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WEAK APPROXIMATION AND NON-ABELIAN
FUNDAMENTAL GROUPS

BY D. HARARI

ABSTRACT. - We introduce a new obstruction to weak approximation which is related to etale non-
abelian coverings of a proper and smooth algebraic variety X defined over a number field k. This enables
us to give some counterexamples to weak approximation which are not accounted for by the Brauer-Manin
obstruction, for example bielliptic surfaces. © 2000 Editions scientifiques et medicales Elsevier SAS

RESUME. - Nous introduisons une nouvelle obstruction a 1'approximation faible liee aux revetements
etales non-abeliens d'une variete algebrique propre et lisse definie sur un corps de nombres. Cela permet
d'obtenir des contre-exemples a 1'approximation faible qui ne viennent pas de 1'obstruction de Brauer-
Manin, par exemple les surfaces bielliptiques. © 2000 Editions scientifiques et medicales Elsevier SAS

0. Introduction

Let X be a smooth and proper algebraic variety over a number field k and let Qjc be the
set of places of k. Recall (cf. [5,32]) that X is a counterexample to the Hasse principle if the set
X(Ak) '.= n^cr? ^(^v) of adelic points of X is non-empty, but the set X(k) of ^-rational points
of X is empty. A ^-variety X (such that X(k) ̂  0) satisfies weak approximation if X(k) is dense
in X(Afc) (equipped with the product of the ^-adic topologies). It satisfies weak approximation
outside S (where S is a finite set of places of k) if X(k) is dense in X(A^) := Yiv^g X(kv).

In his talk at the ICM in 1970 [25], Manin defined an obstmction to the Hasse principle,
the so-called Brauer-Manin obstruction. A similar obstmction to weak approximation was later
defined by Colliot-Thelene and Sansuc (cf. [5], Section 3). These obstructions are related to the
Brauer group BrX ofX (we shall recall their precise definitions in Section 1.3). For a long
time, all known counterexamples to the Hasse principle and to weak approximation outside the
archimedean places could be explained by means of the Brauer-Manin obstruction (it is well-
known that the Brauer-Manin obstmction does not give much information at the archimedean
places: see, for example, [33]).

Assuming a conjecture of Lang (the finiteness of X(Q) if X(C) is hyperbolic), Sarnak and
Wang [30] found a smooth hypersurface of degree 1130 in PQ which is a counterexample to the
Hasse principle not accounted for by the Brauer-Manin obstruction.

The first unconditional proof that the Brauer-Manin obstmction to the Hasse principle is not
always the only one was very recently given by Skorobogatov [32]: he considers an elliptic
surface over Q which is the quotient of the product of two curves of genus 1 by a fixed-point free
involution. A natural question was to solve the similar problem for weak approximation (outside
the archimedean places, or, more generally, outside a finite set of places) with the additional
ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE. - 0012-9593/00/04/© 2000 Editions scientifiques et
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restriction that the variety X contains a ^-rational point (or even that the set of ^-rational points
of X is Zariski-dense).

In this paper, we introduce a new obstruction to weak approximation related to non-abelian
etale coverings of X (Proposition 2.2). We show (Theorem 5.1) that it is possible to use this
obstruction to give sufficient conditions for X to be a counterexample to weak approximation
(and actually to weak approximation outside S for any finite set S C .%) not accounted for by
the Brauer-Manin obstruction. An interesting point is that these conditions (except the arithmetic
assumption X(k) 7^ 0) are purely geometric. This reflects the fact that the arithmetic of a variety
is expected to be closely related to its geometry. In particular X x k K will be a counterexample
of the same kind for any finite field extension K / k . We give several explicit examples, some of
them with X(k) Zariski-dense in X (Propositions 6.3 and 6.4).

The link to Skorobogatov's paper is the following: one of the ideas he uses is that the
Brauer group may become bigger after passing to a finite unramified covering Y / X . In his
example, this phenomenon is related to the existence of an abelian covering Z/Y such that
the composite covering Z / X is not abelian. Using non-abelian torsors, it is possible to give a
general formulation to explain Skorobogatov's counterexample to the Hasse principle and the
counterexamples to weak approximation of the present paper. This consists of a generalization
of the descent formalism developed in [32] (following the descent theory of Colliot-Thelene and
Sansuc) in the abelian case. See [16] for more details.

The paper is organised as follows: in section 1 we recall some basic results. In Section 2, we
introduce the obstruction to weak approximation related to the geometric fundamental group of
a variety (Proposition 2.2 and Corollary 2.4). In Section 3, sufficient conditions for the vanishing
of the Brauer-Manin obstruction associated to an adelic point are given (Corollary 3.3). Section 4
is purely geometric: for a variety X defined over an algebraically closed field, we show that a
connected non-abelian covering of X does not become trivial after specialization to a fibre of the
Albanese map /, provided that some restrictions are made on / (Proposition 4.2). Section 5
is devoted to the proof of our main Theorem 5.1 and in Section 6, we give miscellaneous
applications of our results.

1. Preliminaries

1.1. Notation

Let A; be a field of characteristic zero. Fix an algebraic closure k of k and set Qk = G^\(k/k).
For any abelian group (or group scheme) (7, the notation (7tors stands for the torsion part of G.
If C is a locally compact group, we denote by C^ its Pontryagin dual.

We shall frequently write IP (A:, C) instead of H^(Gk, C) for Galois cohomology groups with
values in a ^-module C. For any scheme X, let Pic X = H^(X, Gm) be the Picard group of X
and let BrX = Hj^X,Gm) be the (cohomological) Brauer group of X. If X is a smooth and
projective variety over an algebraically closed field, the condition H2(X, Ox) = 0 implies BrX
finite ([14], Corollary 3.4 and [15], 8.12). _

Assume that X is a ^-variety (that is a separated /c-scheme of finite type) and set X = X x k k.
We let Xred denote the reduced ^-variety associated to X and we let k[XY := H°(X,Gm) be
the set of invertible regular functions on X. If K is a field and N e X(K), we shall still denote
by N the corresponding K-point of X^d (cf. [18], 11.2.3, p. 79). For any etale group scheme F
on X, we define:

^:(X,F):=Ker[^(X,F)^%(X^)],
BtaX := KerJBrX -^ BrZ].
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WEAK APPROXIMATION AND NON-ABELIAN FUNDAMENTAL GROUPS 469

We shall always assume that k admits a (fixed) embedding in the field C of complex numbers,
and we shall write Xc '.= X x ^ C.

