apply
Theorem 1.1 with /?+,/?-, a replaced by /?+ + 1/2, /?- + 1/2 and 02 - 1/2. D
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Remark 13.6. -The conditions on the exponents ^o,/^,/?-,^!,^ in Corollaries 13.3, 13.4
and 13.5 are not only sufficient but also necessary for the validity of the estimates. One can see
it using the same examples given in Section 5 and 6 and applying Lemma 13.2 to the symbols of
the null forms. The only thing to notice is that for the null forms Qij our examples correspond
to the region where we can use (72) and (73) with ̂  replaced by %;.

14. Conjectures for LqLr estimates

Now that the L2 theory is completely understood, it makes sense to investigate the possible
generalization of these bilinear estimates to the Lp context. The starting point in this respect are
the classical Strichartz inequalities which we can cast in a bilinear form as follows (see [3] and
[5]):

(76) W\\^ ̂  (P'<MLW+ ||^-l^||L^))(l|^a^o||L^)+ P'-^lllLw).

They hold whenever q, r, a satisfy the conditions

^^-^fl-1), 2a-n f l - 1 ) - 1 , (<7,r,n)^(oo,l,3).
q 2 Y r ) \ r ) q

In view of the L2 bilinear estimates presented above, it makes sense to consider generalizations
of the type

||̂ »Z)̂ -W)||̂

(77) $(l|£»Q^o||LW")+ll^°l-l^ll^(R»))(ll^a2V'o||L2(R")+||I5a2-l^l||L2(Rn)),

where by L^L^ we denote the Lebesque space with mixed exponents defined through the norm

+.00/ /• w. V79
/ r / r \<l/r \

\\F\\L^=( \ \\F^x)\^x\ dt\
\ u \u / I
\ —^,", TDm /' —oo K'

Some estimates of this type, with / ?+=/?_= 0 and f3o < 0, have been recently proved, and
made use of, in [15].

THEOREM 14.1 ([15]).-The estimate

I ̂ WQlL^ ̂  (llDa(MLW+ H^-^l ||L^))(1|^^0||L2OT+ H^-^l ||̂ .))

hold when

l=r- lfl- l\ /^^l-Hfl-1), a > 1 ^0.
q 1 \ r ] q \ r } 2q

The proof is based on the Littlewood-Paley decomposition and some sharp dyadic version of
the classical Strichartz inequalities.

Remark 14.2. - The investigation concerning the L^L^ bilinear estimates was motivated by
the hope that such estimates could give further insight into the problem of optimal regularity for
nonlinear wave equations. As an example, consider a system of equations of the form

\^u = Q(u,u),
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where Q stands for an arbitrary null form (see Definition 13.1). In [6] one has used L^L^ bilinear
estimates

I W^)|Lw^) ̂  \\M^^O\\H^
for two solutions, (f) and ^, of the homogeneous wave equation with data (f>(0) = (f)o, ^(0) = ^o,
9t(f)(0) = cWO) = 0, together with the standard DuhameFs principle, to prove J^+D^ ^ell-
posedness results. DuhameFs principle suggets, however, that an estimate of the type

IW'NL^ ̂  MH^MH^,

with optimal choices of a\ and 02 might imply a better result. Unfortunately, Example 14.14
shows that this approach fails. Nevertheless, we suspect that the general form of bilinear L^L^
estimates may turn out to be very useful.

Let's discuss now the estimates (77). The following condition follows easily by a straightfor-
ward scaling argument:

(78) /?o+/? + + / 3 - - ^ - n = a l + a 2 - n.q r

Using the techniques of Section 5 we want to find other necessary conditions for the exponents
q, r, f3o, /3+, /3_, ai, 02, involved in (77).

The algorithm is still the same:
(1) We have to check the boundedness of the operators

R R • 7'2/"TD)^\ ^ 7'2/TD)'^ T 9 T r-D(++)»-D(+-)•-L (K J X L (M )-^L^L^

defined in (21), (22), (23), (24).
(2) We test it relative to the characteristic functions of two sets F and G which may depend

on a small parameter e.
(3) We choose F and G in an appropriate way, corresponding to the geometry of the

singularity of the weight W^. We want also to be able to estimate the order of magnitude
of the weight W^ in terms of parameter e when r] e F and C ^ G, let's say W±(rj, Q ̂  W^
for some constant W^ = W^(e).

(4) To each choice of F and G there corresponds a region R in physical space, depending on
e, so that, when r] e F, < e G and (^, a-) e ̂  the phase (^±(t, x\ rj, Q is essentially constant
(or we can subtract from it a function of (t, x) to make it essentially constant).

(5) This set R will span a time interval of length T^ = T^e) and all its sections at fixed t will
have the same measure, say equal to Xx = X^(e).

(6) Putting these ingredients together we obtain that

IIJB(+±)llLgZ^
^W^F^G^T^X^

\\XF\\LA\XG\\L^

(7) All the quantities on the right hand side will be estimated in terms of power of our
parameter e. The resulting combination will be of order e^ for some exponent d which
depends on the quantities q, r, a., /3..

(8) For the estimate (77) to be true, ̂  has to be uniformly bounded as e -^ 0, therefore d > 0.
This implies a necessary condition on the parameters g, r, a\, 02, /3o, /3-\-, /?-.
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We classify the examples into two categories, the first contains those with data supported on
the same dyadic shell in frequency space, the second contains those with interaction between
high and low frequencies.

