
Ann. Scient. Éc. Norm. Sup.,
4e série, t. 34, 2001, p. 313 à 402.

PROPAGATION OF SINGULARITIES IN MANY-BODY
SCATTERING

BY ANDRÁS VASY 1

ABSTRACT. – In this paper we describe the propagation of singularities of tempered distributional
solutionsu ∈ S ′ of (H − λ)u = 0, λ > 0, whereH is a many-body HamiltonianH = ∆ + V , ∆ � 0,
V =

∑
a
Va, under the assumption that no subsystem has a bound state and that the two-body interactions

Va are real-valued polyhomogeneous symbols of order−1 (e.g. Coulomb-type with the singularity at the
origin removed). Here the term ‘singularity’ provides a microlocal description of the lack of decay at
infinity. We use this result to prove that the wave front relation of the free-to-free S-matrix (which, under our
assumptions, is all of the S-matrix) is given by the broken geodesic flow, broken at the ‘singular directions’,
on Sn−1 at timeπ. We also present a natural geometric generalization to asymptotically Euclidean spaces.
 2001 Éditions scientifiques et médicales Elsevier SAS

RÉSUMÉ. – Dans cet article on décrit la propagation des singularités des solutions tempéréesu ∈ S ′ de
(H −λ)u = 0, λ > 0, oùH est un Hamiltonien àN corpsH = ∆+V , ∆ � 0, V =

∑
a
Va, en supposant

que les Hamiltoniens des sous-systèmes n’ont pas de vecteurs propres (dansL2), et que les potentiels à deux
corpsVa sont polyhomogènes réels d’ordre−1 (par exemple, de type Coulomb, mais sans la singularité
à l’origine). Ici la notion de “singularité” étudiée fournit une description microlocale de la croissance des
fonctions à l’infini. On emploie ce résultat pour montrer que la relation de front d’onde de la matrice de
diffusion relative auxN -amas (qui est la seule partie de la matrice de diffusion sous nos hypothèses) est
donnée par le flot géodesique brisé dans les “directions singulières”, surSn−1 à tempsπ. On présente
aussi une généralisation géométrique naturelle au cas des variétés asymptotiquement euclidiennes. 2001
Éditions scientifiques et médicales Elsevier SAS

1. Introduction

In this paper we describe the propagation of singularities of generalized eigenfunctions of a
many-body HamiltonianH = ∆ + V , ∆ the positiveLaplacian, under the assumption that no
subsystem has a bound state. We use this result to prove that the wave front relation of the free-
to-free S-matrix (which is the only part of the S-matrix under our assumptions) is given by the
broken geodesic flow, broken at the ‘singular directions’, onSn−1 at distanceπ. We remark that
these results have been proved in three-body scattering, without the assumption on the absence
of bound states, in [36]. Also, Bommier [1] and Skibsted [33] have shown that the kernels of the
2-cluster to free cluster and 2-cluster to 2-cluster S-matrices are smooth, and previously Isozaki
had showed this in the three-body setting [14]. However, as is clear from the smoothness state-
ment, the microlocal propagation picture that is crucial, for instance, in the discussion of free-to-
free scattering, does not emerge in the previous examples when the initial state is a 2-cluster.
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314 A. VASY

In this section we discuss the setup in the Euclidean setting, but in the following ones we
move to a natural geometric generalization introduced by Melrose in [22]. Namely, suppose that
X is a manifold with boundary equipped with a scattering metricg and a cleanly intersecting
family C of closed embedded submanifolds of∂X with C0 = ∂X ∈ C. Thus,g is a Riemannian
metric in int(X) which is of the formg = x−4 dx2 + x−2h near∂X ; herex ∈ C∞(X) is a
boundary defining function. We also assume that near everyp ∈ ∂X , C is locally linearizable
(i.e. in suitable coordinates nearp, every element ofC is linear); this holds if every element ofC
is totally geodesic with respect to some metric (not necessarilyh) on ∂X . Let∆ be the positive
Laplacian ofg and suppose thatV ∈ C∞([X ;C];R) vanishes at∂X \

⋃
{C ∈ C: C �= ∂X}, and

H =∆+ V – we refer to Sections 2 and 6 for a more detailed discussion of the geometric and
analytic aspects of the setup. We prove under the assumption that there are no bound states for
each of the subsystems (we describe the assumption more precisely in Section 6, but it holds for
example ifV � 0) that singularities of solutionsu∈ C−∞(X) of (H −λ)u ∈ Ċ∞(X) propagate
along generalized broken bicharacteristics of∆ which are broken atC. We also show that this
implies a bound on the singularities of the kernel of the free-to-free S-matrix. In effect, we
show that many-body scattering is in many respects a hyperbolic problem, much like the wave
equation in domains with corners, for which the propagation of analytic singularities was proved
by Lebeau [18]. The geometrically simpler setting, where the elements ofC (exceptC0 = ∂X)
are disjoint, corresponds to three-body scattering in the Euclidean setting, and then the analogy
is with the wave equation in smoothly bounded domains, where the results forC∞ singularities
were proved by Melrose and Sjöstrand [23,24] and Taylor [34], and for analytic singularities by
Sjöstrand [32].

Here however we caution that another important aspect of typical many-body systemsis the
presence of bound states of subsystems. While propagation theorems indicate that geometry
plays a central role in scattering, bound states afford a similar role to spectral theory. Thus, in
general, the two interact, even changing the characteristic set of the Hamiltonian. The generalized
broken bicharacteristics are also more complicated in this setting, and, as a quick argument
shows, the ‘timeπ’ part of our result will not hold if bound states are present. In addition, the
Hamiltonian must possess additional structure (as the Euclidean ones do) so that propagation in
bound states can be analyzed. Hence, in this paper, it is natural to impose our assumption that
there are no bound states in the subsystems.

We emphasize that this assumption holds, for example, ifV � 0. Indeed, thenH =∆+V � 0,
and by an argument generalizing the corresponding result of Froese and Herbst [4] in the
Euclidean setting,H has no positive eigenvalues. The proof of this fact in the geometric three-
body setting can be found in [40], and it goes through in the geometric many-body setting
since the potentials play a very minor role; they only enter via the Mourre estimate. Moreover,
0 cannot be an eigenvalue since for such anL2(dg) eigenfunctionu, 0 = 〈(H + V )u,u〉 =
‖du‖L2 + 〈u,V u〉, which implies thatu is a constant, contradicting itsL2 behavior. (The
argument is justified by elliptic regularity.)

We now return to the Euclidean setting. Before we can state the precise definitions, we need
to introduce some basic (and mostly standard) notation. We consider the Euclidean spaceRn,
and we assume that we are given a (finite) familyX of linear subspacesXa, a ∈ I, of Rn which
is closed under intersections and includes the subspaceX1 = {0} consisting of the origin, and
the whole spaceX0 =Rn. Let Xa be the orthocomplement ofXa, and letπa be the orthogonal
projection toXa, πa to Xa. A many-body Hamiltonian is an operator of the form

H =∆+
∑
a∈I

(
πa

)∗
Va;(1.1)
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PROPAGATION OF SINGULARITIES IN MANY-BODY SCATTERING 315

here∆ is the positive Laplacian,V0 = 0, and theVa are real-valued functions in an appropriate
class which we take here to be polyhomogeneous symbols of order−1 on the vector spaceXa

to simplify the problem:

Va ∈ S−1
phg

(
Xa

)
.(1.2)

In particular, smooth potentialsVa which behave at infinity like the Coulomb potential are
allowed. Since(πa)∗Va is bounded and self-adjoint and∆ is self-adjoint with domainH2(Rn)
on L2 = L2(Rn), H is also a self-adjoint operator onL2 with domain H2(Rn). We let
R(λ) = (H − λ)−1 for λ ∈C \R be the resolvent ofH .

There is a natural partial ordering onI induced by the ordering ofXa by inclusion. (Though
the ordering based on inclusion of theXa would be sometimes more natural, and we use that for
the geometric generalization of many-body scattering starting from the next section, here we use
the conventional ordering.) LetI1 = {1} (recall thatX1 = {0}); 1 is the maximal element ofI.
A maximal element ofI \I1 is called a 2-cluster;I2 denotes the set of 2-clusters. In general, once
Ik has been defined fork = 1, . . . ,m− 1, we letIm (the set ofm-clusters) be the set of maximal
elements ofI ′

m = I \
⋃m−1
k=1 Ik, if I ′

m is not empty. IfI ′
m = {0} (soI ′

m+1 is empty), we callH
anm-body Hamiltonian. For example, ifI �= {0,1}, and for alla, b /∈ {0,1} with a �= b we have
Xa ∩Xb = {0}, thenH is a 3-body Hamiltonian. TheN -cluster of anN -body Hamiltonian is
also called the free cluster, since it corresponds to the particles which are asymptotically free.

It is convenient to compactify these spaces as in [22]. Thus, we letSn+ to be the radial
compactification ofRn to a closed hemisphere, i.e. a ball (using the standard mapRC given
here in (2.3)), andSn−1 = ∂Sn+. We writew = rω, ω ∈ Sn−1, for polar coordinates onRn, and
we letx ∈ C∞(Sn+) be such thatx= (RC−1)∗(r−1) for r > 1. Hence,x is a smoothed version
of r−1 (smoothed at the origin ofRn), and it is a boundary defining function ofSn+. We usually
identify (the interior of)Sn+ with Rn. Thus, we writeSm

phg(S
n
+) andSm

phg(R
n) interchangeably

and we drop the explicit pull-back notation in the future and simply writex = r−1 (for r > 1).
We also remark that we have

Sm
phg

(
Sn+

)
= xmC∞

(
Sn+

)
.(1.3)

We recall that underRC, Ċ∞(Sn+), the space of smooth functions onSn+ vanishing to infinite
order at the boundary corresponds to the space of Schwartz functionsS(Rn), and its dual,
C−∞(Sn+), to tempered distributionsS′(Rn). We also have the following correspondence of
weighted Sobolev spaces

Hk,l
sc

(
Sn+

)
=Hk,l =Hk,l

(
Rn

)
= 〈w〉−lHk

(
Rn

)
(1.4)

where〈w〉= (1 + |w|2)1/2. Thus, forλ ∈C \R the resolvent extends to a map

R(λ) :Hk,l
sc

(
Sn+

)
→Hk+2,l

sc

(
Sn+

)
.(1.5)

Similarly, we let

X̄a = cl
(
RC(Xa)

)
, Ca = X̄a ∩ ∂Sn+.(1.6)

Hence,Ca is a sphere of dimensionna − 1 wherena = dimXa. We also let

C = {Ca: a ∈ I}.(1.7)

Again, we write the polar coordinates onXa (with respect to the induced metric) aswa = raωa,
ωa ∈Ca, and letxa = r−1a (for ra > 1). We note that ifa is a 2-cluster thenCa ∩Cb = ∅ unless
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316 A. VASY

b � a. We also define the ‘singular part’ ofCa as the set

Ca,sing =
⋃
b��a
(Cb ∩Ca),(1.8)

and its ‘regular part’ as the set

C′
a =Ca \

⋃
b��a

Cb =Ca \Ca,sing.(1.9)

For example, ifa is a 2-cluster thenCa,sing = ∅ and C′
a = Ca. We sometimes write the

coordinates onXa ⊕Xa as(wa,wa).
Corresponding to each clustera we introduce the cluster Hamiltonianha as an operator on

L2(Xa) given by

ha =∆+
∑
b�a

Vb,(1.10)

∆ being the Laplacian of the induced metric onXa. Thus, if H is aN -body Hamiltonian and
a is ak-cluster, thenha is a (N + 1− k)-body Hamiltonian. TheL2 eigenfunctions ofha play
an important role in many-body scattering; we remark that by Froese’s and Herbst’s result, [4],
specpp(ha) ⊂ (−∞,0] (there are no positive eigenvalues). Moreover,specpp(ha) is bounded
below sinceha differs from∆ by a bounded operator. Note thatX0 = {0}, h0 = 0, so the
unique eigenvalue ofh0 is 0.

The eigenvalues ofha can be used to define the set of thresholds ofhb. Namely, we let

Λa =
⋃
b<a

specpp(hb)(1.11)

be the set of thresholds ofha, and we also let

Λ′
a =Λa ∪ specpp(ha) =

⋃
b�a
specpp(hb).(1.12)

Thus,0 ∈ Λa for a �= 0 andΛa ⊂ (−∞,0]. It follows from the Mourre theory (see e.g. [5,27]) that
Λa is closed, countable, andspecpp(ha) can only accumulate atΛa. Moreover,R(λ), considered
as an operator on weighted Sobolev spaces, has a limit

R(λ± i0) :Hk,l
sc

(
Sn+

)
→Hk+2,l′

sc

(
Sn+

)
(1.13)

for l > 1/2, l′ <−1/2, from either half of the complex plane away from

Λ=Λ1 ∪ specpp(H).(1.14)

In addition,L2 eigenfunctions ofha with eigenvalues which are not thresholds are necessarily
Schwartz functions onXa (see [4]). We also label the eigenvalues ofha, counted with
multiplicities, by integersm, and we call the pairsα= (a,m) channels. We denote the eigenvalue
of the channelα by εα, write ψα for a corresponding normalized eigenfunction, and leteα be
the orthogonal projection toψα in L2(Xa).

The definition of the free-to-free S-matrix we consider comes from the stationary theory, more
precisely from the asymptotic behavior of generalized eigenfunctions, see [35], and cf. [22,40].
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PROPAGATION OF SINGULARITIES IN MANY-BODY SCATTERING 317

Apart from the difference in normalization, it is the same as the S-matrix given by the wave
operators, see [39]. For simplicity, we state the asymptotic expansion under the assumption that
Va is polyhomogeneous of order−2 (so it decays as|wa|−2). Namely, forλ ∈ (0,∞) and
g ∈ C∞c (C′

0), there is a uniqueu ∈ C−∞(Sn+) (i.e. u ∈ S′(Rn)) such that(H − λ)u = 0, and
u has the form

u= e−i
√
λrr−(n−1)/2v− +R(λ+ i0)f,(1.15)

wherev− ∈ C∞(Sn+), v−|Sn−1 = g, andf ∈ Ċ∞(Sn+). In addition, thisu is of the form

u= e−i
√
λrr−(n−1)/2v− + ei

√
λrr−(n−1)/2v+, v+ ∈ C∞

(
Sn+ \C0,sing

)
.(1.16)

The Poisson operator with free initial data is the operator

P0,+(λ) :C∞c (C′
0)→C−∞(

Sn+
)
, P0,+(λ)g = u.(1.17)

Following [35], we define the free-to-free scattering matrix,S00(λ) as the map

S00(λ) :C∞c (C′
0)→C∞(C′

0),(1.18)

S00(λ)g = v+|C′
0
,(1.19)

so it relates the incoming amplitudev−|Sn−1 to the outgoing one,v+|Sn−1 . We recall from
[39] that the wave operator free-to-free S-matrix is then given byin−1S00(λ)R (as maps
C∞c (C′

0)→C−∞(C′
0)) whereR is pull back by the antipodal map onC0.

There are only minor changes ifVa is polyhomogeneous of order−1. Namely, the asymptotic
expansions in (1.15) and (1.16) must be replaced by

e±i
√
λrr−iα±−(n−1)/2v±, α± = α±,λ =±V ′|C′

0
/2
√

λ ∈ C∞(C′
0), V = xV ′,(1.20)

v± ∼
∞∑
j=0

∑
s�2j

aj,s,±(ω)r−j(log r)s, aj,s,− ∈ C∞c (C′
0), aj,s,+ ∈ C∞(C′

0).(1.21)

Note thatα± are not defined atC0,sing, but that does not cause any problems even in the
uniqueness statement, (1.15), sincev− vanishes atSn−1 nearC0,sing to infinite order.

Our main theorem describes the structure ofS00(λ). We first introduce the broken geodesic
flow (of the standard Riemannian metrich) on Sn−1, broken atC. We denote bySSn−1 the
sphere bundle ofSn−1 identified as the unit-length subbundle ofT Sn−1 with respect toh.
Let I = [α,β] ⊂ R be an interval. We say that a curveγ : I → Sn−1 is a broken geodesic of
h, broken atC, if two conditions are satisfied. First, there exists a finite set of pointstj ∈ I,
α = t0 < t1 < · · · < tk−1 < tk = β such that for eachj, γ|[tj ,tj+1] is a geodesic ofh, and for
all t ∈ (tj , tj+1), γ′(t) ∈ SSn−1. Second, for allj, if γ(tj) ∈ C′

a then the limitsγ′(tj − 0)
andγ′(tj + 0) both exist and differ by a vector inTγ(tj)S

n−1 which is orthogonal toTγ(tj)Ca

(i.e. the usual law of reflection is satisfied; see Fig. 1). We say thatp, q ∈ SSn−1 are related by
the broken geodesic flow at timeπ if there is a broken geodesicγ defined on[0, π], such that
γ′(0) = p, γ′(π) = q. Using the metrich to identify S∂X andS∗∂X , this defines the broken
geodesic ‘flow’ at timeπ onS∗∂X . We refer to Definition 6.6 and Section 7 for a more complete
discussion. We then have the following result:
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318 A. VASY

Fig. 1. Broken geodesics onS2 starting atp. HereCa = Cb ∩Cc.

THEOREM. – Suppose that no subsystem ofH has bound states, i.e. fora �= 0, specpp(ha) = ∅.
Then the free-to-free scattering matrix,S00(λ), extends to a continuous linear map
C−∞
c (C′

0)→C−∞(C′
0). The wave front relation ofS00(λ) is given by the broken geodesic flow

at timeπ.

In the actual many-body problem,w ∈Xa means that several particles are close to each other,
namely the ones corresponding to the cluster decompositiona. Thus,ω ∈ Ca is a statement that
the particles corresponding to clustera collide. Hence, the Theorem describes how many-body
scattering can be understood, modulo smoothing (hence in theC∞ sense trivial) terms, as a
sequence of a finite number of collisions involving the particles. Namely, each ‘break’tj in the
broken geodesic describes a collision involving the cluster decompositiona. In the three-body
setting with Schwartz potentials it was shown in [37] that the amplitude of the reflected wave is
given, to top order, by the corresponding 2-body S-matrix; an analogous statement also holds for
short-range potentials. In particular, this shows that the Theorem is sharp as far as the location of
singularities is concerned.

We also remark that in the Euclidean setting, unbroken geodesic flow to distanceπ amounts to
pull-back by the antipodal map onSn−1 = ∂Sn+, so it corresponds to free propagation: particles
leave in the direction opposite to the one from which they entered.

Our approach to proving this theorem is via the analysis of generalized eigenfunctions of
H , i.e. of u ∈ C−∞(Sn+) satisfying(H − λ)u = 0. We prove that ‘singularities’ of generalized
eigenfunctions ofH propagate along broken bicharacteristics in the characteristic set ofH ,
similarly to singularities of the solutions of the wave equation. Here ‘singularities’ are not
understood as the lack of smoothness: indeedH is elliptic in the usual sense, so every generalized
eigenfunction isC∞ in the interior ofSn+, i.e. onRn. Instead, in this situation singularity means
the lack of rapid decayu. Correspondingly, we define a wave front set,WFSc(u), at infinity, i.e.
at∂Sn+, and we will prove its invariance under the broken bicharacteristic flow.

The two notions of singularities are very closely related via the Fourier transform. Here for
simplicity consider∆ − λ in place ofH − λ. If (∆ − λ)u = 0, then the Fourier transform
of u, Fu, satisfies(|ξ|2 − λ)Fu = 0 whereξ is the dual variable ofw. Now, the multiplication
operatorP = |ξ|2−λ can be regarded as a 0th order differential operator. Hence, by Hörmander’s
theorem, see e.g. [12],WF(Fu) is invariant under the bicharacteristic flow in the characteristic
variety of P , i.e. in the set{(ξ, ξ∗): |ξ|2 − λ = 0} where we have writtenξ∗ for the dual
variable ofξ, so ξ∗ is in fact w. Moreover, in the two-body problem, i.e. ifV is a symbol (of
say order−1) on Rn, H = ∆ + V , and if (H − λ)u = 0, we still havePFu = 0 where now
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P = |ξ|2 − λ + FV F−1. SinceV is a symbol of order−1, FV F−1 is a pseudo-differential
operator of order−1, hence lower order than|ξ|2 − λ. Thus, the principal symbol ofP is still
|ξ|2 − λ (recall thatξ∗ is the cotangent variable, so this is indeed homogeneous of order0 in
ξ∗ – it is independent ofξ∗). Hence, Hörmander’s theorem is applicable and we have the same
propagation statement as before.

In the two-body setting the relevant wave front set measuring lack of decay at infinity is the
scattering one,WFsc. Foru ∈ S′(Rn),WFsc(u) is essentially given by the usual wave front set
of the Fourier transform ofu, i.e. byWF(Fu), after interchanging the role of the base and dual
variables. Since the Fourier transform interchanges decay at infinity and smoothness,WF(Fu)
indeed measures the decay ofu at infinity in a microlocal sense. Hence, Hörmander’s propagation
theorem translated directly into a propagation theorem forWFsc(u). This result was described
by Melrose in [22] where he introduced the notion ofWFsc.

In the many-body setting conjugation by the Fourier transform is much less convenient. Hence,
we will design an appropriate microlocal way of measuring the lack of decay at infinity without
resorting to the Fourier transform. Instead, we introduce an algebra of many-body pseudo-
differential operatorsΨSc(Sn+,C) which reflects the geometry, and use it to define the wave
front set at infinity. We remark, however, that for (approximate) generalized eigenfunctions ofH ,
a characterization based on the Fourier transform is possible; see Remark 5.3 and Proposition 5.5.
We then prove a propagation of singularities theorem for generalized eigenfunctions of many-
body HamiltoniansH ; here ‘singularities’ are understood in the sense of the new wave front set
at infinity. The proof of this theorem is via a microlocal positive commutator estimate, similarly
to the proof of Hörmander’s theorem, or indeed to the proof of the propagation theorems forC∞
singularities of solutions of the wave equation with domains with boundaries [23]. Finally, we
relate such a result to the structure of the S-matrix. This step is comparatively easy as indicated
by our description of the S-matrix in terms of generalized eigenfunctions ofH .

Positive commutator estimates have also played a major role in many-body scattering starting
with the work of Mourre [26], Perry, Sigal and Simon [27], Froese and Herbst [5], Jensen [17],
Gérard, Isozaki and Skibsted [6,7] and Wang [41]. In particular, the Mourre estimate is one of
them; it estimatesi[H,w ·Dw+Dw ·w]. This and some otherglobalpositive commutator results
have been used to prove the global results mentioned in the first paragraph about some of the
S-matrices with initial state in a two-cluster. They also give the basis for the existence, uniqueness
and equivalence statements in our definition of the S-matrix by asymptotic expansions; these
statements are discussed in [39] in more detail. Correspondingly, these global estimates will
appear in Sections 11–12 of this paper where we turn the propagation results for generalized
eigenfunctions into statements about the S-matrix.

We remark that the wave-operator approach defines the S-matrix as a bounded operator
L2(C0)→ L2(C0). SinceC0,sing has measure0, L2(C0) and L2(C′

0) can be identified. As
C∞c (C′

0) is dense inL2(C′
0), the asymptotic expansion S-matrixS00(λ) indeed determines the

wave-operator one.
The propagation of singularities of generalized eigenfunctions ofH is determined by the

principal part ofH ; terms decaying at the boundary do not change the analysis. As opposed
to this, the precise structure of incoming and outgoing functions,R(λ ± i0)f , f ∈ Ċ∞(Sn+),
depends on lower order terms; a relatively trivial example is given by the appearence ofr−iα±

in (1.20) for long-range potentials. Since we considerS00(λ) and P0,+(λ) as operators on
distributions supported away fromC0,sing, we do not need to analyze the precise structure of
incoming/outgoing functions atC0,sing, which is not ‘principal type’, although we certainly
analyze the propagation of singularities there. Thus, we do not discuss what happens when the
support of the incoming scattering data increases toC′

0, even if the data areL2. But the behavior
of P0,+(λ), as the support of the data increases toC′

0, plays an important part in asymptotic
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completeness, which states that all possible outcomes of a scattering experiment are indeed
described by a combination of bound states of the cluster Hamiltonians, with asymptotically free
motion in the intercluster variables. Thus, our results cannot be used directly to supply a proof of
asymptotic completeness. This completeness property of many-body Hamiltonians was proved
by Sigal and Soffer, Graf, Dereziński and Yafaev under different assumptions on the potentials
and by different techniques [28,29,31,30,8,2,42]. In particular, Yafaev’s paper [42] shows quite
explicitly the importance of the special structure of the Euclidean Hamiltonian. This structure
enables him to obtain a positive commutator estimate, which would not follow from our indicial
operator arguments in Section 9, and which is then used to prove asymptotic completeness.

Finally we comment on the requirement that the collectionC be locally linearizable. We show
in the next section that it is equivalent to the existence of a neighborhood of every pointp ∈ ∂X
and a metric on it, in terms of which all elements ofC are totally geodesic. The importance
of this assumption is closely related to the existence of a sufficient number ofsmoothvector
fields on∂X which are tangent to every element ofC. Such smooth vector fields always exist
once weresolvethe geometry ofC, i.e. on the blown-up space[∂X ;C], but in general, without
our assumption, there are not enough such smooth vector fields on∂X . In the first part of the
paper, we discuss the pseudo-differential algebra associated to many-body scattering. For this
purpose we need to blow upC, in part for analyzing the indicial operators (see the following
paragraph). Thus, in this part of the paper, the issue of local linearizability is irrelevant, and we
do not assume it. However, in the second part of the paper, the geometry of the compressed
cotangent bundle, the discussion of generalized broken bicharacteristics and the construction of
the positive commutators would all be more complicated without it, so from Section 5 on, we
assume the local linearizability ofC.

This paper is organized as follows. In the next section we describe the geometric generalization
of the many-body problem which was outlined above. This includes a discussion of many-body
geometry and the definition of many-body differential operators. In Section 3 we proceed to
define and analyze the corresponding algebra of pseudo-differential operators,ΨSc(X,C), which
reflects this geometry. It includes many-body Hamiltonians, as well as their resolvent away from
the real axis. It extends the definition of the three-body calculus presented in [40], though here
we emphasize the definition of the calculus via localization and quantization as opposed to the
conormal description of the kernels on an appropriate resolved space. In Section 4 we construct
the indicial operators in this calculus. They provide a non-commutative analog of the principal
symbol in standard microlocal analysis. Our proof of positivity in commutator estimates is based
on replacing the argument of Froese and Herbst [5] by indicial operator techniques. In Section 5
we define the wave front set at infinity,WFSc(u), corresponding to the many-body geometry and
pseudo-differential operators. The definition given here differs from the one in [40]; it follows
the fibred cusp definition of Mazzeo and Melrose [19]. These definitions, however, give the same
result for approximate generalized eigenfunctions ofH .

In Section 6 we discuss many-body type Hamiltonians and their generalized broken
bicharacteristics. This section is, to a significant degree, based on Lebeau’s paper [18]. In
Section 7 we give a much more detailed description of the generalized broken bicharacteristics
in the case when all elementsC ∈ C are totally geodesic. Of course, this is true in the
Euclidean setting. In Sections 8–9 we build the technical tools for turning a symbolic positive
commutator calculation into an operator estimate. In Section 10 we prove that singularities of
generalized eigenfunctions of many-body type Hamiltonians propagate along generalized broken
bicharacteristics. This is the main new result of the paper. In Sections 11–12 we use this and
adaptations of the global estimates, in particular those of Gérard, Isozaki and Skibsted [6,7], to
analyze the structure of the resolvent and that of the scattering matrix. Finally, in the Appendix
we prove some of the results quoted from Lebeau’s paper, using slightly different methods.
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The propagation estimates of Section 10 lie at the heart of this paper. The reader may want to
skip some of the technical sections when reading the paper for the first time. It may be useful
to keep Mourre-type estimates and especially their microlocalized versions as in [6,7] in mind
while reading Section 10.

I would like to thank Richard Melrose for suggesting this problem to me (in the three-body
setting) as my PhD thesis problem and for our very fruitful discussions. His firm belief that
scattering theory can be understood in microlocal terms similar to the well-known theory of
hyperbolic operators motivated me both during my PhD work [36] and while working on its
extension that appears in this paper. I am grateful to Maciej Zworski for introducing me to the
work of Gilles Lebeau [18], for many helpful discussions and for his encouragement. It was
Lebeau’s paper that convinced me that the results presented here were within reach, and it plays a
particularly central role in Section 6 where the generalized broken bicharacteristics are described.
I would also like to thank the referee for the careful reading of the original manuscript and for
the resulting numerous improvements. I am also grateful to Andrew Hassell, Rafe Mazzeo, Erik
Skibsted and Jared Wunsch for helpful discussions, their encouragement and for their interest in
this research.

2. Many-body geometry and differential operators

It is convenient to carry out the construction in the general geometric setting. We first describe
the many-body geometry.

Thus, letX be a compact manifold with boundary, and let

C = {Ca: a ∈ I}(2.1)

be a finite set of closed embedded submanifolds of∂X such that∂X =C0 ∈ C and for alla, b∈ I
eitherCa andCb are disjoint, or they intersect cleanly andCa ∩ Cb = Cc for somec ∈ I. We
introduce a partial order onC given by inclusion onC, namely

Ca � Cb if and only if Ca ⊂Cb.(2.2)

This partial order is the opposite of the partial order used traditionally in many-body scattering,
discussed in the introduction, but it will be more convenient for us since it simply corresponds to
inclusion. A chain is defined as usual as a set on which< gives a linear order.

DEFINITION 2.1. – LetX andC be as above. We say that(X,C) is a space withN -body
geometry (or anN -body space),N � 2, if the maximal length of chains isN − 1. Similarly, we
say thatCa is ak-cluster if the maximal length of chains whose maximal element isCa is k− 1.
We also say that(X,C) is a many-body space if we do not wish to specifyN .

Thus, if Ca is minimal, it is a 2-cluster, and if(X,C) is a space withN -body geometry then
∂X is anN -cluster. The numerology is chosen here so that we conform to the usual definitions
in Euclidean many-body scattering, described in the Introduction.

Before defining the algebra of many-body scattering differential operators on(X,C), we
discuss the simultaneous local linearizability of the collectionC. As we have mentioned in
the Introduction, the analysis of generalized broken geodesics as well as the commutator
constructions of this paper become simpler ifC is locally linearizable. To make this notion
precise, we make the following definition.

DEFINITION 2.2. – We say that a many-body space(X,C) is locally linearizable (or is locally
trivial) if for every p ∈ ∂X there exists a diffeomorphismφ from a neighborhoodU of p in ∂X
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to a neighborhoodU ′ of the origin of a vector spaceV such that for eachC ∈ C, the image of
C ∩U underφ is the intersection of a linear subspace ofV with U ′.

Remark2.3. – In three-body type geometry, where the elements ofC exceptC0 are disjoint,
(X,C) is automatically locally linearizable. The same holds, essentially by definition, ifC is a
normal collection, see [20, Chapter V].

Local triviality of C is closely related to the question whether every element ofC is locally
totally geodesic with respect to some metric. In fact,

LEMMA 2.4. –A many-body space(X,C) is locally linearizable if and only if everyp ∈ ∂X
has a neighborhoodU in ∂X and a Riemannian metrichU on U such that for each elementC
of C, C ∩U is totally geodesic with respect tohU .

Proof. –Suppose first thatp ∈ ∂X and U , hU are as above. By shrinkingU if necessary,
we can make sure thatp /∈ C implies C ∩ U = ∅ for everyC ∈ C . By shrinkingU further if
necessary, we can arrange that the exponential map ofhU at p ∈ ∂X identifies a neighborhood
U ′ of the origin in V = Tp∂X and U . Moreover, the elementsC ∈ C for which p ∈ C, are
identified withTpC ∩ U ′, since theseC are totally geodesic. This proves that(X,C) is locally
linearizable.

Conversely, if(X,C) is locally linearizable, then the choice of an inner product onV induces
a metric onT V , hence onU via the diffeomorphismφ, and as linear subspaces ofV are totally
geodesic with respect to this metric onT V , the same holds forC overU . ✷

After this brief discussion on the local linearizability ofC, we turn to the setting of
most interest, namely to Euclidean many-body geometry. Suppose thatX = Sn+ is the radial
compactification ofRn and X is a family of linear subspaces ofRn as discussed in the
introduction. Recall from [22] thatRC:Rn→ Sn+ is given by

RC(w) =
(
1/

(
1 + |w|2

)1/2
,w/

(
1+ |w|2

)1/2) ∈ Sn+ ⊂Rn+1, w ∈Rn.(2.3)

Here we use the notationRC instead ofSP, used in [22], to avoid confusion with the standard
stereographic projection giving a one-point compactification ofRn. We write the coordinates on
Rn =Xa ⊕Xa as(wa,w

a). Let m= dimXa. We again let

X̄a = cl
(
RC(Xa)

)
, Ca = X̄a ∩ ∂Sn+.(2.4)

We next show that polyhomogeneous symbols onXa, pulled back toRn by πa, are smooth
on the blown-up space[X ;Ca]. Recall that the blow-up process is simply an invariant way of
introducing polar coordinates about a submanifold. A full description appears in [20] and a more
concise one in [22, Appendix A], but we give a brief summary here. Thus, suppose thatX is a
manifold with corners andC is a p-submanifold (i.e. product submanifold) of∂X . Thus, near
anyp ∈ C we have local coordinatesxi (i= 1, . . . , r), yj (j = 1, . . . , n− r), n= dimX , such
that the boundary hypersurfaces ofX throughp are defined byxi = 0, X is given byxi � 0,
i= 1, . . . , r, and such thatC is locally defined by the vanishing of certain of these coordinates,
e.g. byxi = 0, i= 1, . . .s, s � r, andyj = 0, j = 1, . . . , p, p � n− r. A tangent vectorV ∈ TqX ,
q nearp, is inward-pointing if(V xi)(q) � 0 for all i. The normal bundle ofC is the quotient
bundle

NC = TCX/T C.(2.5)

The inward pointing normal bundle ofC, N+C, is the image ofT+X , consisting of inward
pointing tangent vectors, inNC. Thus, nearp, X is diffeomorphic to the inward-pointing normal

4e SÉRIE– TOME 34 – 2001 –N◦ 3



PROPAGATION OF SINGULARITIES IN MANY-BODY SCATTERING 323

bundle ofC. The blow-up ofX alongC is locally defined as the blow up of the0 section of
N+C, i.e. by introducing the newC∞ structure inN+C given by polar coordinates in the fibers
of the bundle and by the base coordinates pulled back fromC. While this construction depends
on some choices, the resultingC∞ structure does not. The blow-up ofX alongC is denoted
by [X ;C]. The blow-down map[X ;C]→ X is the smooth map corresponding to expressing
standard coordinates on a vector space,N+

q C, in terms of polar coordinates. It is denoted by
β[X ;C]. The front face of the blow-up is the inverse image ofC (i.e. of the zero section of
N+C) underβ[X ;C]. Hence, it is a bundle overC whose fibers are the intersection of a sphere
with a ‘quadrant’ corresponding to the inward-pointing condition, i.e. toxi � 0. In fact, it is the
inward pointing sphere bundleS+NC which is the quotient ofN+C \ o, o denoting the zero
section, by the naturalR+ actions in its fibers.

We again return to the Euclidean setting. In particularX = Sn+. We denote the blow-down
map byβ[X ;Ca] : [X ;Ca]→ X . Now S+NCa is a hemisphere bundle overCa, which can
be identified with the radial compactification of the normal bundle ofCa in ∂X whose fibers
can in turn be identified withXa. To see this in more concrete terms, we proceed by finding
local coordinates on[X ;Ca] explicitly. It is convenient to do so by using projective coordinates
rather than the standard polar coordinates. NearCa in Sn+ we have|wa|> c|wa| for somec > 0.
Hence, near any pointp ∈ Ca one of the coordinate functions(wa)j which we may take to be
(wa)m, satisfies|(wa)m|> c′|(wa)j |, |(wa)m|> c′|wa| for somec′ > 0. Taking into account the
coordinate form ofRC we see that

x= |(wa)m|−1, zj =
(wa)j
|(wa)m|

(j = 1, . . . ,m− 1),
(2.6)

yj =
(wa)j
|(wa)m|

(j = 1, . . . , n−m)

give coordinates onSn+ near p. In these coordinatesCa is defined byx = 0, y = 0.
Correspondingly, we have coordinates

x, zj (j = 1, . . . ,m− 1), Yj = yj/x (j = 1, . . . , n−m),(2.7)

i.e.

x= |(wa)m|−1, zj =
(wa)j
|(wa)m|

(j = 1, . . . ,m− 1), Yj = (wa)j (j = 1, . . . , n−m)

(2.8)
near the interior of the front faceff of the blow-up [X ;Ca], i.e. near the interior offf =
β[X ;Ca]∗Ca; see Fig. 2.