We let Ti-i (X,m) (or 7Ti(X) if m is irrelevant) denote the etale fundamental group (for the
geometric base point m) of a scheme X. Assume that X is a proper, smooth and geometrically
connected ^-variety; then the comparison theorem for the fundamental group ([12], X.I.8 and
XII.5.2) says that TT\(X) is the profinite completion of the topological fundamental group
Tr^Xc). For example the geometric fundamental group 7Ti(A) of an abelian ^-variety A
of dimension g is isomorphic to 7}9 ([12], XI.2.1). For any profinite group G, let D(G) be
the derived subgroup of G (in the category of profinite groups) and G^ = G/D(G) be the
abelianized group of G. The neutral element of G will frequently be denoted by e when G is not
assumed to be abelian. The Neron-Severi group of a proper, smooth and connected variety X
over an algebraically closed field is denoted by NS X. It is a finitely generated abelian group [24]
which is the quotient of Pic X by the (divisible) group Pic°X of those classes of divisors which
are algebraically equivalent to zero.

Let X be a smooth and projective ^-variety. A line bundle L on X is said to be nefif L.C ^ 0
for all complete curve C C X. Let E be a vector bundle on X with projectivized bundle of
hyperplanes P(£") and associated canonical line bundle OEW' Then E is said to be nefif OaW
isnefoverP^n.

1.2. Torsors and coverings
In this paragraph we recall some facts about torsors, which were used by Colliot-Thelene and
Sansuc in their theory of descent [5] and by Skorobogatov in [32].

Let X be a ^-variety. Let F be a Qk -module which is of finite type as an abelian group, and
S be the A;-group of multiplicative type which is dual of -F. Recall [5,32] that an X-torsor Y
under S is a principal homogeneous space (over X) f : Y —^ X under 5'. The X-torsors under 5'
(up to isomorphisms) correspond to the elements of H^(X, S) ([27], III.4.6).

Let K D k be a field and let M G X(K) = Horm;(Spec K, X). We shall say that the torsor Y
splits at M if there exists a K-point M' of Y such that j(M'} = M. This is equivalent to saying
that the evaluation [V](M) e H\K, S) is trivial, where [Y] is the class of Y in H^(X, S).

The following fundamental exact sequence was introduced by Colliot-Thelene and Sansuc
([5], Theorem 1.5.1):

(1) 0-^Ext^(F,^[X]*) ^j4(X,5)^Homg,(F,PicX)

with:

Coker^ = Ker [Ext^ (F, MX]*) -^ HJ,(X, S)]
and the type of Y is the image of [Y] by \. If X is proper, reduced, and geometrically connected,
then the kernel of the map \ is just Hl(k,F): indeed k[X]* = k* in this case (char k =0). This
also implies ([5], 1.5) that the cokernel of \ is just the kernel of the pull-back (with respect of
the structural morphism X —> Spec k) H2^, S) —^ Hj^(X, S). Thus there exists a torsor of type
A (for any A € Hom^ (F, Pic X)) as soon as X(k) ̂  0 (because of the existence of a section for
the structural map X —^ Spec k).

A covering of X is a finite, flat and surjective ^-morphism j \Z —> X. Let nz (respectively
nx) be the number of connected components of Z (respectively X) and d be the degree of /.
The covering / is said to be geometric (respectively geometrically non-trivial) if nz = nx
(respectively nz < dnx)- We shall use "non-trivial" instead of "geometrically non-trivial"
when k is algebraically closed. If X is smooth and geometrically integral over fc, then an etale
covering Z —> X is geometric if and only if the ^-variety Z is geometrically integral.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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Let /: Z —. X be a covering and M <E X(K), where ̂  is some field containing A-. We shall
say that / splits at M if / is etale at M and there exists a X-point TV of Z such that f(N) = M.
If / is Galois ([27], 1.5.4), this is equivalent to saying that / splits completely at M, that is / is
etale at M and the fibre of / at M consists of K-points.

Similarly an etale algebra L of degree d over a number field k is said to be split at a place v
of k if L / k is unramified at v and ky is a direct summand of L ^ k k y ; it is completely split (or
totally split) at v if L (g)/e ̂  ̂  A^f; the two conditions are equivalent if L / k is Galois.

1.3. The Brauer-Manin obstruction to the Hasse principle and weak approximation

Let A; be a number field. We let ̂  denote the set of places of k and we let ky be the completion
of k at the place v. For any finite place v, let Oy be the ring of integers of ky and ¥y be its residue
field. Local class field theory gives an injective map jv: Brky -^ Q/Z which is an isomorphism
for v finite. Let S be a finite set of places of k containing the archimedean places, and let Ok
be the ring of integers of k. The ring of S-integers Ok,s is the set of elements x € k such that
v(x) ̂  0 for any v ^ 6'.

Let X be a smooth, proper and geometrically integral A;-variety and assume X(k) -^ 0. Recall
that X satisfies weak approximation if X(k) is dense in the set X(Ak) = FL^ X(ky) of adelic
points of X (equipped with the product of the ^-adic topologies). Set:

X(\k)^= ^(M,)eX(Afc), VAeBrX, ^ J.(A(P^) =ol.
1 V^k )

(The sum is well-defined: indeed X is proper, hence the specialization A(Py) comes from BrOy
outside the finite set S of places of bad reduction of X and A; so, by [27], IV.2.13, A(Py) = 0
for v i_S.)

Let X(k) be the closure of X(k) in X(A/c). The reciprocity law of global class field theory
implies:

~x(k)^x(^.
In particular, the condition (My) ̂  X(Ak)BT for some adelic point (My) is an obstruction to
weak approximation, the so-called Brauer-Manin obstruction (see [5], 3.1 for more details). The
condition X^A^ = 0 is the Brauer-Manin obstruction to the Hasse principle.

Let S be a finite set of places of k\ set X(Af) = f]^ X(k^\ We let X^k)8 denote the set
of elements of X(A/,) whose projection to X(A^) belongs to the closure of X(k) in X(Af).
Namely X(k)3 is the product of fl^ x(ky) ̂  the closure of X(k) in fl^ ̂ C^)-

Note that if k is totally imaginary, then we have X(AO^°° c X(Ak)B\ where ^?oo is the set of
archimedean places of k.

The goal of this paper is to construct some classes of varieties X such that the relation
X(Ak)BT f- X^ holds for any finite set S C ̂ . In other terms, there exist adelic points on X
for which there is no Brauer-Manin obstruction, but which cannot be approximated by a rational
point. More precisely, for any finite set S C ̂ , there exists a finite set T of places of k, with
T n S = 0, and an element (MJ^T in rLcT^^) with the following properties: (M^er
does not belong to the closure of X(k) in rLcr^^)' but (X^CT is the projection of an
element (MJ^^, of^A/,)^.

It has been conjectured by Colliot-Thelene and Sansuc (and proven in several special cases,
cf. [5]) that ^(Afc)81'^^^) for smooth and proper (geometrically) rational surfaces. The
inclusion X^)^ C X(k)noo is known to hold for an abelian variety X if one assumes the
finiteness of the Tate-Shafarevich group of X [25,33]. Over an algebraically closed field, smooth
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and proper rational varieties are simply connected ([12], XI.1.2) and abelian varieties have
an abelian fundamental group, so it is perhaps not surprising that varieties with non-abelian
geometric fundamental groups arise in our work.