Interactions of the data at the same frequency level

Example 14.3. - Consider the (+ +) case. Take

F = {rj: 1 < rjt < 2, e < ̂  < 2e, \r]" < e}, \F\ ̂  £n-l,

G = {C: 1 < Ci < 2, -2e < €2 < -e, ̂  < e}, \G\ ̂  e^.

Looking back at (23) and estimating each of the factors |^|^°, r^, (r - \^\)/3-, \r]\al and K^2,
we have

^ol/3+^2^_
W+ ^ W^ = { ) = e^-.' 1^402

Now write the phase as follows

<^+ = t{\r]\ - 771 + |C| - Ci) + (t + x^ + Ci) + x ' . (ri + C7)

= t0{e2) + (t + x^) 0(1) + x ' ' 0(e).

Hence, we can choose

R = {(t, x): t = 0(£-2), a-i = -t + 0(1), x ' = 0(£-1)}, T, ̂  £-\ X, ̂  e-^-^.

Then

W^F^G^T^X^e^-e^e^e-h-1-1 =6^

and we obtain the condition

(79) d=2/?--2+(n-l)fl- l) ^0.
g V ry

Example 14.4. - Consider the (4- +) case. Take

F={rf: |̂ i - 1| <£, £<^<2£ , l^ <£}, [Fl^^,

G = { C : | C l + l | < ^ - 2 £ < C 2 < - ^ | C / / <^}, |G|^^.
We have

/3oi/3+i/3-
^^^^ g 1 1 =gA)

' ^0:1^0:2

^+-2^^( | ^ | - l+ |C | - l )+^ l (77 l - l+Cl+ l )+^• (^+C / )= tO(£)+ .^ •0 (£ ) .

Hence, we can choose

R = {(t,x): t = 0(^-1), x = 0(s-1)}, T, ̂  £-1, X, c^ e-71.

Then

^IFI^IGl^r^x^^^?^?^-^-? -^,
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and we obtain the condition

(80) d=0o-}-+n(l-l}^0.
1 \ r )

Example 14.5. - Consider the (++) case. Take

F = [rj: \r)i - 1 < £2, e < T]Z < 2e, \f]"\ < e], \F\ ̂  e"+1,

G = { C : |C i+ l |<£2 , -2£<C2<-£ , |C" <e}, IGl^e"^.
We have

g/3ol/3+l/3-
W+wW,=———————=£l30.' ^ai^az

^+-2^f(|7?|-l+|C|-l)+a'l(?7l-l+Cl+l)+a• /•(?? /+0=tO(£2)+.rlO(£2)+^•0(£).
Hence, we can choose

R={(t,x)•.t=0(€-2),x,=0(£-2),x'=0(£-l)}, T^e-2, X^e-^.

Then

W,\F\^\G^TJ'X^ ^e^e^e^e-te-^ =£d,
and we obtain the condition

(81) d=/?o-2+(n+l)fl- l-^0.
q \ r j

Example 14.6. - Consider the (+ +) case. Take

F={r,: |^-1|<£2 , \^\<£2,\rf'\<e}, F^£"+2,

G={C:|Cl |<£2JC2-l |<£2 , |C / / l<£}, IGl^e"^.
We have

1 A) 1^+1/3-Ty, ~ ry — — 1n/+^l4/,- ^^^ -i,

<p- - 2t - xi - X2 = t{\r]\ - 1 + |C| - 1) + a-i(??i - 1 + Ci) + x^ + €2 - 1) + x" • (ri" + C")
= t0{e2} + xi 0(e2) + a;20(e2) + x" • 0(e).

Hence, we can choose

R={(t,x): t=0(e-2), xi =0(e-2), ^=0(e-2), a;" =0(e-1)},
r.^e-2, J^e-^2).

Then

IV,|F|̂ |G'|̂ ^,1 c.^^e-te-^ ̂ ^
and we obtain the condition

(82) d=-2+(n+2)(l-l-}^0.
q \ r }
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However, condition (82) is not sharp and can be improved with a more refined choice of the
sets F and G. The following example was communicated to us by T. Tao.

Example 14.7 ([19]). - Consider the (+ +) case. Take

F=[r]: \^-l\<e,\^-l\<e\\rff\<e}, |F| ̂ +1,

G={C: ici-ii^j^+i <^n<^ |G|^+1.
When 77 € -F and (^ € G we have:

| 77 | 2 =( l+(m- l ) ) 2 +( l+(^ - l ) ) 2 + |^ / | 2 =2+2( r7 l - l )+0(£ 2 ) ,

I C l 2 = ( l + ( C l - l ) ) 2 + ( - l + ( C 2 + l ) ) 2 + | C / / 1 2 = 2 + 2 ( C l - l ) + 0 ( £ 2 ) .

Taking square roots we find

\rj\ + |C| - 2V2 + —(^i - 1 + Ci - 1) + 0{e2).

Hence

(/?_ - 2\/2t - 1x\

= ^ 0 ( £ 2 ) + f — ^ + . r l \ ^ - l + C l - l ) + ^ 2 ( ^ - l + C 2 + l ) + ^ / • ( ^ / + C / / )\v2 /
= t0(e2) + rn 0(£) + X2 0(e2) + ̂ // • 0(e)

and of course we have
1 /3o 1 / 3 + 1 /3-

TV+ ^ ̂  = —————— = 1.
l^ l^2

We can choose the region R according to our decomposition of the phase,

R={(t,x): t=0{e-2), ^i=0(£-1), ^=0(^-2), xff=0{e-^},
T^e-\ X^e-^.