Near the corner∂β[X ;Ca]∗Ca = β[X ;Ca]∗Ca ∩ β[X ;Ca]∗∂X , in the lift of the region
defined for somek by |yk|� c|yj | for somec > 0 and allj �= k,

x̂= x/yk, Ŷj = yj/yk (j �= k), yk, z(2.9)

give coordinates. In terms of the original Euclidean variables these are

x̂= |(wa)k|−1, zj =
(wa)j
|(wa)m|

(j = 1, . . . ,m− 1),

Ŷj =
(wa)j
(wa)k

(j = 1, . . . , n−m, j �= k), yk =
(wa)k
|(wa)m|

.(2.10)
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Fig. 2. The blowup ofCa = {x = 0, y = 0}; thez coordinates are normal to the page and are not shown.
The thin lines are the coordinate curvesY = const andx = const in the region|Y | < c (which is disjoint
from β[X;Ca]∗∂X), and their images under the blow-down mapβ[X;Ca].

Since in every region near the liftβ[X ;Ca]∗Ca of Ca we can use one of these coordinate systems,
and since away from there we can use coordinates as in (2.6) but withwa andwa interchanged,
we have proved the following lemma.

LEMMA 2.5. – Suppose thatX = Sn+ and letβ = β[X ;Ca] be the blow-down map. Then the
pull-backβ∗(RC−1)∗πa of πa :Rn→Xa extends to aC∞ map, which we also denote byπa,

πa : [X ;Ca]→ X̄a.(2.11)

Moreover, ifxa is a boundary defining function on̄Xa (e.g.xa = |wa|−1 for |wa| > 1), then
ρ∂X = (πa)∗xa is a defining function for the lift of∂X to [X ;Ca], i.e. forβ∗∂X .

COROLLARY 2.6. –Suppose thatX = Sn+, f ∈ Sr
phg(X

a). Then

(πa)∗f ∈ ρ−r
∂XC∞([X ;Ca]).(2.12)

Here, following the previous lemma, we regardπa as the map in(2.11), andρ∂X is the defining
function ofβ[X ;Ca]∗∂X , i.e. of the lift of∂X , and the subscriptphg refers to classical(one-step
polyhomogeneous) symbols(see Fig.3).

This corollary shows that for a Euclidean many-body Hamiltonian,H = ∆ +
∑

a Va, Va
becomes a nice function on the compact resolved space[Sn+;Ca]. Thus, to understandH , we
need to blow upall theCa. In order to analyze this iterated blow-up procedure, it is convenient
to generalize the clean intersection properties to manifolds with cornersX .

Let X be a manifold with corners, and letF = {F1, . . . , FN} be a collection of closed
p-submanifolds ofX . Following Melrose, [20, Chapter V], we say thatF is a normal collection
if for any pointp ∈X there are local coordinates on a neighborhoodU of p such that with some
index setsIl, I ′

l , l= 1, . . . ,N ,

p ∈ Fl⇒ Fl ∩U = {xr = 0, r ∈ Il, ys = 0, s ∈ I ′
l};(2.13)

here thexk are defining functions of the boundary hypersurfaces throughp. This simply means
that there is a common product decomposition for all elements of the collection.
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Fig. 3. The blowup ofCa in Sn
+; β = β[Sn

+;Ca] is the blow-down map andff = β∗Ca. X ′
a andX ′′

a denote
translates ofXa in Rn, X̄ ′

a = cl(RC(X ′
a)), etc. Note that the lifts of̄Xa, X̄ ′

a andX̄ ′′
a become disjoint on

[Sn
+;Ca].

Using this definition, we can define cleanly intersecting families of submanifolds ofX .
Namely, given a finite familyF of closed p-submanifoldsFi of X we say thatF is a cleanly
intersecting family if it is closed under intersection (in the sense that any two members are
either disjoint, or their intersection is in the family) and for anyi andj, {Fi, Fj} form a normal
collection in the sense of Melrose [20, Chapter V]. As mentioned above, this means that there is
a common product decomposition for any pair of elements ofF . In particular, ifX is a manifold
without boundary, then this simply means that theFi pairwise intersect cleanly. Hence,(X,C) is
a many-body space if and only ifC is a cleanly intersecting family in∂X which includes∂X .

Just as in the case of a many-body space, inclusions give a partial order on a cleanly
intersecting familyF . Thus,F ∈ F is minimal with respect to inclusion if there is noF ′ ∈ F
such thatF ′ �= F , F ′ ⊂ F . SinceF is closed under intersection, this means exactly that for all
F ′ ∈ F eitherF ′ andF are disjoint, orF ⊂ F ′.

LEMMA 2.7. –LetF be a cleanly intersecting family of p-submanifolds of∂X . Suppose that
F ∈ F is minimal with respect to inclusion. Then the lifted family,F ′, consisting of the lifts of
Fj , distinct fromF , to [X ;F ], is also a cleanly intersecting family.

Proof. –We claim that for anyFi, Fj ∈ F the 4-tuple{F,Fk, Fi, Fj}, Fk = Fi ∩ Fj , is a
normal collection in the sense of Melrose. Indeed, this is clear ifFk is disjoint fromF ; otherwise
F ⊂ Fk by our assumption.

So assume thatF ⊂ Fk. By the normality of{F,Fk}, near any pointp in F there are local
coordinatesxr , ys, onX such that

Fk =
{
xr = 0, r ∈ I ′

k, ys = 0, s ∈ I ′′
k

}
,(2.14)

F =
{
xr = 0, r ∈ I ′, ys = 0, s ∈ I ′′},(2.15)

andI ′
k ⊂ I ′, I ′′

k ⊂ I ′′. Similarly, by the normality of{Fi, Fj} there are local coordinatesx′
r , y′

s

nearp on X such that

Fi =
{
x′
r = 0, r ∈ I ′

i, y′
s = 0, s ∈ I ′′

i

}
,(2.16)

Fj =
{
x′
r = 0, r ∈ I ′

j , y′
s = 0, s ∈ I ′′

j

}
,(2.17)

Thus,

Fk =
{
x′
r = 0, r ∈ I ′

i ∪ I ′
j , y′

s = 0, s ∈ I ′′
i ∪ I ′′

j

}
.(2.18)
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Thus, the differentials of the coordinatesx′
r , r ∈ I ′

i ∪ I ′
j , andy′

s, s ∈ I ′′
i ∪ I ′′

j , span the conormal
bundle ofFk. The same holds for the differentials ofxr , r ∈ I ′

k, ys, s ∈ I ′′
k . It follows that the

differentials ofx′
r , r ∈ I ′

i ∪ I ′
j , xr , r /∈ I ′

k, y′
s, s ∈ I ′′

i ∪ I ′′
j , ys, s /∈ I ′′

k are independent atFk
in a coordinate neighborhood ofp, so these functions give local coordinates onX nearp in
terms of whichF , Fk, Fi andFj have common product decomposition:Fi, Fj andFk given by
(2.16)–(2.18), andF by

F =
{
x′
r = 0, r ∈ I ′

i ∪ I ′
j , xr = 0, r ∈ I ′ \ I ′

k, y′
s = 0, s ∈ I ′′

i ∪ I ′′
j ,

(2.19)
ys = 0, s ∈ I ′′ \ I ′′

k

}
.

This proves that{F,Fk, Fi, Fj} is indeed a normal collection. Hence, by [20, Lemma V.11.2], it
lifts to a normal collection of p-submanifolds on[X ;F ]. Writing β for the blow-down map, and
β∗Fk for the lift of Fk, etc., we see in particular that{β∗Fi, β

∗Fj} is a normal collection whose
intersection isβ∗Fk if Fk �= F , and is empty otherwise. Putting together these facts we see that
we have proved the lemma.✷

This lemma allows us to define[X ;F ] if F is a cleanly intersecting family of p-submanifolds
of ∂X . We do this by putting a total order onF which is compatible with the partial order given
by inclusion. This can always be accomplished: pick a minimal element with respect to inclusion,
and make it the minimal element of the total order. Proceeding inductively, if we already placed
a total order onF ′ ⊂F , we choose anyF ∈ F \F ′ which is minimal with respect to inclusion in
F \F ′, and extend the total order toF ′∪{F} by makingF the maximal element with respect to
it. Having imposed a total order onF which is compatible with inclusion, we define[X ;F ] to be
the blow up[X ;F1, F2, . . . , Fn] whereF = {F1, F2, . . . , Fn} andF1 < F2 < · · ·< Fn, < being
the total order. Of course, a priori[X ;F ] depends on the total order. The following lemma shows
that this is not the case.

LEMMA 2.8. –If F is a cleanly intersecting family and<, <′ are total orders on it which are
compatible with inclusion, then the blow ups

[X ;F1, F2, . . . , Fn], F1 < F2 < · · ·< Fn,(2.20)

[X ;F ′
1, F

′
2, . . . , F

′
n], F ′

1 <′ F ′
2 <′ · · ·<′ F ′

n(2.21)

are canonically diffeomorphic.

Proof. –Since any total order compatible with inclusion can be obtained from any other one
by repeatedly interchanging the order of adjacent elements, but keeping the order compatible
with inclusion, it suffices to show that

[X ;F1, . . . , Fk, Fk+1, . . . , Fn] and [X ;F1, . . . , Fk+1, Fk, . . . , Fn](2.22)

are naturally isomorphic if both of these total orders respect inclusion. Now, eitherFk ∩ Fk+1 = ∅,
in which case the statement is clearly true, orFk ∩ Fk+1 = Fj for somej. Since inclusion is
respected, we must havej < k. But upon the blow up of their intersection, any two closed p-
submanifolds with normal intersection lift to be disjoint. Hence, on[X ;F1, . . . , Fk−1] the lifts
β∗Fk andβ∗Fk+1 are disjoint, and thus they can be blown up in either order. This proves the
lemma. ✷

Correspondingly,[X ;F ] is defined independently of the total order used in the definition of
the blown up space, assuming that it respects inclusion, so we can speak about[X ;F ] without
specifying such a total order.

4e SÉRIE– TOME 34 – 2001 –N◦ 3



PROPAGATION OF SINGULARITIES IN MANY-BODY SCATTERING 327

If Fi ∈ F , we can always specify the total order so that everyFj ∈ F with Fj < Fi satisfies
Fj ⊂ Fi. Then the blow-up ofFi commutes with all the ones preceding it. Hence, any function
that is smooth on[X ;Fi] pulls back to be smooth on[X ;F ]. Applying this in the Euclidean
many-body setting we conclude that

LEMMA 2.9. –Suppose thatX = Sn+ andX is a linear family of subspaces ofRn as in the
introduction. ThenV =

∑
a Va, Va ∈ S−m

phg (X
a), lifts to be an element ofρm∂XC∞([X ;C]) where

ρ∂X is the defining function of the lift ofC0 = ∂X under the blow-down map

βSc = β[X ;C] : [X ;C]→X.(2.23)

Our main interest is the study of differential operators, in particular the analysis of many-body
HamiltoniansH . For this purpose we next investigate how vector fields lift under the blow up.
First, we defineVb(X ;F) as the Lie algebra of smooth vector fields onX which are tangent to
the boundary faces ofX and to each element ofF .

LEMMA 2.10. – Each element ofVb(X ;F) lifts to an element ofVb([X ;F ]).

Proof. –It suffices to show thatV ∈ Vb(X ;F) lifts to be an element ofVb([X ;F ];F ′) where
F is minimal with respect to inclusion and

F ′ =
{
β∗F ′: F ′ ∈ F \ {F}

}
.(2.24)

Taking into account that for anyF ′ �= F , {F,F ′} is a normal collection of p-submanifolds ofX ,
this claim follows from [20, Proposition V.11.1], or it can be checked directly by using projective
coordinates on[X ;F ]. ✷

Remark2.11. – It is not the case in general thatVb(X ;F) lifts to spanVb([X ;F ]) over
C∞([X ;F ]). This statement is true, however, ifF is a normal collection (i.e. all elements of
F have product decomposition in the same coordinate system, not just pairs of elements), see
[20, Proposition V.11.1].

We can now introduce the appropriate class of differential and pseudo-differential operators on
many-body spaces(X,C). These will include many-body Hamiltonians in the Euclidean setting
as well as their resolvents (in the resolvent set).

First, we recall from [22] Melrose’s definition of the Lie algebra of ‘scattering vector fields’
Vsc(X), defined for every manifold with boundaryX . Before definingVsc(X), we recall that
Vb(X) denotes the set (in fact, Lie algebra) of smooth vector fields onX which are tangent to
∂X . The algebraDiffb(X) of differential operators generated byVb(X) is called the algebra of
b-differential operators;Diffkb(X) denotes the set of b-differential operators of order (at most)k;
here b stands for ‘boundary’. Then we defineVsc(X) as

Vsc(X) = xVb(X).(2.25)

Note that this definition is intrinsic; for any other boundary defining function is a positive
multiple ofx, henceVsc(X) is independent of such choices. If(x, y1, . . . , yn−1) are coordinates
onX wherex is a boundary defining function, then locally a basis ofVsc(X) is given by

x2∂x, x∂yj , j = 1, . . . , n− 1.(2.26)
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Correspondingly, there is a vector bundlescT X overX , called the scattering tangent bundle of
X , such thatVsc(X) is the set of all smooth sections ofscT X :

Vsc(X) = C∞
(
X ; scT X

)
.(2.27)

The dual bundle ofscT X (called the scattering cotangent bundle) is denoted byscT ∗X . Thus,
covectorsv ∈ scT ∗

pX , p near∂X , can be written asv = τ dx
x2 + µ · dyx . Hence, we have local

coordinates(x, y, τ, µ) on scT ∗X near∂X . The scattering density bundlescΩX is the density
bundle associated toscT ∗X , so locally near∂X it is spanned byx−n−1 dxdy over C∞(X).
Finally, Diffsc(X) is the algebra of differential operators generated by the vector fields in
Vsc(X); Diffmsc(X) stands for scattering differential operators of order (at most)m.

To establish the relationship between the scattering structure and the Euclidean scattering
theory, we introduce local coordinates onX nearp ∈ ∂X as above, and use these to identify
the coordinate neighborhoodU of p with a coordinate patchU ′ on the closed upper hemisphere
Sn+ (which is just a closed ball) near its boundary. Such an identification preserves the scattering
structure since this structure is completely natural. We further identifySn+ with Rn via the radial
compactificationRC as in (2.3). The constant coefficent vector fields∂wj on Rn lift underRC
to give a basis ofscT Sn+. Thus,V ∈ Vsc(Sn+) can be expressed as (ignoring the lifting in the
notation)

V =
n∑
j=1

aj∂wj , aj ∈ C∞
(
Sn+

)
.(2.28)

As mentioned in the introduction,aj ∈ C∞(Sn+) is equivalent to requiring thatRC∗ aj is a
classical (i.e. one-step polyhomogeneous) symbol of order0 onRn. This description also shows
that the positive Euclidean Laplacian,∆, is an element ofDiff2sc(S

n
+), and thatscΩSn+ is spanned

by the pull-back of the standard Euclidean density|dw|.
If X is a manifold with boundary then any element ofVsc(X) = xVb(X) is automatically

tangent to any submanifoldC of ∂X . Hence, due to Lemma 2.10, we can define the algebra of
many-body differential operators as shown by the following proposition.

PROPOSITION 2.12. –If (X,C) is a many-body space, thenVsc(X) lifts to a subalgebra of
Vb([X ;C]). Correspondingly,

DiffSc(X,C) = C∞([X ;C])⊗C∞(X) Diffsc(X)(2.29)

is an algebra.

Proof. –By the first part of the statement, for anyV ∈ Vsc(X), f ∈ C∞([X ;C]), the
commutator[V, f ] = V f is in C∞([X ;C]). ✷

In particular, sinceVsc(X) is the set of all smooth sections ofscT X , its lift is the set of all
smooth sections of the pull-back of the bundlescT X →X to [X ;C]. This pull-back bundle will
be denoted byScT [X ;C]. Its dual bundle is the pull-back of the bundlescT ∗X →X ; it is denoted
by ScT ∗[X ;C].

Since in Euclidean many-body scattering∆ ∈ Diff2sc(Sn+) andV =
∑

a Va ∈ C∞([Sn+;C]), it
follows immediately thatH =∆+ V ∈Diff2Sc(Sn+,C).

3. Many-body pseudo-differential calculus

Let (X,C) be a many-body space, andβSc : [X ;C]→X the blow-down map. There are two
equivalent way of defining many-body pseudo-differential operators. We can either specify their
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Schwartz kernels as conormal distributions on an appropriately resolved space, or we can define
them as the quantization of certain symbols. Here we give both definitions and show their
equivalence. We start with the kernel definition; readers who wish to start with the quantization
definition should directly proceed to the paragraph of (3.8).

First, we recall the definition of Hörmander’s conormal spacesIm in the context of manifolds
with corners; their use originates from Melrose’s work. A rather brief description of these
conormal spaces appears in [22, Section 20]; a detailed discussion can be found in [20,
Chapter VI]. Thus, suppose thatM is a manifold with corners, andY a closed embedded interior
p-submanifold (i.e. product submanifold, discussed in the previous section); here ‘interior’ means
thatY is the closure of its intersection with the interior ofM , i.e. thatY is not a subset of any
of the boundary hypersurfaces ofM . Under this assumption, a neighborhoodU of Y can be
identified with a neighborhoodof the zero section of the normal bundle ofY in M , hence with the
direct product ofY with a neighborhood of the origin inRcodim(Y ). In particular, Hörmander’s
definition, [11, Section 2.4], can be applied:u′ ∈ Imc (U,Y ) means thatu′ ∈ C−∞

c (U), and
moduloC∞(U), u′ can be written as a finite sum of terms, each of which has the form

(2π)−(dimM+2codimY )/4

∫
Rcodim(Y )

eiφ(z,ζ)a(z, ζ)dζ,(3.1)

whereφ is a linear phase function parametrizingN∗Y , andsuppa⊂K ×Rcodim(Y ) for some
K compact, and satisfying symbol estimates

∣∣(Dα
ζ Dβ

z a
)
(z, ζ)

∣∣ � Cαβ〈ζ〉m+(dimM−2codimY )/4.(3.2)

We remark that if we locally embedM in a manifold without boundary,̃M , thenY extends to
a manifold without boundarỹY , and then elements ofImc (U,Y ) are restrictions of elements of
Imc (M̃, Ỹ ) toM , i.e. they are conormal distributions smoothly up to∂M . Elements ofIm(M,Y )
are then distributionsu ∈ C−∞(M) ∩ C∞(M \ Y ) which become elements ofImc (U,Y )
for some neighborhoodU of Y as above when multiplied by cut-off functions inC∞c (U).
Similarly, one-step polyhomogeneous (or classical) conormal distributionsu ∈ Imos (M,Y ) are
those for whicha above can be chosen one-step polyhomogenenous with leading homogeneity
|ζ|m+(dimM−2codimY )/4.

If we do not require polyhomogeneous behavior atY , there is no reason to require it at the
boundary ofM . We recall from [20, Chapter 4], see also [21], first thatAl(M) is the space
of conormal functions onM , conormal to∂M , which have weightedL∞ bounds, with a fixed
weight, under application ofDiffb(M), i.e.

Al(M) =
{
u∈ C−∞(M): ∀P ∈Diffb(M), Pu ∈ ρlL∞(M)

}
.(3.3)

Hereρ is a total boundary defining function ofM , i.e. it is the product of boundary defining
functions of the boundary hypersurfaces ofM . Note that elements ofAl(M) are smooth in the
interior of M . Here we assigned the same orderl to every boundary hypersurface ofM ; in
general the orders may be different on each hypersurface, and correspondingly we would have a
real number associated to each hypersurface.

Next,Am,l(M,Y ) is the space of distributionsu ∈ C−∞(M) ∩ Al(M \ Y ), which nearY
and moduloAl(M) can be written as a finite sum of terms as in (3.1), witha conormal, order
l, to the boundary ofM , and symbolic inζ, i.e. the estimates (3.2) hold after replacingDβ

z by
b-differential operators inz, and inserting factorsρl in the right hand side.
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We can now proceed to defining many-body pseudo-differential operators by specifying what
their Schwartz kernels are. Since they will mapĊ∞(X) to Ċ∞(X) continuously, hence in
particular toC−∞(X), they have Schwartz kernels inC−∞(X ×X). To arrive at a reasonable
description of which tempered distributions onX2 =X ×X are allowed as Schwartz kernels,
we first take an appropriate resolution of this space. For a thorough discussion of the resolution
process in the geometric two-body scattering, see Melrose’s paper [22, Appendix B], and in the
three-body setting [40, Chapter 3].

First, the b-double space,X2
b , has been defined by Melrose as[X2; (∂X)2]. The front face of

the blow-up is called the b-front face and is denoted bybf , while the lifts of the left and right
boundary hypersurfaces ofX2, i.e. of∂X×X andX×∂X are denoted bylf andrf respectively.
The diagonal∆ of X2 lifts to a p-submanifold∆b of X2

b which intersects∂X2
b in the interior of

the b-front face,bf. (The definition of p-submanifolds and the blow-up process were discussed
at the beginning of the previous section.) Moreover,∆b is naturally diffeomorphic toX . Hence,
C can be regarded as a collectionC′ of submanifolds of∆b, and, since∆b is a p-submanifold of
X2
b , these submanifolds form a cleanly intersecting family inX2

b . Therefore, the blow up

X2
Sc =

[
X2
b ;C′

]
(3.4)

is well-defined by our previous results. Note that∂X ∈ C by our assumption, so the definition
includes the blow up of the lift of∂∆b. It is easy to see that this space coincides with theX2

Sc

defined in [36] if (X,C) is a 3-body space. We also introduce the notationffC for the lift of
C ∈ C, considered as a submanifold of∆b, to X2

Sc. Thus, the boundary hypersurfaces ofX2
Sc are

β∗ lf, β∗ rf, β∗ bf , as well asffC , C ∈ C; β :X2
Sc→X2

b is the blow-down map.
Noting that evenC′ ∪ {∆b} is a cleanly intersecting family, we conclude that∆b lifts to a

p-submanifold,∆Sc, of X2
Sc, which is disjoint fromlf , rf andbf . Correspondingly, we define the

set of many-body pseudo-differential operators by

Ψm,l
Scc(X,C) =

{
κ ∈Am,l

(
X2
Sc,∆Sc;

scΩR
)
: κ≡ 0 atβ∗ bf ∪β∗ lf ∪β∗ rf

}
;(3.5)

herescΩR is the pull-back of the scattering density bundle from the right factor andβ :X2
Sc→X2

b

is the blow-down map. With the notation of (3.3), byκ≡ 0 we mean that the kernel, which is a
polyhomogeneous function inAl(X2

Sc \∆Sc), hence in particular nearβ∗ lf , β∗ rf andβ∗ bf , is
rapidly decreasing atβ∗ lf , β∗ rf andβ∗ bf, i.e. it is in (ρlfρrfρbf)NρlL∞ for all N , with similar
conditions on the derivativesPκ, whereρlf is a defining function ofβ∗ lf, etc.

Similarly we define the corresponding one-step polyhomogeneous (‘classical’) operators

Ψm,l
Sc (X,C) =

{
κ ∈ ρlImos

(
X2
Sc,∆Sc;

scΩR
)
: κ≡ 0 atβ∗ bf ∪β∗ lf ∪β∗ rf

}
(3.6)

whereρ is the total boundary defining function ofX2
Sc. In particular, conormal distributions of

order−∞ are smooth functions, so

Ψ−∞,l
Sc (X,C) =

{
κ ∈ ρlC∞

(
X2
Sc,∆Sc;

scΩR
)
: κ≡ 0 atβ∗ bf ∪β∗ lf ∪β∗ rf

}
,(3.7)

i.e. the kernels of operators inΨ−∞,l
Sc (X,C) are smooth up to all boundary hypersurfaces of

X2
Sc (at least if l is a non-negative integer), and vanish to infinite order at the lift of every

boundary hypersurface ofX2
b . Tensoring with vector bundles definesΨm,l

Scc(X,C;E,F ) and

Ψm,l
Sc (X,C;E,F ) for vector bundlesE andF overX as usual.
Since for allF ∈ C′ we haveF ⊂ ∂∆b, we can do the blow up of∂∆b ∈ C′ first, before

blowing up other elements ofC′ (normally we would do this blow up last by our total order
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construction). It follows thatX2
Sc is a blow up of the spaceX2

sc = [X
2
b ;∂∆b]. Hence, conormal

distributions onX2
sc pull back to be conormal onX2

Sc. Since the kernels of scattering pseudo-
differential operators are conormal to∆sc and to the boundary ofX2

sc with infinite order
vanishing at every boundary face except the scattering front face, we conclude that these kernels
pull back toX2

Sc to be elements of the kernel space defined in (3.5), soΨm,l
scc (X)⊂Ψ

m,l
Scc(X,C).

Our alternative definition will proceed via localization and describing the kernels as
quantizations of symbols in the local coordinate patches. Suppose now thatX = Sn+ andC is
a cleanly intersecting family of submanifolds of∂X = ∂Sn+ = Sn−1. Here wedo notassume

thatC arises from a familyX of linear subspaces ofRn. An equivalent definition ofΨm,l
Scc(S

n
+,C)

is the following. Suppose that

a ∈A−m,l
(
[Sn+;C]× Sn+

)
.(3.8)

Here−m is the order associated to the boundary hypersurface[Sn+;C] × ∂Sn+, while l is the
order associated to the boundary hypersurfaces comprising(∂[Sn+;C]) × Sn+. We can unravel
the definition (3.3) as follows. We identifyint(Sn+) and int([Sn+;C]) with Rn as usual (via
RC−1); then fora ∈ C∞(Rn

w × Rn
ξ ) (3.8) is equivalent to the following property. (Recall first

the definition ofDiffb from the paragraph of (2.25).) For everyQ ∈ Diffk
′

b ([S
n
+;C]), acting on

the first factor ofSn+ (i.e. in thew variable), andP ∈Diffkb(Sn+), acting on the second factor of
Sn+ (i.e. in theξ variable),k, k′ ∈N,

PQa ∈ ρ−m
∞ ρl∂L∞(Sn+ × Sn+)(3.9)

whereρ∞ andρ∂ are defining functions of the first and second factors ofSn+ respectively, so we
can takeρ∞ = 〈ξ〉−1, ρ∂ = 〈w〉−1 . Let A= qL(a) denote the left quantization ofa:

Au(w) = (2π)−n
∫
ei(w−w′)·ξa(w, ξ)u(w′)dw′ dξ,(3.10)

understood as an oscillatory integral. ThenA ∈Ψm,l
Scc(S

n
+,C). Indeed, the kernel ofA is

K(w,w′) = ã(w,w−w′)(3.11)

whereã is the inverse Fourier transform ofa in theξ variable, i.e.̃a=F−1
ξ a. Thus,ã(w,W ) is

smooth away fromW = 0, is conormal toW = 0, and it is rapidly decreasing with all derivatives
in W . More precisely, the rapid decay means that for allk andQ ∈Diffb([Sn+;C]) and for allα,

sup
|W |�1, w∈Rn

(
|w|l|W |k|QwDα

W ã(w,W )|
)

<∞.(3.12)

Taking into account the geometry ofX2
Sc, in particular that|w − w′|−1 vanishes at all faces of

the blow-up (3.4) but the front faces (i.e. it vanishes atβ∗ lf , β∗ rf andβ∗ bf), we see thatK
vanishes to infinite order at these faces. Similar arguments describe the behavior ofK near∆Sc,
proving thatA ∈Ψm,l

Scc(S
n
+,C).

Conversely, ifA ∈ Ψm,l
Scc(S

n
+,C) then there existsa satisfying (3.9) such thatA = qL(a).

Namely, we let̃a(w,W ) = K(w,w −W ) and leta be the Fourier transform of̃a in W . The
conormal estimates forK (hence for̃a) give the symbolic estimates (3.9) fora.
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Similar conclusions hold for the right quantizationB = qR(b) of a symbolb:

Bu(w) = (2π)−n
∫
ei(w−w′)·ξb(w′, ξ)u(w′)dw′ dξ.(3.13)

In addition, the polyhomogeneous classΨm,l
Sc (S

n
+,C) is given by the quantization of symbols

a ∈ ρ−m
∞ ρl∂C∞

(
[Sn+;C]× Sn+

)
.(3.14)

Since differential operators
∑

aα(w)Dα are just the left quantization of the symbolsa(w, ξ) =∑
aα(w)ξα, it follows immediately that

DiffmSc(X,C)⊂Ψm
Sc(X,C).(3.15)

This conclusion also follows directly from the description of the kernels since the kernel of a
differential operator is a differentiated delta-distribution associated to the diagonal.

Note that, as usual, one can allow symbolsa depending onw, w′ and ξ, so e.g. if
a ∈ ρ−m

∞ ρl∂,Lρl
′

∂,RC∞([Sn+;C]× [Sn+;C]× Sn+), ρ∂,L andρ∂,R denoting total boundary defining
functions of the first and second factor of[Sn+;C] respectively (i.e. they are pull-backs of a
boundary defining function ofSn+), then

Au(w) = (2π)−n
∫
ei(w−w′)·ξa(w,w′, ξ)u(w′)dw′ dξ(3.16)

defines an operatorA ∈Ψm,l+l′

Sc (Sn+,C).
This characterization allows the application of the standard tools of the theory of pseudo-

differential operators. In particular, ifA ∈ Ψm,l
Sc (X,C) is written as the left quantization of a

symbola andB ∈Ψm
′,l′

Sc (X,C) is written as the right quantization of a symbolb, so

a ∈ ρ−m
∞ ρl∂C∞

(
[Sn+;C]× Sn+

)
, b ∈ ρ−m′

∞ ρl
′

∂C∞
(
[Sn+;C]× Sn+

)
,(3.17)

then the operatorAB is given by

ABu(w) = (2π)−n
∫
ei(w−w′)·ξa(w, ξ)b(w′, ξ)u(w′)dw′ dξ.(3.18)

Here c(w,w′, ξ) = a(w, ξ)b(w′, ξ) is in ρ−m−m′

∞ ρl∂,Lρl
′

∂,RC∞([Sn+;C] × [Sn+;C] × Sn+), so we

conclude thatAB ∈Ψm+m′,l+l′

Sc (X,C). In addition, the adjointA∗ of A is the right quantization
of ā, so A∗ ∈ Ψm,l

Sc (X,C). Analogously,ΨScc(Sn+,C) is also closed under composition and
adjoints. These statements can be seen also from the standard more explicit formulae. For
example, ifB is the left quantization of a symbolb′, the composition formula, including the
remainder terms, only involves derivatives of the formDα

ξ Dα
wb′, and Dα

w ∈ Diff |α|
sc (S

n
+) ⊂

Diff |α|
b ([S

n
+;C]), so we see thatΨScc(Sn+,C) is closed under composition.

This discussion can be carried over to arbitrary manifolds with boundaryX by locally
identifying X with Sn+ and using that our arguments are local inSn+. More precisely, suppose
that {U1, . . . ,Uk} is an open cover ofX by coordinate patches, and identify eachUi with a
coordinate patchU ′

i of Sn+. We writeφi :Ui→U ′
i for the identification. LetC′i denote the family

given by the image of elements ofC in U ′
i . ThenA ∈ Ψm,l

Sc (X,C) if and only if there exist
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operatorsA′
i ∈ Ψ

m,l
Sc (S

n
+;C′) with kernel supported in the inverse image ofU ′

i × U ′
i in (Sn+)

2
Sc

andR ∈ Ċ∞(X ×X ; scΩR) such that

A=
∑
i

(
φ∗
iA

′
i

(
φ−1
i

)∗)+R.(3.19)

Note that the support condition onA′
i ensures that this expression makes sense. To see this, just

introduce a partition of unityρi ∈ C∞(X) subordinate to the cover, and letψi ∈ C∞(X) be
identically1 in a neighborhood ofsuppρi. Then

A=
∑
i

Aρi =
∑
i

ψiAρi +
∑
i

(1− ψi)Aρi.(3.20)

It is straightforward to check directly from the definition ofΨm,l
Sc (X,C) that the last term is given

by a kernel inĊ∞(X ×X ; scΩR), while A′
i = (φ

−1
i )

∗ψiAρiφ
∗
i ∈Ψ

m,l
Sc (S

n
+,C′i) with the claimed

support properties. Thus, our results forΨm,l
Sc (S

n
+,C) immediately show the following theorem.

THEOREM 3.1. –BothΨSc(X,C) andΨScc(X,C) are ∗-algebras(with respect to composi-
tion and taking adjoints).

SinceΨm,0
Scc (S

n
+,C)⊂ Ψm

∞(R
n), whereΨm

∞(R
n) is the class of pseudo-differential operators

defined by Hörmander [12, Section 18.1], arising by a quantization of symbolsa ∈ C∞(Rn×Rn)
satisfying ∣∣Dα

wDβ
ξ a(w, ξ)

∣∣ � Cαβ〈ξ〉m−|β|,(3.21)

and

Ψm
∞

(
Rn

)
: 〈w〉−sHr

(
Rn

)
→ 〈w〉−sHr−m(

Rn
)
,(3.22)

we immediately deduce the boundedness of elements ofΨm,l
Scc(X,C) between the appropriate

weighted Sobolev spaces.

THEOREM 3.2. –If A ∈Ψm,l
Scc(X,C) thenA :Hr,s

sc (X)→Hr−m,s+l
sc (X) is bounded.

There is another way of characterizing the calculusΨm,l
Scc(S

n
+,C) via Hörmander’s Weyl

calculus (see [12, Section 18.5]). We describe it briefly here, only considering the Euclidean
setting where theCa arise from linear subspacesXa; it is straightforward to check that it agrees
with the definition we have given above in terms of quantization of symbols as in (3.8). Namely,
Ψ∞,−∞
Scc (Sn+) is just the calculus onRn arising from the metric

g(0) =
dw2

〈w〉2 +
dξ2

〈ξ〉2 .(3.23)

Similarly, if we takeC′ to consist of a single elementCa, a �= 0, and if (wa,wa) is the usual
splitting of the coordinates, thenΨ∞,−∞

Scc (Sn+,C′) arises from the metric

g(a) =
dw2a
〈w〉2 +

(dwa)2

〈wa〉2 +
dξ2

〈ξ〉2 .(3.24)

In the three-body problem,Ca ∩Cb = ∅ if a, b �= 0, we define the metric by localizing theg(a),
i.e. we consider a partition of unityφa ∈ C∞(Sn+), a ∈ I, suppφa ∩ Cb = ∅ unlessb = 0, and
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define the metric

g =
∑
a

φa g(a).(3.25)

(Here theφa are pulled back to the cotangent bundle by the bundle projection.) Since theg(a) are
equivalent nearC′

0, it follows thatg is indeed slowly varying. Note that ifφa is supported close
to Ca, which we can arrange by enlarging the support ofφ0, dw2a/〈w〉2 above can be replaced
by dw2a/〈wa〉2.

In general we simply repeat this procedure. Thus, to define the appropriate metric onT ∗Xc

if it has been defined onT ∗Xa for everya with Xa ⊂Xc, we define a partition of unityφa ∈
C∞(X̄c)with suppφa∩Cc

b = ∅ unlessCc
a � Cc

b . HereXc =Xa⊕Xc
a andCc

a = ∂X̄c∩cl(Xc
a)).

We extend the metricga on T ∗Xa to a symmetric 2-cotensor onT ∗Xc using the orthogonal
decompositionXc =Xa ⊕Xc

a, and let

g(a) = ga +
(dwc

a)2

〈wc
a〉2

+
(dξca)2

〈ξc〉2 .(3.26)

Then

gc =
∑

a:Xa⊂Xc

φa g(a)(3.27)

gives the desired metric onT ∗Xc. The weights corresponding to elements ofΨm,l
Scc(S

n
+,C) then

are〈ξ〉m〈w〉−l , i.e. the condition on the ‘amplitude’a is a ∈ S(〈ξ〉m〈w〉−l, g0).
After this brief discussion of the relationship ofΨ∗,∗

Sc (S
n
+,C) with Hörmander’s Weyl calculus,

we return to the general setting to describe the principal symbol map and its analog at∂X .