2. Obstruction to weak approximation associated to an etale covering

In this section, we introduce an obstruction to weak approximation (and in fact to weak
approximation outside any finite set of places) related to geometric etale coverings of a variety.
We begin with an obvious formal lemma:

LEMMA 2.1. - Let E = { L i , . . . , Ls] be a finite set of etale k-algebras and let S be a finite
set of places ofk. Then there exists a finite set S C ^k, ̂ tth S U E = 0, such that the following
property holds:

For each z € {!,... , s ] , the condition that Li splits at any place v of S implies that Li splits
at any place v ^ E.

Proof. - For each z ( E { l , . . . , s } , set:
• Si = 0 if Li splits at any place v ^ E.
• Si = [vi}, where vi is a place of j7fc — E such that Li does not split at z^, if such a place

exists.
Now S '.= |j^=i Si has the required property. D

We are now ready to prove:

PROPOSITION 2.2. - Let X be a smooth, proper, and geometrically integral variety over a
number field k. Fix a finite set of places E ofk. Let p ' . Z —^ X be an etale covering of X, with
Z geometrically integral.

Then there exists a finite subset S = Sp,E of(Qk- E) such that for any place w ^ (S U E)
and any point (Nv)y^su{w} °fY[veSu{w}^^v\ the condition:

Ny G p(Z(ky))for v G S but N^ ^ p(Z(kw)) implies that (Ny) does not belong to the closure
ofXWinYl^uw^^

Proof of Proposition 2.2. - Take a finite set of places 5o (containing the archimedean places
of k) such that the schemes X and Z extend to smooth and proper schemes X and Z over
U = Spec Ok,So • We can also assume that the morphism p extends to a finite and etale morphism
over U. Let d be the degree of p. There exist only finitely many number fields (hence only
finitely many etale ^-algebras Li , . . . , Ls) which are unramified outside 5o and of degree ^ d
over k ([23], V.4, Theorem 5). By Lemma 2.1, one can find a finite set of places S = Sp^s (with
S n H = 0), such that for each i e { 1 , . . . , s ] , the condition that Li splits at any place v of S
implies that Li splits at any place v ^ S.

Let w be a place of k outside S U E. Fix a point (Ny)v^su{w} which belongs to the closure
of X(k) in rive^uiw) ̂ (^)» anc^ sucn tnat P ^P^ at M; for v C S. Take a ^-rational point
Q which is close to Ny for v e S U [w] and denote by Qv the ^-adic component of Q. The
fiber ZQ of p at Q is the spectrum of an etale ^-algebra which is of degree d and unramified
outside SQ (because the covering p extends to an etale covering of proper and smooth schemes
over Spec Ok,So \ hence ZQ ^ Spec Li for some z e { 1 , . . . , s}.

As p is etale, the map Z(kv) —^ X(ky) induced by p is a local isomorphism for each v e Qk
by the implicit function theorem. In particular, for v € S, the condition that p splits at Ny implies
that p splits at Qy for Qv close to Ny. Thus the A:-algebra Li splits at the places of 5, hence at
any place v ^ E thanks to the choice of 5'. So the covering p splits at Qv for v ^ E (note that it
does not necessarily split at Q).

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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Now the condition that Qw is close to 7V^ implies that p splits at N^ as well and we are
done. D

Remark. - Note that the covering p is not assumed to be Galois. The condition X proper is
essential to ensure that for v ^ So, a ky -point My of X extends to an Oy -section of X ([18],
II.4.7), which implies that the residue field of any point of Z which lies over My is unramified
over ky. This classical argument is used in the proof of the weak Mordell-Weil theorem (cf. [27],
III.4.22). See [6], Proposition 1.2 for another example.

A similar technique can be used to deal with strong approximation on affine varieties ([20],
1.5 and 2.1; [28], Theorem 1).

The following lemma ensures the existence of points (Ny) satisfying the assumptions of
Proposition 2.2. Later on (Theorem 5.1) we want to get adelic points (Ny) e X^)^, so we
need a precise statement:

LEMMA 2.3. - Let kbe a number field and let Z —> Y -^ X be coverings ofk-varieties, with
X geometrically connected of dimension > 0. Assume that p:=(g oh):Z —> X is Galois and
that h is geometrically non-trivial (e.g., geometric of degree at least two). Then there exists a
finite field extension K / k such that, for almost all places v which are totally split for K / k , there
exists a ky-point Ny ofX with the property: g splits at Ny but p does not split at Ny.

Remark.-By Tchebotarev's density theorem ([23], VIII.4, Theorem 10), infinitely many
places v of k are totally split for K / k . "Almost all" means all but finitely many.

Proof. - The proof breaks into two steps:
a) Reduction to the case when Z and X are smooth and geometrically integral.
Take a finite Galois field extension K / k such that:
• YK (respectively ZK) and Y (respectively Z) have the same number of connected

components.
• XK and X have the same number of irreducible components

(where XK := X Xj, K, YK := Y Xj, K, ZK •= Z Xj, K). Now we can choose a non-empty
open subset UK C XK which is included in an irreducible component of XK of dimension > 1.
Set U = U^\ we may assume (shrinking UK if necessary) that U is smooth over K and that the
covering:

P U : Z U ' = Z K X X ^ U - . U

induced by p is etale. Note that U_ is geometrically integral over K (because U is an open subset
of an irreducible component of X) and dim U ^ 1.

Set Yu = YK X^K U. The connected components of Yjj (respectively Zu) are geometrically
connected because of the choice of K, and the covering hu : Zu -^ Yjj induced by h is
geometrically non-trivial. Therefore there exists a connected component Vj of Yjj such that
h~^\Y^) contains a connected component Z\j of Zu satisfying: the covering hu : Z^j —> Y^ is
geometric of degree at least 2. Now the J^-variety Z\j is geometrically connected and we get
etale coverings:

7! ^ \^1 ^U rr^u ~^ ^u -> u

with Z}j geometrically integral over K (it is smooth and geometrically connected). The covering
Pu := Qu ° ^u is Galois (because p is Galois), with h\j geometric of degree > 2. Thus,
considering the coverings Z^ -S Y^j 9U^ U of geometrically integral JC-varieties, it is sufficient
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to prove Lemma 2.3 in the special case when Z and X are smooth and geometrically integral
^-varieties.

b) Proof of Lemma 2.3 when Z and X are smooth and geometrically integral.
In this case the result is a corollary of a "geometric Tchebotarev's density theorem" proven by

Ekedahl [9] and the statement holds with K = k.
Let G be the Galois group of p and H C G be the Galois group of h.
Take a smooth model X (respectively y, Z) of the ^-variety X (respectively V, Z) over a

number ring Ok,s (where S is a finite set of places of k). The ^-variety X is of dimension > 0.
Thus, by Lang-WeiPs theorem, the cardinal of ^(F^) goes to infinity when the cardinal of the
finite field ¥y goes to infinity. Using HenseFs lemma and applying the main lemma of [9] to the
covering p: Z -^ X, we get, for almost all places v of k, a ky -point Ny of X such that g splits
at Ny and p does not split at Ny: indeed this condition means that the conjugacy class of the
Frobenius FN, of the covering p at Ny meets H and is not trivial. Such a class exists because H
is of cardinal ^ 2. D

COROLLARY 2.4. - Let X be a smooth, proper, and geometrically integral variety over a
number field k and suppose that there exists an etale Galois covering p : Z —> X of degree ^ 2,
with Z geometrically integral. Assume X(A/c) -^ 0. Then for any finite field extension L / k and
any finite set E C QL. the L-variety X does not satisfy weak approximation outside E.