Then

W^\F\^\G\^XJ ^e^e^e-h-^ =^,

and we obtain the condition

(83) ^-^(n+^fl-1) ^0.q \ r )

Observe that in the above example all weights corresponding to the differential operators
are essentially like 1. Hence condition (83) is due solely to the geometric properties of cones
and to the bilinear structure of the product. There is an analogous example in the simpler
contest of bilinear restriction problems for the sphere, which we will discuss in Section 17 (see
Example 17.5).

Example 14.8. - Consider the (+ —) case. Take

F = { r j : |77i- l |<e,£<^<2£, \r]"\<e}^ |F| ̂ n,

G = {C ICi + 1| < ̂  -Ie < €2 < -e, 1C"! < ̂  |G| ̂  en.
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We have
/3o+/3+../3-

W- ̂  W^ = = ̂ o+/3++/3-
^ a i ^ Q 2 '

^- - ̂ (H -m- |C| - Ci) + (t + ̂ i)(^i + Ci) + x 1 • (r/ + 0
=t0(e2) + (^ + rri)0(£) + x ' • 0(5).

Hence, we can choose

R={(t,x): t=0{£-2),x^=-t^0{£-l),xf=0{e-l)}, T^£-\ X, ̂ -n.

Then

W.\F\^\G\^XJ ^e^^-e^e^e-^e-^ =0^
and we obtain the condition

(84) d=f3o^f3^^f3,-2+n(l-l}^0.
q \ r )

There is another example for the (+ —) interaction at the same frequency level which is
associated to an unusual quadratic-cubic scaling and, for some values of q and r is sharper than
Example 14.8.

Example 14.9 ([19]). - Consider the (+ -) case. Take

F=[r]: |m-l|<^ \m-e\<e\\r]"\<e1}, |F| ̂ 2n,

G={C: |Cl+l |<^|C2-^|<^|C / / l<^} , \G\^e^.
We have

,./3o+/3+p/3-U^_ ̂  ̂ y ^ c c ^ ̂ o+/3++/3-
* 10:llQ!2

Before estimating the phase, observe that for 77 e F we have

( ^2 \ ff 2\ 5 2 -2 1
h?|=7?i l+^+^j =^+^+0(£ 4 )=^+-1+0(£ 4 )

f}\ T?I 7 2?7i v / - 2 ?7i v /

£2 . -,£2

2»7i "v^ •" ' 2^i

=??i+y-(^i- l )y+0(£4) ,

and similarly, for ^ £ G,

£2 . e2

ICI=-Ci+^+(»7i+l)-+0(£4)2 "l ' ' 2

This implies that

l^l-ICI=07i+Ci)(i-^)+o(£4).

The phase can then be written as

V- -2ex2 =t0(e4) + \t(l - ̂  +xi\ 0(s)+X20(e3)+x" • 0(e2).
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Hence, we can choose

R = [(t^xY t= 0(£-4),^ = -t(l - ̂  + 0(^-1), xz = O^-3),^' = O^l,

which corresponds to T^ ^ e~4 and X, c± e"271. Then

^IFI^IGI^X,7 ̂ £^^-enene-^e-^=ed,

and we obtain the condition

4 / 1\
(85) d=/3o+^++/3---+2n( l -- j ^0.

Condition (85) is sharper than (84) when q and r belong to the region where

Mf1-1)-q 2\ r j

The last example for the (+ —) interaction at the same frequency level is an adaptation of an
argument of Selberg [16].

Example 14.10. - Consider the (+ —) case. Take

F={r]: l < 7 7 i < 2 , | 7 / <£}, |F|^^-1,

G = { C : K |C |<2, | |C |+Ci- l |<^ \G\^e\

Since the angle between 77 e F and -< C -G remains large, we have

i/3o+/3+l/3-
W- ̂  W^ = ———— = 1.

^Q;1^Q;2

Observe that for T] e F and C, e G we have

(hi - ICI) - (m +Ci)+1= (H -^i) - (ICI +Ci -1) -o^2).

Hence we can write the phase as

^_ + f = t0{e2) + (t + ^i)O(l) + ̂ / • 0(1),

which corresponds to 7* ̂  £~2 and X^ ^ 1. Then

W^F\L2\G\^X^le]^l£l£~h=£d,

and we obtain the condition

(86) d=n——--^0.

Condition (86) is relevant only when n = 2.
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Interactions of the data at different frequency levels

Example 14.11 ([19]). - Consider the (+ +) case. Let L = e~1 and define

F=[r]\ L < ^ i < L + l , 1<772<2 , \r]"\ < l}, |F| ̂  1,

c= {c: ic i i < i, -2 < €2 < -i, n < i}, \G\ ̂  i.
We have

r/3o7./3+l/3-
^^ ̂  = LJ = ̂ /3o+/3+-ai

' * ^o'llQ2

^+ - L(t + ̂ i) = ^(|77| - L + |C|) + rci(^i - L + Ci) + ̂  . (^ + <')

=^0(l)+^i0(l)+^.0(l) .

Hence, we can choose

R={(t,x): t==0(l),^=0(l)}, T,^l, X^l.

Then

^iFl^lGl^r^X^ ^L/30+/3+-al =2.-^,

and, in the limit L —>• 00, we obtain the condition

(87) d=-(3o-f3^^-a^0.