4. The principal symbol and the indicial operators

Since the inclusion ofHr′,s′

sc (X) to Hr,s
sc (X) is compact forr′ > r, s′ > s, it suffices to

understandA ∈ Ψm,l
Scc(X,C) moduloΨm−1,l+1

Scc (X,C) to analyze its spectral properties. Now,
Hörmander’s principal symbol map onΨm

∞(Rn) restricts to a principal symbol map

σSc,m :Ψ
m,0
Sc

(
Sn+,C

)
→ Sm

h

(
ScT ∗[Sn+;C]

)
,(4.1)

Sh(ScT ∗[Sn+;C]) denoting the space of smooth symbols which are homogeneous of degreem.
Due to its invariance and its local nature, it immediately extends to a map

σSc,m :Ψ
m,0
Sc (X,C)→ Sm

h

(
ScT ∗[X ;C]

)
.(4.2)

We radially compactify the fibers ofScT ∗[X ;C] (i.e. replace the vector spaces by balls) and let
ScS∗[X ;C] be the new boundary face (i.e. the boundary ofScT ∗[X ;C] at fiber-infinity). This
allows us to writeσSc,m as a map

σSc,m :Ψ
m,0
Sc (X,C)→C∞

(
ScS∗[X ;C];

(
N∗ScS∗[X ;C]

)−m)
.(4.3)

The line bundleN∗ScS∗[X ;C] is locally spanned by the pull-back ofd(|ξ|−1) from ScT ∗[X ;C],
so (4.3) is obtained from (4.1) by writing homogeneous functionsa(w, ξ) of degreem as
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a0(w, ξ̂)|ξ|m, ξ̂ = ξ/|ξ|, consideringa0 as a function on the cosphere bundle, and using
N∗ScS∗[X ;C] to take care of the factor|ξ|m invariantly. We then have a short exact sequence

0→Ψm−1,0
Sc (X,C)→Ψm,0

Sc (X,C)→C∞
(
ScS∗[X ;C];

(
N∗ScS∗[X ;C]

)−m)
→ 0(4.4)

as usual.
An operatorA ∈ Ψm,0

Sc (X,C) is certainly determined moduloΨm,1
Sc (X,C) by the restriction

of its kernel to the front facesffC , C ∈ C, of the blow up (3.4) – by restriction we really
mean the restriction of the kernel as a section of the pull-back of the density bundlescΩR
from X2

Sc to ffC (we keep denoting this bundle byscΩR). Note thatscΩR is locally spanned
by |dw′|, so locally this amounts to factoring out|dw′| from the distributional density kernel
K(w,w′) |dw′| = ã(w,w − w′) |dw′| from the kernel ofA (with the notation of (3.11)), and
restrictingã (i.e.K) to the boundary of[Sn+;C]w ×Rn

W , W =w−w′.
Thus, we define the normal operatorNC(A) of A atC ∈ C to be the restriction of the kernel of

A to ffC , which, as we recall, is the front face resulting whenC, identified as a submanifoldC′

of ∆b, is blown up in (3.4). Since∆Sc intersects this face transversally, the result is a conormal
distribution, conormal to the intersection of∆Sc with this front face, which decays rapidly at
ffC ∩bf , i.e. with respect toW with the above notation. We let

İm
′

os,bf(ffC ,∆Sc ∩ ffC)

=
{
κ ∈ Im

′

os (ffC ,∆Sc ∩ ffC): κ vanishes to infinite order atbf ∩ffC
}
.(4.5)

Thus, for eachC ∈ C,

NC :Ψ
m,0
Sc (X,C) "→ İ

m−1/4
os,bf

(
ffC ,∆Sc ∩ ffC ; scΩR

)
;(4.6)

the new orderm− 1/4 is due to the change of the dimension of the total space in the defining
equation (3.1), the order of the amplitudea as a symbol being unchanged.

There are compatibilty conditions between the normal operatorsNC , C ∈ C, and the principal
symbol mapσSc,m. Namely, the principal symbol of the conormal singularity ofNC at∆Sc must
be the same as the restriction ofσSc to the front face, i.e.

σm−1/4
(
NC(A)

)
= σSc,m(A)|ScS∗

ffC
[X;C].(4.7)

(Note that with the density factorscΩR this is indeed invariantly defined.) In addition, if
Cb ∩Cc �= ∅, thenNCb

andNCc must be equal on the intersectionffCb
∩ffCc , i.e.

NCc(A)|ffCb
∩ffCc

=NCb
(A)|ffCb

∩ffCc
.(4.8)

(Note that the diagonal∆Sc is transversal toffCb
∩ffCc , hence one can restrict distributions

which are conormal to∆Sc, to ffCb
∩ffCc .) We denote byNm the subspace of the joint target

space of these maps which satisfy these matching conditions:

Nm =
{
(a,{Kb: b ∈ I}) ∈ C∞

(
ScS∗[X ;C]

)
×

∏
b∈I

İ
m−1/4
bf

(
ffCb

,∆Sc ∩ ffCb
; scΩR

)
:

∀b ∈ I, a= σm−1/4(Kb|ScS∗
ffC
[X;C]),

∀b, c ∈ I, Kc|ffCb
∩ffCc

=Kb|ffCb
∩ffCc

}
.(4.9)
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In the special case ofm=−∞, the kernels are smooth functions onX2
Sc, and we define

N−∞ =
{
{Kb: b ∈ I} ∈

∏
b∈I
Ċ∞bf

(
ffCb

; scΩR
)
:

∀b, c∈ I, Kc|ffCb
∩ffCc

=Kb|ffCb
∩ffCc

}
;(4.10)

hereĊ∞bf (ffCb
) denotes the space of smooth functions onffCb

which vanish with all derivatives
atbf .

On the other hand, specifying any element ofNm, i.e. any principal symbol as well as normal
operators satisfying the matching conditions (4.7)–(4.8), one can find a conormal distribution on
X2
Sc with precisely these principal symbol and normal operators sinceX2

Sc is a manifold with
corners and∆Sc is a p-submanifold. Thus, the combined principal symbol and normal operator
maps give rise to a short exact sequence

0→Ψm−1,1
Sc (X,C)→Ψm,0

Sc (X,C)→Nm→ 0.(4.11)

In casem=−∞, this changes to the analogous short exact sequence

0→Ψ−∞,1
Sc (X,C)→Ψ−∞,0

Sc (X,C)→N−∞→ 0,(4.12)

where the last map is the combined normal operator map.
While the normal operator (together with the principal symbol) suffices to characterize

mapping properties on weighted Sobolev spaces, compactness, etc., so far it is not really an
operator – it does not act (naturally) on any space of functions. In fact, one can associate a partial
convolution action to the normal operators, as was done in [40], but it is more convenient to
perform a partial Fourier transform to arrive at a family of operators, which we call indicial
operators, on functions on each front face. The cost of the partial Fourier transform is that the
range of the combined principal symbol and indicial operator maps, which isNm for the normal
operators, becomes more complicated, except forΨ−∞,0

Sc (X,C), since partial Fourier transform
does not have simple mapping properties on conormal distributions. Nonetheless, the resulting
simple and natural operator action makes the indicial operator construction worthwhile.

Our next task is thus to construct a multiplicative indicial operator from the normal operators.
Rather than proceeding directly, we digress and use oscillatory testing for this purpose as was
done in [40]. This approach has the advantage of making the multiplicative properties of the
indicial operator transparent. We start by discussing the effect of conjugation ofA by oscillatory
functions.

LEMMA 4.1. –Suppose thatA ∈Ψm,l
Sc (X,C) and f̃ ∈ C∞(X ;R). Then

Ã= e−if̃/xAeif̃/x ∈Ψm,l
Sc (X,C).(4.13)

Proof. –It is convenient to use the explicit description ofΨSc(X,C) in terms of localization
and quantization (3.10). Thus, we may assume thatX = Sn+. Note that the pull-back of̃f/x

to Rn is a polyhomogeneous symbol of order1 which we denote byF . Then the kernel of̃A
is K̃(w,w′) = ei(F (w

′)−F (w))K(w,w′) whereK is the kernel ofA. But by the fundamental
theorem of calculus

F (w′)− F (w) =
n∑
j=1

(w′
j −wj)

1∫
0

∂jF
(
w+ t(w′ −w)

)
dt,(4.14)
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and∂jF is a polyhomogeneous symbol of order0. Taking into account the rapid decay ofK in

W = w −w′ we immediately conclude that̃K ∈Am,l((Sn+)
2
Sc,∆Sc;KD

1/2
sc ) vanishing with all

derivatives atβ∗ bf ∪β∗ lf ∪β∗ rf , so, returning to the global setting,̃A ∈Ψm,l
Sc (X,C). ✷

A similar argument in fact shows that the commutator of elements ofΨm,l
Sc (X,C) with smooth

functionsh on the original spaceX , i.e. h ∈ C∞(X) ⊂ Ψ0,0Sc (X,C), is in fact one order lower
than expected, i.e. is inΨm−1,l+1

Sc (X,C). We remark that forh ∈ C∞([X ;C]), the corresponding
conclusion generally fails.

LEMMA 4.2. – Suppose thatA ∈ Ψm,l
Sc (X,C) and h ∈ C∞(X). Then B = [A,h] ∈

Ψm−1,l+1
Sc (X,C).
Proof. –Proceeding as above, we write the kernel ofB as K ′(w,w′) = (h(w) − h(w′))×

K(w,w′), whereK is the kernel ofA. Using (4.14) withh in place ofF , and that∂jh is a
polyhomogeneous symbol of order−1 (it is here thath ∈ C∞(X), rather thanh ∈ C∞([X ;C]),
is used), we reach our conclusion as in the previous proof.

We next discuss mapping properties onC∞([X ;C]).

LEMMA 4.3. –If A ∈Ψm,l
Sc (X,C), u ∈ xrC∞([X ;C]), thenAu ∈ xr+lC∞([X ;C]).

Proof. –This result essentially reduces to the fact thatΨSc(X,C) is an algebra. Indeed, write
u = u · 1, and note thatAu = (AU)1 whereB = AU denotes the composite ofA with the
multiplication operatorU by u. Since the latter is inxrDiff0Sc(X,C), hence inΨ0,rSc (X,C), we
conclude thatB ∈Ψm,l+r

Sc (X,C). Thus, we only have to analyzeB1. Again, we can reduce the
discussion to a local one. But writingB as the left quantization of a symbolb(w, ξ) as in (3.10),
b satisfying (3.14) withl replaced byl + r, and writing the oscillatory integral explicitly as a
convergent integral, we see that

B1(w) = (2π)−n
∫
ei(w−w′)·ξ〈w −w′〉−2r〈ξ〉−2s(1 +∆ξ)s

× b(w, ξ)(1 +∆w′)r1dw′ dξ(4.15)

for 2r > n, 2s > n+m. Changing the variables:

B1(w) = (2π)−n
∫
eiW ·ξ〈W 〉−2r〈ξ〉−2s(1 +∆ξ)sb(w, ξ)dW dξ.(4.16)

This is a convergent integral withw dependence only inb. Since

b ∈ ρ−m
∞ ρl+r∂ C∞

([
Sn+;C

]
× Sn+

)
,(4.17)

we conclude thatB1 ∈ xl+rC∞([Sn+;C]). Hence, returning to the global setting,Au ∈
xl+rC∞([X ;C]) as claimed.

The previous three lemmas show that ifu = eif̃/xv, v ∈ C∞([X ;C]), A ∈ Ψm,0
Sc (X,C) then

Au = eif̃/xv′ with v′ ∈ C∞([X ;C]). Moreover,v′ restricted to the boundary of[X ;C] only
depends on the restriction ofv to ∂[X ;C]. It also follows from Lemma 4.2 that ifp ∈ ∂X
and v ∈ C∞([X ;C]) vanishes atβ−1

Sc (p) then v′ also vanishes there, i.e. composition is local
in X (though not in the resolved space[X ;C]). Indeed, ifh ∈ C∞(X), v = hv-, u = hu-, then
A(hu-) = hAu- + [A,h]u-, [A,h] ∈ Ψm−1,1

Sc (X,C), hencee−if̃/x[A,h]u- ∈ xC∞([X ;C]), so
A(hu) vanishes onβ−1

Sc (p)wheneverh(p) = 0; expanding an arbitraryv ∈ C∞([X ;C]) vanishing
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atβ−1
Sc (p) in Taylor series to first order then proves the describedX-locality of the composition.

Similarly, if f̃(p) = f̃ ′(p) and dy f̃(p) = dy f̃
′(p) (which really just mean that the scattering

covectorsd(f̃ /x) andd(f̃ ′/x) agree atp) then e−if̃/xAeif̃/xv ande−if̃
′/xAeif̃

′/xv agree at
p (this can be proved similarly to the previous lemmas; it will also follow from our explicit
calculation below).

This allows us to define the indicial operators ofA at the boundary hypersurfaces of[X ;C].
Thea-indicial operators will be operators on the fibers of the blow-down map resolvingCa, so in
the Euclidean setting, which we discuss in this paragraph, they will e.g. act on Schwartz functions
on Xa, identified as a fiber of the blow-down map. For each pointp ∈ C′

a, we will get such an
indicial operator for eachξa ∈X∗

a , i.e. the indicial operators will be maps from an appropriate
compactification ofscT ∗

C′
a
Xa to operators onS(Xa). Their kernels arise essentially by taking the

(partial) Fourier transform of the normal operatorNCa in Wa. This behavior of indicial operators
corresponds to the fact that nearC′

a, A ∈ Ψm,0
Sc (X,C) can be regarded as a (non-classical!)

pseudo-differential operator in the free variables(wa, ξa) with values in bounded operators
between Sobolev spaces, e.g. onL2(Xa) if m= 0 (in fact, with values inΨm,0

Sc (X̄
a,Ca)). More

precisely,A ∈ Ψ0,0scc(X̄a;B(L2(Xa),L2(Xa))) then. This allows one to understand the indicial
operator in terms of the operator-valued principal symbol map in the standard scattering calculus.

In the general geometric setting, the indicial operators would depend on certain choices in
general (though the dependence is via unitary equivalence), but if we have a scattering metric on
X they can be constructed canonically, so we assume this in what follows. We will also need a
more thorough understanding of the structure of[X ;C], so we also discuss this below.

Recall first that a scattering metricg on X is a metric in the interior ofX (smooth symmetric
positive definite 2-cotensor) which is of the form

g =
dx2

x4
+

h′

x2
(4.18)

near∂X , wherex is a boundary defining function ofX andh′ is a smooth symmetric 2-cotensor
on X whose restriction to the boundary,h, is positive definite. Thus,g gives a positive definite
pairing onscT X , so it is (a somewhat special) smooth section ofscT ∗X ⊗ scT ∗X . We remark
that the choice of such ag fixesx up to the addition of functions inx2C∞(X).

Next, we recall the definition of the relative scattering tangent bundlescT (C;X) of a closed
embedded submanifoldC of ∂X from [40].

DEFINITION 4.4. – For a closed embedded submanifoldC of ∂X , the relative scattering
tangent bundlescT (C;X) of C in X is the subbundle ofscTCX consisting ofv ∈ scTpX , p ∈C,
for which there exists

V ∈ Vsc(X ;C)⊂ Vsc(X)(4.19)

with Vp = v. Here

Vsc(X ;C) = xVb(X ;C) = x{V ∈ Vb(X): V is tangent toC}(4.20)

and tangency is defined using the (non-injective) inclusion mapbT X → T X .

Thus, in local coordinates(x, y, z) near p ∈ C such thatC is defined byx = 0, y = 0,
scT (C;X) is spanned byx2∂x andx∂zj , j = 1, . . . ,m − 1, wheren −m is the codimension
on C in ∂X . In the case of Euclidean scattering,X = Sn+, C = ∂X̄a, g the Euclidean metric,
scT (C;X) is naturally isomorphic toscTCX̄a, i.e. it should be regarded as the bundle of
scattering tangent vectors of the collision plane at infinity, spanned by∂(wa)j , j = 1, . . . ,m,
m= dimXa.
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For C = Ca ∈ C, the metricg defines the orthocomplement(scT (C;X))⊥ of scT (C;X) in
scTCX .

DEFINITION 4.5. – Giveng, a scattering metric onX , the subbundle ofscT ∗
CX consisting of

covectors that annihilate(scT (C;X))⊥, is denoted byscT ∗(C;X); we say that it is the relative
scattering cotangent bundle ofC in X .

This bundle of course depends ong. In the case of Euclidean scattering,scT ∗(C;X) is
naturally isomorphic toscT ∗

CX̄a and is spanned byd(wa)j , j = 1, . . . ,m.
We now choose local coordinates(x, y, z) nearp ∈C such thatC is defined byx= 0, y = 0,

and such thatx∂yj give an orthonormal basis of(scT (C;X))⊥. Note that a basis ofscT (C;X)
is given byx2∂x andx∂zj , while a basis ofscT ∗(C;X) is given byx−2 dx, x−1 dzj . A covector
in scT ∗X can be written in these local coordinates as

τ
dx

x2
+ µ · dy

x
+ ν · dz

x
.(4.21)

We will write this as

τa
dx

x2
+ µa ·

dya
x
+ νa ·

dza
x

(4.22)

to emphasize the elementC = Ca of C around which the local coordinates are centered. Thus,
local coordinates onscT ∗

∂XX are given by(y, z, τ, µ, ν), while on scT ∗(C;X) by (z, τ, ν) =
(za, τa, νa). Note also that atC the metric function ofh is of the form|µ|2 + h̃(z, ν) with |µ|
denoting the Euclidean length ofµ andh̃ is the metric function of the restriction ofh to T C; the
metric function ofg (also denoted byg) is thus

g = τ2 + h̃+ |µ|2(4.23)

there.
Now if C = Ca, Cb ∈ C with Ca ⊂ Cb, we can further adjust our coordinates so thatCb is

defined byx= 0, y′ = 0, for some splittingy = (y′, y′′). With the corresponding splitting of the
dual variable,µ= (µ′, µ′′), we obtain a well-defined projection

πba : scT ∗
Ca
(Cb;X)→ scT ∗(Ca;X),(4.24)

πba(0, z, τ, µ′′, ν) = (z, τ, ν).(4.25)

In the Euclidean setting this is just the obvious projection

πba : scT ∗
∂X̄a

X̄b→ scT ∗
∂X̄a

X̄a(4.26)

under the inclusion̄Xa ⊂ X̄b. We writeπ for the collection of these maps.
Before we define the indicial operators, we need to analyze the structure of the lift ofCa to

[X ;C]. ForCa ∈ C let

Ca = {Cb ∈ C: Cb � Ca},(4.27)

Ca = {Cb ∈ C: Ca � Cb}.(4.28)

We carry out the blow-up[X ;C] by first blowing up Ca. Since all elements ofCa are
p-submanifolds ofCa, the lift β[X ;Ca]∗Ca of Ca to [X ;Ca] is naturally diffeomorphic to

C̃a = [Ca;Ca].(4.29)
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Thus, overC′
a, the regular part ofCa, C̃a can be identified withCa. The front face of the new

blow-up, i.e. of the blow up ofβ[X ;Ca]∗Ca in [X ;Ca] is thus a hemisphere (i.e. ball) bundle
over C̃a, namelyS+NC̃a. We write the bundle projection, which is just the restriction of the
new blow-down map to the front face,S+NC̃a as

ρa :S+NC̃a→ C̃a.(4.30)

In the Euclidean setting, these fibers can be naturally identified withX̄a via the projectionπa

(extended as in Lemma 2.5). Every remaining blow up in[X ;C] concerns submanifolds that are
either disjoint from this new front face or are the lift of elements ofCa. The former do not affect
the structure near the new front face,S+NC̃a = β[X ;Ca;Ca]∗Ca, while the latter, which are
given by the lifts of elements ofCa, correspond to blow ups that can be performed in the fibers of
S+NC̃a. Note that the lift ofCb ∈ Ca meets the new front face only at its boundary since allCb

are subsets of∂X . In particular, the liftβ∗
ScCa of Ca to [X ;C] fibers overC̃a and the fibers are

diffeomorphic to a hemisphere (i.e. ball) with certain boundary submanifolds blown up. More
specifically, the intersection ofβ[X ;Ca;Ca]∗Cb, Cb ∈ Ca, with the front faceS+NC̃a is the
image ofT β[X ;Ca]∗Cb under the quotients;β∗

ScCa is obtained by blowing these up inS+NC̃a.
Hence, the fiber ofβ∗

ScCa overp ∈ C̃a is given by[S+NqCa;TqCa]whereq = β[X ;Ca](p) ∈Ca.
In particular, in the Euclidean setting, the fibers ofβ∗

ScCa overC̃a can be naturally identified with
[X̄a;Ca] via πa. Thus, we have the following commutative diagrams:

β∗
ScCa

βSc

β̃a

C̃a

β[Ca;Ca]

Ca

β∗
ScCa

β̃a

S+NC̃a

ρa

C̃a

(4.31)

with β̃a being the fibration to the basẽCa.
We now definescT ∗(C̃a;X), denote the pull-back ofscT ∗(Ca;X) by the blow-down map

β[Ca;Ca]:
scT ∗(C̃a;X) = β[Ca;Ca]∗scT ∗(Ca;X).(4.32)

If Ca ⊂Cb thenπba lifts to a map

π̃ba : scT ∗
β[Cb;Cb]∗Ca

(C̃b;X)→ scT ∗(C̃a;X).(4.33)

We recall from [40, Section 4] that the interior of the fibersS+NpC̃a = ρ−1
a (p) of

ρa :S+NC̃a → C̃a, p ∈ C̃a, possess a natural transitive free affine action by the quotient
bundle (β[X ;Ca]∗pscT X)/scTp(C̃a;X). Thus, the tangent space ofS+NpC̃a at every point

q ∈ int(S+NpC̃a) can be naturally identified with(β[X ;Ca]∗pscT X)/scTp(C̃a;X), hence with

the tangent space at otherq′ ∈ int(S+NpC̃a).
For each operatorA ∈ Ψm,l

Sc (X,C), the Ca-indicial operator ofA, denoted byÂa,l, will
be a collection of operators, one for eachζ ∈ scT ∗

p (C̃a;X), acting on functions on the fiber

β̃−1
a (p) of β̃a. So suppose thatu ∈ Ċ∞(β̃−1

a (p)); we need to definêAa(ζ)u. For this purpose
choosef̃ ∈ C∞(X ;R) such thatd(f̃ /x), evaluated atβ[Ca;Ca](p), is equal toζ. Then let
Ã = e−if̃/xx−lAeif̃/x ∈ Ψm,0

Sc (X,C), and chooseu′ ∈ C∞([X ;C]) such thatu′|β̃−1
a (p) = u.

Then

Âa,l(ζ)u= (Ãu′)|β̃−1
a (p),(4.34)
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which is independent of all the choices we made. This can be shown by an argument which
is analogous to the proof of the preceding lemmas, but it will also follow from the explicit
calculation we make below leading to (4.48). Ifl �= 0, thenÂa,l would a priori depend on the
choice ofx up toO(x2) terms, but the choice of the scattering metricg fixesx up to such terms.
We often simplify (and thereby abuse) the notation and drop the indexl, i.e. we writeÂa = Âa,l,
when the value ofl is understood. Before discussing theCa-indicial operators ofA ∈Ψm,l

Sc (X,C)
in detail, we discuss how we can combine them into a single object.

In the case of Euclidean many-body scattering,Ca = ∂X̄a and Âa,l is a function on
β∗
a
scT ∗

Ca
X̄a with values in operators onS(Xa); here

βa = β[Ca;Ca] : C̃a = [Ca;Ca]→Ca(4.35)

is the blow-down map. Note thatβa is simply the restriction ofβ[X̄a;Ca] to the lift C̃a =
β[X̄a;Ca]∗Ca. In fact,

Âa,l ∈ C∞
(
β∗
a
scT ∗

∂X̄a
X̄a,Ψ

m,0
Sc

(
X̄a,Ca

))
(4.36)

as we show shortly. Note that ifZ is a (not necessarily compact) manifold with corners and
(X̃, C̃) is a many-body space (in (4.36) we takeZ = β∗

a
scT ∗

∂X̄a
X̄a and(X̄a,Ca) for the many-

body space), it makes perfectly good sense to talk aboutC∞(Z,Ψm,l
Sc (X̃, C̃)), i.e. about smooth

functions onZ with values inΨm,l
Sc (X̃, C̃). The topology onΨm,l

Sc (X̃, C̃) is the standard one,
namely that of conormal distributions oñX2

Sc, conormal to∆Sc, vanishing to infinite order at
β∗ bf ∪β∗ lf ∪β∗ rf, β : X̃2

Sc→ X̃2
b the blow-down map. This is equivalent to the topology arising

by localizing operatorsA ∈Ψm,l
Sc (X̃, C̃) as in (3.20), and using the topology of the symbol spaces

on the local pieces, i.e., with the notation of (3.14) and (3.8), ofρ−m
∞ ρl∂C∞([Sn+; C̃]× Sn+) and

A−m,l([Sn+; C̃]× Sn+), in the polyhomogeneous and non-polyhomogeneous setting respectively
(and that ofĊ∞(X̃ × X̃ ; scΩR) for the remainder term).

We need to generalize this example to accommodate the geometric setting. It should be kept in
mind throughout following discussion thatZ is simply a ‘parameter space’. So suppose first that
φ :E→Z is a fibration of manifolds with corners with fiber̃X , a manifold with boundary,̃CE a
cleanly intersecting family of p-submanifolds ofE which is fibered overZ with fiber C̃, a cleanly
intersecting family of p-submanifolds of∂X̃ that gives rise to a many-body space(X̃, C̃). That
is, we suppose that there is an open cover{Uj: j ∈ J} of Z such that(φ−1(Uj), C̃E ∩ φ−1(Uj))
is diffeomorphic toUj × (X̃, C̃); we denote the diffeomorphism byψj . Let ∂φE denote the
fiber-boundary ofE, i.e. locally it is given byUj × ∂X̃ (under the identificationψj ). The
algebraΨ∞,−∞

Sc,φ (E,CE) is then defined as the algebra of operatorsA acting on, say, functions
u ∈ C∞(E) which vanish to infinite order at∂φE, with the following local characterization.
For eachUj there is an operatorA′

j ∈ C∞(Uj ;Ψ
∞,−∞
Sc (X̃, C̃)) such that foru ∈ C∞(E) with

suppu⊂ φ−1(Uj) and vanishing to infinite order at∂φE, Au= ψ∗
jA′

j(ψ
−1
j )∗u.

This local description does not depend on any choices. Indeed, the local definition is equivalent
to saying that the distribution kernelKA of A on the fiber-productE ×Z E (with values in
scattering densities on the fiber̃X from the right factor, to be precise) is conormal on the
appropriate blow-upE2Sc,Z of E×Z E. HereKA gives rise to the operatorA by fiber-integration

Au(w,z) =
∫

KA(w,w′, z)u(w′, z) |dw′|,(4.37)
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wherez gives coordinates onZ , w andw′ are variables in the left and right factor of the fiber
X̃ respectively, and we wroteKA =KA(w,w′, z) |dw′|. Indeed, following the discussion at the
beginning of the previous section, we takeE2b,Z to be the blow-up of∂φE ×Z ∂φE in E ×Z E,

∆b,φ the lift of the fiber-diagonal,∂φ∆b,φ its fiber-boundary which we identify with∂φE, C̃′E
the image ofC̃E under this identification, andE2Sc,Z the blow-up[E2b,Z ; C̃′E]. Then the definition

of Ψ∞,−∞
Sc,φ (E,CE) is given by modifying (3.6) the natural way. Since all blowups can be done

in the fibers overZ (i.e. Z can be regarded as a parameter), this description indeed agrees with
local definition given above.

This intrinsic definition ofΨ∞,−∞
Sc,φ (E,CE) given in the previous paragraph automatically

extends even to the setting where the fibrationφ is transversal to the collectionCE , each fiber of
φ being diffeomorphic toX̃ . Note that in general there are no diffeomorphismsψj even locally
such that image ofCE takes a product form as above, though such diffeomorphisms exist, for
example, ifCE is locally linearizable. In particular, we can takeZ = scT ∗(C̃a;X), E to be the
pull-back ofZ to S+NC̃a by ρa, φ :E→Z the mapρ-a induced by the pull-back,

E = ρ∗
a
scT ∗(C̃a;X), ρ-a :E→ scT ∗(C̃a;X).(4.38)

Thus,E is a vector bundle overS+NC̃a with projectionπ. Finally, we letCE consist of the
inverse images underπ of the lifts ofCb ∈ Ca to [X ;Ca;Ca] intersected with the new front face,
S+NC̃a; in fact, we also add∂φE to CE to play the role ofC0 in C. We are then in the setting
discussed above, so we have defined

Ψ∞,−∞
Sc,ρ�

a

(
ρ∗
a
scT ∗(C̃a;X), C̃a

)
, C̃a = π−1(S+NC̃a ∩ β[X ;Ca;Ca]∗Ca

)
∪ {∂φE}.(4.39)

Recall that forCb ∈ Ca,

S+NC̃a ∩ β[X ;Ca;Ca]∗Cb = T β[X ;Ca]∗Cb,(4.40)

the right hand side understood as the image of the tangent space under the quotient map. We are
now ready to prove the following proposition.

PROPOSITION 4.6. – Suppose thatA ∈Ψr,l
Sc(X,C). Then the indicial operators ofA satisfy

Âa,l ∈Ψr,0

Sc,ρ�
a

(
ρ∗
a
scT ∗(C̃a;X), C̃a

)
.(4.41)

Proof. –We prove this statement by findinĝAa(ζ) explicitly in terms of local coordinates. To
simplify the notation we assume thatA ∈Ψr,0

Sc (X,C). We identifyX with Sn+ locally so thatCa

is given byx= 0, y = 0. In the interior ofβ∗
ScCa we can use the same coordinates as at the front

face of[X ;Ca], i.e. the ones given in (2.7)–(2.8). So suppose thatu′ is supported in the region
of validity of these coordinates. Then

Au′(w) =
∫

K(w,w′)u′(w′)dw′ =
∫

ã(w,W )u′(w−W )dW(4.42)

with ã as in (3.11). Here the integral is understood as a distributional pairing in general, but it
actually converges ifr <−n. We now consider the coordinates (2.7) on the both factors, i.e. we
take (x′, Y ′, z′) corresponding tow′ = w −W , and(x,Y, z) corresponding tow. Expressing
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(x′, Y ′, z′) in terms of(x,Y, z) andW (usingw′ =w−W ) gives

x′ = x
(
1− x(Wa)m

)−1
, z′

j =
zj − x(Wa)j
1− x(Wa)m

, Y ′
j = Yj −

(
W a

)
j
,(4.43)

where we wroteW = (Wa,W a) and (Wa)j , (W a)j denote the components ofWa andW a

respectively. Thus, (4.42) yields

Au′(x,Y, z) =
∫

ã(x,Y, z,W )u′
(

x

1− x(Wa)m
, Y −W a,

zj − x(Wa)j
1− x(Wa)m

)
dW.(4.44)

Evaluating atx= 0 gives

Au′(0, Y, z) =
∫

ã(0, Y, z,W )u′(0, Y −W a, z
)
dW

=
∫ (∫

ã(0, Y, z,W )dWa

)
u′(0, Y −W a, z

)
dW a.(4.45)

Sinceã is the inverse Fourier transform in theξ variable of the symbola whose left quantization
is A, and since theWa integral above can be understood as the Fourier transform inWa evaluated
at the origin, we deduce that

Au′(0, Y, z) = (2π)−(n−m)
∫
eiW

a·ξa

a
(
0, Y, z,0, ξa

)
u′(0, Y −W a, z

)
dξa dW a.(4.46)

Thus, the indicial operator̂Aa((p,0)) where(p,0) ∈ scT ∗(C̃a;X) is the zero covector above
p= (0,0, z)∈Ca is given by

Âa

(
(p,0)

)
u(Y ) = (2π)−(n−m)

∫
eiW

a·ξa

a
(
0, Y, z,0, ξa

)
u
(
Y −W a

)
dξa dW a,(4.47)

i.e. by the left quantization in(Y, ξa) = (W a, ξa) of a(0, Y, z,0, ξa). Similar results hold for
Âa(ζ) in general, namely

Âa(z, ξa)u(Y ) = (2π)−(n−m)
∫
eiW

a·ξa

a
(
0, Y, z, ξa, ξ

a
)
u
(
Y −W a

)
dξa dW a.(4.48)

Though the local coordinates are only valid in the interior ofβ∗
ScCa, hence not at̃β∗

a∂C̃a, the
continuity ofÃu up to β̃∗

a∂C̃a shows that (4.48) also holds withp ∈ C̃a.
The explicit expression, (4.48) shows, in particular, thatÂa(ζ)u is indeed independent of the

extensionu′ of u that we chose, and also of the choice off̃ with d(f̃ /x) prescribed atβSc(p).
Moreover, also from (4.48), for eachζ ∈ scT ∗

p (C̃a;X), p ∈ C̃a,

Âa(ζ) ∈Ψr,0
Sc

(
ρ−1
a (p), TpCa

)
;(4.49)

here we wroteTpCa for Tpβ[X ;Ca]∗Ca for simplicity. In fact, (4.48) shows the more precise
statement which encodes the smooth dependence ofÂa(ζ) on ζ, namely that

Âa,l ∈Ψr,0

Sc,ρ�
a

(
ρ∗
a
scT ∗(C̃a;X), C̃a

)
.(4.50)
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In the Euclidean setting the many-body space(ρ−1
a (p), TpCa) can be identified with(X̄a,Ca),

and we can write

Âa(ζ) ∈Ψr,0
Sc

(
X̄a,Ca

)
,(4.51)

and correspondingly

Âa,l ∈ C∞
(
β∗
a
scT ∗

∂X̄a
X̄a,Ψ

r,0
Sc

(
X̄a,Ca

))
(4.52)

as we have claimed.✷
If A ∈ Ψr,0Sc (X,C), then the vanishing of̂Aa,0(ζ) for every a and everyζ ∈ scT ∗(C̃a;X)

implies, by our explicit formula, thata ∈ C∞([X ;C] × Sn+) vanishes at(∂[X ;C]) × Sn+,
so A ∈ Ψr,1

Sc (X,C). Thus, the vanishing ofσSc,r(A) and all indicial operators together, for
A ∈Ψr,0Sc (X,C), say, implies thatA ∈Ψr−1,1

Sc (X,C).
An advantage of the oscillatory testing definition of the indicial operators is that it makes their

multiplicative property clear.

PROPOSITION 4.7. –If A ∈Ψm,l
Sc (X,C), B ∈Ψm′,l′

Sc (X,C) then

ÂBa,l+l′(ζ)u= Âa,l(ζ)B̂a,l′ (ζ)u.(4.53)

The indicial operators are very closely related to the normal operators. In fact, in the proof of
Proposition 4.6,K(w,w′) = ã(w,w−w′) is the kernel ofA, and its restriction to the front face
is ã(0, Y, z,W ). Thus, the kernel of̂Aa(z, ξa) is the partial Fourier transform of̃a in Wa:

Âa(z, ξa)
(
Y,W a

)
= (FWa ã)

(
0, Y, z, ξa,W

a
)
.(4.54)

This also shows that the range of the indicial operator map is somewhat complicated. Namely,
partial Fourier transform does not respect the conormal singularity ofã at W = 0. However, for
operators inA ∈Ψ−∞,0

Sc (X,C) this problem does not arise:ã then is simply in Schwartz inW ,
including smoothness at the origin, hence its partial Fourier transform will have exactly the same
properties.

Corresponding to the matching condition, (4.8), for the normal operators at the intersections
of the front faces, there is a matching condition for indicial operators. Namely, the indicial
operators are related via the projectionsπ̃ba. Thus, ifζ ∈ scT ∗(C̃a;X), then the indicial operators
of Âa,l(ζ) are Âb,l(ζ̃) whereCa ⊂ Cb, Ca �= Cb, and ζ̃ ∈ scT ∗

β[Cb;Cb]∗Ca
(C̃b;X) is such that

π̃ba(ζ̃) = ζ. This follows easily from the explicit coordinate form of the indicial operators.
The following proposition is the main reason why a multiplicative indicial operator is

important.

PROPOSITION 4.8. – If A ∈ Ψr,0
Sc (X,C) is such thatσSc,r(A) never vanishes and̂Aa(ζ) is

invertible with inverse inΨ−r,0
Sc (ρ−1

a (p), TpCa) (i.e. inΨ−r,0
Sc (X̄a,Ca) in the Euclidean setting)

for everya and for everyζ ∈ scT ∗(C̃a;X), then there exists a parametrixP ∈Ψ−r,0
Sc (X,C) for

A such thatPA− Id,AP − Id ∈Ψ−∞,∞
Sc (X,C). Moreover,P has the following properties:

σSc,−r(P ) = σSc,r(A)−1, P̂a(ζ) = Âa(ζ)−1.(4.55)

Proof. –In the construction below we may assume that for eachζ, the b-indicial operators
of Âa(ζ)−1 are Âb(ζ̃)−1 for ζ̃ with π̃ba(ζ̃) = ζ, i.e. they ‘match up’. Indeed,̂Aa(ζ) ∈
Ψr,0Sc (ρ

−1
a (p), TpCa), with non-vanishing principal symbol and invertible indicial operators
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Âb(ζ̃), ζ̃ as above, by the assumption, hence we can apply the proposition inductively, with (4.55)
providing the claimed matching for a parametrixPa(ζ) of Âa(ζ), hence, by the usual parametrix
argument, for the inversêAa(ζ)−1 itself. The matching condition on the indicial operators is
vacuous in the two-body type setting, i.e. ifC = {C0}, hence we can indeed start the induction
from there.

The only non-standard part of the proof is that we can chooseP0 ∈Ψ−r,0
Sc (X,C)with principal

symbolσSc,r(A)−1 and indicial operatorŝAa,0(ζ)−1, i.e. that these are in the range of the joint
principal symbol-indicial operator map. The main issue here is the matching condition involving
the principal symbol, expressed by (4.7) for the normal operators, since, as discussed above,
partial Fourier transform does not behave too well regarding conormal singularities. Thus, we
proceed as follows.