Proof. - Replacing X with X Xk L if necessary, we may assume L = k. The set Z(ky) is
non-empty for almost all places v of k because of Lang-WeiFs theorem and HenseFs lemma,
so we may assume Z(ky) ̂  0 for v ^ S. Let S be a finite set of places as in Proposition 2.2.
By Lemma 2.3, it is possible to find a place w ^ E U S and a point N^ <E X(k^\ such that p
does not split at N^. For v G 5, choose Ny G p(Z(ky)). Then the point (Nv)v^su[w} does not
belong to the closure of X(k) in rLe5u{w} x(fc^)• As 5 U [w] does not meet Z', the corollary
is proven. D

Remark. - In fact it is possible to prove Corollary 2.4 with the weaker assumption 71-1 (X) non-
trivial (instead of assuming that there exists a non-trivial Galois geometric covering of X defined
over k); the proof is a bit more complicated (the ingredients appear in the proof of Lemma 5.2
below).

If the covering p is abelian with group G, then one can show (using Lemma 3.1 below applied
to the constant fc-group S = G) that the obstruction defined in Proposition 2.2 is coarser than the
Brauer-Manin obstruction (see [32], Theorem 3 and [16], 4.3). But when p is not abelian, it may
happen that X^kf f X^f (Theorem 5.1).

3. The set J^A^

Let X be a smooth and proper variety over a number field k with X(k) ̂  0. Our goal in this
section is to find points in X^Ak)^ when the dimension of the image of the Albanese map is
strictly lower than dim X.

The first two results of this section are purely algebraic; we fix a field k of characteristic zero.
The following lemma is a slight generalization of [5], 1.5.1 and [32], Lemma 3. It will be used

below to deal with a possibly non-reduced or non-irreducible variety.

LEMMA 3.1. - Let X be a k-variety and M € X(k). Let F be a Gk-module which is of finite
type as an abelian group, equipped -with a Qk-homomorphism \:F —^ PicX. Denote by S the
k-group of multiplicative type "which is dual to F.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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(1) There is an exact sequence'.

(2) PicX-^{PicX)Gk^H2{kMxr)-^BraX^Hl{k^icX).

IfX is proper, reduced and geometrically connected, then

Kerr = Im[BrA; -> B^aX].

(2) Assume that there exists an X-torsor Y under S of type \ (e.g.: X is proper, reduced
and geometrically connected). Let F be the subgroup ofBTaX which consists of those
elements 7 such that r(^) comes from H^(k,F) (via \^). Then F is generated modulo
Kerr by the cup-products a U [Y], a C H^(k, F).

(3) Let K D k be a field and let N e X(K). Assume that X is proper and geometrically
connected, and let \' be the homomorphism F —» Pic Xred obtained by composing \ and
the canonical map Pic X —> Pic Xred. Then there exists an X^-torsor Y under S of type
\' which splits at M. The condition that Y splits at N implies: 7(M) = ̂ (N) for any
7cr.

Proof. - (1) This exact sequence follows from Hochschild-Serre's spectral sequence for the
Galois covering ~X -^ X and the etale sheaf Gm (cf. [5], 1.5.0).

If X is proper, reduced and geometrically connected, then k[X]* = k* and H2(k, /c*) = BrA-,
hence Ker r = Im [Br k -^ Br aX].

(2) Let 7 <E r. By definition, there exists a € H\k, F) such that \^(a) = r(7). Now, by [32]
(Lemma 3), we have r(7) = r(a U [Y]) and the result follows from (1).

(3) We have Xred(k) -^ 0 (recall that we still denote by M and N the elements of X^(k) and
^red(^) respectively associated to M and N). As Xred is proper, reduced, and geometrically
connected, the existence of Y follows from X,^(k) ̂  0 (see Section 1.2; the condition that Y
splits at M is obtained by replacing [Y] with [Y] - [Y](M) if necessary). The following diagram
is commutative:

BraX ——r—— H\k^'\c~X)

\ . \
BTaXred —r—— H\k,PicXred)

In particular the image 7' of 7 in Br^red satisfies: r^Y) comes from H\k,F) via \^. By
(1), the kernel of r ' is just Im[Br/c -^ Br^Xred]. If [Y](N) = 0, we have (a U [Y])(N) =
(aU [Y])(M) = 0 for any a e H\k, S). By (2) (applied to Xred and A'), we have Y(M) = ^(AO,
hence 7(M) == 7(iV). D

Let X be a proper, smooth, and geometrically integral ^-variety and let A be the Albanese
variety of X (cf. [22], 11.3). Let /: ~X -^ A be an Albanese map. Set:

q(X) := dim A = dim^^X, Ox\ d(X) := dimX - q(X) € Z,
d'(X) := dimX - dim/(X) e N.

In particular d\X) ̂  d(X).
If X is a (smooth, proper, and geometrically integral) surface, we let pg(X) := dimkH2(X,

Ox) denote its geometric genus.
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PROPOSITION 3.2. - Let X be a smooth, proper, and geometrically integral k-variety which
contains a k-rational point M. Assume that (BrX )Qk is finite (e.g., H2(X, Ox) = 0). Let:

Pic X ^ NS X -^ NS X/NS Xors

^ ̂  canonical surjections and denote by C C Br aX the kernel of the map q^ o p^ o r: Br aX -^
^(^NSX/NSXtors). Then:

(1) The subgroup C is of finite index in BrX.
(2) Assume from now on that d'(X) > 0. Let A be the Albanese variety ofX and denote by

f : X -^ A the Albanese map sending M to OA; let XQ be the fibre off at OA (equipped
with the embedding s: Xo ̂  X) and s* (respectively 5'*) be the map BraX -^ Br^Xo
(respectively ^(A^PicX) -> ^(fc, PicXo)) induced by s. Then there is a commutative
diagram:

BraX———H\k^icX)

-[ \-^ + _
Br^Xo—^^C^PicXo)

The specialization map s°: PicX -^ PicXo induces a map 0: NS X -^ Pic Xo such that
Oop=s°. _ _

(3) Set F = NSXtors and denote by \:F -^ PicXojhe Gk-homomorphism obtained by
composing the canonical embedding i: F ̂  NSX and 0. Let F0 be the subgroup of
Bi-aXo consisting of those elements 70 such that 7-0(70) comes from H^(k,F) (via AJ.
Thens^C)cr°.