Example 14.12. - Consider the (+ +) case. Define

F=[r]\ L<r]i<2L, VL<rj2<2VL, r ] " \ < VL}, F^L^,

G = {C: ICil < 1, -2 < €2 < -1, 1C"! < 1}, |G| ̂  1.

We have
7- (3o T (3+ 1 /3-

^ ̂  ̂  = L ^ ^ = ^/3o+/3+-a^

^ + = ^ ( | 7 7 | - 7 7 l + | C | - C l ) + f t + ^ l ) ( 7 7 l + C l ) + ^ • ( ^ + C / )

=^0(1) + (t + .n) 0(L) + x ' • 0(L1/2).

Hence, we can choose

R={(t,x):t=0(l\x,=-t^O{L-l),xf=0(L-^2)}, T^l, X^L-^.

Then

^iFl^lGl^r^X^L^+^-^L^L-^1 =7.-^,

and we obtain the condition

(88) d=-f3o-f3++a,-n+]-(l-]-}^0.
2 \2 r )
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Example 14.13. - Consider the (+ +) case. Let L = e~1 and define

F = [r]: L < 771 < 2L, L < ̂  < 2L, \r]"\ < L}, |F| ̂  L71,

G = {C: |Ci| < 1, -2 < €2 < -1, 1C"! < 1}, \G\ ̂  1.
We have

W^W^^^L^-^
.L0!!0^

^+ = t(H + |C|) + a; • O? + 0 = tO(L) + x • 0(L).

Hence, we can choose

R={(t,x): t=0(l),x=0{L-1)}, 7*^1, X.^L-".

Then

W^F^G^TJ'XJ ^ZA>+/:'+-°•Z^L-U" =L-d,

and we obtain the condition

(89) d=-f3o-f^++al+}--n(--^\^0.

The last example that we present was also communicated to us by T. Tao.

Example 14.14 ([ 19]). - Consider the (+ +) case. Let £ be a small positive number and define

F={-n: ll^l+^-lel^2,^!^/!}, F »£"+',

G={(::\<:l+l\<£,\(:'\<£}, \G\^£n.

We have
^ol/3+^/3-

^^=-^-=L ̂ --

and for the phase

^ + + ( l - 2 ^ - ^ = t ( | 7 7 | + m - 2 £ + | C | + C l ) + ( r C l - 0 ( m + C l - l ) + ^ • ( ^ + C / )
= t0{e2) + (.TI - t)O(^) + x ' • 0(£).

Hence, we can choose

R={(t,x):t=0(e~2),x=0{£~l)}, T^e-\ X, ̂ -n.

Then

W^F^G^TJX^ ^^--Q'l+22-±l+?-i-^ =^,

and, in the limit £ —^ 0, we obtain the condition

(90) d^-ai+^+^-^+nQ-^O.

Making use of the scaling condition (78), we rearrange and summarize the various conditions
that we have found so far in the following proposition.
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PROPOSITION 14.15.- Let n ̂  2 and 1 < q,r ^ oo. //r/^ estimate (77) ^ m^ ̂  ̂
parameters q, r, ai, 02, A), /?+, /?- WM^ verify the following conditions'.

• Scaling invariance:

A) + /?+ + /?- = a i + 02 + ^ - n ( 1 - -^ ;<7 \ ry
• Geometry of cones:

1 n + 1 / 1\ l n + 1
^-^1-^ ^^-;

• Concentration along null directions:

^l-"-^(^^q 2 \ r ^

• Low frequencies in (+ +) interaction:

A)^ 1 -^ ! - 1 ) ,
q \ r )

2 / 1'
/ ?o^ - - (n+ l ) 1--

9 \ ^.
• Low frequencies in (+ —) interaction'.

a\ +02^ -,
9
3 / rai +02 ̂  - — n 1 — -
9 V ^

• Interaction between high and low frequencies'.

a,^/3-+j,

n 1 n- 1 /I 1\a , ^ / ? - + - - - + — — — - - - ,
2 g 2 \1 r j

-, n \ (\ \\
a^0-+2-q+n[-2--r}

,.^_+»i^C")^'iv
2 g ^2 r ) \2 q )

CONJECTURE 14.16. - The estimate (77) is true 10 when the parameters q, r, ai, 02, A), /?+,
f3- satisfy the conditions of Proposition 14.15, with the exception of some borderline cases
corresponding to equality in the above conditions.11

10 This and the following conjectures have more the flavor of open questions. They reflect our current understanding of
the problem. It is conceivable that the list of counterexamples and necessary conditions presented above is not complete.
In particular, in the region where q and r are very different our conjecture seems far to be optimal. For q = r we believe
our conjecture are sharp up to borderline cases.

11 Very recently we found out that T. Wolff has proved a significant part of this conjecture for the case q = r, see [24].
He claims that when ^ and ^ are supported on disjoint and transversal subsets of the positive null cone at the same
frequency level, then estimate (77) holds in the sharp range for q = r > (n + 3)/(n + 1), leaving open only the question
of the endpoint.
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We extrapolate from this conjecture also some conjectures about null forms. Again, for
simplicity we set <j)\ =^\ =0.