First, note that there is an operatorQ0 ∈Ψ−r,0
Sc (X,C) with principal symbolσSc,r(A)−1; this

follows from the short exact sequence (4.11), or indeed from (4.4) (note that we arenotspecifying
the normal operators at this stage). Hence,G= Id−Q0A ∈ Ψ0,0Sc (X,C) has vanishing principal
symbol, so it is inΨ−1,0

Sc (X,C). Summing the Neumann series
∑∞

j=1Gj asymptotically to some

G1 ∈ Ψ−1,0
Sc (X,C) and lettingQ = (Id+G1)Q0 givesId−QA ∈ Ψ−∞,0

Sc (X,C), then a similar
right parametrix construction and the standard argument comparing the two parametrices shows
thatQ satisfies

Id−QA, Id−AQ ∈Ψ−∞,0
Sc (X,C).(4.56)

In particular, taking indicial operators,

Ta(ζ) = Id−Q̂a(ζ)Âa(ζ), Id−Â(ζ)Q̂(ζ) ∈Ψ−∞,0
Sc

(
ρ−1
a (p), TpCa

)
,(4.57)

and the kernels, which are smooth functions, decay rapidly asζ →∞. This implies, in particular,
that‖Ta(ζ)‖B(L2

sc(ρ
−1
a (p)))→ 0 asζ →∞, henceId−Ta(ζ) is invertible for sufficiently largeζ

without any assumption on the a priori invertibility of̂Aa(ζ), henceÂa(ζ)−1 exists for largeζ
and differs fromQ̂a(ζ) by a term rapidly decreasing inζ. In general, for arbitraryζ, the standard
parametrix argument, consisting of multiplying the previous expressions byÂa(ζ)−1, then shows
that (

Âa(ζ)
)−1 − Q̂a(ζ) ∈Ψ−∞,0

Sc

(
ρ−1
a (p), TpCa

)
.(4.58)

Since the inverse partial Fourier transform maps Schwartz functions to Schwartz functions,
we deduce that the normal operators corresponding to(Âa(ζ))−1 − Q̂a(ζ) are in the space
C∞(ffCa ; scΩR) with infinite order vanishing onbf, and they satisfy (4.8) as mentioned in the
first paragraph. Thus, from the short exact sequence (4.11), or indeed from (4.12), there exists an
operatorR ∈Ψ−∞,0

Sc (X,C) such thatR̂a(ζ) = (Âa(ζ))−1 − Q̂a(ζ).
Let P0 =Q+R; thenσSc,r(P0) = σSc,r(A)−1, andP̂0a(ζ) = (Âa(ζ))−1 as desired. Hence,

proceeding as usual,E = Id−P0A ∈ Ψ0,0Sc (X,C) has vanishing principal symbol and indicial
operators, so it is inΨ−1,1

Sc (X,C). Summing the Neumann series
∑∞

j=1Ej asymptotically to

someF ∈ Ψ−1,1
Sc (X,C) and lettingP = (Id+F )P0 gives the required left parametrix. A right

parametrix can be constructed similarly, and then the usual argument shows that they can be
taken to be the same.✷

For A ∈ Ψm,0
Sc (X,C) self-adjoint,m > 0, with σSc,m(A) never vanishing, we automatically

have that(A− λ)−1 ∈Ψ−m,0
Sc (X,C) for λ∈C \R. Indeed, the indicial operator ofA− λ at the

free face, i.e. the lift ofC0 = ∂X to [X ;C], is Â0(z, ξ)− λ, i.e. aC-valued function, which is
non-zero since the self-adjointness ofA implies thatÂ0 is real, while on the other handImλ �= 0.
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Then an inductive argument on the clustersCa, starting withC0, and using the above proposition,
shows first the existence of a parametrix forÂa(ζ)−λ insideΨ−∞,0

Sc (ρ−1
a (p), TpCa), which then

allows us to conclude the invertibility of̂Aa(ζ)−λ in the same space (since we already know that
the inverse exists as a bounded operator onL2(ρ−1

a (p))), completing the inductive step. (This is
essentially the inductive procedure outlined in the first paragraph of the proof.)

Moreover, the blow-up of(A − λ)−1 in Ψ−m,0
Sc (X,C) can be analyzed uniformly asλ

approaches the real axis, see e.g. [9,40]. Therefore, the functional calculus for self-adjoint
operatorsA and the Cauchy integral representation ofφ(A) via almost analytic extensions, as in
the work of Helffer and Sjöstrand [10], Dereziński and Gérard [3], see also [9], gives immediately

PROPOSITION 4.9. –Suppose thatA ∈Ψm,0
Sc (X,C) self-adjoint,m > 0, andσSc,m(A) never

vanishes. Suppose also thatφ ∈ C∞c (R). Thenφ(A) ∈ Ψ−∞,0
Sc (X,C) and its indicial operators

areφ(Âa(ζ)). If instead we assumeφ∈ S−r
phg(R) thenφ(A) ∈Ψ−rm,0

Sc (X,C).

If m = 0, that isA ∈ Ψ0,0Sc (X,C), thenφ(A) ∈ Ψ0,0Sc (X,C) without any assumption on the
invertibility of σSc,0(A). We thus have:

PROPOSITION 4.10. – Suppose thatA ∈ Ψ0,0Sc (X,C) is self-adjoint. If φ ∈ C∞(R) then
φ(A) ∈Ψ0,0Sc (X,C).

Proof. –SinceA is bounded, we can replaceφ by a functionψ ∈ C∞c (R) such thatφ ≡ ψ
on the spectrum ofA. Now σSc,0(A − λ) = σSc,0(A) − λ is invertible for λ ∈ C \ R, so
(A − λ)−1 ∈ Ψ0,0Sc (X,C) for λ /∈ R. Again, (A − λ)−1 can be analyzed uniformly up to the
real axis, and then the Cauchy integral representation ofψ(A) now proves the proposition.✷

Remark4.11. – Following through the Cauchy formula also shows that the principal symbol
of φ(A) is φ(σSc,0(A)), and the indicial operators areφ(Âa(ζ)).

5. The wave front set

The Sc-wave front setWFSc(u) of a distributionu, and theSc-operator wave front set
WF′

Sc(A) of A ∈Ψm,l
Sc (X,C), at infinity will be defined as subsets of the compressed scattering

cotangent bundle

scṪ ∗X =
⋃
a

scT ∗
C′

a
(Ca;X);(5.1)

we have definedscT ∗(Ca;X) in Definition 4.5. This is very similar to the image of the cotangent
bundle in the compressed cotangent bundle (the b-cotangent bundle) that Melrose and Sjöstrand
used to describe the propagation of singularities for the wave equation in domains with smooth
boundaries [23] and also to the corresponding phase space for domains with cornersΩ, Ṫ ∗

bΩ,
which was the setting for Lebeau’s analysis of the singularities of solutions to the wave equation
onΩ. Thus, one may think ofWFSc(u) as containing less detailed information thanWFsc(u), in
the sense that the former is a subset of the compressed bundle, while the latter is a subset of the
non-compressed bundle,scT ∗

∂XX . However, there is no simple relationship between these two
wave front sets. In particular, neither of these wave front sets can be used to describe the other.
Thus, the picture thatWFSc(u) contains less detailed information is at least partly incorrect; the
two wave front sets are simply different. The fact thatWFSc(u) lives on a compressed version of
scT ∗

∂XX corresponds to the singular behavior of elements ofΨm,l
Sc (X,C), as compared to those

of Ψm,l
sc (X).

4e SÉRIE– TOME 34 – 2001 –N◦ 3



PROPAGATION OF SINGULARITIES IN MANY-BODY SCATTERING 347

As mentioned in the introduction, we make the assumption thatC is locally linearizable. This
assumption simplifies the geometry, and it enables us to give a rather explicit description of the
wave front sets.

Before proceeding with a discussion of wave front sets, we discuss the basic topology of
scṪ ∗X . We topologizescṪ ∗X using the projectionπ : scT ∗

∂XX → scṪ ∗X . We say that a function
f on scT ∗

∂XX is π-invariant if f(ζ) = f(ζ′) wheneverπ(ζ) = π(ζ′); in this casef induces
a functionfπ on scṪ ∗X with fπ ◦ π = f . By definition,C ⊂ scṪ ∗X is closed if and only if
π−1(C) is closed, so iff is continuous onscT ∗X andπ-invariant, thenfπ is continuous on
scṪ ∗X .

Under our assumption thatC is locally linearizable, ifp ∈C′
a, we can choose local coordinates

(ya, za) on ∂X in terms of whichall theCb satisfyingp ∈ Cb are linear, i.e. they are given by
Abya = 0 whereAb is a (constant) matrix, andCa is given byya = 0. Let (τa, µa, νa) denote
the sc-dual variables of(x, ya, za) as in (4.22). Choosing such coordinates,ya, za, τa, νa are
π-invariant nearscT ∗

pX .

In particular, there are always continuous functions separating points inscṪ ∗X : if p(ζ̄) �= p(ζ̄′)
(here p : scṪ ∗X → ∂X stands for projection to the base), one can use the pull-back of an
appropriate function on∂X , and if p(ζ̄) = p(ζ̄′) ∈ C′

a, then ζ̄ , ζ̄′ ∈ scT ∗
C′

a
(Ca;X) are of the

form (z̄a, τ̄a, ν̄a) and (z̄′
a, τ̄

′
a, ν̄

′
a), τ̄a �= τ̄ ′

a or ν̄a �= ν̄′
a, and the functionsζ "→ τa, ζ "→ νa, are

well-defined andπ-invariant on a neighborhood ofp(ζ̄) (this uses thatC is locally linearizable),
so multiplying them by the pull-back of a cutoff on∂X gives globally well-defined separating
continuous functions. Thus,scṪ ∗X is Hausdorff.

Note that ifK0 is a compact subset ofscT ∗
∂XX , thenK = π(K0) is compact, and in fact it

is a compact metrizable space, just as in Lebeau’s setting [18, Section III]. (The characteristic
variety of∆− λ is an example of such a setK0 that is of interest here.) This can also be seen
explicitly by showing thatK is normal, which we proceed to show.

Fix ζ̄ ∈ scT ∗
C′

a
X̄a, write ζ̄ = (z̄a, τ̄a, ν̄a), and choose a neighborhoodU0 of z̄a = p(ζ̄) in ∂X

such thatU0 ∩ Cb = ∅ unlessCa ⊂ Cb. Let ωζ̄ = ω : scṪ ∗
U0

X → R be given by the following
π-invariant function onscT ∗

U0
X (also denoted byω):

ω(ζ) = |ya|2 + |za − z̄a|2 + |τa − τ̄a|2 + |νa − ν̄a|2 � 0(5.2)

in the coordinates(ya, za, τa, µa, νa). Suppose thatU is open in K , ζ̄ ∈ U . Thus, K ′ =
(K ∩ scṪ ∗

U0
X) \ U is compact, so, unlessK ′ is empty,ω assumes a minimum on it which thus

has to be non-negative. Butω(ζ) = 0 impliesya = 0, sop(ζ) ∈ Ca, and thenza = z̄a, τa = τ̄a,
νa = ν̄a, show thatζ = ζ̄ . Sinceζ̄ ∈ U , this shows that there existsδ > 0 such thatω � δ on
K . Replacingδ > 0 by possibly a smaller number, we can also assume thatω(ζ) < δ implies
p(ζ) ∈ U0. We thus conclude that ifU is a neighborhood of̄ζ in K , then there existsδ > 0 such
that

{ζ ∈K: ω(ζ)< δ} ⊂U.(5.3)

These sets are open sinceω is continuous, hence they form a basis for the topology ofK as
ζ̄ andδ vary; it is easy to see that if one restricts both of these to suitable countable sets, one
still has a basis. Note that, separating the complement ofU from ζ̄ by a level set ofω shows
explicitly thatK is regular, and a simple compactness argument using theseωζ̄ (composed with
cut-off functions on the reals as in the next paragraph) shows thatK is normal, hence a compact
metrizable space, as claimed.

Composingω with aC∞ function onR supported near0 also shows that given anȳζ ∈K and
any neighborhoodU of ζ̄ in K , one can construct aπ-invariantC∞ functionf on scT ∗

∂XX for
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which fπ(ζ̄) �= 0 andsuppfπ ∩K ⊂ U . This also shows the existence of smooth partitions of
unity onK , smoothness understood as smoothness for the pull-back toscT ∗X .

The definition ofWFSc(u) andWF′
Sc(A) will be local in X . Thus, we can always work

on Sn+ instead. Just like when we definedΨm,l
Sc (X,C), we will be able to proceed either by

giving an explicit description inSn+ via the Fourier transform, or by giving invariant definitions.
Throughout this section we follow the construction of the fibred cusp wave front set by Mazzeo
and Melrose [19, Section 7]; their proofs can be easily modified to accommodate our setting.

We start with the operator wave front sets, which we only define for ‘smoothing operators’
A ∈ Ψ−∞,l

Sc (X,C) to eliminate the necessity of defining the usual operator wave front set on
ScS∗[X ;C]. The invariant definition proceeds by oscillatory testing.

DEFINITION 5.1. – Suppose thatA ∈ Ψ−∞,l
Sc (X,C) andζ ∈ scT ∗

p (Ca;X), p ∈ C′
a. We say

thatζ /∈WF′
Sc(A) if and only if there exist a neighborhoodU of ζ in scṪ ∗X and a neighborhood

V of p in X such thatAu ∈ Ċ∞(X) for every oscillatory functionu = eif/xv, v ∈ C∞([X ;C])
with π(graph(d(f/x))) ∩ scṪ ∗

V ∩∂XX ⊂ U andsuppv ⊂ β−1
Sc (V ).

This definition implies immediately thatWF′
Sc(A) is closed inscṪ ∗X ,

WF′
Sc(A+B)⊂WF′

Sc(A) ∪WF′
Sc(B), A,B ∈Ψ−∞,l

Sc (X,C),(5.4)

WF′
Sc(AB)⊂WF′

Sc(A) ∩WF′
Sc(B), A,B ∈Ψ−∞,l

Sc (X,C).(5.5)

We can also formulate the definition explicitly. We thus locally identifyX with Sn+ and

considerA ∈Ψ−∞,l
Sc (Sn+,C). We also identifyscT ∗Sn+ with Sn+×Rn. So suppose thatA is the left

quantization of a symbola ∈ ρl∂C∞([Sn+;C]×Sn+) that vanishes to infinite order at[Sn+;C]×∂Sn+.
Thenζ /∈WF′

Sc(A), ζ ∈ scT ∗
p (Ca;X), p ∈C′

a, if and only if there exists a neighborhoodU of ζ

in scṪ ∗Sn+ such thata vanishes atU ′ ⊂ (∂[Sn+;C])×Rn to infinite order whereU ′ is the inverse
image ofU under the composite map

(
∂
[
Sn+;C

])
×Rn βSc×id (

∂Sn+
)
×Rn = scT ∗

Sn−1Sn+
π scṪ ∗Sn+.(5.6)

It follows immediately from the usual formulae relating quantizations and the effect of
diffeomorphisms that this definition is independent of such choices. For example, we could have
equally well writtenA as the right quantization of a symbol with similar properties.

The general definition forA ∈ Ψm,l
Sc (X,C), again following the paper [19], in the explicit

quantization form as in the previous paragraph, would also require the rapid decay ofa in an open
cone (conic in the cotangent variable,ξ, i.e. in the second factor,Rn, in (5.6)) that includesU ′.
For A ∈ Ψ−∞,l

Sc (X,C), a is rapidly decreasing in every direction as|ξ| →∞, so this statement
is vacuous, and we recover Definition 5.1. The main point is that ifA ∈ Ψ0,0Sc (X,C), Âa(ζ)
is invertible, then there exists a microlocal parametrix forA, i.e. there existsG ∈ Ψ0,0Sc (X,C)
such thatId = AG + RR, Id = GA + RL, with RR,RL ∈ Ψ0,0Sc (X,C), ζ /∈ WF′

Sc(RR),
ζ /∈WF′

Sc(RL); see [19, Lemmas 14-15].
More explicitly, we have the following sufficient condition forζ /∈ WF′

Sc(A),
A ∈ Ψ−∞,0

Sc (X,C). Namely, if there is a neighborhoodV of ζ = (0, z0a, ξ
0
a) ∈ scT ∗

p (Ca;Sn+),
p ∈ C′

a, in ∂Sn+ ×Rm such thata vanishes to infinite order at every point(q′, ξ) ∈ (∂[Sn+;C])×
Rn with (βSc(q′), ξa) ∈ V , thenζ /∈WF′

Sc(A). Note that asp ∈ C′
a, we can always assume, by

reducing the size ofV if necessary, that(q, ξa) ∈ V impliesq ∈C′
b for someb with Ca ⊂Cb. We

can see that this condition is sufficient forζ /∈WF′
Sc(A) since for nearbyq ∈ Sn−1, assuming as
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we may thatq ∈C′
b, Ca ⊂Cb, the restriction ofπ to scT ∗

q Sn+ takes the form(q, ξb, ξ
b) "→ (q, ξb)

andξb splits as(ξ′b, ξ
′′
b ) with ξ′b = ξa. Thus, the condition of the previous paragraph holds if we

take

U =
⋃
b

{
(q, ξb): q ∈C′

b, ∃ξa, ξ′′b s.t.(q, ξa) ∈ V andξb = (ξ′b, ξ
′′
b )

}
.(5.7)

The definition of the wave front set of a distributionu ∈ C−∞(X) at∂X is more complicated.
To determine whetherζ ∈ scT ∗

p (Ca;X), p ∈ C′
a, is in WFSc(u), we would like to cut offu

to be supported nearp, i.e. considerψu, ψ ∈ C∞(X), ψ ≡ 1 nearp, identify a neighborhood
of p with an open set inSn+ near ∂Sn+, and consider smoothness of the Fourier transform
of u, Fψu. Indeed, in the two-body setting, hence in the many-body setting if we consider
ζ ∈ scT ∗

C′
0
(C0;X) = scT ∗

C′
0
X , written as a covectorξ · dw overp ∈C′

0, we have

ζ /∈WFsc(u) iff ∃ψ as above, s.t.Fψu is smooth nearξ.(5.8)

In the general many-body setting,ζ ∈ scT ∗
p (Ca;X), p ∈ C′

a, ζ takes the formξa · dwa, and
correspondingly we would like to say thatFψu is Schwartz in a region including the subspace
S consisting of all points of the form(ξa, ξa) whereξa is arbitrary. Here Schwartz takes the
place of smooth functions since the region is not compact inRn. However, as shown by the
example of ordinary wave front set, we cannot expect that this wave front set behaves reasonably
unless the regionU is conic near infinity, i.e. unless it is a neighborhood of the closure of
S in the radial compactificationSn+ of Rn. This however introduces the complication that all
parallel translates ofS intersectU , and we are exactly interested in separating from each other
the singularities on the various translates ofS. This problem is not too serious, especially for
generalized eigenfunctions of many-body HamiltoniansH , but it introduces additional terms
into the following definition which is modelled on that of the fibred cusp wave front set by
Mazzeo and Melrose [19].

DEFINITION 5.2. – We say that

ζ /∈WFSc(u) ∩ scT ∗
C′

a
(Ca;X) iff ∃A ∈Ψ0,0Sc (X,C), Âa,0(ζ) invertible inΨ0,0Sc

(
X̄a,Ca

)
,

∃Bj ∈Ψ−∞,0
Sc (X,C), ζ /∈WF′

Sc(Bj),

∃uj ∈ C−∞(X), j = 1, . . . , s, f ∈ Ċ∞(X),

Au=
s∑

j=1

Bjuj + f.(5.9)

Here we used the Euclidean notationΨ0,0Sc (X̄
a,Ca) instead ofΨ0,0Sc (ρ

−1
a (p), TpCa) for the sake

of simplicity. Similarly, the filtered version of theSc-wave front set is given by

ζ /∈WFm,l
Sc (u)∩ scT ∗

C′
a
(Ca;X) iff ∃A ∈Ψ0,0Sc (X,C), Âa,0(ζ) invertible inΨ0,0Sc

(
X̄a,Ca

)
,

∃Bj ∈Ψ−∞,0
Sc (X,C), ζ /∈WF′

Sc(Bj),

∃uj ∈ C−∞(X), j = 1, . . . , s, f ∈Hm,l
sc (X),

Au=
s∑

j=1

Bjuj + f.(5.10)

Thus, ifp ∈C′
a, then the part ofWFSc overp lives in scT ∗

p (Ca;X). If we define the scattering
wave front set,WFsc(u), in terms of operators instead of the description ofWFsc(u) given in
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(5.8) then the extra termsBjuj can be dropped. In fact, (5.8) is equivalent to requiring that
Au ∈ Ċ∞(Sn+) whereA=F−1φFψ ∈Ψ−∞,0

sc (Sn+), ψ as above, andφ ∈ C∞c (Rn) is identically
1 nearξ. The additional termsBjuj for WFSc(u) thus arise because the invertibility of̂Aa(ζ)
implies thatσSc,0(Âa(ζ)) cannot vanish which in turn means thatσSc,0(Âa(ζ′)) is non-zero for
every ζ′ ∈ scT ∗

p (Ca;X) sinceσSc,0(Âa(ζ)) = σSc,0(Âa(ζ′)). This simply corresponds to the
conic cutoff requirement discussed before the definition.

Remark5.3. – We remark that ifu= Pu′ for someu′ ∈ C−∞(X), P ∈Ψ−∞,0
Sc (X,C), then

the following is a sufficient condition forζ = (p, ξa) ∈ scT ∗
C′

a
X̄a, considered asC′

a ×Xa, not to
be inWFSc(u). Suppose that there existsψ ∈ C∞(Sn+), ψ(p) �= 0, andρ ∈ C∞c (Xa), ρ≡ 1 near
ξa, and((πa)∗ρ)F(ψu) ∈ S(Rn) = S(X0). Thenζ /∈WFSc(u). Indeed, let

B =
(
Id−F−1((πa)∗ρ)

Fψ
)
P, v = u′, f =F−1((πa)∗ρ)

FψPu′.(5.11)

ThenB ∈Ψ−∞,0
Sc (X,C) (see the beginning of Section 9, in particular Lemma 9.1, for a similar

construction),

u= Pu′ =
(
Id−F−1((πa)∗ρ)

Fψ
)
Pu′ + f =Bv+ f,(5.12)

ζ /∈ WF′
Sc(B), f ∈ Ċ∞(Sn+). Such a characterization is useful for approximate generalized

eigenfunctionsu of a many-body HamiltonianH ; see also Proposition 5.5.

With the topology we put onscṪ ∗X , WFSc(u) is closed due to the relationship between the
indicial operators mentioned above. Namely, the invertibility ofÂa,0(ζ) implies that ofÂb,0(ζ̃)
with π̃ba(ζ̃) = ζ, hence ofÂb,0(ζ̃′) for nearbyζ̃′. As the complement ofWF′

Sc(Bj) is open, this
implies that the complement ofWFSc(u) is also open.

In addition,WFSc has the standard properties one would expect from a wave front set.
However, only (5.16) plays an important role in our positive commutator proofs, so we refer to
[19, Section 7] for detailed arguments; we only need simple modifications of the proofs presented
there. Thus,

WFSc(u1 + u2)⊂WFSc(u1)∪WFSc(u2)(5.13)

and the corresponding result also holds for the filtered wave front set. Moreover, pseudo-
differential operators are microlocal in the sense that

A ∈Ψm,l
Sc (X,C), u ∈ C−∞(X)⇒WFSc(Au)⊂WFSc(u),(5.14)

and similarly

A ∈Ψm,l
Sc (X,C), u∈ C−∞(X)⇒WFm

′−m,l+l′

Sc (Au)⊂WFm
′,l′

Sc (u).(5.15)

We also refer to the remarks after Proposition 5.5 for connecting this wave front set to the one
discussed in [40] in three-body scattering.

This wave front set,WFSc, gives a complete microlocal description of distributions at∂X . To
state it generally, we would need to define the extension of the standard wave front set ofu to
give a subset ofScS∗[X ;C], but for us the following extension of (5.14) suffices.

PROPOSITION 5.4. –

P ∈Ψ−∞,l
Sc (X,C), WF′

Sc(P ) compact,
(5.16)

u ∈ C−∞(X), WF′
Sc(P ) ∩WFSc(u) = ∅⇒ Pu∈ Ċ∞(X).
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We remark that in [22],WFsc(u) (or rather its part over∂X) is defined as a subset ofscT̄ ∗
∂XX ,

the radial compactification ofscT ∗
∂XX in the fibers. The part at fiber-infinity, i.e. at the boundary

arising from the radial compactification of the fibers, extends the usual wave front set from the
interior. However, for us this extension is not important; the operator wave front set of nearly all
operators we are interested in is contained in a compact region ofscṪ ∗X .

Since (5.16) is the main property of the wave front set that we need for the positive commutator
estimates, we briefly outline its proof.

Proof. –Supposeζ /∈WFSc(u). Then there existAζ , Bζ,j , uζ,j , fζ , as in Definition 5.2.
Let Gζ be a microlocal parametrix forAζ , so Id = GζAζ + Rζ , with Gζ ,Rζ ∈ Ψ0,0Sc (X,C),
ζ /∈WF′

Sc(Rζ). Then

u=GζAζu+Rζu=
∑
j

GζBζ,juζ,j +Gζfζ +Rζu.(5.17)

Now, Uζ = (WF′
Sc(Rζ) ∪ (

⋃
jWF

′
Sc(Bζ,j)))c is open, and{Uζ : ζ /∈WFSc(u)} is a cover of

the complement ofWFSc(u), hence in particular ofWF′
Sc(P ). Since the latter is compact, there

is a finite subcover, say{Uζk
: k = 1, . . . ,N}.

Using a partition of unity, we can writeP =
∑

k Pk with Pk ∈ Ψ−∞,0
Sc (X,C), WF′

Sc(Pk) ⊂
Uζk

. Indeed, as discussed before Definition 5.1, we can findπ-invariant functionsqk ∈
C∞(scT ∗

∂XX) with supp(qk)π ∩WF′
Sc(P ) ⊂ Uζk

and q0 = 1 −
∑

k qk vanishes identically
on a neighborhood ofWF′

Sc(P ). Quantizing these as in Section 9, i.e. quantizingqkp where
P is the right quantization ofp, see Lemma 9.1, usingP ∈ Ψ−∞,0

Sc (X,C) in place ofψ0(H),
gives operatorsPk ∈Ψ−∞,0

Sc (X,C) with WF′
Sc(Pk)⊂ Uζk

for k � 1, P0 ∈ Ψ−∞,∞
Sc (X,C), and∑N

k=0 Pk = P . SinceP0 has empty operator wave front set, it can be added to any of the other
Pk; henceforth we drop it from our notation. Then, withGk =Gζk

, etc.,

Pku=
∑
j

PkGkBk,juk,j +PkGkfk + PkRku.(5.18)

SincePk ∈Ψ−∞,0
Sc (X,C), all composite operators on the right hand side are also inΨ−∞,0

Sc (X,C).
Moreover, by construction,WF′

Sc(Pk) ∩WF′
Sc(Bk,j) = ∅, WF′

Sc(Pk) ∩WF′
Sc(Rk) = ∅, so

PkGkBk,j and PkRk are both inΨ−∞,∞
Sc (X,C), hence mapC−∞(X) to Ċ∞(X), while

fk ∈ Ċ∞(X), so PkGkfk ∈ Ċ∞(X) as well. Thus,Pku ∈ Ċ∞(X), which in turn implies
Pu∈ Ċ∞(X) as claimed. ✷

The description of the wave front set becomes simpler for generalized eigenfunctions of many-
body HamiltoniansH . Namely, we have the following result.

PROPOSITION 5.5. – Suppose thatu ∈ C−∞(X), H ∈Ψm,0
Sc (X,C), m > 0 is self-adjoint and

σSc,m(H) never vanishes. Letλ ∈R, and defineW ⊂ scṪ ∗X by

ζ /∈W ∩ scT ∗
C′

a
(Ca;X) iff ∃ψ ∈ C∞c (R), ψ(λ) = 1,

∃A ∈Ψ−∞,0
Sc (X,C), Âa(ζ) = ψ̂(H)a,Au∈ Ċ∞(X).(5.19)

Then

WFSc(u)⊂WFSc
(
(H − λ)u

)
∪W.(5.20)

The same conclusion holds withWFSc replaced by WFm,l
Sc and Au ∈ Ċ∞(X) by

Au ∈Hm,l
sc (X).
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Proof. –Suppose thatζ /∈ WFSc((H − λ)u) and ζ /∈ W . With ψ as above, letψ̃(t) =
(1 − ψ(t))/(t − λ), so ψ̃ ∈ S−1

phg(R) as ψ(λ) = 1. Then ψ̃(H) ∈ Ψ−m,0
Sc (X,C) and Id =

ψ̃(H)(H − λ) + ψ(H). With A as above, letA′ = A + (Id−ψ(H)) ∈ Ψ0,0Sc (X,C). Then
Â′
a(ζ) = Id and

A′u=Au+ ψ̃(H)(H − λ)u.(5.21)

But Au ∈ Ċ∞(X) by assumption, so by (5.14)

WFSc(A′u) =WFSc
(
ψ̃(H)(H − λ)u

)
⊂WFSc

(
(H − λ)u

)
.(5.22)

Hence, there existA′′ (in place ofA), Bj , etc., as in Definition 5.2,A′′A′u= f +
∑

Bjuj , and
the indicial operator ofA′′A′ at ζ is just the composite of those ofA′′ andA′, hence invertible,
showing thatζ /∈WFSc(u). ✷

Remark5.6. – Our definition ofWFSc(u), which is in particular valid if(X,C) is a three-
body space, isdifferentfrom the wave front setWF3sc(u) used in [40] in the three-body setting.
Indeed, in the definition ofWF3sc(u), the termsBjuj appearing in Definition 5.2 were not
allowed. Consequently, (5.14), and its filtered analogue did not hold in general. However, for the
positive commutator proofs of both [40] and the present paper, one only needs (5.16), which was
proved forWF3sc. Note thatWF′

3sc(A) andWF′
Sc(A) are compact for all operators appearing

in positive commutator estimates in both papers.
Note thatWFSc(u) ⊂ WF3sc(u) directly from the definition. Moreover, if(Id−P )u ∈

Ċ∞(X) for someP ∈ Ψ−∞,0
Sc (X,C) (e.g. P = ψ(H) in the setting of the proposition) then

WFSc(u) = WF3sc(u). In fact, suppose thatζ /∈ WFSc(u), so Au =
∑

Bjuj + f as in
Definition 5.2. SinceÂ is invertible nearζ, we can arrange (by invertinĝA nearby, i.e.
by constructing a ‘microlocal parametrix’) thatu =

∑
B′
juj + f ′ with B′

j ∈ Ψ
−∞,0
Sc (X,C),

ζ /∈ WF′
Sc(B′

j) (cf. [19, Lemma 16]; we remove the termCu stated there by writing it
as CPu + C(Id−P )u, and incorporating them in

∑
B′
ju

′
j and f ′ respectively). Using the

methods of Section 9, given any neighborhoodU of ζ, it is easy to construct an operator
G ∈Ψ−∞,0

Sc (X,C) such thatWF′
Sc(G)⊂ U andζ /∈WF′

Sc(P −G) (hence the same holds for a
neighborhood ofζ). Since the indicial operator ofQ=G+(Id−P ) atζ is the identity, and since
(Id−P )u ∈ Ċ∞(X), we only need to prove thatGu ∈ Ċ∞(X) to conclude thatζ /∈WF3sc(u).
But Gu=

∑
GB′

juj +Gf ′, so if U is chosen sufficiently small, thenGB′
j ∈Ψ

−∞,∞
Sc (X,C), so

Gu ∈ Ċ∞(X) indeed.

6. The Hamiltonian and generalized broken bicharacteristics

We next analyze the operatorH −λ whereH =∆+V and∆ is the Laplacian of a scattering
metric

g =
dx2

x4
+

h′

x2
.(6.1)

Recall thath′ is a smooth symmetric 2-cotensor onX whose restriction to∂X (i.e. its pull-back),
h, is positive definite. We assume that

V ∈ C∞([X ;C];R) vanishes atβ∗
ScC0,(6.2)

i.e.V vanishes in the free region. This implies that

H ∈Diff2Sc(X,C).(6.3)
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Such a situation arises, for example, in actual Euclidean scattering if the potentialsVa (in the
notation of the introduction) are classical symbols of order−1 on Xa. Hence, we make the
following definition.

DEFINITION 6.1. – A many-body Hamiltonian is an operatorH = ∆ + V where∆ is the
Laplacian of a scattering metricg, andV satisfies (6.2).

As indicated in the Introduction, from this point on we also make the assumption

(X,C) is locally linearizable;(6.4)

this will simplify the analysis. We recall that this is equivalent to the local existence of
Riemannian metrics on∂X , possibly different fromh, with respect to which all elements of
C are totally geodesic.

Sinceσsc,2(∆) never vanishes, the same holds forσSc,2(H) which is the pull-back of the
former. A simple calculation, see [40, Sections 4 and 11] for more details, shows that the indicial
operators ofH are given by

Ĥa,0(ξ) = Ĥa,0

(
(p,0)

)
+ τ2 + h̃(z, ν), ξ = (z, τ, ν) ∈ scT ∗(C̃a;X),(6.5)

Ĥa,0(p,0) =∆Y + V (p,Y )(6.6)

whereY are ‘Euclidean coordinates’ on the interior ofρ−1
a (p), i.e. that ofβ̃−1

a (p), and∆Y is the
Euclidean Laplacian.

More precisely, we have seen in Section 4 that(β[X ;Ca]∗pscT X)/scTp(C̃a;X) naturally acts

transitively and freely on the interior ofρ−1
a (p) = S+NpC̃a, so it makes sense to talk about

translation invariant vector fields and differential operators on the interior ofS+NpC̃a. Indeed,
the restriction toS+NC̃a of the lift of elements ofDiffsc(X) (underβSc) are such. We can
see this sinceVsc(X) is given by sections ofscT X ; the restriction of the lift ofP ∈ Vsc(X)
is then given by the identification of(β[X ;Ca]∗pscT X)/scTp(C̃a;X) with the tangent space at
each point of the fiberρ−1

a (p). Using the metricg to identify the quotient bundle with the
orthocomplement ofscTp(C̃a;X), S+NpC̃a becomes an affine space with a translation-invariant
metric (i.e. ‘Euclidean’) with the metric induced byg; ∆Y is the Laplacian of this metric.

Eqs. (6.5)–(6.6) show that̂Ha,0(p,0) is uniformly bounded below, so for anyψ ∈ C∞c (R) the
set ⋃

a

cl
({

ξ ∈ scT ∗(C̃a;X): ψ
(
Ĥa(ξ)

)
�= 0

})
(6.7)

is compact.
The bound states of the subsystems ofH play an important role in Euclidean many-body

scattering. The appropriate replacement in the general geometric setting is given via the indicial
operators ofH . Thus, in this paper the statement ‘no subsystem ofH has a bound state’ means
that

Ĥa,0(ξ) has noL2 eigenvalues for anya �= 0 andξ ∈ scT ∗(C̃a;X).(6.8)

Due to (6.5)–(6.6), this means simply that

ha(p) = Ĥa,0

(
(p,0)

)
has noL2 eigenvalues for anya �= 0 andp ∈ C̃a.(6.9)
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In Euclidean scatteringha(p) is just the subsystem Hamiltonianha (which is then independent
of p), so in that setting (6.8) indeed means that the (proper) subsystems ofH have no bound
states.

If no subsystem ofH has bound states it can be expected that∆− λ governs the propagation
of singularities of distributionsu with (H − λ)u ∈ Ċ∞(X), except that the flow will break
at the places whereV is singular (i.e. where locallyV /∈ C∞(X)), similarly to boundary and
transmission problems for the wave equation [12, Chapter XXIV], [23,18]. Now, the symbol of
∆− λ at∂X (i.e. itssc-indicial operator) isg− λ. Hence, its characteristic variety is

Σ=Σ∆−λ =
{
ξ ∈ scT ∗

∂XX : g(ξ)− λ= 0
}
.(6.10)

The rescaled Hamilton vector fieldscHg = x−1Hg of g (or g− λ), introduced in [22], is

scHg = 2τ(x∂x + µ · ∂µ + ν · ∂ν)− 2h∂τ +Hh + xW ′, W ′ ∈ Vb
(
scT ∗X

)
,(6.11)

so its restriction to∂X , also denoted byscHg, is

scHg = 2τ(µ · ∂µ + ν · ∂ν)− 2h∂τ +Hh.(6.12)

Here (y, z, τ, µ, ν) denote coordinates about someC = Ca as before, though notice that
µ · ∂µ + ν · ∂ν is simply the radial vector field inT ∗∂X , so the above expression is indeed
invariant (as it must be). The bicharacteristics of∆− λ are just integral curves ofscHg .