(4) Let VQ be the connected component of XQ containing M and Uo := (VoW Let XQ^F ->
PicZ7o be the map obtained by composing \ and the canonical restriction PicXo —^
Pic Do. Then there exists a Uo-torsor YQ of type \o such that YQ splits at M.
Let K ^ k be afield and let N C Vo(K\ Then the condition that YQ splits at N implies
7(M) = ̂ (N)for any 7 G C.

Proof. - (1) The image of BrX in BrX obviously is contained in (BrX)^, hence Br^X is
of finite index in BrX. By definition the following sequence is exact:

0 -^ C -^ Br^X-^Tif1 (A;,NSX/NSXtors)

and ^(A^NSX/NSXtors) is finite because NSX/NSXtors is of finite type and torsion-free.
So C is of finite index in Br X.

(2) The commutative diagram is obtained using the exact sequence (2) of Lemma 3.1 and the
functoriality of Hochschild-Serre's spectral sequence.

By definition the following sequence is exact:

0 ̂  Pic °X -^ PicX -^ NSX ̂  0

and the map /* is an isomorphism from Pic°A to Pic°X ([22], VI.l, Theorem 1). _
Therefore s°(Pic°'X) = 0 and 0 is well-defined. Note that the map s0, :H\k,PicX) ->

H1 (k, PicXo) induced by s° coincide with s *.
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(3) The following diagram is commutative:

H\k,F)

BtaX ——^ H\k,PicX) —^ H\k,m~X)

-\ !•• '•I^ Y . y
BraXo -r0-^ H^k^PicXo) —d-^ H^k^PicXo)

As A^ = 0^ o % „ < , the result is now easy to check.
(4) Let us show that the proper ^-variety VQ is geometrically connected; Stein's factorization

([II], 4.3.4) of the structural morphism VQ -^ Spec k yields a morphism h: VQ -^ Spec L, where L
is a finite ^-algebra and the fibres of h are non-empty and geometrically connected. But VQ is
connected, hence SpecL is connected and L is a field. The condition VQ(k) -^ 0 implies L =- k
and VQ is geometrically connected. In particular YQ exists by Lemma 3.1. Let N e Vo(K) such
that Yo splits at N. By Lemma 3.1, the equality 7o(M) = 7o(AQ holds for each 70 G F0. Now for
each 7 G (7, the specialization 5*(7) belongs to r° (see (3)), hence 7(M) = 7(7V) as well. n

COROLLARY 3.3. - Let X be aproper, smooth, and geometrically integral variety over a
number field k. Assume that (BrX)^ is finite and that d'(X) > 0. Assume further that X
contains a k-rational point M and denote by My the image ofM in X(ky). Set F = NS Xiors and
denote by T the k-group of multiplicative type which is dual to F. Then there exist a finite set S
of places ofk, a reduced and geometrically connected closed sub scheme UQ ofX of dimension
^ 1, and a Uo-torsor YQ under T such that for each adelic point (Ny) e f^er? W^v), the
conditions',

(1) N^=M^forv^S.
(2) The torsor YQ splits at Ny for every v e Qk-

Imply(N^eX(Ak)BT.
More precisely, iff: X -^ A is the Albanese map sending M to OA, one can take UQ and YQ

as in Proposition 3.2.

Proof.-Let C, UQ, and YQ be as in Proposition 3.2. Note that dimUo ^ 1 by the semi-
continuity theorem for the dimension of fibres of a proper morphism ([26], 5.13 .E). The condition
that YQ splits at Ny G Uo(ky) implies 7(MJ = -y(Ny) for each 7 e C and each v e ̂ .

Take some liftings 71,..., ̂  e Br X of the elements of Br X/C. As X is proper over k, there
exists a finite set of places S of k such that ̂ (Ny) = 0 for any v outside S and any N^ e X(^).
Thus the conditions Ny = My for v G S and [Yo](Ny) = 0 for v € Qk imply: 7(M^) = -y(Nv)
for any 7 e BrX. But M is ^-rational, hence (My) <E .^(A;,)^ and we are done. D

Remark. - Later on we will use Lemma 2.3 to find adelic points (Ny) satisfying simultaneously
the assumptions of Corollary 3.3 and Proposition 2.2.

The principle of Corollary 3.3 is that outside a finite number of places of k, the Brauer-Manin
obstruction is controlled by geometric abelian coverings of X. The group 7rf(X) is an extension
of (NS Xtors^ by the Tate module TA of the Albanese variety A ([27], III.4.19). The condition
f(Ny) = f(M) takes care of TA and the condition [Yo](A^) = [Yo](M) deals with (NSXtors)^
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4. Non-abelian coverings and fibres of the Albanese map

Throughout this section we will suppose that the field k is algebraically closed (and of
characteristic zero). Our goal here is to show that under some assumptions, a connected non-
abelian covering of X does not become trivial after restriction to a fibre XQ of an Albanese map.
Note that if q(X) ̂  2, the image of an Albanese map could for example be a curve C of genus
at least two; then non-abelian geometric coverings of C provide some non-abelian geometric
coverings of X whose restriction to XQ is trivial. In general, the structure of the fundamental
group seems to be closely related to the Albanese map (see for example [7,21]).

To begin with, recall the following classical result (cf. [2], V.I 5 in the case k == C):

LEMMA 4.1. - Let X be a smooth, projective, and integral k-variety. Assume that q(X) ̂  1.
Then the fibres of an Albanese map f : X —> A are connected.

Proof. - The result is obvious if A = 0, so we may assume that / is a proper and surjective
map from X to an elliptic curve A. Consider Stein's factorization;

X ^ A ^A

of / (the fibres of h are connected and g is a finite covering of normal varieties). The variety A'
is a normal curve, hence it is smooth over k. The genus of A' is at most 1 because the surjective
map / induces an isomorphism H°(A^1) ̂  H°(X,^) and dim^^X,^1) = dimA = 1.
Therefore Hurwitz's formula implies that g is unramified and A' is an elliptic curve. By the
universal property of the Albanese map, g is an isomorphism; since the fibres of h are connected,
the fibres of / are connected as well. D

PROPOSITION 4.2. - Let X be a proper, smooth, and integral k-variety. Fix a k-point m of
X and denote by f: X —> A the Albanese map sending m to OA. Assume that f is flat with
connected and reduced fibres.

Let p ' . Z —^ X bean etale and connected covering with Galois group G. Denote by (^(Z))1^60

the subfield of k(Z) consisting of those functions on Z which are invariant by the derived
subgroup -D(G), and take the normalisation Z^ of X in k^Z)0^. Let XQ (respectively ZQ,
(Z^)o) be the fibre ofX (respectively Z, Z^) at OA.

Then the etale covering ZQ —^ (Z^Q induced by p is geometric.

Remark. - The image f(X) of the proper morphism / is a closed subset of A. If / is flat, then
f(X) is an open subset of A ([27], 1.2.12); thus f(X) = A (A is connected) and / is faithfully
flat.

Note that (Z^Q is not necessarily connected.