CONJECTURE 14.17. - Let n ̂  2 and 1 ̂  q, r ^ oo. Let Q be any of the null forms QQ or Qij
introduced in Section 13. The estimate

||w )̂|L^ ll̂ oiî iî oiî
is verified -whenever q, r, a verify the following conditions:

1 n( \\
a = l - — + - l - - ,2q 2\ r )

^ • J^+Vi ^ n+l n - 1 1 ^^i ^l
-^mm[-^(l--r)- -T-5 ̂ -+? ̂ H1-^}-

In the particular case where q = r = p the above conjectures reduce to

(91) ||W^)|Lp(R>+n) $ IÎ OIMÎ OIÎ ,

for
n+3 , ^^^i ^

^nTT and a=2+^[l~p)•
Estimates of the type (91) were first considered in [6]. There it was shown, using essentially

the Example 14.6, that the exponents p = (n + l)/n, a = 1 are not admissible for dimensions
n=2,3.

CONJECTURE 14.18. - Let n ̂  2 and 1 ̂  g, r ^ oo. 77?^ estimate

\\D-^Q^^)\\^ + | Q^CD-1^)!]^ ̂  ll̂ oll̂ ll̂ oll̂

is verified whenever q, r, a verify the following conditions'.
I f 1\ n( \\

a=- 1-- +- 1-- ,
2 \ q ) 2 Y r;

. n l . . \ n ( , 1\ . ^ n-3 1 n + 1l - - ^ - < m m ^ - l - - , n - l - - , ——+- ,
{n \\ , n n-3 1 n - h l l

i < - l - - , n - l - - , —-— + -, —,— } '\ 3 \ r ) r 2 r 4 Jr 9 l 3 Y ^ r 5 2 r- 4
In the particular case where q = r = p the above conjecture reduces to

| D^Q^^^ + \\Q^D-^^)\\^^ ^ ll^oll^ll^oll^

for
n+1 / 1\ ^ + 1 ^ , 1

a = — — — 1-- , — — r ^ P ^ n + 12 \ p/ n- 1
when n ̂  3.

15. The case q = oo, r = 2

Another situation where it is possible to completely verify Conjecture 14.16 is for energy-type
norms, when q = oo and r = 2.
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THEOREM 15.1. - Let n ̂  2. Let (f), ̂  be the solutions of(l), (2). Then the estimate

\D^D^D^-W)\^^

(92) ^(ll^^oll^OT+ll^-^ill^^^ll^^oll^OT+ll^2"1^

holds if and only ifa\, 02, A), /?+, /3- 5-ari^ the following conditions'.

(93) /3o+/^+/3_=„l+a2-n ,

(94) /3_ ^ n-1
4 '

(95) ^-J-

(96) a,</3-+7- z = l , 2 ,

(97) ai + 02 > 0.

Proof of the sufficient part. - By the usual decomposition of (f) and ^ into their + and - parts
it is enough to prove the estimate for <^+^+ and 0+^_. Observe that we have

(98) D^D^D^-^^^x) = D^D^D^- (<^^4)(0,;r),

where ̂  and ̂  are solutions of the homogeneous wave equation with initial data given by

^(rj) = e^l^), ^(0 = e^l<l^(0, j = 0,1.

Since the exponential factors don't change the norm of the initial data, once we have a bound for
the L2 norm in x of the expression (98) at time t = 0, then we automatically get a uniform bound
for all times. Hence the estimate (92) is equivalent to the boundedness of the bilinear operators

B^'.L^xL^L2,

denned by

B±(f,g)(Q = I W±(rj^- ri)f(rj)g^ - 77) d^

where W± are still given by (23) and (24).
More over, as we did for the proofs of Theorems 1.1 and 12.1, it is convenient to look

separately at the contribution coming from the interaction of comparable frequency levels and
the contribution coming from the interaction of different frequency levels. Thus, we decompose
the operators B± as the sum of

B^(f, g)(Q = ( W±(7^ - ri)f(ri)g(d - rj) dry,(99)

(100)

l̂ l̂ l̂ l

B^(f, gXQ = I W±(rj^- r])f(r])g^ - 77) d77,
H^-^1>1^1

(101) Bi(f,g)(Q = [ W^^- r])f(r])g^ - T]) dry.

H»l̂ l̂ l
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Obviously the properties of B\_ are analogous to those of B^, because of the symmetry f ̂  g ,
a\ <-)• 02. Also we can always assume that / and g are non-negative functions.

We assume first that we have a strict inequality in (94):

(102) ^_>_!1_1.

The cases with ^--"-^
will be considered in Section 16.

Estimates for B^. Consider B^_. If we apply Cauchy-Schwarz directly, we reduce to prove
the boundedness of the quantity

sup y W^(rj^-r])dr].
^ l̂ l̂ l̂ l

In the region where [?7[ ^ |^ — 77! ̂  |^| we have

H^-.i-i^-^y1-1^^2,
where 0 is the angle between 77 and —^. Hence,

^+(^^-^)^l^l/30+/3+-•a21^--al^-,

and we have

f W^^-ri)d^\^^-^ f l^——^-dr;
l^l^l^-^l^iei ir^iei

1 ^ 1
< |^|2(/3o+/3+-a2) [ 2(^--ai)+n-l^ /M/3_+n-2j^2(/3o+/3+-02) /l^--al)+r^-l^ f 04/3_+n-2 ̂

0 0

The last two integrals are bounded when 4/3- + n — 2 > —1 and 2(/?_ — a\) -\- n — 1 > — 1 ,
which are ensured by (102) and (96). The scaling condition (93) then ensures that the result is
uniformly bounded in ^.

The estimate for B°_ is obtained in a similar manner.