We divide the imagėΣ⊂ scṪ ∗X of Σ underπ into a normal and a tangential part,

Σ̇ = Σn(λ) ∪Σt(λ),(6.13)

as follows. Let̂π be the restriction ofπ toΣ. We let

Σn(λ) =
⋃
a

{
ξ ∈ scT ∗

C′
a
(Ca;X)∩ Σ̇: π̂−1(ξ) consists of more than one point

}
(6.14)

and

Σt(λ) =
⋃
a

{
ξ ∈ scT ∗

C′
a
(Ca;X)∩ Σ̇: π̂−1(ξ) consists of exactly one point

}
.(6.15)

In terms of our local coordinates aroundC′
a, in view of (4.23) and|µa|2 � 0, this means that

Σn(λ) =
⋃
a

{
(za, τa, νa) ∈ scT ∗

C′
a
(Ca;X): τ2a + h̃(za, νa)< λ

}
(6.16)

and

Σt(λ) =
⋃
a

{
(za, τa, νa) ∈ scT ∗

C′
a
(Ca;X): τ2a + h̃(za, νa) = λ

}
.(6.17)

Notice that forξ = (za, τa, νa) ∈ Σt(λ) and the unique point̃ξ = (0, za, τa, µa, νa) ∈ scT ∗
∂XX

with π(ξ̃) = ξ we haveµa = 0. As the∂ya component ofscHg is 2µa · ∂ya atya = 0 (i.e. atCa),
for suchξ and ξ̃, scHg(ξ̃) is tangent toscT ∗

C′
a
X . On the other hand, ifξ ∈ Σn(λ), ξ̃ ∈ π̂−1(ξ),

then scHg(ξ̃) is normal toscT ∗
C′

a
X , hence the choice of our terminology. Notice also that on

scT ∗
C′

0
X , π is the identity map, so

Σ̇∩ scT ∗
C′

0
X ⊂Σt(λ).(6.18)
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We also define the radial setsR±(λ) as the sets

R±(λ) = π
({
(y, z, τ, µ, ν): τ =±

√
λ, h(y, z, µ, ν) = 0

})
.(6.19)

Thus,R+(λ) ∪R−(λ) is the image (underπ) of the set wherescHg vanishes. Notice that

R+(λ) ∪R−(λ)⊂Σt(λ).(6.20)

Following Lebeau, we define generalized broken bicharacteristics of∆ − λ as follows.
First, recall from Section 5 that we say that a functionf ∈ C∞(scT ∗

∂XX) is π-invariant if for
ξ̃, ξ̃′ ∈ scT ∗

∂XX , π(ξ̃) = π(ξ̃′) impliesf(ξ̃) = f(ξ̃′). A π-invariant functionf naturally defines a
functionfπ on scṪ ∗X by fπ(ξ) = f(ξ̃) whereξ̃ ∈ scT ∗

∂XX is chosen so thatπ(ξ̃) = ξ.

DEFINITION 6.2. – Suppose that(X,C) is locally linearizable. A generalized broken
bicharacteristic of∆ − λ is a continuous mapγ : I → scṪ ∗X , whereI ⊂ R is an interval,
satisfying the following requirements:

(i) If ξ0 = γ(t0) ∈Σt(λ) then for allπ-invariant functionsf ∈ C∞(scT ∗
∂XX),

d

dt
(fπ ◦ γ)(t0) = scHgf(ξ̃0), ξ̃0 = π̂−1(ξ0).(6.21)

(ii) If ξ0 = γ(t0) ∈Σn(λ) ∩ scT ∗
C′

a
(Ca;X) then there existsε > 0 such that

t ∈ I, 0< |t− t0|< ε⇒ γ(t) /∈ scT ∗
C′

a
(Ca;X).(6.22)

The success of this definition (so that it indeed describes what we wish to describe) depends on
a plentiful supply ofπ-invariant functions onscT ∗

∂XX . Under our local linearizability hypothesis,
(6.4), there are always many such functions. Recall from Section 5 that by (6.4), ifp ∈C′ =C′

a,
we can choose local coordinates(y, z) on∂X in terms of whichall theCb satisfyingp ∈Cb are
linear, i.e. they are given byAby = 0 whereAb is a (constant) matrix, andCa is given byy = 0.
With (τ,µ, ν) denoting the sc-dual variables of(x, y, z), we see thaty, z, τ, ν areπ-invariant near
scT ∗

pX . In general, without the assumption (6.4),ν would not beπ-invariant, and we would not
be able to modify it to make it such, so the definition would be inadequate.

We can also arrange that the metric function is of the formh = h̃(z, ν) + hnn(z,µ) at C′
a

by a further change of coordinatesz′
j = zj +

∑
jk Zjk(z)yk, y′ = y, which preserves the linear

structure of theCb. In general we cannot arrange thathnn(z,µ) = |µ|2 everywhere alongC′
a

without destroying the product-linear structure of theCb. However, by a linear change in the
y coordinates we can make sure thatat a fixedp ∈ C′

a, h = h̃(z, ν) + |µ|2. The continuity
of a generalized broken bicharacteristicγ means that ifγ(t0) ∈ scT ∗

C′(C;X), then fort near
t0, t "→ (y(γ(t)), z(γ(t)), τ(γ(t)), ν(γ(t))) is continuous, butµ(γ(t)) may be discontinuous. In
terms of Euclidean scattering this means that atCa the external momentum is conserved, but
not necessarily the internal one, whileimage(γ)⊂ Σ̇ corresponds to the conservation of kinetic
energy. The latter cannot be expected to hold if the subsystems of the Hamiltonian have bound
states; the relevant broken bicharacteristics in that case exhibit more complex behavior. Another
example of aπ-invariant function in this situation isy · µ; this will play a rather important role
in the propagation estimates. In fact,scHg(y · µ)(ξ̃0) = 2|µ0|2 if ξ̃0 ∈ scT ∗

pX is of the form

(0, z0, τ0, µ0, ν0), so if π(ξ̃0) ∈ Σn(λ) and ξ̃0 ∈ Σ theny · µ is a parameter along generalized
broken bicharacteristics nearξ̃0 – see also the following proposition.

A stronger characterization of generalized broken bicharacteristics atΣn(λ) follows as in
Lebeau’s paper. Notice that ifγ : I → Σ̇ is continuous then the conclusion of the following
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proposition certainly implies (i) and (ii) ((ii) follows asyj = (ya)j are π-invariant), so the
proposition indeed provides an alternative to our definition.

PROPOSITION 6.3 (Lebeau, [18, Proposition 1]). –If γ is a generalized broken bicharacteris-
tic as above,t0 ∈ I, ξ0 = γ(t0), then there exist uniquẽξ+, ξ̃− ∈Σ(∆−λ) satisfyingπ(ξ̃±) = ξ0
and having the property that iff ∈ C∞(scT ∗

∂XX) is π-invariant thent "→ fπ(γ(t)) is differen-
tiable both from the left and from the right att0 and(

d

dt

)
(fπ ◦ γ)|t0± = scHgf(ξ̃±).(6.23)

We refer to Lebeau’s paper for the proof in the general setting, but in the Appendix we
give the proof under the assumption that the elements ofC are totally geodesic. In fact, we
prove slightly more by giving a Hölder-type remainder estimate. We present the proof in the
Appendix, but we emphasize that it is simply a minor modification of Lebeau’s proof. We
remark that the most delicate part of the conclusion (under the totally geodesic assumption)
is the differentiability of the ‘normal’ coordinate functionsyj alongγ, i.e. that ofyj ◦ γ. Here
we dropped the projectionπ from the notation (i.e. we did not write(yj)π ◦ γ) to simplify it; we
will often do this in the future for the otherπ-invariant coordinate functionsτ , zj , νj . The proof
proceeds by induction using the order onC. Thus, we have to understand what happens neart0
if γ(t0) = ξ0 ∈Σn(λ) ∩ scT ∗

C′
a
(Ca;X). The inductive hypothesis is that we have already proved

the proposition forb with Ca � Cb. Thus, by Definition 6.2, part (ii), it is true fort0 replaced by
t �= t0, assuming|t− t0|< ε. Hence, we need to analyze the behavior of the coordinate functions
using the Hamilton equation, (6.23) which is a little more delicate than the positive commutator
construction in Proposition 10.4, but the two proofs are very closely related via the use of same
functionφ to localize near (and along) the generalized broken bicharacteristics. A rather similar
analogy arises in our tangential estimates in the totally geodesic setting; see Propositions 7.1 and
10.6 respectively.

We now describe some corollaries of this proposition. First, we remark that the role of
the globally definedπ-invariant functionτ is somewhat analogous to the role played by the
time variable in the wave equation in Lebeau’s paper. In particular,τ gives a parameter along
generalized broken bicharacteristics with the exception of some trivial ones (namely the constant
ones inR+(λ)∪R−(λ)). To see this, we show the following corollary of the above proposition.

COROLLARY 6.4. – Suppose thatγ : I → Σ̇ is a generalized broken bicharacteristic. Then
T = τπ ◦ γ : I →R is aC∞ function. In addition,T has one of the following forms. Either

(i) T (t) =
√

λ for all t ∈ I, or
(ii) T (t) =−

√
λ for all t ∈ I, or

(iii) T ′(t)< 0 for all t and if I =R thenT (t)→∓
√

λ ast→±∞.

Proof. –As λ= τ2 + h in Σ∆−λ, we have for all̃ξ ∈Σ∆−λ that

scHgτ(ξ̃) =−2h(ξ̃) = 2
(
τ(ξ̃)2 − λ

)
.(6.24)

Thus, withT = τπ ◦ γ, the previous proposition implies that for anyt ∈ I, T is differentiable
from both the left and the right att, and both of these derivatives are equal to2(T (t)2− λ). (We
remark that this is proved directly in the Appendix as a first step to the proof of the proposition.)
Thus,T is C1 and it satisfies the ODEdT/dt = 2(T 2 − λ). But, given sayT (t0) = τ0, this
ODE has a unique solution which isC∞. The last statement follows by writing down the
solution of the ODE explicitly, which, ifT (t0) ∈ (−λ,λ) for somet0 ∈ I, takes the form
T (t) =−

√
λ tanh(4

√
λ(t− c)), t ∈ I, for an appropriate constantc. ✷
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Since forξ ∈ Σ̇ with τ(ξ)2 = λ we automatically haveξ ∈ R+(λ) ∪ R−(λ), in (iii) we see
that (if I = R) ast→±∞, γ(t) approachesR∓(λ). In addition, in the same case, asT ′ never
vanishes,T ∈ (−

√
λ,
√

λ) can be used to reparameterizeγ (reversing its direction).
We proceed to examine generalized broken bicharacteristics in more detail, starting with cases

(i) and (ii). Namely, we prove that generalized broken bicharacteristics throughR+(λ)∪R−(λ)
are constant maps:

PROPOSITION 6.5. – If γ : I → Σ̇ is a generalized broken bicharacteristic,
γ(t0) = ξ0 ∈ R+(λ) ∪ R−(λ), thenγ(t) = ξ0 for t ∈ I. Hence,π̂−1 ◦ γ is a bicharacteristic
of scHg.

Proof. –The previous corollary and the above remarks show that for allt ∈ I, γ(t) ∈R+(λ)∪
R−(λ). Let ξ̃(t) = π̂−1(γ(t)). Thus,scHg vanishes at̃ξ(t) ∈ π̂−1(R+(λ) ∪ R−(λ)) for all t.
Since the base variablesy and z are π-invariant, we conclude thatd((yj)π ◦ γ)/dt vanishes
identically, hencey is constant, and similarly forz, proving thatγ(t) = ξ0 for all t. The last
statement of the proposition follows sincescHg vanishes at̂π−1(R+(λ) ∪R−(λ)). ✷

Now, we consider case (iii) of Corollary 6.4. Namely, we show that if we rescale and
reparameterizeγ and project off itsτ component, we obtain a generalized broken geodesic
(of h) in ∂X , broken atC. This is a notion completely analogous to that of our generalized
broken bicharacteristics, and we proceed to define it. Again, we need to introduce a ‘compressed’
cotangent bundle. The metrich on ∂X naturally identifies the cotangent bundleT ∗C of C ∈ C
as a subset ofT ∗∂X . The compressed cotangent bundle of∂X is then

Ṫ ∗∂X =
⋃
a

T ∗
C′

a
Ca.(6.25)

It is topologized by the projectionπ∂ :T ∗∂X → Ṫ ∗∂X . We also define the compressed cosphere
bundle as the image ofS∗∂X underπ∂ ; hereS∗∂X is the set of covcectors of unit length:

Ṡ∗∂X = π∂(S∗∂X).(6.26)

The restriction ofπ∂ to Ṡ∗∂X is denoted bŷπ∂ . This plays a role analogous to that ofΣ̇. We
also define its tangential and normal parts:

Ṡ∗
n∂X =

⋃
a

{
ζ ∈ T ∗

C′
a
Ca ∩ Ṡ∗∂X : π̂−1

∂ (ζ) consists of more than one point
}

(6.27)

and

Ṡ∗
t ∂X =

⋃
a

{
ζ ∈ T ∗

C′
a
Ca ∩ Ṡ∗∂X : π̂−1

∂ (ζ) consists of exactly one point
}
.(6.28)

Generalized broken geodesics are then defined as follows.

DEFINITION 6.6. – A generalized broken geodesic ofh is a continuous mapγ∂ : I → Ṡ∗∂X ,
whereI ⊂R is an interval, satisfying the following requirements:

(i) If ζ0 = γ∂(t0) ∈ Ṡ∗
t ∂X then for allπ∂ -invariant functionsf ∈ C∞(T ∗∂X),

d

dt
(fπ∂

◦ γ∂)(t0) =H 1
2h

f(ζ̃0), ζ̃0 = π̂−1
∂ (ζ0).(6.29)

(ii) If ζ0 = γ∂(t0) ∈ Ṡ∗
n∂X ∩ T ∗

C′
a
Ca then there existsε > 0 such that

t ∈ I, 0< |t− t0|< ε⇒ γ∂(t) /∈ T ∗
C′

a
Ca.(6.30)
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Remark6.7. – Sometimes, with an abuse of terminology, we also say that the projection of a
generalized broken geodesic to∂X (via the projectionṠ∗∂X → ∂X inherited fromT ∂X) is a
generalized broken geodesic. Indeed, this was the terminology used in the introduction.

The metricg gives rise to a product decomposition

scT ∗
∂XX =Rτ × T ∗∂X.(6.31)

The compressed scattering cotangent bundle is thus also naturally a product:

scṪ ∗X =Rτ × Ṫ ∗∂X.(6.32)

We sometimes write the product variables asξ = (τ, ξ′′). We write

p : scṪ ∗X → Ṫ ∗∂X(6.33)

for the projection to the second factor. Note thatscṪ ∗X inherits a naturalR-action fromscT ∗
∂XX ,

and if ξ ∈ Σ̇, τ(ξ)2 �= λ, thenζ = p((λ− τ(ξ)2)−1/2ξ) ∈ Ṡ∗∂X sinceh= λ− τ2 on Σ̇.
We also reparameterize generalized broken bicharacteristicsγ satisfying (iii) of Corollary 6.4

by letting s = S(t) whereS satisfiesdS/dt = 2(λ − τ(γ(t))2)1/2, with S(t0) = s0 picked
arbitrarily. We have the following result.

PROPOSITION 6.8. – Suppose thatγ : I → Σ̇ is a generalized broken bicharacteristic which
is disjoint fromR+(λ) ∪R−(λ). Thenγ ◦ S−1 :J → Σ̇, S defined above, is given by

τ =
√

λ cos(s− s1), ξ′′ =
√

λ sin(s− s1)γ∂(s)(6.34)

wheres1 is an appropriate constant andγ∂ :J → Ṡ∗∂X is a generalized broken geodesic, broken
at C. If I = R, thenJ = (s1, s1 + π), in particular J has lengthπ, and correspondingly the
projection ofγ∂ to ∂X is a curve of lengthπ.

Proof. –Let

γ∂(s) = p

(
γ(S−1(s))√

λ− τ(γ(S−1(s)))2

)
.(6.35)

Condition (ii) of Definition 6.2 implies (ii) of Definition 6.6 immediately. Letf ∈ C∞(T ∗∂X)
be aπ∂ -invariant function. Let

F (ξ) = f
(
p
(
(λ− τ(ξ)2)−1/2ξ

))
;(6.36)

here we slightly abuse the notation and writep : scT ∗
∂XX → T ∗∂X . ThenF is π-invariant, so

(i) of Definition 6.2 applies and givesd(Fπ ◦ γ)/dt(t0). Since(Fπ ◦ γ) ◦ S−1 = fπ∂
◦ γ∂ , the

chain rule and a short calculation ofscHgF gives (i) of Definition 6.6. The first equation in
(6.34) follows since alongγ, ds/dτ = (ds/dt)(dτ/dt)−1 =−(λ− τ2)−1/2. As (λ− τ2)1/2 =√

λ sin(s− s1), the second equation follows as well. Sinceτ →∓
√

λ alongγ ast→±∞ and
τ is decreasing, we deduce the last statement.✷

It is useful to introduce a relation oṅS∗ × Σ̇(λ) using the structure of the generalized broken
bicharacteristics given in this proposition.

DEFINITION 6.9. – Supposeξ ∈ Σ̇(λ) \ (R−(λ) ∪R+(λ)), ζ ∈ Ṡ∗∂X . We say thatξ ∼− ζ
if there is a generalized broken bicharacteristicγ :R → Σ̇(λ) with γ(t0) = ξ such that
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γ∂ : (a, a + π)→ S∗∂X , as in the above Proposition, satisfieslims→a+ γ∂(s) = ζ. We define
ξ ∼+ ζ similarly by replacinga+ in the limit by (a+ π)−.

We also need to analyze the uniform behavior of generalized broken bicharacteristics. Here
we quote Lebeau’s results; they can also be proved completely analogously to the proof of
Proposition 6.3 given here in the Appendix.

PROPOSITION 6.10 (Lebeau, [18, Proposition 5]). –Suppose thatK is a compact subset ofΣ̇,
γn : [a, b]→K is a sequence of generalized broken bicharacteristics which converge uniformly
to γ. Thenγ is a generalized broken bicharacteristic.

PROPOSITION 6.11 (Lebeau, [18, Proposition 6]). –Suppose thatK is a compact subset of
Σ̇, [a, b]⊂R and

R= {generalized broken bicharacteristicsγ : [a, b]→K}.(6.37)

If R is not empty then it is compact in the topology of uniform convergence.

COROLLARY 6.12 (Lebeau, [18, Corollaire 7]). –If γ : (a, b)→ R is a generalized broken
bicharacteristic thenγ extends to[a, b].

7. Generalized broken bicharacteristics for totally geodesic C

We next examine the generalized broken bicharacteristics if all elements ofC are totally
geodesic with respect toh. First we prove that generalized broken bicharacteristicsγ : I → Σ̇
with γ(t0) = ξ0, ξ0 ∈ Σt(λ) ∩ scT ∗

C′
a
(Ca;X) are actually bicharacteristics ofscHg (and hence

stay inscT ∗
C′

a
(Ca;X)) for t neart0.

PROPOSITION 7.1. – Suppose that all elements ofC are totally geodesic with respect toh.
Letγ : I → Σ̇ be a generalized broken bicharacteristic,

γ(t0) = ξ0 ∈
(
Σt(λ) ∩ scT ∗

C′
a
(Ca;X)

)
\

(
R+(λ) ∪R−(λ)

)
.(7.1)

Then fort ∈ J , J a neighborhood oft0, we haveγ(t) ∈ Σt(λ) ∩ scT ∗
C′

a
(Ca;X), andγ|J is a

bicharacteristic ofscHg.

Proof. –Our strategy consists of constructing aπ-invariant functionφ with scHgφ � c > 0
in a neighborhood of̂π−1(ξ0). Thus, by Proposition 6.3,d/dt(φπ(γ))|t± � c > 0 for t ∈ J , J
sufficiently small, soφπ ◦ γ is increasing there. This will allow us to draw the desired conclusion
for the correct choice ofφ. We remark that thisφ will reappear in the proof of the propagation
estimate in Proposition 10.6. Moreover, it is essentially the same as the corresponding function in
the three-body propagation estimate [40, Proposition 15.4], though we will use slightly different
methods to estimatescHgφ.

In fact, first we find aπ-invariant functionω such thatscHg will be appropriately small
nearπ̂−1(ξ0). So introduce coordinates centered atC′

a as after Definition 6.2. Then the metric
function takes the form

h=
∑

hijnn(y, z)µiµj +2
∑

hijnt(y, z)µiνj +
∑

hijtt(y, z)νiνj(7.2)

with

hijnn(0,0) = δij , hijnt(0, z) = 0,(7.3)

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



360 A. VASY

and, due to the assumption thatCa is totally geodesic,

∂yh
ij
tt(0, z) = 0.(7.4)

We write

h̃(z, ν) =
∑

hijtt(0, z)νiνj(7.5)

for the restriction of the tangential part of the metric function toCa, so

h|y=0 = h̃+
∑

hijnn(0, z)µiµj .(7.6)

Now, the Hamilton vector field ofh is given by

Hh = 2
∑
i,j

hijnnµj∂yi + 2
∑
i,j

hijntµi∂zj + 2
∑
ij

hijntνj∂yi +2
∑
i,j

hijttνj∂zi

+
∑
i,j,k

(
∂zk

hijnn
)
µiµj∂νk

+2
∑
i,j,k

(
∂zk

hijnt
)
µiνj∂νk

+
∑
i,j,k

(
∂zk

hijtt
)
νiνj∂νk

+W ′(7.7)

with W ′ =
∑

αj∂µj . Hence, ifω ∈ C∞(Rm−1
z ×Rm

τ,ν) then

Hhω|y=0 =Hh̃ω+
∑
k

(
∂zk
(h− h̃)

)
∂νk

ω.(7.8)

Now, µ, henceh− h̃, is small near̂π−1(ξ0), so to model

scHg = 2τ(µ · ∂µ + ν · ∂ν)− 2h∂τ +Hh,(7.9)

we introduce the vector field

W = 2τ(ν · ∂ν)− 2h̃∂τ +Hh̃(7.10)

locally (nearξ0) on scT ∗(Ca;X). Thus, we have

scHgω|y=0 =Wω − 2(h− h̃)∂τω+
∑
k

(∂zk

(
h− h̃)

)
∂νk

ω(7.11)

which is small ifWω is small.
We defineω as follows. First,Wτ = −2h̃, andh̃z0(ν0) �= 0 sinceξ0 /∈ R+(λ) ∪ R−(λ), so

nearξ0, Wτ �= 0, i.e.W is transversal to the hypersurfaceτ = τ0. Thus, nearξ0 in scT ∗(Ca;X)
we can solve the Cauchy problem

Wω = 0, ω|τ=τ0 = (z − z0)2 + (ν − ν0)2.(7.12)

Sinceω anddω vanish atξ0, the same holds on the bicharacteristic ofW throughξ0, butω � 0
and the Hessian is still positive in directions transversal to the bicharacteristics as these hold at
ξ0. Moreover, by [12, Lemma 7.7.2],

|dω|� Cω1/2.(7.13)
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Let

r0 = τ2 + h̃z(ν)− λ,(7.14)

soWr0 = 0. At τ = τ0 we haver0 = h̃z(ν)− h̃z0(ν0), so

|r0|� C′|dω|� C′′ω1/2(7.15)

whenτ = τ0, and thenWω = 0=Wr0 implies that this inequality holds everywhere. Therefore,

|h̃− h|�
∣∣λ− τ2 − h

∣∣+ ∣∣λ− τ2 − h̃
∣∣ �

∣∣λ− τ2 − h
∣∣+Cω1/2.(7.16)

Now,

scHgω = scHgω−Wω =−2(h− h̃)∂τω

+ 2
∑
i,j

hijnt(y, z)µi∂zj ω+ 2
∑
i,j

(hijtt
(
y, z)− hijtt(0, z)

)
νj∂ziω

+
∑
i,j,k

∂zk
hijnn(y, z)µiµj∂νk

ω+ 2
∑
i,j,k

∂zk
hijnt(y, z)µiνj∂νk

ω

+
∑
i,j,k

∂zk

(
hijtt(y, z)− hijtt(0, z)

)
νiνj∂νk

ω.(7.17)

Thus, using (7.3)–(7.4), for someC,C′ > 0 we have∣∣scHgω−Wω
∣∣ � C′(∣∣τ2 + h− λ

∣∣+ ω1/2 + |y|2 + |µ|2 + |µ||y|
)
|dω|

� C
(∣∣τ2 + h− λ

∣∣+ ω1/2 + |y|2 + |µ|2
)
ω1/2.(7.18)

Next, note that

scHg|y|2 = 4
∑
i,j

hijnnµjyi + 4
∑
i,j

hijntνjyi,(7.19)

so by (7.3), ∣∣scHg|y|2
∣∣ � C|y|(|y|+ |µ|).(7.20)

Forε > 0 let

φ(ε) = φ= τ0 − τ + ε−1|y|2 + ε−2ω.(7.21)

Thus,

∣∣scHgφ− 2h
∣∣ � C

(
ε−1|y|(|y|+ |µ|) + ε−2ω1/2

(
|y|2 + |µ|2 + |τ2 + h− λ|+ ω1/2

))
.(7.22)

We next estimateµ. First, ashijnn(0,0) = δij , hnn is positive definite in a small neighborhood
of (0,0) and

|µ|2 � 2
∑
i,j

hijnn(y, z)µiµj(7.23)

there. On the other hand,∑
i,j

hijnn(y, z)µiµj = h− h̃−
∑
i,j

hijnt(y, z)µiνj −
∑
i,j

(
hijtt(y, z)− hijtt(0, z)

)
νiνj ,(7.24)
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so ∣∣∣∣∑
i,j

hijnn(y, z)µiµj

∣∣∣∣ � |h− h̃|+C1|y||µ|+C2|y|2.(7.25)

Moving C1|y||µ| to the right hand side and completing the square gives

(|µ| −C3|y|)2 � |h− h̃|+C4|y|2,(7.26)

so

|µ|� C
(
|h− h̃|1/2 + |y|

)
, i.e. |µ|2 � C′(|h− h̃|+ |y|2

)
.(7.27)

We can finally estimatescHgφ, using (7.16) as well:∣∣scHgφ− 2h
∣∣ � C

(
ε−1|y|

(
|y|+ ω1/4 + |τ2 + h− λ|1/2

)
+ ε−2ω1/2

(
|y|2 + |τ2 + h− λ|+ ω1/2

))
.(7.28)

Note thatφπ(ξ0) = 0, so nearπ−1(ξ0), φ is small. So now suppose that0< δ < 1 and

φ � 2δ and τ − τ0 � 2δ.(7.29)

Then

ε−1|y|2 + ε−2ω � 4δ,(7.30)

so |y|� (4εδ)1/2, ω � 4ε2δ. Hence, under the additional assumption∣∣τ2 + h− λ
∣∣ < εδ,(7.31)

i.e. thatξ̃ = (y, z, τ, µ, ν) sufficiently close toΣ∆−λ, we have

∣∣scHgφ− 2h
∣∣ � C

(
ε−1(εδ)1/2

(
ε2δ

)1/4 + ε−2ε2δ
)
� C′δ3/4.(7.32)

Sinceh(π̂−1(ξ0))> 0, we haveh(ξ̃)� 2c > 0 in a neighborhoodof̂π−1(ξ0). Now chooseδ0 > 0
sufficiently small, so thatC′δ

3/4
0 < c. Note that this requirement is independent ofε. We thus

conclude that forδ ∈ (0, δ0), ξ̃ satisfying (7.29) and (7.31), we have

scHgφ(ξ)� c > 0.(7.33)

Now, using the result of Proposition 6.3, letξ̃±(t) ∈Σ(∆− λ) be the unique points such that
π(ξ̃±(t)) = γ(t) and for allπ-invariantf

(
d

dt

)
(fπ ◦ γ)|t± = scHgf

(
ξ̃±(t)

)
.(7.34)

Choosing a sufficiently small open intervalJ aroundt0, τ(γ(t)), henceτ(ξ̃±(t)), automatically
satisfies (7.29) fort ∈ J , while (7.31) holds automatically as̃ξ±(t) ∈Σ(∆− λ). Thus, applying
(7.34) withφ in place off , we see that, with

g(t) = φπ ◦ γ(t),(7.35)
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we have

t ∈ J and g(t)� 2δ⇒
(

dg

dt

)∣∣∣∣
t±

� c > 0.(7.36)

As g is continuous andg(t0) = 0, this shows thatg is increasing onJ ∩ (−∞, t0]. To see this,
first note thatg(t)< 2δ onJ ∩ (−∞, t0], for otherwiseg−1({2δ})∩ (−∞, t0]∩ J is not empty,
g−1({2δ}) ∩ (−∞, t0] is closed, so takingt1 = sup(g−1({2δ}) ∩ (−∞, t0]) < t0 andt1 ∈ J .
Thus, fort ∈ [t1, t0], g is differentiable from either side att and the derivatives are both positive,
sog is increasing on[t1, t0], henceg(t1)� g(t0) = 0 contradictingg(t1) = 2δ. Thus,g < 2δ on
J ∩ (−∞,0], sog is increasing here, sog(t)� 0 for t ∈ J ∩ (−∞, t0). Taking into account the
definition ofφ we immediately deduce that∣∣y(

γ(t)
)∣∣ � Cε1/2, t ∈ J ∩ (−∞, t0).(7.37)

Sinceε ∈ (0,1) is arbitrary, we conclude thaty(γ(t)) = 0 for t ∈ J ∩ (−∞, t0], so γ(t) ∈
scT ∗(Ca;X) for sucht. Similarly,ω(γ(t)) = 0 for sucht, so by the construction ofω, γ(t) is the
integral curve ofW throughξ0 (for t ∈ J , t � t0). Of course, a similar argument (with a change
of sign inτ0 − τ in (7.21)) works forJ ∩ [0,∞), so we conclude thatγ|J ⊂ scT ∗

C′
a
(Ca;X) and

γ|J is an integral curve ofW . As W preservesτ2 + h̃ (being essentially its rescaled Hamilton
vector field),τ2(γ(t)) + h̃(γ(t)) = λ, t ∈ J , soγ|J ⊂ Σt(λ), and hence at̂π−1(γ|J), scHg and
W agree andγ|J is a bicharacteristic ofscHg as claimed. ✷

Next, we prove that ifξ0 ∈ Σn(λ) ∩ scT ∗
C′

a
(Ca;X), γ(t0) = ξ0, γ is a generalized broken

bicharacteristic, then for a sufficiently smallδ > 0, γ|[0,δ] is a generalized broken bicharacteristic
of ∆− λ, broken atC′ ⊂ C, whereC′ is cleanly intersecting andCa /∈ C′. This will not use that
C is totally geodesic.

PROPOSITION 7.2. – Suppose thatξ0 ∈ Σn(λ) ∩ scT ∗
C′

a
(Ca;X), γ is a generalized broken

geodesic withγ(t0) = ξ0 and ξ̃+ is as in Proposition6.3. Suppose that̃ξ+ ∈ scT ∗(Cb;X)) and
b is minimal with this property(i.e.Cc ⊂Cb and ξ̃+ ∈ scT ∗(Cc;X) imply c= b). Let

C′ = C \ {Cc: Cc ∩Cb ⊂Ca}.(7.38)

Then for sufficiently smallδ > 0, γ|[0,δ] is a generalized broken bicharacteristic of∆−λ, broken
at C′, andγ((0, δ]) is disjoint fromscT ∗(Cc;X) if Cc /∈ C′.

Proof. –Let b be as above and introduce local coordinates centered atC′
a. We may assume

that Cb is given by y′ = 0 for a suitable splittingy = (y′, y′′). Thus, ξ̃+ is of the form
ξ̃+ = (0,0, τ0,0, µ′′

0 , ν0), and asξ̃+ ∈ Σn(λ), µ′′
0 �= 0. By Proposition 6.3, taking into account

thaty is π-invariant,

d(y′
j ◦ γ)/dt|t0+ = 0, d(y′′

j ◦ γ)/dt|t0+ = (µ′′
0 )j .(7.39)

Sinceµ′′
0 �= 0, there existc > 0, δ0 > 0, such that|y′′(γ(t))|� c(t−t0) for t ∈ (t0, t0+δ0), while

for anyε > 0 there existsδ1 > 0 such that|y′(γ(t))|� ε(t− t0) for t ∈ (t0, t0+δ1). In particular,
for anyε > 0 there existsδ > 0 such that fort ∈ (t0, t0 + δ) we have|y′(γ(t))|/|y′′(γ(t))|� ε.
By choosingε > 0 sufficiently small we can thus make sure thatγ(t) /∈ Cc for t ∈ (t0, t0 + δ] if
Cc /∈ C′. Hence,γ|[t0,t0+δ] can be regarded as a curve in

⋃
Cc∈C′

scT ∗
C′

c
(Cc;X), C′

c taken with

respect toC′, if we let γ(t0) = π0b(ξ̃0) ∈ scT ∗(Cb;X). Of course,γ|(t0,t0+δ] is a generalized
broken bicharacteristic, broken atC′ (since it has no points aboveC \C′). Thus, by Corollary 6.12,
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γ|(t0,t0+δ] extends to a generalized broken bicharacteristic, broken atC′, defined on[t0, t0 + δ];
by continuity ofγ this must coincide withγ, soγ is a generalized broken bicharacteristic, broken
atC′, as claimed. ✷

We can combine the previous results to deduce the structure of the generalized broken
bicharacteristics ifC is totally geodesic.

PROPOSITION 7.3. –Suppose thatC is totally geodesic with respect toh and γ is a
generalized broken bicharacteristic, broken atC with ξ0 = γ(t0) ∈ scT ∗

C′
a
(Ca;X). Then there

existsδ > 0 such that bothγ|[t0,t0+δ) andγ|(t0−δ,t0] are bicharacteristics ofscHg.

Proof. –If ξ0 ∈ R+(λ) ∪ R−(λ) then γ(t) = ξ0 for t near t0 by Proposition 6.5, hence
neart0, γ is a (π-projected) bicharacteristic ofscHg (asscHg vanishes atR+(λ) ∪R−(λ)). If
ξ0 ∈Σt(λ)\ (R+(λ)∪R−(λ)) then Proposition 7.1 applies and proves the result. Ifξ0 ∈Σn(λ),
then with C′ as in Proposition 7.2,γ|[0,δ) is a generalized broken bicharacteristic, broken at
C′, with γ(t0) ∈ scT ∗

C′
b
(Cb;X) ∩ Σt(λ) (prime taken with respect toC′). Thus, Proposition 7.1

applies again and proves the result.✷
A compactness argument gives at once

COROLLARY 7.4. –If γ : [a, b]→ Σ̇ is a generalized broken bicharacteristic, broken atC, and
C is totally geodesic, then there existt0 = a < t1 < t2 < · · ·< tm = b such thatγ|[tj , tj+1] is a
bicharacteristic of∆− λ (i.e. it is notbroken).

8. Positive operators

In the following two sections we discuss technical points of the microlocal positive
commutators constructions. In this section we show roughly speaking that the positivity of the
indicial operators ofA ∈ Ψ−∞,0

Sc (X,C) implies the positivity ofA modulo compact operators.
We prove this by constructing an approximate square root ofA. In the next section we examine
commutators[A,H ] in more detail.

Throughout this section we assume thatH is a many-body Hamiltonian. We start with the
basic square root construction.

LEMMA 8.1. –Suppose thatH is a many-body Hamiltonian andλ ∈ R. Suppose also that
A ∈Ψ−∞,0

Sc (X,C) is self-adjoint, and for somec > 0 andψ ∈ C∞c (R) which is identically1 near
λ,

ψ(H)Aψ(H)� cψ(H)2.(8.1)

Then for anyc′ ∈ (0, c) andφ ∈ C∞c (R) such that

suppφ∩ supp(1− ψ) = ∅,(8.2)

there existsB ∈Ψ−∞,0
Sc (X,C) such that

φ(H)(A− c′)φ(H) = φ(H)B∗Bφ(H).(8.3)

Proof. –Let

P = ψ(H)Aψ(H) + c
(
Id−ψ(H)2

)
∈Ψ0,0Sc (X,C).(8.4)

Note thatP ∈ Ψ0,0Sc (X,C) follows from ψ(H) ∈ Ψ−∞,0
Sc (X,C). Thus, P � c, so P − c′ �

c − c′ > 0. Since the spectrum ofP − c′ is a subset of[c − c′,∞) and c − c′ > 0, we have
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(P − c′)1/2 = f(P − c′) wheref ∈ C∞c (R) andf(t) =
√

t if t is in the spectrum ofP − c′. By
Proposition 4.10,

Q= (P − c′)1/2 = f(P − c′) ∈Ψ0,0Sc (X,C).(8.5)

Let ψ1 be identically1 nearsuppφ and vanish nearsupp(1− ψ). Then

ψ1(H)Q2ψ1(H) = ψ1(H)(P − c′)ψ1(H) = ψ1(H)(A− c′)ψ1(H).(8.6)

Now letφ ∈ C∞c (R) be identically1 nearλ and vanish nearsupp(1− ψ1). Let

B =Qψ1(H) ∈Ψ−∞,0
Sc (X,C).(8.7)

Multiplying (8.6) from both sides byφ(H) then proves (8.3). ✷
We now show that under certain additional assumptions, the positivity of the indicial operators

implies positivity of the operator modulo lower order (hence compact) terms in the calculus. We
start by assuming strict positivity of the indicial operators when localized in the spectrum ofH .