Proof. - Let us consider Stein's factorization Z -^ A' -^ A of the proper morphism / o p (g is
finite and the fibres of h are connected). By [12] (X.I.2), the map A' -^ A is an etale covering
(indeed / is proper, flat, and has connected and reduced fibers), hence it is abelian because A is
an abelian variety. Thus we have a tower of etale coverings:

Z-^Z^-^X^AA' -^X.

Let d be the degree of the covering g : A7 —^ A. As the fibres of h: Z —>• A' are connected, the
variety ZQ has d connected components (because k is algebraically closed). The fibre (X x A A')o
of X XA A' —>• A at OA also has d connected components (XQ is connected), so the covering
ZQ -^ (X XA AQo is geometric. A fortiori the etale covering ZQ —> (Z^o is geometric. D
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Remark. - In the langage of the fundamental group, this proposition corresponds to the fact
that the image of 71-1 (Xo,m) in 71-1 (X,m) contains the derived subgroup D(7Vi(X,m)). Since
71-1 (A, OA) is abelian, this follows from the exact sequence ([12], X.1.4):

(3) 7ri(Xo,m) -> 7ri(X,m) -^ TTI(A,OA).

PROPOSITION 4.3. - The Albanese map f :X —^ A is flat with connected and reduced fibres
in the following cases'.

(1) q(X)=0.
(2) The fibres off are reduced and q(X) = 1.
(3) The tangent bundle Tx is nef.

Proof. - The first case is obvious. The second case follows from Lemma 4.1. In the third case,
the morphism fc: Xc —> Ac induced by / has connected fibres by [7], Proposition 3.9. On the
other hand fc is smooth (in particular flat with reduced fibres) by [7], Proposition 3.9 and [18],
III. 10.4. Thus / is smooth with connected fibres by faithfully flat descent. D

5. Main result

In this section we prove that under some geometric assumptions, the condition (Qv) C
X(A.k)BT is not sufficient to ensure that the adelic point (Qy) can be approximated (outside a
finite set of places) by a rational point.

Let X be a proper, smooth, and geometrically integral variety over k. We shall say that X
satisfies the condition (Alb) if the following property holds:

(Alb) An Albanese map of X is flat with connected and reduced fibres.
The condition (Alb) implies the surjectivity of the Albanese map. It also implies dimX > q(X)
if / is not an isomorphism, that is if X is not an abelian variety. (Alb) holds in particular if
q(X) = 0, or if the tangent bundle of X is nef (Proposition 4.3). This is a somewhat technical
condition, but the assumption dimX > q(X) certainly is crucial for the whole method to work.
In particular, the case of curves of genus at least two seems to be unreachable without new ideas.

THEOREM 5.1.- Let X be a proper, smooth, and geometrically integral variety over a
number field k such that X(k) -^- 0. Assume that (BrX)^ is finite (e.g., H2(X, Ox) = 0) and
that the geometric fundamental group ̂ \(X) is non-abelian. Assume further that X satisfies the
condition (Alb). ___

Then, X{\kf' t ~X()€f for any finite set E C ̂ .

We use the following lemma:

LEMMA 5.2.- With the notation and assumptions oj'Theorem 5.1:
(1) Fix M G X(k). Then there exists an etale covering p '. Z —> X which splits at M, and such

that p'.Z —>X is a non-abelian connected Galois covering.
(2) Let f ' . X — ^ A be the Albanese map sending M to OA. Take XQ and YQ as in

Proposition 3.2. Then there exists an infinite set of places S\ C J7/c such that for any
v G 6'i, there exists Ny G Xo(kv) with the following property: YQ splits at Ny but p does
not split at Ny.

Proof of Theorem 5.1 assuming Lemma 5.2 is proven. -We have d(X) > 0 because of
condition (Alb): indeed 7r\(X) is not abelian, hence X is not an abelian variety. The condition
(Alb) also implies that the fibre XQ is reduced and geometrically connected of dimension at
least 1, so we can take UQ = XQ in Corollary 3.3. Fix a finite set E C Qk- Let S be as in
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Corollary 3.3; enlarging S if necessary, we may assume (applying Proposition 2.2) that the
conditions: Qv = My for v e S and p does not split at Qy for some v ^ S, imply (Qy) ̂  X(k)z!

(recall that p splits at My = M). Now we can find a set S\ as in Lemma 5.2; removing a
finite set of places of 5'i if necessary, we can also suppose that S Ft 5i =0. For each place
w C 5i, choose 7V^ as in Lemma 5.2. The adelic point (Qv) defined by Qv = My for v ̂  w
and Q^ = N^ satisfies (Qy) € X^k)^ (Lemma 5.2 and Corollary 3.3) but (Q^) ^ X(AO^
(Proposition 2.2). D

Proof of Lemma 5.2. - (1) (See also [16], 3.1.) Fix a geometric point m of X associated to
M. We have the fundamental exact sequence ([12], IX.6.1):

1 —^7Ti(X,m) —>'K\(X,m) —^71-1 (A;, A;) —^ 1.

As 7Ti(X) is not abelian, there exists a connected etale Galois covering Z of X whose Galois
group G is finite and non-abelian. One can find a finite field extension L / k and a finite etale
geometric covering ZL of XL := X x/c L such that Z = ZL XL k. Let Z7 be the normalization
of ZL in the Galois closure of L(Z L) / k(X)\ then Z ' is Galois over X. Namely, replacing Z with
Z if necessary, we may assume that the following sequence is exact:

(4) 1 -^ Aut(Z/X) -^ Aut(Z/X) -^ Gk -> 1.

Now fix a geometric point m7 of Z lying over m. The Appoint M induces a splitting
0 ' : Gk ̂  Aut( Z / X ) of the exact sequence (4): for each g C Gk, one can take for a(g) the unique
element of Aut( Z / X ) which is mapped to g by p and fixes m'.

This fixes a A;-form ZofZ (that is: a finite and etale covering Z / X which becomes isomorphic
to Z / X over k): the A:-variety Z is the normalization of X in k(Z)11, where H ^ Gk ^ the
image of ^/c by a. Moreover Z contains a Appoint lying over M because the image of m' by the
canonical morphism Z —^ Z belongs to (Z(k))Gk, hence to Z(k).

Note that Z / X is not necessarily Galois.
(2) Set F = NSXtors and let T be the A;-group of multiplicative type which is dual to F. The

exact sequence:

0 -^ Pic°X -^ PicX -^ NSX -^ 0

is split as a sequence of abelian groups because Pic °X is divisible. Since NS X is of finite type,
we can therefore find a Galois extension K of k such that:

• The action of GK on T(k) and NSX is trivial and the map PicJC -^ NSX admits a C?K-
sectiono^.