Estimates for B\. In the region where \T]\ w \^ - r]\ » |^| we have \T]\ + |̂  - rj\ - \^\ w \rj\
and, by (93),

W+(7^ - 77) ̂  |^o|^+/3——a,-a. ̂  ^^o^[-^o-?^

By the now familiar doubling technique and Cauchy-Schwarz inequality, we find

^11 ̂  /// ̂ ^W(OdWC.1 1 ^ + 1 1 ^

1^1«H
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The integral in ^ is bounded if 2/?o > -n, which is ensured by (95), and we have

r |̂ |2^/ <i .
j [^[2A)+n~-

I^KH

Observe that here the proof of the boundedness of B\ works also for the case /?- = -(n - 1)/4,
which is not critical in this region.

Estimates for B^_. In the region where \T]\ % |̂  - T]\ > |^| we have

1 ^ 1 - I M - 1$ - ^ 1 1 ^ H^^2 ̂  l^sin^)2,

where (/? is the angle between rj and rj - ^ and 9 is the angle between $ and 77. Indeed, from
|^| <C 1771 it follows that (p is small, in particular ^ w siny?, and by geometric considerations we
have

sin (p sin 0
kl ~\^-r][

Hence,
|^|A)+/3++/3- i^iai+Q2-?

w-^-^ |̂ .̂  (^^- - ̂ ^-(sin^-.

We then perform the doubling and apply Cauchy-Schwarz. We obtain

/* C C |^|2(al+a2)-nf<,„^/3^4/3_

"Bl^/// 1,1^^ A^Od^d^dC.^ 1 1 $
I^KI^I

The integral in ^ is bounded if 2(ai + 02) - n > -n and 4/L- > -n + 1, which are ensured by
(97) and (102), and we have

r [^[2(Qi+a2)-n/., n ̂ 4/3- 1 ^ 7

/ " Î J:̂  ^ - ̂ T.y /P2(a•+Q2)-l dp/(sin^-—— d^ 1.
I^KI^I o o

The proof of the sufficient part of Theorem 15.1, under the assumption (102), is now
complete. D

The necessity of conditions (95), (96) and (97) with non-strict inequalities, follows from the
examples in Section 14. It remains to show counterexamples to exclude the cases of equality in
those conditions.

Example 15.2. - Assume we have equality in (95), f3o = -n/2. Take f = \p and g = \c,
where F is the ball of center (1,0,.... 0) and radius 1 /2 and G is the ball of center (-1,0,..., 0)
and radius 1/2. When |^| ^ 1/4 we have

^(/^XO^I-"72 / dr^l^l-/2.
il^F

d-^G
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Hence, B^(f,g) is not a L2 function.

Example 15.3. - Assume we have equality in (96), a\ = f3- + n/2. Take

^ î.î fillir ^)=^'
where .F is the ball of center 0 and radius 1/2 and G is the ball of center (1,0,..., 0) and radius
1/2. The function / is in L2 when a > 1/2.

When |̂  - (1,0,.. .,0)| ̂  1/4 we have^/,,xo» / T^''i'fr^ / ,,.,^. 1 1 1 ^7 H^+^iog^H0 7 1^1^+2 ^ - l iog l^ l l 0
^e^ H^i/4

^-77€G

/• dr;y H' l iogi^i i 0 '
H^l/4

As before, 0 is the angle between T] and —^. The last integral is bounded only if a > 1, hence,
we obtain a counterexample by choosing 1/2 < a < 1.

Example 15.4. - Assume we have equality in (97), a\ + a^ = 0 and consequently f3o + /?+ +
/3_ == —n/2. Take / = ^j? and ^ = \o, where -F is the ball of center (1,0,..., 0) and radius 1/2
and G is the ball of center (-1,0,.. .,0) and radius 1/2. When |^| ^ 1/4 we have

a-o^xo^^ f (I^I-IH-I^II)^
Ti^F

^-r?GG

^|/3o+^+/3- j ff^^^-n/^

|^-(1,0,...,0)|<1/4

Here 0 is the angle between rj and ^. This shows that B-(f, g) is not a L2 function.

16. Removal of a logarithmic divergence

To complete the proof of Theorem 15.1, it remains to show the boundedness of the operators
B^ and B\_, defined in (99) and (100), under the assumption that

^-^
To prove this critical case it is convenient to perform a dyadic decomposition of the data in

frequency space. Using the summation techniques already seen in Section 12, the estimates can
then be obtained from their frequency localized versions as stated in the following proposition.

PROPOSITION 16.1. - Let 0 < ii ̂  A. Take f and g to be functions mth compact support. We
have the following dyadic estimates'.

• suppose supp/ C { |^ | ̂  fi] and snppg C { [ $ | ̂  A}, then

K(/.ff)||;$(^)-~al(l+ iog^)
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• suppose supp/, suppg C { | ^ | ̂  A}, then

( \ Q!i+0:2 / / \

(104) ||̂ '.(/^)||̂  ^ (l+ log^J

If we apply the procedures of the previous section we would obtain logarithmic divergencies
in the integration of the angular variables. A refined application of the doubling technique will
allow us to transfer the logarithmic loss from the angular variables to the radial ones, for which,
in view of the strict inequalities in (96) and (97), we may allow a loss of e in the exponent.