PROPOSITION 8.2. – Suppose thatH is a many-body Hamiltonian andλ ∈R. Suppose also
that A,C ∈ Ψ−∞,0

Sc (X,C) are self-adjoint andĈa,0(ζ) = ca(ζ)ψ0(Ĥa(ζ))2 for everya and
ζ ∈ scT ∗(C̃a;X) whereca(ζ) is a function withca(ζ) > 0, ψ0 ≡ 1 near λ ∈ R, ψ0 ∈ C∞c (R).
Assume in addition that there existsψ ∈ C∞c (R) which is identically1 near λ, suppψ∩
supp(1−ψ0) = ∅, such that

ψ
(
Ĥa(ζ)

)
Âa(ζ)ψ

(
Ĥa(ζ)

)
� ψ

(
Ĥa(ζ)

)
ca(ζ)ψ

(
Ĥa(ζ)

)
(8.8)

for everya andζ ∈ scT ∗(C̃a;X). Then for anyε ∈ (0,1) andφ ∈ C∞c (R) with

suppφ∩ supp(1− ψ) = ∅,(8.9)

there existsR ∈Ψ−∞,1
Sc (X,C) such that

φ(H)Aφ(H)� (1− ε)φ(H)Cφ(H) +R.(8.10)

Proof. –We apply a parameter dependent version of the previous lemma to the indicial
operators to conclude that for eachζ there existsB̂a(ζ) with

φ
(
Ĥa(ζ)

)(
Âa(ζ)− (1− ε)Ĉa(ζ)

)
φ
(
Ĥa(ζ)

)
= φ

(
Ĥa(ζ)

)
B̂a(ζ)∗B̂a(ζ)φ

(
Ĥa(ζ)

)
.(8.11)

It follows from the Cauchy integral formula construction of the square root in the calculus,
Remark 4.11, and the explicit formulae (8.4), (8.5) and (8.7) that the indicial operatorsB̂a(ζ)
match up as discussed before Proposition 4.8, so that there existsB ∈Ψ−∞,0

Sc (X,C)with indicial
operatorsB̂a(ζ). Here note that the set whereψ(Ĥa(ζ)) does not vanish has compact closure,
hencec is bounded below on it by a positive constant. Thus, we can take the same smooth
functionf in the expression (8.5) for the square root for everya andζ. By (8.11),

φ(H)
(
A− (1− ε)C

)
φ(H) = φ(H)B∗Bφ(H) +R(8.12)

with R ∈Ψ−∞,1
Sc (X,C). Sinceφ(H)B∗Bφ(H)� 0, rearranging this proves the proposition.✷

Similar conclusions hold if we assume a two-sided estimate on the indicial operators ofA.
In essence, this forces the indicial operators, hence their square roots, to vanish to infinite order
whenc vanishes.
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PROPOSITION 8.3. – Suppose thatH is a many-body Hamiltonian andλ ∈ R. Suppose
also that A,C ∈ Ψ−∞,0

Sc (X,C) are self-adjoint andĈa,0(ζ) = ca(ζ)ψ0(Ĥa(ζ))2 for every
a and ζ ∈ scT ∗(C̃a;X) where ca(ζ) is a function withca(ζ) � 0 which vanishes with all
derivatives at eachζ with ca(ζ) = 0, ψ0 ≡ 1 nearλ ∈ R, ψ0 ∈ C∞c (R), Âa(ζ) = 0 if ca(ζ) = 0,
and for any differential operatorQ ∈ Diff(scT ∗(C̃a;X)), all seminorms ofQ(ca(ζ)−1Âa(ζ))
in Ψ−∞,0

Sc (ρ−1
a (p), TpCa), ζ ∈ scT ∗

p (C̃a;X), are uniformly bounded on the set ofζ ’s with

ca(ζ) > 0. (This is almost, but not quite, a statement about the seminorms ofca(ζ)−1Âa(ζ)
in Ψ−∞,0

Sc,ρ�
a

(ρ∗
a
scT ∗(C̃a;X), C̃a), because we restrict our attention to the region whereca(ζ)> 0,

and do so uniformly.)
Assume in addition that there existsψ ∈ C∞c (R) which is identically1 near λ, suppψ ∩

supp(1−ψ0) = ∅, such that

ψ
(
Ĥa(ζ)

)
Âa(ζ)ψ

(
Ĥa(ζ)

)
� ψ

(
Ĥa(ζ)

)
ca(ζ)ψ

(
Ĥa(ζ)

)
(8.13)

for everya andζ ∈ scT ∗(C̃a;X). Then the conclusion of the previous proposition holds, i.e. for
anyε ∈ (0,1) andφ∈ C∞c (R) with

suppφ∩ supp(1− ψ) = ∅,(8.14)

there existsR ∈Ψ−∞,1
Sc (X,C), with seminorms bounded by those ofA andC in Ψ−∞,0

Sc (X,C),
and withWF′

Sc(R)⊂WF′
Sc(A) ∪WF′

Sc(C) such that

φ(H)Aφ(H)� (1− ε)φ(H)Cφ(H) +R.(8.15)

Proof. –We defineB̂a(ζ) = 0 if ca(ζ) = 0, otherwise we definêBa(ζ) as in the previous
proposition. The only additional ingredient is the analysis ofB̂a(ζ) nearζ with ca(ζ) = 0. To do
this analysis, we follow the construction of̂Ba(ζ) in detail. So let

P̂a(ζ) = ψ
(
Ĥa(ζ)

)
Âa(ζ)ψ

(
Ĥa(ζ)

)
+ ca(ζ)

(
Id−ψ

(
Ĥa(ζ)

)2)
,(8.16)

and let

c′a(ζ) = (1− ε)ca(ζ).(8.17)

Thus,P̂a(ζ)− c′a(ζ)� εca(ζ). Let

Q̂a(ζ) =
(
P̂a(ζ)− c′a(ζ)

)1/2 = ca(ζ)1/2
(
ca(ζ)−1P̂a(ζ)− (1− ε)

)1/2
.(8.18)

By our assumption, there existsM > 0 such that the norm of̂Pa(ζ) in B(L2,L2) is bounded by
Mca(ζ). Now choosef ∈ C∞c (R) such thatf(t) =

√
t on [1−ε,M ]. ThenM � ca(ζ)−1P̂a(ζ)−

1+ ε � ε, so

Q̂a(ζ) = ca(ζ)1/2f
(
ca(ζ)−1P̂a(ζ)− (1− ε)

)
.(8.19)

By our assumptions, the seminorms ofca(ζ)−1P̂a(ζ) in Ψ0,0Sc (ρ
−1
a (p), TpCa), ζ ∈ scT ∗

p (C̃a;X),
remain uniformly bounded asca(ζ)→ 0, so the Cauchy integral representation off , via an
almost analytic extension, shows thatf(ca(ζ)−1P̂a(ζ)− (1 − ε)) remains uniformly bounded.
Thus,Q̂a(ζ) is continuous as a function onscT ∗(C̃a;X) with values inΨ0,0Sc (ρ

−1
a (p), TpCa).

A similar argument also holds for the derivatives ofQ̂a(ζ). Let ψ1 be identically1 nearsuppφ
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and vanish nearsupp(1− ψ), and let

B̂a(ζ) = Q̂a(ζ)ψ1(H).(8.20)

Again, theB̂a(ζ) match up so there existsB ∈Ψ−∞,0
Sc (X,C) with these indicial operators. We

can also make sure that the lower order terms also vanish wherec does, i.e. thatWF′
Sc(B) ⊂

supp c. Then the indicial operators ofφ(H)(A − (1 − ε)C)φ(H) andφ(H)B∗Bφ(H) are the
same, so

φ(H)
(
A− (1− ε)C

)
φ(H) = φ(H)B∗Bφ(H) +R(8.21)

with R ∈Ψ−∞,1
Sc (X,C), proving the proposition. ✷

9. Commutators

In this section we discuss the basic technical tool underlying the propagation estimates of
the following sections. Thus, we show how an estimate of the commutator[A,H ] at C̃0, which
is essentially obtained by a symbolic calculation in the scattering calculus, can give a positive
commutator estimate under the additional assumption thatĤa,0(ζ) has noL2 eigenfunctions for
anya �= 0 andζ ∈ scT ∗(C̃a;X). In the Euclidean setting this means simply that the subsystems
have no bound states.

To do so, we extend the notion of a function beingπ-invariant to functions onscT ∗X in a trivial
way: q ∈ C∞(scT ∗X) is π-invariant if q|scT∗

∂X
X is π-invariant. Since the analysis of classical

dynamics, i.e. of generalized broken bicharacteristics of∆ − λ, broken atC, is based on the
properties ofπ-invariant functions, we will be interested in quantizingπ-invariant symbols. More
specifically, we are essentially interested in operators of the formA =Qψ0(H), ψ0 ∈ C∞c (R),
whereQ is obtained by quantizing aπ-invariant functionq ∈ C∞(scT ∗X). Since suchQ would
not be in our calculus, we constructA directly.

All considerations in what follows will be local, i.e. we will assume that the projection of
the support ofq to X lies near a fixedp ∈ ∂X , so we can always work in local coordinates
and identify X with Sn+. The problem with suchq ∈ C∞(Sn+ × Rn) is that they are rarely
in C∞(Sn+ × Sn+), i.e. they are not symbols inξ, so Q will not be in Ψ0,0sc (Sn+) or indeed in

Ψ0,0Sc (S
n
+,C). This, however, is not a major difficulty. Fixψ0 ∈ C∞c (R; [0,1]) which is identically

1 in a neighborhood of a fixedλ. Thus,ψ0(H) ∈Ψ−∞,0
Sc (X,C), so it is smoothing. At the symbol

level,ψ0(H) is locally the right quantization of some

p ∈ C∞
([

Sn+;C
]
× Sn+

)
(9.1)

which vanishes to infinite order at[Sn+;C]× ∂Sn+, which will enable us to write downA directly.
We are thus interested in the following class of symbolsq. We assume thatq ∈ C∞(Rn

w ×Rn
ξ )

and that for every multiindexα, β ∈Nn there exist constantsCα,β andmα,β such that

∣∣(Dα
wDβ

ξ q
)
(w, ξ)

∣∣ � Cα,β〈w〉−|α|〈ξ〉mα,β .(9.2)

This implies, in particular, that

q ∈A0
(
Sn+ ×Rn

)
,(9.3)

i.e. thatq is a 0th order symbol inw, though it may blow up polynomially inξ. Indeed, in
the compactified notation, (9.2) becomes that for everyP ∈ Diffb(Sn+), acting in the base (w)
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variables, and for everyβ ∈Nn there existCP,β andmP,β such that

∣∣(PDβ
ξ

)
q
∣∣ � CP,β〈ξ〉mP,β .(9.4)

It is convenient to require thatq be polyhomogeneous onSn+ ×Rn:

q ∈ C∞
(
Sn+ ×Rn

)
;(9.5)

this stronger statement automatically holds for theπ-invariant symbols we are interested in.
We next introduce the product symbol

a(w,w′, ξ) = q(w, ξ)p(w′, ξ),(9.6)

whereψ0(H) is given locally by the right quantization ofp. The main point is

LEMMA 9.1. – The symbola defined by(9.6) is in C∞(Sn+ × [Sn+;C]× Sn+) and it vanishes
with all derivatives at[Sn+;C] × ∂Sn+. Hence, it defines an operatorA ∈ Ψ−∞,0

Sc (X,C) by the
oscillatory integral(3.16).

Proof. –First,a ∈ C∞(Sn+× [Sn+;C]×Rn) follows from (9.1) and (9.5). Moreover, the infinite
order vanishing ofp at [Sn+;C]× Sn−1 implies that for everyP ′ ∈ Diffb([Sn+;C]), β ∈ Nn and
N ∈N, ∣∣P ′Dβ

ξ p
∣∣ � CP ′,β,N〈ξ〉−N .(9.7)

Thus, Leibniz’ rule shows that forP ∈Diffb(Sn+) acting inw, P ′ ∈Diffb([Sn+;C]) acting inw′,
β ∈Nn andN ∣∣PP ′Dβ

ξ a
∣∣ � CPP ′,β,N 〈ξ〉−N .(9.8)

But this means precisely thata ∈ C∞(Sn+ × [Sn+;C]× Sn+) and it vanishes to infinite order at the
boundary in the last factor.✷

The indicial operators ofA are just given by the quantization of the appropriate restriction of
a similarly to (4.48) (except that nowa depends on the base variables from both the left and
the right factors ofSn+). This takes a particularly simple form ifq is π-invariant, for then, in the
notation of (4.48),q is independent of bothY andξa. Thus, we can takeq outside the integral in
(4.48), i.e. it simply multiplies the indicial operator ofψ0(H) by a constant.

LEMMA 9.2. – Suppose thatq ∈ C∞(scT ∗Sn+) is π-invariant and it satisfies(9.4). Let

A ∈Ψ−∞,0
Sc (X,C) be as in the previous lemma. Ifζ ∈ scT ∗(C̃a;X), thenÂa(ζ) = q(ζ)ψ̂0(H)a(ζ).

Combining this lemma with Proposition 5.5 gives

COROLLARY 9.3. –Suppose thatζ ∈ scT ∗
C′

a
(Ca;X) and u ∈ C−∞(X). If A is as in

Lemma9.2, q(ζ) �= 0, Au ∈ Ċ∞(X) andζ /∈WFSc((H − λ)u) thenζ /∈WFSc(u).

Since the indicial operator of[A,H ] =AH −HA in Ψ−∞,0
Sc (X,C) is just

[̂A,H ]a,0(ζ) =
[
Âa,0(ζ), Ĥa,0(ζ)

]
= q(ζ)

[
ψ0(Ĥa,0(ζ)), Ĥa,0(ζ)

]
= 0(9.9)

for every a and ζ ∈ scT ∗(C̃a;X), we see that for everyA as in Lemma 9.1,[A,H ] ∈
Ψ−∞,1
Sc (X,C). The additional order of decay corresponds to the one in the scattering calculus.
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Moreover, the indicial operator of[A,H ] at C̃0, as an operator inΨ−∞,1
Sc (X,C) (so this indicial

operator is just a function onscT ∗(C̃0;X)), is given by the Poisson bracket formula from the
scattering calculus. SinceV vanishes at̃C0, this gives

̂i[A,H ]1,0 =−scHg

(
qψ0(g)

)
=−ψ0(g)scHgq.(9.10)

If the indicial operators ofH at the other faces have noL2 eigenfunctions, then this estimate
combined with a compactness argument suffices to prove an estimate for[A,H ] modulo lower
operators (i.e. moduloΨ−∞,2

Sc (X,C)). However, to make the compactness argument work, we

need to estimate the indicial operators,̂[A,H ]a,1, for all a. This is facilitated by the following
lemma.

LEMMA 9.4. – Let q andA be as in Lemma9.2. For every seminorm in

Ψ−∞,0
Sc

(
ρ−1
a (p), TpCa

)
and for every l ∈ N there exist C > 0 and m ∈ N such that for everya and every

ζ ∈ scT ∗
p (C̃a;X), p ∈ C̃a, the seminorm of̂[A,H ]a,1(ζ) in Ψ−∞,0

Sc (ρ−1
a (p), TpCa) is bounded

by

C

(
|q(ζ)|+

∑
|α|�m

sup
ξa

∣∣〈ξa
〉−l(

∂αξadq
)(

ζ, ξa
)∣∣)(9.11)

where the differentialdq is taken with respect to all variables, inscT ∗Sn+, i.e. it is the differential
of q ∈ C∞(scT ∗Sn+).

Remark9.5. – Similar conclusions hold for every seminorm inΨ−∞,0

Sc,ρ�
a

(ρ∗
a
scT ∗(C̃a;X), C̃a),

which can be seen directly from our calculations in the following proof.

Proof. –This can be proved directly from the definition of the indicial operators, i.e.
by computingx−1e−if̃ [A,H ]eif̃u′ where f̃ ∈ C∞(X) and u′ ∈ C∞([X ;C]), similarly to
[40, Sections 7,13]. Since this is equal tox−1[e−if̃Aeif̃ , e−if̃Heif̃ ]u′, and e−if̃Aeif̃ ∈
Ψ−∞,0
Sc (X,C), we can assume that̃f = 0, the calculation being very similar in the general case.

To compute the commutator, it suffices to commute bothAv andHv for everyv ∈ C∞([X ;C])
modulo terms that vanish with their first derivatives inβ∗

ScCa. A straightforward calculation can
be performed just as in (4.42)–(4.48), where only the 0th order terms were kept. That shows with
our coordinates that

[̂A,H ]a,1(ζ) =
[
(̂∂xA)a,0(ζ), Ĥa,0(ζ)

]
+ (−(Dτq)(ζ)

([
Y, Ĥa,0(ζ)

]
∂Y + Y ∂Y Ĥa,0(ζ)

)
+ (Dνq)(ζ)

(
∂zĤa,0)(ζ)− (∂zq)(ζ)(DνĤa,0)(ζ)

+ (∂τ q)(ζ)(ν ·DνĤa,0)(ζ)− (ν ·Dνq)(ζ)
(
∂τ Ĥa,0)

)
ψ

(
Ĥa,0(ζ)

)
.(9.12)

Here∂xA denotes the operator with kernel given by∂x applied to that ofA. Since in our notation
the kernel ofA is ∫

ei(w−w′)·ξq(w, ξ)p(w′, ξ)dξ,(9.13)

with the integral being convergent, rewriting this with the coordinates on the compactification
[Sn+;Ca], (2.7), so thatq takes the formq(x,xY, z, ξ) proves that all terms of (9.12) satisfy the
stated estimate, completing the proof.
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Another approach to computea-indicial operators is to use that nearC′
a, A can be regarded

as a (non-classical!) pseudo-differential operator in the free variables(wa, ξa) with values
in bounded operators onL2(Xa) (in fact, with values inΨ−∞,0

Sc (X̄a,Ca)). More precisely,
A ∈ Ψ−∞,0

scc (X̄a;B(L2(Xa),L2(Xa))). This allows us to use the scattering calculus for the
computation of the commutators to give the stated result.✷

As an application of these estimates, we now show how, under the assumption that the
subsystems have no bound states, a positive Poisson bracket withg can give rise to a positive
operator estimate. We thus assume that

Ĥa,0(ξ) has noL2 eigenvalues for anya �= 0 andζ ∈ scT ∗(C̃a;X).(9.14)

To simplify the notation in the following proposition, we introduce the notationsuppa e ⊂
scT ∗(C̃a;X) for π-invariant functionse ∈ C∞(scT ∗

∂XX). This is defined as the support of the
function onscT ∗(C̃a;X) induced bye. Indeed, ase is π-invariant, its restriction toscT ∗

Ca
X can

be regarded as a function onscT ∗(Ca;X). Thensuppa e is the support of the pull-back of this
function toscT ∗(C̃a;X).

PROPOSITION 9.6. – Suppose thatH is a many-body Hamiltonian satisfying(9.14), and
λ ∈ R. Suppose also thatq, b, e ∈ C∞(scT ∗X ;R) are π-invariant, satisfy the bounds(9.4),
q, b � 0, and that there existδ > 0, C > 0, Cα > 0, such that for allξ ∈ scT ∗

∂XX ,

|g(ξ)− λ|< δ⇒ scHgq(ξ)�−b(ξ)2 + e(ξ)(9.15)

and

|g(ξ)− λ|< δ and ξ /∈ suppe⇒ q(ξ)� Cb(ξ)2 and
∣∣(∂αµdq

)
(ξ)

∣∣ � Cαb(ξ)2.(9.16)

LetA ∈Ψ−∞,0
Sc (X,C) be as in Lemma9.1. For anyε′ > 0, a ∈ I and for anyKa ⊂ scT ∗(C̃a;X)

compact withsuppa e ∩ K = ∅ there existsδ′ > 0 such that ifψ ∈ C∞c (R) is supported in
(λ− δ′, λ+ δ′) andζ ∈Ka then

i ̂(
ψ(H)[A∗A,H ]ψ(H)

)
a,1
(ζ)� (2− ε′)b2qψ

(
Ĥa,0(ζ)

)2
.(9.17)

Proof. –Note that the estimate (9.17) is trivial ifτ2a + |νa|2za
> λ+ 1 (with ζ = (za, τa, νa),

δ′ < 1 arbitrary) since then both sides vanish as

ψ̂(H)a(ζ) = ψ
(
ha(za) + τ2a + |νa|2za

)
,(9.18)

ha denoting the subsystem Hamiltonian as in (6.9), andHa � 0 by the assumption on the absence
of bound states ofall subsystem Hamiltonians (includingHc with Ca ⊂Cc). (Ha � 0 is really an
HVZ-type result: it follows inductively by Proposition 4.8 that one can construct a parametrix for
Ha− σ, σ < 0, and then the absence of bound states implies invertibility onL2, so the spectrum
of Ha is disjoint from(−∞,0).)

We prove (9.17) by induction ona. First, (9.17) is certainly satisfied fora = 0. In fact, as
A ∈Ψ−∞,0

sc (X,C), we can use the commutator formula in the scattering calculus, (9.10), to find

[̂A,H ]0,1. SinceV vanishes at the free face,β∗
ScC0, it does not contribute tô[A,H ]0,1, so we

indeed have, by (9.15),

i ̂ψ(H)[A∗A,H ]ψ(H)0,1 =−2q
(
scHgq

)
ψ(g)2 � 2b2qψ(g)2 = 2b2qψ(Ĥ0,0)2(9.19)
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away fromsupp0 e under the assumption that

suppψ ⊂ (λ− δ, λ+ δ).(9.20)

So suppose now that (9.17) has been proved for allc with Ca ⊂Cc, Ca �=Cc. This implies that

all indicial operators ofi ̂[ψ(H)A∗Aψ(H),H ]a(ζ), ζ = (za, τa, νa) ∈Ka satisfy an inequality

like (9.17). In fact, the indicial operators are of the formi ̂[ψ(H)A∗Aψ(H),H ]c(ζ̃) with
βSc(ζ̃) = (0, za) ∈ Ca, π̃ca(ζ̃) = ζ. Such aζ̃ is of the formζ̃ = (Ŷ ′′

a , za, τa, µ
′′
a, νa) whereCc

is given byx= 0, y′ = 0, so(Ŷ ′′
a , za) give coordinates along̃Cc. Note that asKa is compact, so

is

Kc =
{
ζ̃ = (Ŷ ′′

a , za, τa, µ
′′
a, νa): (za, τa, νa) ∈Ka, βSc(ζ̃) ∈Ca, |µ′′

a|� λ+ 1
}

(9.21)

and ase is independent ofµ′′
a atCa, Kc∩ suppc e= ∅, so we can apply the inductive hypothesis.

Taking into account that the estimate (9.17) is trivial atCc for ζ̃ with |µ′′
a |> λ+ 1, we see that

for all ζ̃ = (0, za, τa, µ′′
a, νa) with (za, τa, νa) ∈Ka, we have

i ̂(
ψ(H)[A∗A,H ]ψ(H)

)
c,1
(ζ̃)� (2− ε′)b2qψ̂(H)2c,0(ζ̃).(9.22)

Sinceb2q is π-invariant onscT ∗X , it is independent of̃ζ for each fixedζ, and if it vanishes

at ζ, then so does ̂[ψ(H)A∗Aψ(H),H ]a,1(ζ) by Lemmas 9.2–9.4 and (9.16). Thus, by
Proposition 8.2,

i ̂[
ψ(H)A∗Aψ(H),H

]
a,1
(ζ)� (2− ε′)b2qψ̂(H)

2

a,0(ζ) +R(ζ)(9.23)

where the seminorms of

R(ζ) ∈Ψ−∞,1
Sc

(
ρ−1
a (p), TpCa

)
, ζ ∈ scT ∗

p (C̃a;X),

are bounded by those of ̂[ψ(H)A∗Aψ(H),H ]a,1(ζ) and byb(ζ)2q(ζ). By assumption (9.16) and
Lemma 9.4 the former are bounded by the latter, soR(ζ) satisfies the estimate

‖R(ζ)‖B(L2
sc(ρ

−1
a (p)),H1,1

sc (ρ
−1
a (p))) � C′′q(ζ)b(ζ)2(9.24)

with C′′ independent ofq andb.
We now use our hypothesis on the absence of bound states. So suppose thatψ1, ψ2 ∈ C∞c (R),

ψ ≡ 1 nearsuppψ1, ψ1 ≡ 1 nearsuppψ2. By assumption,λ− τ2a − |νa|2za
is not an eigenvalue

of the subsystem Hamiltonian,ha(z). Thus,

ψ1
(
Ĥa(ζ)

)
= ψ1

(
ha(z) + τ2a + |νa|2za

)
→ 0(9.25)

strongly assuppψ1→{λ}. SinceKa is compact, and the inclusion map

T :H1,1
sc

(
ρ−1
a (p)

)
↪→ L2sc

(
ρ−1
a (p)

)
(9.26)

is compact, forψ1 with sufficiently small support we have

∥∥ ̂(
ψ1(H)T

)
a
(ζ)

∥∥
B(H1,1

sc (ρ
−1
a (p)),L2

sc(ρ
−1
a (p)))

� ε′(C′′)−1(9.27)
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for all ζ ∈Ka. Thus,

̂i
(
ψ1(H)

[
A∗A,H

]
ψ1(H)

)
a,1
(ζ)� (2− ε′)b2qψ̂1(H)

2

a,0(ζ)− ε′b2q, ζ ∈Ka.(9.28)

Multiplying by ψ2(H) from both left and right we finally conclude that

̂i
(
ψ2(H)

[
A∗A,H

]
ψ2(H)

)
a,1

� (2− 2ε′)b2qψ̂2(H)
2

a,0.(9.29)

Relabellingψ2 and2ε′ asψ andε′ (thereby putting stronger restrictions onsuppψ) provides the
inductive step and completes the proof of (9.17).✷

In the following corollary we add an extra term to the commutator that will enable us to deal
with other terms arising in the propagation estimates.

COROLLARY 9.7. – Suppose that the assumptions of Proposition9.6 are satisfied and letC
be as in(9.16). Suppose in addition that for any differential operatorQ on scT ∗(C̃a;X) and
multiindexα there exist constantCQ andCα,Q such that

|g(ξ)− λ|< δ, b(ξ) �= 0 and ξ /∈ suppe

⇒
∣∣Q(

b−2q
)
(ξ)

∣∣ � CQ and
∣∣Q(

b−2(∂αµdq)
)
(ξ)

∣∣ � Cα,Q.(9.30)

For anyε′ > 0, M > 0, and for anyK ⊂ scṪ ∗X compact withsuppe∩K = ∅ there existδ′ > 0,
B,E ∈Ψ−∞,0

Sc (X,C), F ∈Ψ−∞,1
Sc (X,C) with

WF′
Sc(E) ∩K = ∅, WF′

Sc(F )⊂ suppq,

B̂a,0(ζ) = b(ζ)q(ζ)1/2ψ
(
Ĥa,0(ζ)

)
, ζ ∈K,(9.31)

such that ifψ ∈ C∞c (R) is supported in(λ− δ′, λ+ δ′) then

iψ(H)x−1/2[A∗A,H ]x−1/2ψ(H)−Mψ(H)A∗Aψ(H)

� (2− ε′ −MC)B∗B +E +F.(9.32)

Proof. –Let p ∈ C∞(scT ∗X) be π-invariant, p � 0, satisfy estimates (9.4), and such that
suppp∩ supp e= ∅ andsupp(1−p)∩K = ∅. (Herep can be regarded as a function onscṪ ∗X .)
Let ψ0 ∈ C∞c (R; [0,1]) be identically1 near[λ− δ, λ+ δ], and letP ∈Ψ−∞,0

Sc (X,C) be such that
P̂a,0(ζ) = p(ζ)ψ0(Ĥa(ζ)) andWF′

Sc(ψ0(H)−P )∩K = ∅. For example,P can be constructed
as in Lemma 9.1.

The indicial operators of

iψ(H)P ∗x−1/2[A∗A,H ]x−1/2Pψ(H)−Mψ(H)P ∗A∗APψ(H)

are

i ̂ψ(H)P ∗x−1/2
[
A∗A,H

]
x−1/2Pψ(H)

a,0
(ζ)−M ̂(

ψ(H)P ∗A∗APψ(H)
)
a,0
(ζ)

= ip(ζ)2 ̂ψ(H)
[
A∗A,H

]
ψ(H)

a,1
(ζ)−Mq(ζ)2p(ζ)2ψ

(
Ĥa,0(ζ)

)
(9.33)

sinceψ0ψ = ψ. Thus, by Proposition 9.6 and asMq � MCb2, we have

i ̂ψ(H)P ∗x−1/2
[
A∗A,H

]
x−1/2Pψ(H)

a,0
(ζ)−M ̂(

ψ(H)P ∗A∗APψ(H)
)
a,0
(ζ)

� (2− ε′ −MC)b2qψ
(
Ĥa,0(ζ)

)2
.(9.34)
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Thus, taking into account (9.30) and the remark following Lemma 9.4, Proposition 8.3 gives

iψ(H)P ∗x−1/2[A∗A,H ]x−1/2Pψ(H)−Mψ(H)P ∗A∗APψ(H)

� (2− ε′)B∗B + F,(9.35)

with B ∈Ψ−∞,0
Sc (X,C), F ∈Ψ−∞,1

Sc (X,C),

B̂a,0(ζ) = p(ζ)b(ζ)q(ζ)1/2 ,(9.36)

so the second statement of (9.31) holds. Moreover, writingψ(H) = Pψ(H)+
(ψ0(H) − P )ψ(H), and expanding the left hand side of (9.32), every term but the one given
in (9.35) has operator wave front set disjoint fromK . LettingE be the sum of these terms proves
the corollary. ✷

10. Propagation of singularities

In this section we prove that singularities of generalized eigenfunctions of the many-body
operatorH propagate along generalized broken bicharacteristics under the assumption that no
(proper) subsystems ofH have a bound state. That is, due to our definition in Section 6, we
assume that

Ĥb,0(ξ) has noL2 eigenvalues for anyb �= 0 and ξ ∈ scT ∗(C̃b;X).(10.1)

The technical reason for this assumption lies in the argument of Proposition 9.6 in which a
symbolic estimate is used to deduce positivity estimates for the indicial operators. However, it
is clear that the generalized broken bicharacteristics of∆ − λ cannot be expected to describe
propagation if the subsystems have bound states since in this situation even the characteristic set
of H (i.e. the set wherêHb,0(ζ) is not invertible) changes.

Suppose thatp ∈C′
a =C′ (the regular part ofC). As in Section 6, let(x, y, z) = (xa, ya, za) be

coordinates onX nearp with x defining∂X as usual,C defined byx= 0, y = 0, chosen so that
everyCb with p ∈ Cb (which impliesCa ⊂ Cb) is a product-linear submanifold of∂X in these
local coordinates, i.e. it is of the form{(y, z): Aby = 0} whereA=Ab is a matrix. In addition,
as in Section 6, we arrange that atC, ∂yj = ∂(ya)j is perpendicular toT C for eachj (with respect
to h) and they are orthonormal with respect to each other atp. Let (τ,µ, ν) = (τa, µa, za) denote
thesc-dual variables, so we write elements ofscT ∗X as

τ
dx

x2
+ µ · dy

x
+ ν · dz

x
.(10.2)

Thus, atp (i.e. onscT ∗
pX) the metric function ofh is of the form|µ|2+ h̃(z, ν) with |µ| denoting

the Euclidean length ofµ andh̃ is the metric function of the restriction ofh to T C. When talking
aboutCb, we sometimes write the corresponding orthogonal splitting ofy asy = (y′, y′′), soCb

is defined byAby = y′ = 0 in ∂X .
Recall thatπ0a : scT ∗

CX → scT ∗(C;X) is the (orthogonal) projection given by the metric
at C. Thus, in our local coordinates(y, z, τ, µ, ν) on scT ∗

∂XX , π0a(0, z, τ, µ, ν) = (z, τ, ν).
We use composition with the projectionscT ∗

∂XX to scT ∗
CX given by our choice of local

coordinates,(y, z, τ, µ, ν) "→ (z, τ, µ, ν), to extendπ0a to a map, denoted byπe0a, from scT ∗
∂XX

to scT ∗(C;X). Thus,πe0a(y, z, τ, µ, ν) = (z, τ, ν).
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The propagation of singularities estimate in directions tangential toC proceeds much as in
the 3-body case. In fact, essentially the same operator as there gives a positive commutator, see
Propositions 10.6–10.7; the functional analysis part of the argument is much as in the normal
case which we proceed to examine. Recall that the normal part of the characteristic set ofH −λ
overC′ is

Σn(λ) ∩ scT ∗
C′(C;X) =

{
(z, τ, ν): τ2 + h̃(z, ν)< λ

}
.(10.3)

Since the characteristic setΣ∆−λ of ∆− λ is given byτ2 + |ν|2z + |µ|2 = λ at p, the condition
π(ξ̃) ∈ Σn(λ) ∩ scT ∗

p (C;X), ξ̃ ∈ Σ∆−λ implies thatµ �= 0. Since the rescaled Hamilton vector
field scHg of ∆ (restricted toscT ∗

∂XX) is given by

scHg = 2τ(µ · ∂µ + ν · ∂ν)− 2h∂τ +Hh,(10.4)

the ∂y component ofscHg at p is 2µ · ∂y , meaning that bicharacteristics of∆ throughξ̃ are
normal toscT ∗

CX . In addition, withη = y · µ, η is π-invariant and can be used to parameterize
bicharacteristic curves nearξ = π(ξ̃). In fact, at eachCb with p ∈Cb, η = µ · y has the property
that if we splity = (y′, y′′) so thatx = 0, y′ = 0 definesCb thenµ · y = µ′ · y′ + µ′′ · y′′ is
independent ofµ′ at y′ = 0, soη is π-invariant. Moreover,scHgη(ξ̃) = 2|µ|2 > 0, soη can be
used to parameterize the generalized broken bicharacteristics nearξ as claimed. We remark that
τ is another possible variable to use for the parameterization, as usual.

We now proceed to prove two normal propagation estimates. The first one will be less precise,
but it works under our most general assumptions. On the other hand, the second estimate
requires that all elements ofC be totally geodesic, but it locates the incoming singularities
more precisely. Although the consequences are the same, as far as propagation along generalized
broken bicharacteristics is concerned (due to the geometry of these bicharacteristics), the finer
estimate is worth proving since it is closer to the tangential estimates in spirit and it applies in
the setting of most interest, Euclidean many-body scattering.

We only state the following propagation result for propagation in the forward direction along
the generalized broken bicharacteristics. A similar result holds in the backward direction, i.e. if
we replaceη(ξ) < 0 by η(ξ)> 0 in (10.5); the proof in this case only requires changes in some
signs in the argument given below.

PROPOSITION 10.1. – Suppose thatH is a many-body Hamiltonian satisfying(10.1). Let
u ∈ C−∞(X), λ > 0. Let ξ0 = (z0, τ0, ν0) ∈ Σn(λ) ∩ scT ∗

C′(C;X) and let η = y · µ be the
π-invariant function defined in the local coordinates discussed above. If there exists a
neighborhoodU of ξ0 in Σ̇ such that

ξ ∈ U and η(ξ)< 0⇒ ξ /∈WFSc(u)(10.5)

thenξ0 /∈WFSc(u).

Remark10.2. – Note thatη(ξ)< 0 impliesy �= 0, soξ /∈ scT ∗
C′(C;X).

Remark10.3. – We recall from Section 5 that every neighborhoodU of ξ0 = (z0, τ0, ν0) ∈
Σn(λ) ∩ scT ∗

C′(C;X) contains an open set of the form

{
ξ: |y(ξ)|2 + |z(ξ)− z0|2 + |τ(ξ)− τ0|2 + |ν(ξ)− ν0|2 < δ

}
.(10.6)

Note also that (10.5) implies the same statement withU replaced by any smaller neighborhood
of ξ0; in particular, for the set (10.6).
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Proof. –The main step in the proof is the construction of an operator which has a microlocally
positive commutator withH nearξ0. In fact, we construct the symbol of this operator. This
symbol will not be a scattering symbol, i.e. it will not be inC∞(Sn+ × Sn+), only due to its
behavior asµ→∞ corresponding to itsπ-invariance. This will be accommodated by composing
its quantization with a cutoff in the spectrum ofH , φ(H), φ ∈ C∞c (R) supported nearλ, as
discussed in Lemma 9.1. This approach simply extends the one taken in the three-body scattering
proof of [40], though the actual construction is different due to the more complicated geometry.

Employing an iterative argument as usual, we may assume thatξ0 /∈WF∗,l
Sc (u) and we need to

show thatξ0 /∈WF∗,l+1/2
Sc (u).

First we define a distance function toξ0. Thus, we let

ω = |y|2 + |z − z0|2 + |τ − τ0|2 + |ν − ν0|2,(10.7)

|.| denoting the Euclidean norm. Thenω vanishes quadratically atξ0, so |dω| � C′
1ω
1/2. In

particular, ∣∣scHgω
∣∣ � C1ω

1/2.(10.8)

Next, we use the variableη = y · µ to measure propagation. Let

c0 = λ− τ20 − |ν0|2z0 > 0.(10.9)

Since the∂y component ofscHg at (0, z0, τ, µ, ν) is 2µ, we see that

∣∣scHgη − 2|µ|2
∣∣ � C′

2(|y|+ |z − z0|)� C2ω
1/2.(10.10)

In addition,∣∣λ− τ20 − |ν0|2z0 − |µ|
2
∣∣ � |λ− g|+

∣∣g − τ20 − |ν0|2z0 − |µ|
2
∣∣

� |λ− g|+C′(|y|+ |z − z0|+ |τ − τ0|+ |ν − ν0|
)

� |λ− g|+C3ω
1/2(10.11)

so we conclude that ∣∣scHgη − 2c0
∣∣ � C4

(
|λ− g|+ω1/2

)
.(10.12)

Forβ > 0, δ > 0, with other restrictions to be imposed later on, let

φ= η+
β

δ
ω,(10.13)

soφ is aπ-invariant function. Letχ0 ∈ C∞(R) be equal to0 on(−∞,0] andχ0(t) = exp(−1/t)
for t > 0. Thus,χ′

0(t) = t−2χ0(t). Let χ1 ∈ C∞(R) be0 on (−∞,0], 1 on [1,∞), with χ′
1 � 0

satisfyingχ′
1 ∈ C∞c ((0,1)). Furthermore, forA0 > 0 large, to be determined, let

q = χ0
(
A−1
0 (2− φ/δ)

)
χ1(y · µ/δ+ 2).(10.14)

Thus, onsuppq we haveφ � 2δ andy · µ � −2δ. Sinceω � 0, the first of these inequalities
implies thaty · µ � 2δ, so onsupp q

|y · µ|� 2δ.(10.15)
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Hence,

ω � (δ/β)(2δ− y · µ)� 4δ2β−1.(10.16)

The role thatA0 large plays is that it increases the size of the first derivatives ofq relative to the
size ofq, hence it will allow us to give a bound forq in terms of a small multiple of its derivative
along the Hamilton vector field; see (10.26)–(10.27).