• The covering pK '• ZK —^ XK is Galois with group G.
Set XQ^K = XQ x/c K and denote by s°^ the specialization map: PicX —^ PicXo,^ (cf.
Proposition 3.2). The type XK of the Xo,K-torsor YO,K :== YO x/c ̂  is (by construction) XK =
S°K° CTK-

Let us show that YQ^K can be obtained by specialization of an Xj<-torsor: let YK be
an Xj<-torsor of type (TK '. (NS X)tors ̂  PicX, with V^ split at M; then the specialization
YK XXK ^O,K is of type XK and splits at M, so it is isomorphic to YO,K (apply the exact
sequence (1) of Section 1.2 to XQ, which is proper, reduced and geometrically connected). Thus
we may assume that YK XXK XQ^K = YQ^K'

As the GK -action on T(k) is trivial, the Xj^-torsor YK (which is geometrically connected
because OK is injective) is just a geometric etale Galois covering of XK with group T(k). Now
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it is sufficient to show that there exist infinitely many places w of K with Kyj ̂  ky, and such that
there exists N^ e Xo(K^) with the property: YK splits at 7V^ and pK does not split at N^. To
do that, we may assume (replacing ZK with a connected component of ZK x K YK if necessary)
that the covering RK factorizes through an etale covering ZK —^ YK. Then, as T is abelian, we
have (over K) the following tower of geometric etale coverings:

Z K - ^ Z ^ - ^ Y K - ^ X K .

Taking the fibred product (over XK) by X^K. we obtain etale coverings:

ZQ,K —> (%)o —> ̂ K —> XQ^K

and thanks to the condition (Alb), the covering ZQ,K —> (^)o is geometric (Proposition 4.2) of
degree d ^ 2 (because G is non-abelian, hence the geometric covering Zj< —> Z^ is not trivial).
Now we apply Lemma 2.3 to the coverings of K -varieties:

ZQ,K -^ (%)o ~^ XQ,K-

We get a finite field extension Kf of X (which may be taken Galois over k) such that for almost
all places w of K which are completely split for K ' / K , there exists a K^ -point 7V^ of XQ^K
satisfying: HK splits at N^ and pj< does not split at N^; a fortiori YQ^K splits at 7V^. Let 5'i be the
set of places of k which are totally split for K ' / k . The set 6'i is infinite because ofTchebotarev's
density theorem. Thus (removing a finite set of places of S'i if necessary) we get for any place v
of 5'i a ky -point Ny e Xo(ky) satisfying: p does not split at Ny and YQ splits at Ny. D

Remark. ̂ _It is possible to replace the condition (Alb) of Theorem 5.1 by the condition (Alb7):
n n .D(7i-i (X, m)) -^ {e} , where 772_is a geometric point of X associated to a ^-rational point M
of X, and II is the image of 71-1 ( VQ, m) in 7Ti(X, m) (recall that Vo is the connected component
containing M of the fibre XQ of the Albanese map / at OA); indeed Proposition 4.2 does not
necessarily hold anymore, but it is easy to see that (AlbQ implies the existence of an etale
covering Z -^ X such that Z Xx VQ -> (Z^) Xx VQ is geometrically non-trivial (with the
notation of Proposition 4.2), and this hypothesis is sufficient to apply Lemma 2.3 to UQ = (Vo)red
in the proof of Theorem 5.1.

The condition (AlbQ holds in particular if II is infinite (e.g. if d'(X) > 0 and 77 := -K\CX)
is large in the sense of [21], 1.4.1.2); indeed let D^e the subgroup of 77 corresponding to the
coverings coming from the Albanes^variety A of X. We have 77 C D' because such coverings
induce trivial coverings of the fibre ~X~Q\ moreover D' I D ( T I ) is finite (because NS ~X^s is finite;
see the remark at the end of Corollary 3.3), hence 77 infinite implies 77 H 7^(77) 7^ {e}.

For varieties with non-abelian geometric fundamental group, the condition (AlbQ is weaker
than (Alb) (the latter implies 77 D 71-1 (X, m) by Proposition 4.2), but it seems difficult in practice
to check that (Alb') holds when (Alb) does not hold.

6. Examples

First of all, we can use the following result [31] to construct examples in dimension ^ 3:

THEOREM (Serre). - Let G be a finite group and k be afield. For any r ^ 2, there exist s e N
and a smooth complete intersection V C PI of dimension r on which G acts without fixed points
(i.e., all stabilizers are trivial).
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COROLLARY 6.1. - Let r ^ 3. There exist a number field k and a smooth, protective and
geometrically integral k-variety X of dimension r, such that X(Ak)BT ^- X(k)^ for any finite set
E C Qk' Moreover, any non-abelian finite group may occur as 71-1 ( X).

Proof. - Let G be a non-abelian finite group. Take a smooth complete intersection V C PQ of
dimension r on which G acts without fixed points and set X =- V/G. Now the assumption r ^ 3
implies that 7Ti(y), H^V^Oy) and H2(V,Ov) are trivial because of the Lefschetz theorems
([13], X.3 and XII.3). So q(X) = 0, H\X,Ox) = 0, and the etale fundamental group of X
is G. It remains to take a finite extension k/Q such that X(k) ̂  0 to apply Theorem 5.1. D

Remark. - If we assume_ further the group G perfect (that is -D(G) = G, e.g., G = An
with n ̂  5), we have BrX = 0 because Pic~X is torsion-free and ^(X, Ox) = 0 (use [27],
III.4.19, [14], Corollary 3.4 and [15], 8.12). Thus BrX/BrQ is finite by Lemma 3.1(1). Taking
k sufficiently large, we obtain examples with BrX/BrA; = 0; in this case the Brauer-Manin
obstruction to weak approximation is empty.

It is not clear whether the previous construction provides varieties with X(k) Zariski-dense,
so the next example is perhaps more significant:

PROPOSITION 6.2. - Let k be a number field and G be a finite group acting freely on an
abelian k-variety A such that dim A ̂  2. Assume that A(k) is Zariski-dense in A. Let X = A/G
be the etale quotient of A by G, assume H2(X, Ox) = 0. Then X(k) is Zariski-dense in X but
X(Ak)Br t X(k)Efor any finite set E C ̂ .

Remark. - Let A; be a number field. For any abelian ^-variety A, there exists a finite field
extension K / k such that A(K) is Zariski-dense in A ([10], Theorem 10.1).

Proof.^The variety Xc has a nef tangent bundle by [7] (3.2.ii and 3.4), so this is also the
case for X. Thus it just remains to check that 7Ti(X) is not abelian to apply Theorem 5.1. The
following sequence of groups is exact:

(5) i ->^(A)-^i(Z)-^G^l .