Proof of (104). -Because of the scaling invariance condition (93), we may assume that
IJL = 1 <€ A. Moreover, by the same procedure described in the proof of (65), we can assume
that / and g are supported in opposite cubes, Q and -Q, of size ̂  1 at a distance ̂  A from the
origin. In the region where | ^ | ^ | ^ — ^ | ^ > | ^ | w e have

1^1-11^1 -1^ -^11^^^^ -^

where 0(^ -rj) is the angle between the vectors ^ and -77. Under our hypotheses the operator to
be estimated is then

?i^_ „ ^v^^-ai-a2 I fWg^-rj)s^f^-^^x-—2 i ^y-^
J ^ Q~~^-rj)7 n e^^-^'n,r]-^Q

\r]\^-ri\

in the region where |^| ̂  1. By doubling the integral we need to show that

^///X'-^g:,^^^^^-0^ '̂'2"'"2

where the region of integration is

^ = {W,0: r j , r j -^W-^e 0,|^1}.

We split the integral I = 7i + h by decomposing the region Q into two parts. The first is the
subset Q\ defined by the conditions

min{^,-r7),^,-r/)} ;$A^,T/),

min{̂  - 77), 0(^ - T/)} ;$ A0($ - ̂  - r/);

the second is the subset ^2 on which we have

X0(rj, rf) « min{̂ , -77), 0(^ -77')},

A^ - r7,^ - 77') « min{ ,̂̂  - 77),^,^ - 77')}.

(It is possible to adjust the constant in the above inequalities so that J7 c Q\ U J?2.)
For Ji we apply Cauchy-Schwarz pairing ^(77) with /(77') and g(^ - 77) with g(^ - 77'). We find

^ ff_w^—^cw. // /^-^y.-^ d ,̂d .̂^7 0—(^-^—(^,-7/) ^y ^^(c,-^^^,-^)
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In the right hand side, the second integral becomes similar to the first if we perform the change
of variables (r], T/, Q -> (C, C', 0 = (^ - ̂  - ̂  -0- Since we have that

I ^ .————^1+logA,
J e—(^-r])0—(^-11/)

6'(^-^A0(?7,7/)
^-^)^(^/)

|̂ 1

it follows that
Ji;$(l+logA)||/|||b||.

For h we apply Cauchy-Schwarz pairing f(rj) with g(^ - r]) and f(r]') with ^(^ - 77'), We find

^/y^^^^/^^^-
^2 ^2

For fixed 77 the intersection of Q with the set of points r ] ' such that 0(r], T/) ^ A has a volume
which is ^(AA)71-1. Thus

1 ( d r /< l ,
0Tl-l(^-^) J

^WX^-^
r/eQ

which implies

^11/IINI. n

Proof of (103). -As before we can assume ^ = 1 ̂  A. Let's look at the (++) case. In the
region where \T]\ ̂  \£, - T]\ ̂  \^\ we have

1^1 + 1^-^1-1^1 ̂ \rj\0\ri^- r]).

The operator to be estimated is

B^XO^--^ I ^-r]) ̂
+ t / ' ' J e'—^-r])

\T]\W\

\^-rj\^\

in the region where |^| ̂  A. Now the situation is different from before since / and g are supported
on regions at different frequency scales. This fact will cause us some problems if we try to
proceed using the doubling technique at this stage. Instead, we will first observe that, by duality,
is enough to prove that

(105) J^^A^-^O+logA)!!/!! I I ^ H H ^ l l ,

where J is the trilinear expression

W.oM= f^f.sww^^ ff^S^0 W-
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But we can view (105) also as the duality formulation of the L2 boundedness for the bilinear
operator ,̂̂ «- ; ̂ ,̂

KI^+CI^A

on the region |?7| ̂  1. More over g and h can be restricted to be supported in the same cube Q of
size 1 at frequency level A. The proof for the boundedness of B' now can follow the same line
as in the proof of (104). (Changing C, —> —( and g(^) —>• g(—0 we get to estimate precisely the
same operator.)

The proof in the (+ —) case for B°_, is analogous to that of the (+ +) case for B^_. The only
change is to replace rj by —T] and f(rj) by /(—^). D

17. Bilinear restriction conjecture

In trying to solve Conjecture 14.16, which we expect to be hard whenever q < 2 or r < 2,
it helps to consider a simpler version of it which makes sense in the classical context of the
restriction theorem for the unit sphere S = S71"1 in R^

Define the Stein operator to be the adjoint of the Fourier restriction operator Rf = /|§,

Sf(x) = JT/Or) = [e^f^dS^ ̂  (fdS)^(x).

§

Recall that the classical Stein-Tomas restriction theorem (see [23,17]) can be formulated as
follows.

THEOREM 17.1.- Let f (^ L2^) and

2(n+U .———— ^j?^oo.
n — 1

Then Sf e ̂ (ST) and

(106) \\Sf\\LW<^\\f\\^

The Strichartz inequalities (76) are proved by using the same methods which are used to prove
Theorem 17.1. As the bilinear estimates (77) are a generalization of (76), it makes sense to ask for
some version of a bilinear extension of the Stein-Tomas theorem. In particular we may consider
the following bilinear forms,

B ( f , g ) = S f - S g ,

Q(f,g) = Qi,(Sf, Sg) = 9iSf • Q,Sg - 9,Sf • 9,Sg.

Observe that the symbol of Q(f,g), o-(^rj) = ̂  A T] vanishes precisely when ^rj are aligned,
this corresponds to the worst behavior of the product Sf • S g . It is reasonable, then, to ask what
happens with Sf • Sg if the supports of / and g are not aligned, in other words they have disjoint
projectivised supports. This leads to the following:

CONJECTURE 17.2. - Let J?i, J?2 t^o disjoint subsets ofS such that

dist(J?i, J?2) > 0, dist(J?i, -J?2) > 0.
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Then

(107) | B(f,g)\\^^ ̂  \\f\\L\w\\g\\LW^

for all f supported in Q\ and g supported in Q^, whenever

u + 2
(108) p^———.