We now proceed to estimatescHgφ. First, by (10.12) and (10.8),

∣∣scHgφ− 2c0
∣∣ < C4

(
|λ− g|+ ω1/2

)
+

C1β

δ
ω1/2.(10.17)

So let

β =
c20

(8C1)2
and δ0 =

c0
√

β

8C4
.(10.18)

Under the additional assumptions

δ < δ0 and |λ− g|< c0
4C4

(10.19)

we haveω1/2 � c0/(4C4), so we conclude that|scHgφ− 2c0|� c0, hence

scHgφ � c0 > 0.(10.20)

This at once gives a positivity estimate forscHgq nearξ0. Namely,

scHgq=−A−1
0 δ−1χ′

0

(
A−1
0 (2− φ/δ)

)
χ1(y · µ/δ+2)scHgφ

+ δ−1χ0
(
A−1
0 (2− φ/δ)

)
χ′
1(y · µ/δ+ 2)scHgη.(10.21)

Thus,
scHgq =−b̃2+ e(10.22)

with

b̃2 =A−1
0 δ−1χ′

0

(
A−1
0 (2− φ/δ)

)
χ1(y · µ/δ+ 2)scHgφ.(10.23)

Hence, with

b2 = c0A
−1
0 δ−1χ′

0

(
A−1
0 (2− φ/δ)

)
χ1(y · µ/δ+ 2),(10.24)

we have
scHgq �−b2 + e.(10.25)

Moreover,

b2 � (c0A0/16)q(10.26)

sinceφ � y · µ �−2δ on supp q, so

χ′
0

(
A−1
0 (2− φ/δ)

)
=A20(2− φ/δ)−2χ0

(
A−1
0 (2− φ/δ)

)
�

(
A20/16

)
χ0

(
A−1
0 (2− φ/δ)

)
.(10.27)

On the other hand,e is supported where

−2δ � y · µ �−δ, ω1/2 � 2β−1/2 δ,(10.28)
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so, for δ > 0 sufficiently small, in the region which we know is disjoint fromWFSc(u).
Moreover, onsupp q,

−2δ � y · µ � 2δ, ω1/2 � 2β−1/2 δ,(10.29)

so, for δ > 0 sufficiently small, we deduce from the inductive hypothesis thatsuppq (hence
supp b) is disjoint fromWF∗,l+1/2

Sc (u). In addition, by choosingδ > 0 sufficiently small, we can
assume that the support ofq, e andb are all disjoint fromWFSc((H − λ)u).

Moreover, with∂ denoting a partial derivative with respect to one of(y, z, τ, µ, ν),

∂q =−A−1
0 δ−1χ′

0

(
A−1
0 (2− φ/δ)

)
χ1(η/δ+ 2)∂φ

− δ−1χ0
(
A−1
0 (2− φ/δ)

)
χ′
1(η/δ+ 2)∂η.(10.30)

As y = 0 is outside the support of the second term, and as∂µφ vanishes aty = 0, we conclude
that for any multiindexβ, ∣∣∂βµdq

∣∣ � Cβb2 aty = 0.(10.31)

More generally, at anyCb with p ∈ Cb, defined byx= 0, y′ = 0, as above,φ is independent of
µ′ aty′ = 0 so outsidesupp e

∣∣∂βµ′dq
∣∣ � Cβb2 aty′ = 0.(10.32)

In fact, outsidesupp e, but in the set whereb is positive,

b−2∂q = c−10 ∂φ,(10.33)

so the uniform bounds of (9.30) also follow.
Let ψ̃ ∈ C∞c (R) be identically1 near0 and supported sufficiently close to0 so that the product

decomposition ofX near∂X is valid onsupp ψ̃. We also define

q̃ = ψ̃(x)q.(10.34)

Thus, q̃ ∈ C∞(scT ∗X) is a π-invariant function satisfying (9.4). LetA be the operator given
by Lemma 9.1 with̃q in place ofq, so in particular its indicial operators areq(ζ)ψ0(Ĥb,0(ζ)).
Note that (9.16) holds withC = 16c−10 A−1

0 by (10.26). So suppose thatM > 0 and ε′ > 0.
ChooseA0 so large thatMC < ε′. By Corollary 9.7 and the hypothesis (10.1), we deduce the
following statement. For anyK ′ ⊂ scṪ ∗X compact withsupp e ∩ K ′ = ∅ there existδ′ > 0,
B,E ∈Ψ−∞,0

Sc (X,C), F ∈Ψ−∞,1
Sc (X,C) with

WF′
Sc(E)∩K ′ = ∅, WF′

Sc(F )⊂ supp q̃,

B̂a,0(ζ) = b(ζ)q(ζ)1/2ψ(Ĥa,0(ζ)), ζ ∈K ′,(10.35)

such that ifψ ∈ C∞c (R) is supported in(λ− δ′, λ+ δ′) then

iψ(H)x−1/2[A∗A,H ]x−1/2ψ(H)−Mψ(H)A∗Aψ(H)

� (2− 2ε′)B∗B +E + F.(10.36)

Let

Λr = x−l−1/2(1 + r/x)−1, r ∈ (0,1),(10.37)
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soΛr ∈Ψ0,−l+1/2Sc (X,C) for r ∈ (0,1) and it is uniformly bounded inΨ
0,−l−1/2
Scc (X,C). The last

statement follows from(1 + r/x)−1 being uniformly bounded as a 0th order symbol, i.e. from
(x∂x)k(1 + r/x)−1 � Ck uniformly (Ck independent ofr). In particular, note that

x∂x(1 + r/x)−1 = rx−1(1 + r/x)−2

=
r

x+ r
(1 + r/x)−1 =

(
1− (1 + r/x)−1

)
(1 + r/x)−1.(10.38)

Since0� r
x+r � 1, (x∂x)(1 + r/x)−1 is a uniformly bounded multiple of(1 + r/x)−1, and in

fact this bounded multiplier is uniformly bounded as a 0th order symbol. This also implies that

[
(1 + r/x)−1,H

]
(1 + r/x)(10.39)

which is a priori uniformly bounded inΨ1,0Scc(X,C) only, is in fact uniformly bounded in

Ψ1,1Scc(X,C).
We also define

Ar =AΛrx−1/2ψ(H), Br =BΛr, Er =ΛrEΛr.(10.40)

Then, withψ0 ∈ C∞c (R; [0,1]) identically1 nearsuppψ,

ixl+1/2[A∗
rAr,H ]xl+1/2 = i(1 + r/x)−1ψ(H)x−1/2[A∗A,H ]x−1/2ψ(H)(1 + r/x)−1

+ i(1 + r/x)−1ψ(H)A∗(1 + r/x)xl+1/2
[
Λrx−1/2,H

]
× x−1/2ψ0(H)Aψ(H)(1 + r/x)−1

+ i(1 + r/x)−1ψ(H)A∗ψ0(H)x−1/2[Λrx−1/2,H
]

× (1 + r/x)xl+1/2Aψ(H)(1 + r/x)−1 +Hr,(10.41)

whereHr is uniformly bounded inΨ−∞,1
Scc (X,C). Note thatHr arises by commutingA, powers

of x andΛr through other operators, but as the indicial operators ofA and x are multiples
of the identity,A, x andΛr commute with these operators to top order, and in case ofΛr, the
commutator is uniformly bounded as an operator of one lower order (than the order of the product
of Λr with such operators). Then, multiplying (10.36) by(1+ r/x)−1 from the left and right and
rearranging the terms we obtain the following estimate of bounded self-adjoint operators on
L2sc(X):

ixl+1/2[A∗
rAr,H ]xl+1/2 − (1 + r/x)−1

(
ψ(H)A∗(G∗

r +Gr)Aψ(H)

+Mψ(H)A∗Aψ(H)
)
(1 + r/x)−1

� xl+1/2
(
(2− ε′)B∗

rBr +Er + Fr
)
xl+1/2(10.42)

where

Gr = iψ0(H)x−1/2[Λrx−1/2,H
]
(1 + r/x)xl+1/2,(10.43)

and Fr ∈ Ψ−∞,−2l+1
Sc (X,C) is uniformly bounded inΨ−∞,−2l

Scc (X,C) as r → 0. Since
[(1 + r/x)−1,H ](1 + r/x) is uniformly bounded inΨ1,1Scc(X,C), we conclude thatGr is uni-
formly bounded inΨ−∞,0

Scc (X,C), hence as a bounded operator onL2sc(X). Thus, if M > 0 is
chosen sufficiently large, thenGr +G∗

r �−M for all r ∈ (0,1), so

(1 + r/x)−1ψ(H)A∗(Gr +G∗
r +M)Aψ(H)(1 + r/x)−1 � 0.(10.44)
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Adding this to (10.42) shows that

ixl+1/2[A∗
rAr,H ]xl+1/2 � xl+1/2

(
(2− ε′)B∗

rBr +Er + Fr
)
xl+1/2.(10.45)

The point of the commutator calculation is that inL2sc(X)〈
u, [A∗

rAr,H ]u
〉
=

〈
u,A∗

rAr(H − λ)u
〉
−

〈
u, (H − λ)A∗

rAru
〉

= 2i Im
〈
u,A∗

rAr(H − λ)u
〉
;(10.46)

the pairing makes sense forr > 0 sinceAr ∈ Ψ−∞,−l
Sc (X,C). Now apply (10.42) tox−l−1/2u

and pair it withx−l−1/2u in L2sc(X). Then forr > 0

‖Bru‖2 � |〈u,Eru〉|+ |〈u,Fru〉|+2|〈u,A∗
rAr(H − λ)u〉|.(10.47)

Letting r → 0 now keeps the right hand side of (10.47) bounded. In fact,Ar(H − λ)u
∈ Ċ∞(X) remains bounded iṅC∞(X) asr → 0. Similarly, by (10.35),Eru remains bounded
in Ċ∞(X) as r → 0 if we choseK ′ so large thatWFSc(u) ⊂ K ′. Also, Fr is bounded
in B(Hm,l

sc (X),H
−m,−l
sc (X)), so 〈u,Fru〉 stays bounded by (10.35) as well. These esti-

mates show thatBru is uniformly bounded inL2sc(X). Since(1 + r/x)−1 → Id strongly on
B(Hm′,l′

sc (X),Hm′,l′

sc (X)), we conclude thatBx−l−1/2u ∈ L2sc(X). By (10.35) and Proposi-
tion 5.5 this implies that for everym,

ξ0 /∈WFm,l+1/2
Sc (u).(10.48)

This is exactly the iterative step we wanted to prove. In the next step we decreaseδ > 0 slightly
to ensure thatWF′

Sc(F )⊂ supp q̃ is disjoint fromWFm,l+1/2
Sc (u). ✷

To state and prove the finer estimate under the assumption that all elements ofC are totally
geodesic, first note that in geodesic normal coordinates aroundp ∈C′, h− (|µ|2+ |ν|2) vanishes
together with its first derivatives atp= (0,0). Thus,scHg agrees withW @ on scT ∗

pX where

W @ = 2τ(µ · ∂µ + ν · ∂ν)− 2
(
|µ|2 + |ν|2

)
∂τ + 2ν · ∂z + 2µ · ∂y.(10.49)

We will useW @ to model the bicharacteristic flow ofH . Note thatW @ is the (rescaled) Hamilton
vector field of the metric functionτ2 + |ν|2 + |µ|2, i.e. where we replace the actual metrich by
a flat one.

We remark that it is the∂µ and∂ν components ofscHg that differ fromW @ on scT ∗
pX if we

do not assume that the elements ofC are totally geodesic. The former is inconsequential since we
only considerπ-invariant functions (in particular, the onlyµ-dependence is viaη = y ·µ), but the
latter rules out the more precise location of the singularities given in the following proposition.

PROPOSITION 10.4. – Suppose thatH is a many-body Hamiltonian satisfying(10.1) and
that every element ofC is totally geodesic with respect toh. Let u ∈ C−∞(X), λ > 0. Given
K ⊂ Σn(λ) ∩ scT ∗

C′(C;X) compact withK ∩WFSc((H − λ)u) = ∅ there exist constants
C0 > 0, δ0 > 0 such that the following holds. Ifξ0 = (0, τ0, ν0) ∈K and for some0 < δ < δ0,
C0δ

1/2 � ε < 1 and for allα= (y, z, τ, µ, ν)∈ scT ∗
∂XX ∩Σ∆−λ

α ∈ scT ∗
C′

b
X and |πe0a(exp(δW @)(α))− ξ0|� εδ and |y(exp(δW @)(α))|� εδ

⇒ π0b(α) /∈WFSc(u)(10.50)

thenξ0 /∈WFSc(u).
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Remark10.5. – The estimate is stated in the form (10.50) for simplicity of statement. The
proof provides a slightly different estimate, involving the backward flowexp(−δW @)(ξ̃),
ξ̃0 ∈ π̂−1(ξ0); the two are equivalent up to changingC0, see Remark 10.8 for a more thorough
discussion.

Proof. –We again employ an iterative argument, so we assume thatξ0 /∈WF∗,l
Sc (u) and we

need to show thatξ0 /∈WF∗,l+1/2
Sc (u).

We first construct aC∞ function ω of z, τ , ν, η = µ · y and s = |y|2 which measures the
distance of bicharacteristics of∆ in Σ∆−λ from π−1

a0 (ξ0) ∩ Σ∆−λ. Thus,τ2 + |ν|2 + |µ|2 − λ
will be small along these bicharacteristics. We will takeω of the form

ω = ω20 +
(
|y|2 − (y · µ)2

λ− τ20 − |ν0|2

)2
,(10.51)

whereω0 only depends onz, τ , ν andη = y · µ. Note that

|y|2 − (y · µ)
2

|µ|2 = |y− y · µ
|µ|2 µ|2(10.52)

is the squared distance of the integral curves ofH|µ|2 , which are just straight lines, fromy = 0,
so nearΣ∆−λ the second term inω gives the fourth power of this distance.

Pushing forward W @ by the map F : (y, z, τ, µ, ν) "→ (z, τ, ν, µ · y) at some point
α= (y, z, τ, µ, ν), we obtain the vector

F∗|αW @ = 2
(
τη + |µ|2

)
∂η +2τν · ∂ν − 2

(
|µ|2 + |ν|2

)
∂τ +2ν · ∂z.(10.53)

Since we are interested in what happens nearΣ∆−λ ∩ scT ∗
pX , whereλ = τ2 + |ν|2 + |µ|2, we

are led to consider the constant coefficient vector field

W0 = 2
(
λ− τ20 − |ν0|2

)
∂η +2τ0ν0 · ∂ν − 2

(
λ− τ20

)
∂τ + ν0 · ∂z(10.54)

in the variables(z, τ, ν, η), so

F∗|αW @ =W0 +2
(
λ− τ20 − |µ0|2 − |ν0|2

)
(−∂η + ∂τ ).(10.55)

Note that the∂η component ofW0 is nonzero. Let

z0(t) =
W0z

W0η
t, τ0(t) = τ0 +

W0τ

W0η
t, ν0(t) = ν0 +

W0ν

W0η
t,(10.56)

so

γ : t "→
(
z0

(
(W0η)t

)
, τ0

(
(W0η)t

)
, ν0

(
(W0η)t

)
, (W0η)t

)
(10.57)

gives a curve through(ξ0,0) with tangent vectorW0. Now we defineω0 by

ω0 =
(
z − z0(η)

)2 + (
τ − τ0(η)

)2 + (
ν − ν0(η)

)2
(10.58)

soω0 vanishes exactly quadratically alongγ and is positive elsewhere, and

W0ω0 = 0.(10.59)
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Note that by the triangle inequality

|z|+ |τ − τ0|+ |ν − ν0|+ |η|� C
(
ω
1/2
0 + |η|

)
(10.60)

for sufficiently largeC.
Since forα ∈ π̂−1(ξ0) we haveF∗|αscHg = F∗|αW @ =W0, we see that

scHg

(
z − z0(η)

)
= 0 at π̂−1(ξ0),(10.61)

i.e. wheny = 0, z = 0, τ = τ0, ν = ν0, g = λ, so

∣∣scHg

(
z − z0(η)

)∣∣ � C
(
|y|+ ω

1/2
0 + |λ− g|

)
.(10.62)

Hence, ∣∣scHg(z − z0(η))2
∣∣ � 2Cω

1/2
0

(
|y|+ω

1/2
0 + |λ− g|

)
.(10.63)

Similar conclusions hold forτ − τ0(η) andν − ν0(η), so

∣∣scHgω0
∣∣ � C1

(
|y|+ ω

1/2
0 + |λ− g|

)
ω
1/2
0 .(10.64)

Next, we calculatescHg(|y|2 − (y · µ)2/(λ − τ20 − |ν0|2)). Since the function we are
differentiating vanishes quadratically aty = 0, the same follows for its derivatives with respect
to any vector field tangent toy = 0. Since the∂y component ofscHg (and ofW @) is of the form
2µ · ∂y +

∑
βj∂yj with βj vanishing aty = 0, z = 0 (i.e. atp), we conclude that∣∣(scHg − 2µ · ∂y

)(
|y|2 − (y · µ)2/

(
λ− τ20 − |ν0|2

)) ∣∣� C2|y|(|y|+ |z|).(10.65)

On the other hand,

(2µ · ∂y)
(
|y|2 − (y · µ)2/

(
λ− τ20 − |ν0|2

))
= 4(µ · y)λ− τ20 − |ν0|2 − |µ|2

λ− τ20 − |ν0|2
.(10.66)

But, as in (10.11),∣∣λ− τ20 − |ν0|2 − |µ|2
∣∣ � |λ− g|+C′(|y|+ |z|+ |τ − τ0|+ |ν − ν0|)

� C3
(
|λ− g|+ |y|+ ω

1/2
0

)
.(10.67)

Thus, ∣∣scHg

(
|y|2 − (y · µ)2/

(
λ− τ20 − |ν0|2

))∣∣ � C4|y|
(
|λ− g|+ |y|+ ω

1/2
0

)
.(10.68)

Our results thus far imply that

∣∣scHgω
∣∣ � C5ω

1/2
(
|y|+ |λ− g|+ ω

1/2
0

)2
.(10.69)

Now let1> ε > 0, δ > 0, with other restrictions to be imposed on these later, and let

φ= τ0 − τ +
1

ε4δ3
ω.(10.70)

We useτ0 − τ to measure propagation along the bicharacteristics;η = y · µ would also work.
We again letχ0 ∈ C∞(R) be equal to0 on (−∞,0] andχ0(t) = exp(−1/t) for t > 0 and we let
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χ1 ∈ C∞(R) be0 on(−∞,0], 1 on [1,∞), with χ′
1 � 0 satisfyingχ′

1 ∈ C∞c ((0,1)). Furthermore,
for A0 > 0 large, to be determined,t ∈ (0,1), let

qt = q = χ0
(
A−1
0 (1 + t− φ/δ)

)
χ1

(
(τ0 − τ + δ)/(εδ) + t

)
.(10.71)

We usually simply writeq in place ofqt. We only uset to slightly shrink the support ofq in our
inductive proof (i.e. asl is increasing), instead of adjustingδ as in the proof of Proposition 10.1.
Thus, onsupp q we haveφ � 2δ andτ0 − τ � −2δ. Sinceω � 0, the first of these inequalities
implies thatτ0 − τ � 2δ, so

|τ − τ0|� 2δ and ω � ε4δ3(2δ+ τ − τ0)� 4ε4δ4.(10.72)

Hence,ω0 � 2ε2δ2, which together with|τ − τ0| � 2δ gives |η| = |µ · y| � C6δ since the∂τ
component ofW in non-zero. Since we also have∣∣|y|2 − (y · µ)2/(λ− τ20 − |ν0|2)

∣∣ � 2ε2δ2,(10.73)

we conclude that|y|� C7δ. Thus, under the additional assumption

|λ− g|< δ(10.74)

we deduce that|scHgω|� C8ε
2δ4, so∣∣scHgφ− 2h

∣∣ � C8δ/ε2.(10.75)

Hence, forc0 > 0, C0 > 0 appropriately chosen and forε ∈ (0,1), δ > 0 satisfyingδ/ε2 < C0,
we have

scHgφ > c0 > 0.(10.76)

Again, this directly gives a positivity estimate forscHgq nearξ0. Now

scHgq =−A−1
0 δ−1χ′

0

(
A−1
0 (1 + t− φ/δ)

)
χ1

(
(τ0 − τ + δ)/(εδ) + t

)
scHgφ

− (εδ)−1χ0
(
A−1
0 (1 + t− φ/δ)

)
χ′
1

(
(τ0 − τ + δ)/(εδ) + t

)
scHgτ.(10.77)

Hence, with

b2 = c0A
−1
0 δ−1χ′

0

(
A−1
0 (1 + t− φ/δ)

)
χ1

(
(τ0 − τ + δ)/(εδ) + t

)
,

(10.78)
e=−(εδ)−1χ0

(
A−1
0 (1 + t− φ/δ)

)
χ′
1

(
(τ0 − τ + δ)/(εδ) + t

)
scHgτ

we have
scHgq �−b2 + e.(10.79)

In addition, similarly to (10.26)–(10.27), we see that

b2 � (c0A0/16)q.(10.80)

Moreover, with∂ denoting a partial derivative with respect to one of(y, z, τ, µ, ν),

∂q=−A−1
0 δ−1χ′

0

(
A−1
0 (1 + t− φ/δ)

)
χ1

(
(τ0 − τ + δ)/(εδ) + t

)
∂φ

− (εδ)−1χ0
(
A−1
0 (1 + t− φ/δ)

)
χ′
1

(
(τ0 − τ + δ)/(εδ) + t

)
∂τ.(10.81)
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Thus, (10.31)–(10.33) hold, and hence the uniform bounds of (9.30) also follow. Nowe is
supported where

−δ− tεδ � τ0 − τ �−δ+ (1− t)εδ, ω1/4 �
√
2εδ,(10.82)

so near the backward direction along bicharacteristics throughξ0, in the region which we know
is disjoint fromWFSc(u). In addition, by choosingδ > 0 sufficiently small, we can assume that
the support ofq, e andb are all disjoint fromWFSc((H − λ)u).

From this point we can simply follow the proof of Proposition 10.1. Thus, we conclude that
for everym,

ξ0 /∈WFm,l+1/2
Sc (u).(10.83)

This is exactly the iterative step we wanted to prove. In the next step we decreaset slightly to
ensure thatsupp q̃t is disjoint fromWFm,l+1/2

Sc (u). ✷
Before proving the general tangential propagation estimate, we first do it in the totally geodesic

case (C totally geodesic). Proposition 7.1 shows that for sufficiently short times there is a unique
generalized broken bicharacteristic through any point inΣt(λ), namely the integral curve of
scHg. The simplicity of this description may already give a hint that it is particularly easy
to prove the corresponding propagation estimate for singularities. Indeed, in the proof of the
aforementioned proposition, we have essentially already constructed the pseudo-differential
operatorA to commute throughH by defining theπ-invariant functionφ (which will play an
analogous role to that ofφ in the proof of normal propagation). The following argument may
also clarify the close relationship between proving results about the geometry of the generalized
broken bicharacteristics and the positive commutator proof of propagation estimates. Again, we
only state it for forward propagation.

PROPOSITION 10.6. – Suppose thatH is a many-body Hamiltonian satisfying(10.1).
Suppose also that every element ofC is totally geodesic with respect toh. Let u ∈ C−∞(X),
λ > 0. Letξ0 ∈Σt(λ)∩ scT ∗

C′(C;X), C =Ca, satisfyξ0 /∈WFSc((H − λ)u). Then there exists
ε′ > 0 such that if in addition for somes ∈ (−ε′,0) we have

π0a
(
exp

(
sscHg

)(
π̂−1(ξ0)

))
/∈WFSc(u)

thenξ0 /∈WFSc(u).

Proof. –First note that there is nothing to prove ifξ0 ∈R+(λ) ∪R−(λ), so from now on we
assume thatξ0 /∈R+(λ) ∪R−(λ). The proof is very similar to the previous one and the positive
commutator construction is exactly the same as in three-body scattering [40, Proposition 15.4],
based on theπ-invariant functionφ used here in the proof of Proposition 7.1. Thus, we take
local coordinates centered atC as above, i.e. of the form(y, z), and letφ= φ(ε) be defined by
(7.21), so in particularφ is π-invariant. In the proof of Proposition 7.1 we showed that there
existsδ0 ∈ (0,1) such that for anyδ ∈ (0, δ0) and anyε ∈ (0,1)

φ(ξ̃)� 2δ, τ(ξ̃)− τ0 � 2δ and
∣∣τ2(ξ̃) + h(ξ̃)− λ

∣∣ < εδ(10.84)

imply thatscHgφ satisfies (7.33), so

scHgφ(ξ̃)� c0 > 0.(10.85)
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We defineq as in (10.71). Then (10.77), hence (10.78)–(10.82) also hold. Sinceε > 0 can be
taken arbitrarily small, we can choose it andδ ∈ (0, δ0) so thatsupp e is a small neighborhood of
exp(sscHg)(π̂−1(ξ0)); in particular,π0b(supp e) is disjoint fromWFSc(u) for eachb. We can
then apply the compactness argument of Proposition 10.1 to prove (10.42) for the operatorsA,
B, etc., defined in that proof, and conclude thatξ0 /∈WFSc(u). ✷

We now return to the general setting of not necessarily totally geodesicC.

PROPOSITION 10.7. – Suppose thatH is a many-body Hamiltonian satisfying(10.1). Let
u∈ C−∞(X), λ > 0. Given

K ⊂
(
Σt(λ) ∩ scT ∗

C′(C;X)
)
\

(
R+(λ) ∪R−(λ) ∪WFSc((H − λ)u)

)
(10.86)

compact there exist constantsC0 > 0, δ0 > 0 such that the following holds. Ifξ0 = (z0, τ0, ν0) ∈K
and for some0< δ < δ0, C0δ � ε < 1 and for allα= (y, z, τ, µ, ν)∈ scT ∗

∂XX ∩Σ∆−λ

α ∈ scT ∗
C′

b
X and

∣∣πe0a(α− exp
(
−δscHg

)(
π̂−1(ξ0)

))∣∣ � εδ and |y(α)|� εδ

⇒ π0b(α) /∈WFSc(u),(10.87)

thenξ0 /∈WFSc(u).

Remark10.8. – In the estimate (10.87),scHg can be replaced by anyC∞ vector field which
agrees withscHg at the point̂π−1(ξ0), since flow to distanceδ along a vector field only depends
on the vector field evaluated at the initial point of the flow, up to committing an errorO(δ2). In
particular, it can be replaced by the vector fieldW - defined below. Similarly, changing the initial
point of the flow byO(δ2) will not affect the endpoint up to an errorO(δ2). Thus, estimate
(10.87) can be further rewritten, at the cost of changingC0 again, as

α ∈ scT ∗
C′

b
X and

∣∣πe0a(exp(δW @
)
(α)

)
− ξ0

∣∣ � εδ and
∣∣y(
exp

(
δW @

)
(α)

)∣∣ � εδ

⇒ π0b(α) /∈WFSc(u);(10.88)

here we also interchanged the roles of the intial and final points of the flow. This relates (10.88)
to (10.50).

Proof. –The proof is very similar to the previous ones and now the positive commutator
construction follows that of [40, Proposition 15.2] in three-body scattering. Thus, we take local
coordinates as above, i.e. of the form(y, z) with Cb defined by linear equations iny. Then we
constructω0 ∈ C∞(scT ∗

C′(C;X)) (defined nearξ0) to measure the squared distance from integral
curves of

W - = 2τν · ∂ν − 2h̃∂τ +Hh̃;(10.89)

this is achieved by solving a Cauchy problem as in [40] and in (7.12) here. (Indeed, an
approximate construction, like that ofω0 in the normal case discussed above, would also work).
Then we extendω0 to a function onscT ∗

∂XX (using the coordinates(y, z, τ, µ, ν) near∂X), let

ω = ω0 + |y|2, φ= τ0 − τ +
1

ε2δ
ω,(10.90)

and defineq as in (10.14). The difference in the powers ofε and δ in this definition of φ
in the (general) tangential setting and that in the normal case (given in (10.70)) arises since
in the normal settingω approximates the fourth power of the distance from the generalized
bicharacteristics while here it approximates the squared distance. The estimates onscHgφ are
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just as in [40, Proposition 15.2], see also the proof of Proposition 7.1 here in the similar totally
geodesic setting (the estimates are simply better but not different in nature under the totally
geodesic assumption since now we do not have (7.4)), giving a slightly better result than in
the totally geodesic normal case: it isδ/ε, not δ/ε2, that has to be bounded from above by an
appropriate positive constant. The difference arises as the model integral curves in the tangential
setting are closer to the actual ones than in the normal setting. Thus, one obtains (10.26) here as
well. The functional analysis part, under the assumption that there are no bound states, is exactly
as in the normal case.✷

An argument of Melrose–Sjöstrand [23,24], see also [12, Chapter XXIV] and [18] allows us to
conclude our main result concerning the singularities of generalized eigenfunctions ofH . Here
we concentrate on totally geodesicC (since that is the case in Euclidean scattering), in which
case the more delicate tangential propagation argument of Melrose–Sjöstrand is not necessary.
The proof presented below essentially follows Lebeau’s paper [18, Proposition VII.1]. We thus
have the following theorem.

THEOREM 10.9. – Let (X,C) be a locally locally linearizable many-body space, and
ssuppose thatH is a many-body Hamiltonian satisfying(10.1). Let u ∈ C−∞(X), λ > 0.
ThenWFSc(u) \ WFSc((H − λ)u) is a union of maximally extended generalized broken
bicharacteristics of∆− λ in Σ̇ \WFSc((H − λ)u).

Proof. –We start by remarking that for everyV ⊂ Σ̇ and ξ ∈ V , the setR of generalized
broken bicharacteristicsγ defined on open intervals including0, satisfyingγ(0) = ξ, and with
image inV , has a natural partial order, namely ifγ : (α,β)→ V , γ′ : (α′, β′)→ V , thenγ � γ′ if
the domains satisfy(α,β)⊂ (α′, β′) andγ = γ′|(α,β). Moreover, any non-empty totally ordered
subset has an upper bound: one can take the generalized broken bicharacteristic with domain
given by the union of the domains of those in the totally ordered subset, and which extends
these, as an upper bound. Hence, by Zorn’s lemma, ifR is not empty, it has a maximal element.
Note that we can also work with intervals of the form(α,0], α < 0, instead of open intervals.

We only need to prove that for everyξ0 ∈ WFSc(u) \WFSc((H − λ)u) there exists a
generalized broken bicharacteristicγ : [−ε0, ε0] → Σ̇, ε0 > 0, with γ(0) = ξ0 and such that
γ(t) ∈WFSc(u) \WFSc((H − λ)u) for t ∈ [−ε0, ε0]. In fact, once this statement is shown,
takingV =WFSc(u)\WFSc((H−λ)u), ξ = ξ0, in the argument of the previous paragraph, we
see thatR is non-empty, hence has a maximal element. We need to show that such an element,
γ : (α,β)→ Σ̇, is maximal inΣ̇ \WFSc((H −λ)u) as well, i.e. if we takeV = Σ̇\WFSc((H −
λ)u), ξ = ξ0 in the first paragraph. But ifγ′ : (α′, β′)→ Σ̇ is any proper extension ofγ, with
say α′ < α, with image inΣ̇ \WFSc((H − λ)u), thenγ′(α) ∈WFSc(u) sinceWFSc(u) is
closed, andγ maps into it, hence by our assumption there is a generalized broken bicharacteristic
γ̃ : (α − ε′, α + ε′)→WFSc(u) \WFSc((H − λ)u), ε′ > 0, γ̃(α) = γ′(α); piecing together
γ̃|(α−ε′,α] andγ, directly from Definition 6.2, gives a generalized broken bicharacteristic which
is a proper extension ofγ, with image inWFSc(u) \WFSc((H − λ)u), contradicting the
maximality ofγ.

Indeed, it suffices to show that for anya, if

ξ0 ∈WFSc(u) \WFSc
(
(H − λ)u

)
and ξ0 ∈ scT ∗

C′
a
(Ca;X)(10.91)

then

there exists a generalized broken bicharacteristicγ : [−ε0,0]→ Σ̇, ε0 > 0,(10.92)

γ(0) = ξ0, γ(t) ∈WFSc(u) \WFSc
(
(H − λ)u

)
, t ∈ [−ε0,0],
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for the existence of a generalized broken bicharacteristic on[0, ε0] can be demonstrated
similarly by replacing the forward propagation estimates by backward ones, and, directly from
Definition 6.2, piecing together the two generalized broken bicharacteristics gives one defined
on [−ε0, ε0].

We proceed to prove that (10.91) implies (10.92) by induction ona. Fora= 0, this is certainly
true by Proposition 10.6, since only elements ofC ∈ C in a small neighborhood ofξ0 must be
totally geodesic for the proof to go through, andC0 is the only such element if the neighborhood
of ξ0 ∈ scT ∗

C′
0
(C0;X) = scT ∗

C′
0
X is chosen sufficiently small (in fact, this is really just Melrose’s

propagation theorem [22]).
So suppose that (10.91)⇒ (10.92) has been proved for allb with Ca � Cb and thatξ0 ∈

Σn(λ) ∩ scT ∗
C′

a
(Ca;X) satisfies (10.91). We use the notation of the proof of Proposition 10.1

below. LetU ⊂
⋃
Ca⊂Cb

scT ∗
C′

b
(Cb;X) be a neighborhood ofξ0 = (0, z0, τ0, ν0) in Σ̇ which is

given by equations of the form|y|< δ′, |z − z0|< δ′, |τ − τ0|< δ′, |ν − ν0|< δ′, δ′ > 0, such
that scHgη > 0 on π̂−1(U) andU ∩WFSc((H − λ)u) = ∅. Such a neighborhood exists since
ξ0 /∈WFSc((H−λ)u) andscHgη(ξ̃0) = λ− τ20 − h̃(z0, ν0)> 0 for everyξ̃0 ∈ π̂−1(ξ0). Also let
U ′ be a subset ofU defined by replacingδ′ by a smallerδ′′ > 0, and letε0 > 0 be such that for
any generalized broken bicharacteristicγ with γ(0) ∈ U ′, γ|[−ε0,ε0] ∈ U . By Proposition 10.1,
there is a sequence of pointsξn ∈ Σ̇ such thatξn ∈WFSc(u), ξn→ ξ0 asn→∞, andη(ξn)< 0
for all n, so we may assume thatξn ∈U ′ for all n. By the inductive hypothesis, for eachn, there
exists a generalized broken bicharcteristic

γ̃n : (−ε′n,0]→
(
WFSc(u) \WFSc

(
(H − λ)u

))
∩

⋃
Ca�Cb

scT ∗
C′

b
(Cb;X)(10.93)

with γ̃n(0) = ξn. We now use the argument of the first paragraph of the proof with
V = (WFSc(u)\WFSc((H−λ)u))∩

⋃
Ca�Cb

scT ∗
C′

b
(Cb;X), andξ = ξn. Thus,γ̃n ∈R, which

is hence non-empty, hence has a maximal element. We let

γn : (−εn,0]→
(
WFSc(u) \WFSc

(
(H − λ)u

))
∩

⋃
Ca�Cb

scT ∗
C′

b
(Cb;X)(10.94)

be a maximal element ofR; it may happen that−εn =−∞.
We claim thatεn � ε0. For suppose thatεn < ε0. By Corollary 6.12,γn extends to a

generalized broken bicharacteristic on[−εn,0], we continue to denote this byγn. Sinceεn < ε0,
γn is a generalized broken bicharacteristic with image inU ; indeed the closure of the image
is still in U . Taking into account thatη is increasing on generalized broken bicharacteristics
in U sincescHgη > 0 there, we conclude thaty(γn(t)) · µ(γn(t)) = η(γn(t))� η(γn(0))< 0
for t ∈ [−εn,0], hencey(γn(t)) �= 0. Thus, γn(−εn) ∈

⋃
Ca�Cb

scT ∗
C′

b
(Cb;X). Moreover,

γn(−εn) ∈ WFSc(u) sinceWFSc(u) is closed, andγn|(−εn,0] maps into it. Thus, by the
inductive hypothesis, there is a generalized broken bicharacteristic,

γ̃n : (α,−εn]→
(
WFSc(u) \WFSc

(
(H − λ)u

))
∩

⋃
Ca�Cb

scT ∗
C′

b
(Cb;X)(10.95)

with α < −εn, γ̃n(−εn) = γn(−εn). Hence, piecing together̃γn andγn gives a generalized
broken bicharacteristic mapping into(WFSc(u) \WFSc((H − λ)u)) ∩

⋃
Ca�Cb

scT ∗
C′

b
(Cb;X)

and extendingγn, which contradicts the maximal property ofγn. Thus,εn � ε0 as claimed.
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By Proposition 6.11, applied withK = WFSc(u), there is a subsequence ofγn|[−ε0,0]
converging uniformly to a generalized broken bicharacteristicγ : [−ε0,0] → WFSc(u). In
particular,γ(0) = ξ0 andγ(t) ∈WFSc(u) for all t ∈ [−ε0,0], providing the inductive step.