The group 71-1 (A) is abelian; the homomorphism <P: G —^ Aut(7Ti(A)) given by the sequence (5)
is induced by the action of G on A. Let g be an automorphism of the algebraic variety A; by [29]
(11.4, Corollary 1), we have g = r o go, where r act^ by translation and go is an automorphism of
the abelian variety A (that is: go is compatible with the group structure on A). The action induced
by T on H1 (A, Q/Z^ is trivial and the action induced by go on (H1 (A, Z/n^ =n A is simply
the natural action of go G Aut(A) on A; thus the homomorphism <^ is non-trivial if and only if G
contains an automorphism of the algebraic variety A which does not act by translation. But this
condition is ensured by the fact that X is not an abelian variety ([29], III. 12, Corollary 1), which
follows from the assumptions H^^X, Ox) = 0 and dimX > 2: indeed, for any abelian ^-variety
B, the fc-vector space H\B, Op) has dimension_G^^ by [29], III.13, Corollary 2. As ̂  is not
trivial, the subgroup 71-1 (A) is not central in 71-1 (~K) and in particular TT-I (~K ) is not abelian. D

Recall ([2], VI.20) that etale quotients of abelian surfaces (except abelian surfaces themselves)
over k are of the form (E x F)/G, where E and F are elliptic curves (and there are seven possible
cases for the group G). Such surfaces (the so-called bielliptic surfaces) have geometric genus 0,
hence Proposition 6.2 applies and we obtain:

COROLLARY 6.3. - Let X = (Gi x G2)/G be a bielliptic surface over a number field k such
that the elliptic curves C\ and Cz are of positive rank. Then X(k) is Zariski dense in X but
X(^kf11 X(k)E for any finite set E C ̂
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Remarks. - (1) Skorobogatov's counterexample to the Hasse principle [32] is (geometrically)
a bielliptic surface X = (C x D)/G, where C and D are curves of genus one and G = Z/2; the
absence of ^-rational points on X is not accounted for by the Brauer-Manin obstruction, but can
be explained using (as in Proposition 2.2) an obstruction related to a geometric non-abelian etale
covering of X. See [16] (5.1) for more details.

(2) Bielliptic surfaces were used as counterexamples to arithmetic properties for the first time
by Colliot-Thelene, Skorobogatov and Swinnerton-Dyer [6].

(3) There are varieties of dimension ^ 3 to which Proposition 6.2 applies: see [7] (3.3 and
3.11) for such an example in dimension 3, with H^(X, Ox) = 0 and H2(X, Ox) = 0.

Of similar kind is the following example (cf. [21], I.4.4.7):

PROPOSITION 6.4. - Let E be an elliptic curve and S be a K3-surface with a fixed-point
free involution r such that E(k) (respectively S(k)) is Zariski-dense in E (respectively in S). Let
X=Ex 67(-l,r). Then X(k) is Zariski-dense in X but X(\k)BT t ~X(]€f for any finite set
^7C^.

Proof. -We have ^(Sc) = 0 ([I], Corollary VIII.8.6), so by the comparison theorem
Ti-i (5') = 0. Thus the following sequence of groups is exact:

1 -^ TTi {E) -^ TTi (X) -^ Z/2 -^ 1

and Z/2_acts by conjugation on TT^E) = Z2 via x ^ -x. Therefore 7Ti(X) is infinite
but Ti-i (JQ^ = Z/2. In particular q(X) = 0 and 7Ti(X) is not abelian. It remains to show
H\X, Ox) = 0. Set Y = E x S . We have H^S, Os) = H\E, Oa) = 0, hence (by Kunneth
formula) the natural map: H2(S, Os) -^ H2(Y, Oy) is an isomorphism. Now H2(X, Ox) is
isomorphic to the group of those 2-forms on Y which are invariant by the action of Z/2
induced by (-l,r). In particular it is isomorphic to H^^S'.OS'). where S ' := S / T . But 5" is
an Enriques surface, hence ^(S^Os') = 0 ([2], Theorem VIII.2 and Proposition VIII. 17).
ThusH2(Sf,Os')=0. D

Remark. - Let 6' be a Kummer surface over k, that is a minimal projective and smooth model
of the (singular) quotient of an abelian surface by the multiplication by -1 (cf. [2], VIII. 10 and
VIII. 12 for the case k = C). Keum [19] has proved that Sc admits a fixed-point free involution.
Thus there exists a finite field extension K / k such that S(K) is Zariski-dense in S and S Xk K
admits a fixed-point free involution.

More generally, it has been proved very recently by Bogomolov and Tschinkel [4] that
for every Enriques surface 6", the set S ' ( K ) is Zariski-dense in 5" for some finite field
extension K / k . In particular, the same property holds for any JC3-surface S which admits a
fixed-point free involution.

It is an open question to know if this is still true for every variety X such that —Kx =
/\ lm Tx is nef. Some special cases (certain K3 surfaces, Fano threefolds which are not double
covers of P3 ramified in smooth surfaces of degree 6) were solved by Bogomolov, Harris, and
Tschinkel [17,3]. It is also expected that for a smooth, proper and geometrically integral variety
X such that —Kx is nef, the Albanese map is a smooth morphism; thus it seems reasonable to
hope that Theorem 5.1 still holds in some of these situations.

An elliptic surface over a curve C is a smooth and proper surface X equipped with a surjective
morphism TT : X —^ (7, and such that the generic fibre of TT is a smooth curve of genus one (we do
not require that TT admits a section). A fiber of TT is said to be multiple if it is divisible by n, for
some n ̂  2, in the group of divisors of X.
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Bielliptic surfaces are special cases of elliptic surfaces. Recall the following result about the
fundamental group of an elliptic surface over P1:

PROPOSITION 6.5. - Let TT : X —^ P[ be an elliptic surface. Assume that TT : ~K -^ P1 has at
least three multiple fibres. Then 7Ti(X) is not abelian.

Proof. - Use [8], p. 146 and the comparison theorem for the fundamental group. D

COROLLARY 6.6. - Let TT : X —> P{ be an elliptic surface such that pg(X) = q(X) = 0 and
X(k) ̂  0. If TT has at least three multiple fibres, then X^k)31 <f- X(AO^ for any finite set
E^Qk.

Remarks. -(1) Such surfaces exist ([8], Corollary 2, p. 139). It would be interesting to
construct examples of such elliptic fibrations, with three or four multiple fibres and X(k) Zariski-
dense. The condition X(k) Zariski-dense probably never holds if there are at least five multiple
fibres; for example X(k) is never Zariski-dense if there are at least five double fibres ([6],
Corollary 2.4).

(2) There are also examples of surfaces of general type to which Theorem 5.1 applies: actually
there exist (proper and smooth) surfaces of general type X such that pg(X) = q(X) = 0 and
Ti-i (X) is non-abelian (such examples can be found in [1] or [8]). But if one believes Lang's
conjecture (that is: for any ^-variety of general type, the set of rational points is not Zariski-
dense), the conclusion of Theorem 5.1 is somewhat weak for such surfaces.

It would be nice (using a "non-abelian" obstruction as in Proposition 2.2) to construct a surface
of general type X such that X^Ak)^ ^ 0 but X(k) = 0, that is to construct a counterexample
to the Hasse principle not accounted for by the Brauer-Manin obstruction among the surfaces
of general type. The similar problem for curves of genus at least 2 is probably more difficult
because constructing points in X(A.k)BT seems to be a tricky task.
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