This is intimately connected to the following:

CONJECTURE 17.3. - For arbitrary f, g € -^(S), p >(n + 2)/n one?

W,ff) = OyW, 5fl) = QiSf • 9,Sg - 9,Sf • 9,Sg

we have,

(109) ||W^)|Lp(Kn) ̂  ll/IWbl|L2(§).

Remark 17.4. -The case p ^ (n + l)/(n - 1) is already contained in Theorem 17.1, since
applying Holder we immediately have

IIW ÎL^) ̂  \\Sf\\L^)\\Sg\\L^R^ ̂  ||/||L^-i)lbl|L^-i),

foral l j )^(n+l)/(n- 1).
The Knapp example shows that this is sharp. Consider in fact f = g = XCe. where Ce is the

cap denned as the intersection of the sphere § and the rectangular box

D^^eR71: l^-ll^2,^!^},

for a small e > 0. We write

Sf(x)=e^xl L^^-V^d^,

Ce

and observe that it is possible to choose a region Re defined by

Re = [x G W1: |.ri | ̂  £~\ \x' ^ £-1},

such that \Sf(x)\ ̂  \Ce\ when x e Re. Therefore

2P +1W.g)\\Lp ^ \\sf\\^^ l^pl^l2/2^1^
1 1 2 r^

_ —\C I IT? iVp^^"1"11?
1 I I I I — 1 1 ^ 1 1 2 ^ 1 ^ 1 — l ^ e l l ^ e l — c ' •
\LA\9\\L^- \\f\\Li \Ce\

In the limit e —> 0 an inequality like (107) implies p ^ (n + l)/(n - 1).

Clearly the Knapp example is not relevant to the case of projective disjoint supports. If we
try to consider a modification of it, where we take / and g to be the characteristic functions of
two disjoint spherical caps, then we are lead to the condition p ^ n / ( n — 1). However, this is
not a sharp result, as it shown in the next example, which is one of the main justifications for
Conjecture 17.2.
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Example 17.5. - Define, for some small e > 0, two rectangular regions in phase space as

A =^6^: |^-1|<^|^ ^^^ ^^

D^^cr1: |̂ i <^,|6-i <^iri<4
Let now / = ^snD, and ^ = X§nD2. then

ll/llL^-ll^llL^^ISnAI172^^2.

It is then possible to fix a region R in physical space, defined by

l^i I ̂ -2. 1^2| ̂ -2 b^l < £ 1
1'^ I ̂  c 5

such that for x ^ R we have

\Sf(x)\ ̂ isn A, |^(^)|^ ̂ sn^l.

This implies that

IW^)HLP ^IsnAl^lsn^l172!^!1/^^-^.
|L2||^||L2

For small values of e, an estimate like (107) will necessarily require n - (n + 2 ) / p ̂  0, which is
possible only i f p ^ ( n + 2)/n.

The Conjectures 17.2 and 17.3 can be easily proved when n = 2. This is due to the fact that,
in that case, the optimal exponent is p = (n + 2)/n == 2. This fact allows us to apply PlancherePs
theorem and make use of the simple convolution structure of the Fourier transform of B(f, g).

Indeed,

B(/,^)(0^(/d5)*(^d5)(0=/>^(l-|^-77|)(5(l-|77|)/(^-^(7?)d^
R2

and applying Cauchy-Schwarz with respect to the measure 6(1 - |^ - rj\)6(l - \rj\)dr] we find

(110) B(f,g)(Q\2 ^ 5(1,1)(OB(|/|2, I^XO.

It is not difficult to verify that

B(l,l)(0^|$|- l(4-|^|2)^ /2.

When we integrate (110) with respect to <^ we obtain

\B(f,g) \L2(R2)
< // 6(1 - |̂  - r,\)6(l - \r,\)S ' l ^ ' ,1 \ ' U I t i t \^-\ , ^,\i , ,^

1^(4 -|g|2)i/2——|A$-??) \gW\ dr^d^

Change variable, ^ —>• (; = ^ - rj, and observe that when |?7| = |C| = 1 we have

l^lTy+Cl^d+^O172,

(4-|^|2) l /2=(4-h+C|2) l /2^(l-^01/2,
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hence

l , _ . l | 2 ^ [ ( lAOl2!^)!2 .0 „
W-mLw^jj (i-(^.o2)1/2 '^a^.

^xSi

This is an interesting formula. Observe that if the supports of / and g on §1 are projectionally
disjoints, i.e. don't contain points in the same direction, then the quantity 1 — ( r ] ' Q2 is bounded
below by a positive constant and in this case we obtain the bilinear restriction estimate

||^(A^)||^2)^ll/llL^)ll^||L2(§l).

In the same way, using the structure of the symbol cr(^, T]) = $ A 77, we prove,

||Q(/^)||^2)^ll/llL^)ll^llL^).

As was mentioned in the introduction the Conjectures 17.2 as well 17.3 have surfaced in
discussions between Machedon and Klainerman many years back. They were motivated by their
interest in bilinear null estimates for solutions to homogeneous wave equation. The conjectures,
as well as their simple proof for n = 2, were discussed in a conference at MSRI in July 97.

Recently, Tao, Vargas and Vega [20] were able to make some progress on Conjecture 17.2 in
dimension n = 3. In particular, for n = 3 they could prove (107) for p > 2 — ^.
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