We now turn toξ0 ∈Σt(λ)∩ scT ∗
C′

a
(Ca;X). If every element ofC is totally geodesic, then due

to Proposition 10.6, (10.91)⇒ (10.92). (Again, we only need thatCb be totally geodesic forCb

with Ca ⊂Cb, since the result is local.)
The general case, when element ofC are not totally geodesic, repeats the argument of Melrose–

Sjöstrand, as presented in Lebeau’s paper [18, Proposition VII.1]. We very briefly outline the
proof below; the detailed version follows Lebeau’s closely, with some changes in the notation.
Let U ⊂

⋃
Ca⊂Cb

scT ∗
C′

b
(Cb;X) \WFSc((H − λ)u) be a neighborhood ofξ0, U0 a smaller

neighborhood, as above. We takeε0 > 0 small. Suppose that0< ε < ε0, ξ ∈ U0. Let

R1ξ,ε =
{

generalized broken bicharacteristicsγ : [−ε,0]→WFSc(u),

γ(0) = ξ, γ(t) /∈Σt(λ) ∩ scT ∗
C′

a
(Ca;X) for t ∈ (−ε,0]

}
,

R2ξ,ε =
{

generalized broken bicharacteristicsγ : [−ε′,0]→WFSc(u), ε′ ∈ (0, ε),
γ(0) = ξ, γ(t) /∈Σt(λ) ∩ scT ∗

C′
a
(Ca;X) for t ∈ (−ε′,0],

γ(−ε′) ∈Σt(λ) ∩ scT ∗
C′

a
(Ca;X)

}
.

Moreover, reflecting the inequalities in (10.87), let

B(ξ, ε) =
{
ξ′ ∈ Σ̇: max

{
|πe0a(ξ′)− ξ|, |y(ξ′)|

}
< ε

}
.(10.96)

Let C0 > 0 be as in Proposition 10.7. Forξ ∈Σt(λ) ∩ scT ∗
C′

a
(Ca;X), let

D(ξ, ε) =B
(
exp

(
−εscHg

)(
π̂−1(ξ)

)
,C0ε

2
)
∩WFSc(u),(10.97)

and forξ /∈Σt(λ) ∩ scT ∗
C′

a
(Ca;X), let

D(ξ, ε) =
{
γ(−ε): γ ∈R1ξ,ε

}
∪

{
B

(
exp

(
−(ε− ε′)scHg

)(
π̂−1(γ(ε′)

)
,C0(ε− ε′)2

))
∩WFSc(u): γ ∈R2ξ,ε

}
.(10.98)

The reason for introducingD(ξ, ε) is that it is a good candidate for the beginning point of a
generalized broken bicharacteristic segment inWFSc(u), defined over an interval of lengthε,
and ending inξ.

Indeed, forξ ∈ Σt(λ) ∩ scT ∗
C′

a
(Ca;X) ∩WFSc(u), we deduce from Proposition 10.7 that

D(ξ, ε) �= ∅. For ξ ∈ WFSc(u) \ (Σt(λ) ∩ scT ∗
C′

a
(Ca;X)), by the inductive hypothesis, the

previous part of the proof concerningΣn(λ) ∩ scT ∗
C′

a
(Ca;X), and the first two paragraphs with

V = WFSc(u) \ ((Σt(λ) ∩ scT ∗
C′

a
(Ca;X)) ∪WFSc(H − λ)u), ξ = ξ0, there is a maximally

extended generalized broken bicharacteristicγ with image inV . By the argument of the second
paragraph, this is either defined on all of[−ε,0], or only on (−ε′,0] with 0 < ε′ < ε, in
which caseγ(−ε′) ∈Σt(λ) ∩ scT ∗

C′
a
(Ca;X), hence again by Proposition 10.7 we conclude that

D(ξ, ε) �= ∅. Thus, for allξ ∈U ∩WFSc(u) we have deducedD(ξ, ε) �= ∅.
For each integerN � 1 now we define a sequence of2N + 1 pointsξj,N , j ∈N, 0� j � 2N ,

which will be used to construct pointsγ(−j2−Nε0) on the desired generalized broken
bicharacteristicγ : [−ε0,0]→WFSc(u) throughξ0. Namely, letε = 2−Nε0, ξ0,N = ξ0, and
chooseξj+1,N ∈D(ξj,N , ε). Let JN = {−j2−Nε0 : 0 � j � 2N} ⊂ [−ε0,0], J =

⋃∞
N=1JN .

We write γN (t) = ξj,N for t = −j2−Nε0. For eacht ∈ J , the sequenceγN (t) (defined for
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largeN ) stays in a compact set. Hence there exists a subsequenceγNk
such that for allt ∈ J ,

γNk
(t) converges to someγ(t).

This definesγ : [−ε0,0]→WFSc(u) at elements ofJ . One can check exactly as in Lebeau’s
proof (which we have been following very closely) thatγ extends to a continuous map defined
on [−ε0,0], and that it is a generalized broken bicharacteristic. This completes the inductive step
for tangential pointsξ0 ∈ Σt(λ) ∩ scT ∗

C′
a
(Ca;X) in the non-totally geodesic setting, hence the

proof of the theorem. ✷
We remark that the result is optimal as can be seen by considering the Euclidean setting, taking

potentials singular at a specifiedCa, thereby placing ourselves into the three-body framework.
As [37] shows, singularities do reflect in all permissible directions in general, the reflection being
governed to top order by the (two-body) S-matrix of the subsystem.

11. The resolvent

Before we can turn Theorem 10.9 into a result on the wave front relation of the S-matrix, we
need to analyze the resolvent. More precisely, we need to understand the boundary values

R(λ± i0) =
(
H − (λ± i0)

)−1
(11.1)

of the resolvent at the real axis in a microlocal sense. To do so, we also need estimates at the radial
setsR±(λ). Since the rescaled Hamilton vector field of the metricg vanishes atR+(λ)∪R−(λ),
the estimates must utilize the weightsx−l−1 themselves. In this sense they are delicate, but on
the other hand they only involvex and its sc-microlocal dual variableτ , so they do not need to
reflect the geometry ofC. The best known positive commutator estimate is the Mourre estimate,
originally proved by Perry, Sigal and Simon in Euclidean many-body scattering [27], in which
one takesq = x−1τ with the notation of Section 9. Since it is easy to analyze the commutator
of powers ofx with H (in particular, they commute withV ), the functional calculus allows
one to obtain microlocal estimates from these, as was done by Gérard, Isozaki and Skibsted
[6,7]. Thus, nearly all the technical results in this section can be proved, for example, by using
the Mourre estimate and Theorem 10.9. In particular, apart from the propagation statements, they
are well-known in Euclidean many-body scattering. The generalization of these Euclidean results
to our geometric setting is straightforward; the arguments essentially follow those in three-body
scattering that were used in [40].

We first state the weak form of the limiting absorption principle, namely that forf ∈ Ċ∞(X),
R(λ ± it)f , t > 0, has a limit inHm,l

sc (X), m arbitrary,l < −1/2, ast→ 0. To simplify the
asymptotic expansions ofR(λ ± i0)f which we also describe, forλ > 0 we introduce the
functions

α± = α±,λ =±
V

2
√

λx
∈ C∞(X \C0,sing),(11.2)

and the set of polyhomogeneous functionsAK
phg(X \C0,sing) onX \C0,sing with index set

K= {(m,p): m,p∈N, p � 2m}.(11.3)

Recall from [21] thatv ∈AK
phg(X \C0,sing) means thatv is C∞ in the interior ofX and it has a

full asymptotic expansion atC′
0 which in local coordinates(x, y) take the form

v(x, y)∼
∞∑
j=0

∑
r�2j

xj(logx)raj,r(y), aj,r ∈ C∞(C′
0).(11.4)
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Thus,v ∈ C0(X \C0,sing) and|v(x, y)− a0,0(y)|� Cx| logx|2.
THEOREM 11.1. – Suppose thatH is a many-body Hamiltonian satisfying(10.1), λ > 0. Let

f ∈ Ċ∞(X), u±
t = R(λ ± it)f , t > 0. Thenu±

t has a limit u± = R(λ ± i0)f in Hm,l
sc (X),

l <−1/2, ast→ 0. In addition,

WFSc(u±)⊂R∓(λ).(11.5)

If V is short-range, i.e.V ∈ x2C∞(X \C0,sing), then

u± = e±i
√
λ/xx(n−1)/2v±, v± ∈ C∞(X \C0,sing),(11.6)

while if V is long-range, i.e.V merely satisfies(6.2), then

u± = e±i
√
λ/xx(n−1)/2+iα±v±, v± ∈AK

phg(X \C0,sing).(11.7)

Remark11.2. – The first statement in the theorem also holds if we merely assumef ∈
Hm,l′

sc (X) with l′ > 1/2, but thenWFSc(u±) has to be replaced by the filtered wave front set

WFm,l′−1
Sc (u±). Moreover,R(λ± i0) give continuous operators fromHm,l′

sc (X) to Hm+2,l
sc (X).

Proof. –This result is a weak form of the limiting absorption principle and can be proved by a
Mourre-type estimate. In the Euclidean setting, it is a combination of the Mourre estimate, proved
by Perry, Sigal and Simon [27], and its microlocalized version obtained by Gérard, Isozaki and
Skibsted [6]. In the geometric setting, the Mourre estimate describes the commutator ofH with
a self-adjoint first order differential operatorA ∈ x−1Diff1sc(X) such thatA−xDx ∈Diff1sc(X)
(this is of course a restriction only at∂X). Namely, it says that forφ ∈ C∞c (R; [0,1]) supported
sufficiently close toλ, we have

iφ(H)[A,H ]φ(H)� 2(λ− ε)φ(H)2 +R, ε > 0,(11.8)

whereR ∈ Ψ−∞,1
Sc (X,C), hence compact onL2sc(X). It was proved in the geometric three-

body setting (with an appropriate adjustment to allow bound states of subsystems) in [40],
following the Euclidean argument of Froese and Herbst [5]. The proof given there goes through
essentially unchanged for more than three bodies. Under our assumption (10.1), the symbolic
commutator calculation in the scattering calculus,scHg(x−1τ)+2g ∈ xC∞(scT ∗X), and a slight
modification of Corollary 9.7, prove the Mourre estimate. The argument of [27] then proves the
existence of the limitsu± in H0,l

sc (X), l <−1/2, and(H − λ)u± = f ∈ Ċ∞(X) shows that the
same holds inHm,l

sc (X) for everym and for everyl <−1/2.
To show the flavor of the arguments, we prove here a version of the estimate of Gérard,

Isozaki and Skibsted [6]. Such arguments as this can be combined to prove the limiting
absorption principle without a direct use of the Mourre estimate as was done in the geometric
two-body type setting by Melrose [22] and in the geometric three-body setting in [40]. Here,
however, we concentrate on proving the wave front set result. The major difference between the
propagation estimates of the previous section and the ones nearR±(λ) is thatscHg is radial at
R+(λ)∪R−(λ): it has the form2τx∂x. Thus, we need to use a weightx−l−1 to obtain a positive
symbol estimate. So forl >−1, let

q = x−l−1χ(τ)ψ̃(x)� 0(11.9)

whereψ̃ ∈ C∞c (R) is identically1 near0 and is supported in a bigger neighborhood of0 (it
is simply a cutoff near∂X), χ ∈ C∞c (R; [0,1]) vanishes on(−∞,

√
λ − 2ε), identically1 on
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(
√

λ− ε,∞), ε > 0, χ′ � 0, andχ vanishes with all derivatives at everyt with χ(t) = 0. Then
for sufficiently smallδ > 0, |g − λ|= |τ2 + h− λ|< δ implies

scHgq =−2
(
(l+ 1)τχ(τ) + hχ′(τ)

)
x−l−1 �−b2x−l−1,

(11.10)
b=

(
2(l+ 1)τχ(τ) +

(
λ− τ2

)
χ′(τ)/2

)1/2
.

Thus, bothxl+1q andxl+1b areπ-invariant. LetA ∈ Ψ−∞,−l−1
Sc (X,C) be a quantization ofq

as in Lemma 9.1, except that nowq is not supported in a single coordinate chart, so we need
to defineA as the sum of localized operators (of course, this is not necessary in the actual
Euclidean setting). Thus, roughly speaking,A is the product of a quantization ofq andψ0(H),
ψ0 ∈ C∞c (R). The fact thatq ∈ x−l−1C∞(scT ∗X) does not cause any trouble, and the argument
of Corollary 9.7 shows that forψ ∈ C∞c (R; [0,1]) supported sufficiently close toλ we have

ixl+1/2ψ(H)[A∗A,H ]ψ(H)xl+1/2 � xl+1/2
(
(2− ε′)B∗B + F

)
xl+1/2, ε′ > 0,(11.11)

where

F ∈Ψ−∞,−2l
Sc (X,C), WF′

Sc(F )⊂ supp
(
xl+1q

)
,(11.12)

B ∈Ψ−∞,−l−1/2
Sc (X,C), B̂a,−l−1/2(ζ) = b(ζ)q(ζ)1/2ψ

(
Ĥa,0(ζ)

)
.(11.13)

Let

A0 =Aψ(H) ∈Ψ−∞,−l−1
Sc (X,C).(11.14)

Since

〈
u+t , i[A∗

0A0,H ]u
+
t

〉
=−2 Im

〈
u+t ,A∗

0A0
(
H − (λ+ it)

)
u+t

〉
− 2t

∥∥A0u
+
t

∥∥2,(11.15)

we conclude that

‖Bu+t ‖2 +2t‖A0u+t ‖2 � |〈u+t , Fu+t 〉|+ 2
∣∣〈u+t ,A∗

0A0(H − (λ+ it))u+t 〉
∣∣.(11.16)

Since t > 0, the second term on the left hand side can be dropped. Sinceu+t → u+ in
H0,l′

sc (X) for l′ <−1/2, we conclude that forl ∈ (−1,−1/2) the right hand side stays bounded
as t → 0. Thus,Bu+t is uniformly bounded inL2sc(X), and asu+t → u+ in H0,l′

sc (X), we
conclude thatBu+ ∈ L2sc(X). But then (11.13) shows that for anyζ with q(ζ) �= 0, we have
ζ /∈ WFm,l+1/2

Sc (u+) for every m. This proves that the incoming radial set,R+(λ), is

disjoint fromWFm,l+1/2
Sc (u+), l + 1/2 ∈ (−1/2,0). Iterating the argument, as in the proof

of Proposition 10.1, gives thatWFSc(u+) ∩ R+(λ) = ∅. SinceWFSc(u+) is closed, the
same conclusion holds for a neighborhood ofR+(λ). Finally, as all generalized broken
bicharacteristics of∆ − λ tend to R+(λ) as t → −∞ and (H − λ)u+ = f ∈ Ċ∞(X), the
propagation of singularities theorem, Theorem 10.9, implies thatWFSc(u+) ⊂ R−(λ). The
existence of the asymptotic expansions is a local question, so atC′

0 we can work in the scattering
calculus to prove it, see [35] for details of the proof.✷

A pairing argument immediately showsR(λ± i0)v also exists for distributionsv ∈ C−∞(X)
with wave front set disjoint from the incoming and outgoing radial set respectively. Combining
it with the propagation theorem, Theorem 10.9, we can deduce the following result; as usual, we
assume that(X,C) is locally linearizable.
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THEOREM 11.3. – Suppose thatH is a many-body Hamiltonian satisfying(10.1), λ > 0.
Suppose also thatv ∈ C−∞(X) andWFSc(v) ∩R+(λ) = ∅. Let u+t =R(λ+ it)v, t > 0. Then
u+t has a limitu+ =R(λ+ i0)v in C−∞(X) ast→ 0 andWFSc(u+)∩R+(λ) = ∅. Moreover,
if ξ ∈ Σ̇ \R−(λ) and every maximally backward extended generalized broken bicharacteristic,
γ : (−∞, t0]→ Σ̇, with γ(t0) = ξ is disjoint fromWFSc(v), thenξ /∈WFSc(u+). The result
also holds withR+(λ) andR−(λ) interchanged,R(λ+ it) replaced byR(λ− it), (−∞, t0] by
[t0,∞) and correspondingly ‘backward extended’ by ‘forward extended’.

Proof. –As mentioned above, the first part follows from the self-adjointness ofH , so that
for t > 0, v ∈ C−∞(X), f ∈ Ċ∞(X), we havev(R(λ + it)f) = R(λ+ it)v(f); recall that the
distributional pairing is the real pairing, not the complex (i.e.L2) one. The wave front statement
of Theorem 11.1 and the assumption onv show the existence of the limitu+ = R(λ + i0)v
in C−∞(X) and that in additionWFm,l

Sc (u+) ∩ R+(λ) = ∅ for every l < −1/2. The positive
commutator argument of Theorem 11.1 then applies and shows thatWFSc(u+)∩R+(λ) = ∅. In
the Euclidean setting these results follow from a microlocalized version of the Mourre estimate
due to Gérard, Isozaki and Skibsted [7]; see [9] for a detailed argument.

Finally, sinceWFSc(u+) is closed, a neighborhoodofR+(λ) in Σ̇ is disjoint fromWFSc(u+).
Since all generalized broken bicharacteristics approachR+(λ) ast→−∞ by Proposition 6.8,
the last part follows from(H −λ)u+ = v and Theorem 10.9. It can be also proved by modifying
the argument of Propositions 10.1–10.7 along the lines of our proof of Theorem 11.1. Namely,
we consider the familyu+t ∈ C−∞(X), t > 0, and note that fort > 0, R(λ+ it) ∈Ψ−2,0

Sc (X,C),
soWFSc(u+t ) ⊂WFSc(v). Let A0, etc., be defined asAr with r = 0 whereAr is given by
(10.40) (i.e. we do not need to use the approximating factor(1 + r/x)−1). Then

〈
u+t , i[A∗

0A0,H ]u
+
t

〉
=−2 Im

〈
u+t ,A∗

0A0
(
H − (λ+ it)

)
u+t

〉
− 2t‖A0u+t ‖2.(11.17)

Note that the pairings make sense since nowWF′
Sc(A0) is disjoint fromWFSc(u+t ), t > 0. Thus,

‖B0u+t ‖2 +2t‖A0u+t ‖2 �
∣∣〈u+t ,E0u

+
t 〉

∣∣+ ∣∣〈u+t , F0u
+
t 〉

∣∣(11.18)

+ 2
∣∣〈u+t ,A∗

0A0(H − (λ+ it))u+t
〉∣∣.

Since t > 0, the second term can be dropped from the left hand side. Thus, knowing that
u+t → u+ in C−∞(X) ast→ 0, and assuming thatξ0 /∈WFm,l

Sc (u+) has already been proved

and (10.50) is satisfied byu+, we conclude thatξ0 /∈WFm,l+1/2
Sc (u+). The iteration of this

argument of Proposition 10.1 and the similar arguments for tangential propagation allow us to
conclude the forward propagation estimates which can then be turned into maximal statements
as we did in Theorem 10.9. This argument also shows the influence of the sign oft: if t < 0, the
inequality (11.18) cannot be used to derive results onu+. Instead, the signs are then correct in
the backward estimate, just as expected.✷

We conclude this section with the following uniqueness theorem on solutions of(H−λ)u= 0.
It is essentially a geometric version of Isozaki’s uniqueness theorem [16, Theorem 1.3], though
we allow arbitrary growth ofu away from one of the radial sets, sayR+(λ).

THEOREM 11.4. – Suppose thatH is a many-body Hamiltonian satisfying(10.1), λ > 0.
Suppose also thatu ∈ C−∞(X), (H − λ)u = 0 andWFm,l

Sc (u) ∩R+(λ) = ∅ for somem and
somel >−1/2. Thenu= 0. The same conclusion holds if we replaceR+(λ) byR−(λ).

Proof. –Just as in the proof of Theorem 11.3, the positive commutator estimate of Theo-
rem 11.1 (but now applied with a regularizing factor inx) shows thatWFSc(u) ∩R+(λ) = ∅,
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and then Theorem 10.9 shows that

WFSc(u)⊂R−(λ).(11.19)

We remark that although we need a regularizing factor here which requires some changes
in the proof, e.g. see the argument of the paragraph below, the regularizing factor (whether
(1 + r/x)−1 or another one) commutes withV , so the additional arguments for dealing with
it are essentially the same as the two-body ones. Thus, the regularization part of the proof of
WFSc(u) ∩R+(λ) = ∅ essentially follows [22, Proposition 10].

We proceed to show that

m ∈R, l <−1/2⇒WFm,l
Sc (u)∩R−(λ) = ∅.(11.20)

We give the details below since regularity arguments for distributions which are large at infinity
seem to appear less often in the literature than the ‘finer ones’; in particular, [16, Theorem 1.3]
assumesu∈Hm,l

sc (X)with l >−1. We essentially follow the proof of [22, Proposition 9] below.
So suppose that (11.20) has been shown for somel <−1; we now show it withl replaced by

l+ 1/2. This time we consider

q = x−l−1χ(τ)ψ̃(x), l <−1,(11.21)

whereψ̃ ∈ C∞c (R) is identically1 near0 and is supported in a bigger neighborhood of0 (it
is simply a cutoff near∂X), χ ∈ C∞c (R; [0,1]) identically 1 on (−∞,−

√
λ + ε), vanishes on

(−
√

λ+ 2ε,∞), ε > 0, andχ vanishes with all derivatives at everyt with χ(t) = 0. Then

scHgq =−2
(
(l+1)τχ(τ) + hχ′(τ)

)
x−l−1 =

(
−b2 + e

)
x−l−1,(11.22)

b2 = 2(l+ 1)τχ(τ).(11.23)

The first key point now is that onWFSc(u) we haveτ = −
√

λ, soWFSc(u) ∩ π(supp e) = ∅.
Let A ∈Ψ−∞,−l−1

Sc (X,C) as in Lemma 9.1. Corollary 9.7 again shows that forψ ∈ C∞c (R; [0,1])
supported sufficiently close toλ we have

ixl+1/2ψ(H)[A∗A,H ]ψ(H)xl+1/2 � xl+1/2
(
(2− ε′)B∗B +E + F

)
xl+1/2,

ε′ > 0,(11.24)

where

B ∈Ψ−∞,−l−1/2
Sc (X,C), B̂a,−l−1/2(ζ) = b(ζ)q(ζ)1/2ψ(Ĥa,0(ζ)),

E ∈Ψ−∞,−2l−1
Sc (X,C), WF′

Sc(E)∩WFSc(u) = ∅,(11.25)

F ∈Ψ−∞,−2l
Sc (X,C), WF′

Sc(F )⊂ supp
(
xl+1q

)
.

Let

Ar =A(1 + r/x)−1ψ(H), Br =B(1 + r/x)−1,
(11.26)

Er = (1 + r/x)−1E(1 + r/x)−1,

so

Ar ∈Ψ−∞,−l
Sc (X,C) for r > 0, Ar is uniformly bounded inΨ−∞,−l−1

Sc (X,C);(11.27)
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analogous statements also hold forBr andEr . Thus,

ixl+1/2[A∗
rAr,H ]xl+1/2 = i(1 + r/x)−1xl+1/2ψ(H)[A∗A,H ]ψ(H)xl+1/2(1 + r/x)−1

+ iψ(H)A∗xl+1(Gr +G∗
r)x

l+1Aψ(H) +Hr(11.28)

whereHr is uniformly bounded inΨ−∞,1
Sc (X,C) and

Gr = iψ0(H)2x−1(1 + r/x)−1
[
(1 + r/x)−1,H

]
,(11.29)

ψ0 ∈ C∞c (R; [0,1]), ψ0 ≡ 1 on suppψ, soGr is uniformly bounded inΨ−∞,1
Sc (X,C). Thus, we

need to estimate the commutator[(1 + r/x)−1,H ], and now we do not have a largeM as in the
proof of Proposition 10.1 to help us deal with it.

The other key point is thus that we havei[(1 + r/x)−1,H ] = i[(1 + r/x)−1,∆] and

scHg(1 + r/x)−1 = 2τ
r

x+ r
=−c2r + dr, cr = χ1(τ)(−τ)1/2

(
r

x+ r

)1/2
,(11.30)

χ1 ∈ C∞c (R; [0,1]) identically1 on (−∞,−
√

λ+ 3ε), vanishes on(−
√

λ+ 4ε,∞), ε > 0. Let
Cr be the quantization ofcr multiplied by ψ0(H) as in Lemma 9.1, and defineDr similarly
but with ψ0(H) replaced byψ0(H)2. Thus, as(1 + r/x)−1 is uniformly bounded in the symbol
classS0(X),

iψ0(H)x−1/2[(1 + r/x)−1,H
]
x−1/2ψ0(H) =C∗

rCr +Dr +H ′
r(11.31)

with Cr and Dr uniformly bounded inΨ−∞,0
Sc (X,C), Cr ∈ Ψ−∞,1/2

Sc (X,C) for r > 0,
Dr ∈ Ψ−∞,1

Sc (X,C) for r > 0, and H ′
r uniformly bounded inΨ−∞,1

sc (X,C). Moreover,
DrA ∈Ψ−∞,∞

Sc (X,C) uniformly due to the disjoint operator wave front sets. Thus,

Gr +G∗
r = 2(1+ r/x)−1/2(C∗

rCr +Dr)(1 + r/x)−1/2 +H ′′
r(11.32)

with H ′′
r uniformly bounded inΨ−∞,1

Sc (X,C), so

ψ(H)A∗xl+1(Gr +G∗
r)x

l+1Aψ(H)

= 2ψ(H)A∗xl+1(1 + r/x)−1/2(C∗
rCr +Dr)(1 + r/x)−1/2xl+1Aψ(H) +H@

r

� H-
r ,(11.33)

H@
r , H-

r uniformly bounded inΨ−∞,1
Sc (X,C). Combining (11.24), (11.28) and (11.33), we see

that forε′ > 0 we have

ixl+1/2[A∗
rAr,H ]xl+1/2 � xl+1/2

(
(2− ε′)B∗

rBr +Er + Fr
)
xl+1/2.(11.34)

We deduce as at the end of the proof of Proposition 10.1 thatWFm,l+1/2
Sc (u) ∩R−(λ) = ∅ for

everym and for everyl + 1/2< −1/2, so (11.20) holds. In particular,u ∈Hm,l
sc (X) for every

m and for everyl <−1/2.
In the Euclidean setting we can now simply refer to Isozaki’s uniqueness theorem [16,

Theorem 1.3] to conclude thatu= 0. Here we give some details to indicate how this conclusion
can be reached in general. The crucial step is improving the estimate past the critical regularity
H

∗,−1/2
sc (X). In the Euclidean setting this was done by Isozaki [15, Lemma 4.5] and his
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argument was adapted to the geometric setting in [40, Proposition 17.8]. We thus conclude that
WFm,l

Sc (u) ∩R−(λ) = ∅ for l ∈ (0,−1/2). This is the point where(H − λ)u = 0, and not just
(H−λ)u ∈ Ċ∞(X) is used. Now we can apply a commutator estimate like that of Theorem 11.1
but nearR−(λ). Thus, we conclude thatWFSc(u) ∩R−(λ) = ∅, sou ∈ Ċ∞(X). The theorem
of Froese and Herbst [4] on the absence of bound states with positive energy adapted to the
geometric setting, as discussed in [40, Appendix B], concludes thatu= 0. ✷

12. The Poisson operator and the scattering matrix

Just as in [36,40] where three-body scattering was analyzed, the propagation of singularities
for generalized eigenfunctions ofH implies the corresponding result for the (free-to-free)
scattering matrix,S(λ), of H . Note that this is the only S-matrix under our assumption of the
absence of bound states of the subsystems. We start by discussing the Poisson operator, then we
use it to relate the propagation of singularities for generalized eigenfunctions to the wave front
relation of the S-matrix.

The result that allows us to define the Poisson operator is that ifV is short-range, i.e.
V ∈ x2C∞(X \ C0,sing), then forλ ∈ (0,∞) andg ∈ C∞c (C′

0), there is a uniqueu ∈ C−∞(X)
such that(H − λ)u= 0, andu has the form

u= e−i
√
λ/xx(n−1)/2v− +R(λ+ i0)f,(12.1)

wherev− ∈ C∞(X), v−|∂X = g, andf ∈ Ċ∞(X). For long-rangeV the same statement is valid
with the asymptotic expansion replaced by one similar to that of Theorem 11.1:

u= e−i
√
λ/xx(n−1)/2+iα−v− +R(λ+ i0)f, v− ∈AK

phg(X).(12.2)

The Poisson operator with initial state in the free-cluster is then the map

P+(λ) :C∞c (C′
0)→C−∞(

Sn+
)
, P+(λ)g = u.(12.3)

(Note that the subscript0 for the free cluster has been dropped here in contrast to the introduction
and [39].) To see that such au is unique, note that the differencev = u− u′ of two distributions
u and u′ with the above properties satisfies(H − λ)v = 0 andWF0,0Sc (v) ∩ R+(λ) = ∅ by
Theorem 11.1, sov = 0 due to Theorem 11.4. To see the existence of suchu, note that as
suppg ⊂C′

0, we can construct

u− = e−i
√
λ/xx(n−1)/2v−, v− ∈ C∞(X), v−|∂X = g,

−f = (H − λ)u− ∈ Ċ∞(X),(12.4)

by a local calculation as in [22], i.e. essentially in a two-body type setting. (We need to make
slight changes in the asymptotic expansion for long-rangeV as described above.) Thus, we
construct the Taylor series ofv− at ∂X explicitly, so we can even arrange thatsuppv− ∩
C0,sing = ∅. Thenu= u−+R(λ+ i0)f is of the form (12.1) and satisfies(H −λ)u= 0 indeed.

We need to understand the Poisson operator better before we can extend it to distributions.
So first recall from [40, Section 19] that the Melrose–Zworski [25] construction of a parametrix
for the Poisson operator in the two-body type setting (C is empty) gives ‘the initial part’ of a
parametrixP̃+(λ) for the Poisson operator with free initial state in the many-body setting (for
three bodies in that paper, but this makes no difference). Although the construction is performed
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there for short range potentials, it can be easily adjusted to long range potentials decaying likex,
see [40, Appendix A] and [38, Section 3]. In particular, the kernel ofP̃±(λ) is of the form

K@
±(x, y, y′) = e∓i

√
λ cosdist(y,y′)/xxiα∓(y

′)a±(x, y, y′)|dh|,(12.5)

wheredist is the distance function of the boundary metrich, |dh| is the Riemannian density
associated with it,α± are given by (1.20), anda± ∈ C∞(X×C′

0) are cut off to be supported near
y = y′. Herey′ is the ‘initial point’ of the plane waves, soy′ ∈C′

0 corresponds to considering free
incoming particles. In Euclidean scatteringK@

± takes the forme∓i
√
λw·y′

a±(w,y′)|dh|, w = y/x
is the Euclidean variable and|dh| the standard measure on the sphere; and e.g. if the potentials
Vb are Schwartz thena± are just cutoff functions supported neary = y′ which are constant in a
smaller neighborhood ofy = y′. In general,a±(0, y, y) is determined by the condition that

P̃±(λ)g = e∓i
√
λ/xxiα∓+(n−1)/2v∓,(12.6)

v∓ ∈ AK
phg(X), v∓|∂X = g, and thena±(0, y, y′), as well as the other terms of the Taylor

series ofa± at x = 0 can be calculated from transport equations neary = y′. Finally, we cut
off the solutions to the transport equations close toy = y′ before reachingC0,sing; we do this
by multiplying the asymptotically summed solutions of the transport equations by a function
φ ∈ C∞(X ×C′

0) which is identically1 near diagonal ofC0 ×C′
0. (Note that such a functionφ

is not smooth onX ×C0.) This defines the kernelK@
± as a distribution inC−∞(X ×C′

0). Thus,
for y′ in a fixed compact subsetK0 in C′

0, K@
±(x, y, y′) is supported away fromC0,sing, so for

g ∈ C−∞
c (C′

0), supp(P̃±(λ)g) is disjoint fromC0,sing.
The most important properties of̃P±(λ) are summarized in the following proposition.

Although we state them for̃P+(λ) only, they also hold forP̃−(λ) with the appropriate sign
changes. Here we use∼′

± as the relation onS∗∂X × Σ∆−λ defined analogously to∼± (see
Definition 6.9), but with ‘generalized broken bicharacteristics’ replaced by ‘bicharacteristics of
∆ − λ’. Note that generalized broken bicharacteristics are simply bicharacteristics inscT ∗

C′
0
X

which is where we will apply to following result.

PROPOSITION 12.1 ([40, Proposition A.1]). –K@
+ ∈ C−∞(X ×C′

0;ΩR), constructed above,
is the kernel of an operator̃P+(λ) :C∞c (C′

0) → C−∞(X), which extends to an operator
P̃+(λ) :C−∞

c (C′
0)→C−∞(X), and forg ∈ C−∞

c (C′
0)

supp
(
P̃+(λ)g

)
∩C0,sing = ∅,(12.7)

WFsc
(
P̃+(λ)g

)
⊂

{
(y,
√

λ,0): y ∈ supp g
}

∪
{
ξ ∈ Σ̇ \

(
R+(λ) ∪R−(λ)

)
: ∃ζ ∈WF(g), ξ ∼′

− ζ
}
,(12.8)

WFsc
(
(H − λ)P̃+(λ)g

)
⊂

{
ξ ∈ Σ̇ \

(
R+(λ) ∪R−(λ)

)
: ∃ζ ∈WF(g), ξ ∼′

− ζ
}
.(12.9)

The actual Poisson operator is then given by

P+(λ) = P̃+(λ)−R(λ+ i0)(H − λ)P̃+(λ),(12.10)

with a similar definition ofP−(λ):

P−(λ) = P̃−(λ)−R(λ− i0)(H − λ)P̃−(λ).(12.11)
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Indeed, ifg ∈ C∞c (C′
0) then(H−λ)P̃+(λ)g ∈ Ċ∞(X) andP̃+(λ)g has an asymptotic expansion

as in (12.6), so by Theorem 11.1,(H − λ)P+(λ)g = 0 andP (λ)g has the form (12.1) (with
changes as indicated in (12.2) ifV is long-range). In addition, forg ∈ C−∞

c (C′
0), WFSc((H −

λ)P̃±(λ)g) is disjoint from R±(λ) by Proposition 12.1. Hence, by Theorem 11.3, (12.10)–
(12.11) indeed make sense. We also immediately deduce from Theorem 11.3

PROPOSITION 12.2. – Suppose thatH is a many-body Hamiltonian satisfying(10.1).
Then the Poisson operatorP+(λ) :C∞c (C′

0)→ C−∞(X) extends by continuity to an operator
P̃+(λ) :C−∞

c (C′
0)→C−∞(X). Moreover, forg ∈ C−∞

c (C′
0) we have

WFSc
(
P+(λ)g

)
⊂

{
(y,
√

λ,0): y ∈ suppg
}
∪R−(λ)

∪
{
ξ ∈ Σ̇(λ) \R+(λ): ∃ζ ∈WF(g), ξ ∼− ζ

}
.(12.12)

Our definition of the free-to-free S-matrix is based on asymptotic expansions of generalized
eigenfunctions. So letg ∈ C∞c (C′

0) and letu = P+(λ)g. By (12.1) (modified as in (12.2) for
long-rangeV ) and Theorem 11.1,u has the form

u= e−i
√
λ/xx(n−1)/2v− + ei

√
λ/xx(n−1)/2v+(12.13)

with v− ∈ C∞(X), v+ ∈ C∞(X \C0,sing), v−|∂X = g. We then define the free-to-free S-matrix
by

S(λ) :C∞c (C′
0)→C∞(C′

0), S(λ)g = v+|C′
0
.(12.14)

We need a better description of the S-matrix to describe its structure. This can be done via a
boundary pairing formula analogous to [22, Proposition 13]. It gives the following alternative
description of the S-matrix, see [39, Equation (5.7)] (or its analogue from [36] in the non-
Euclidean setting):

PROPOSITION 12.3. – For λ > 0 the scattering matrix is given by

S(λ) =
1

2i
√

λ

(
(H − λ)P̃−(λ)

)∗
P+(λ).(12.15)

Here ((H − λ)P̃−(λ))∗ denotes the formal adjoint, i.e. the meaning of(12.15)is that for all
f, g ∈ C∞c (C′

0)

〈f,S(λ)g〉∂X =
〈
(H − λ)P̃−(λ)f,

1
2i
√

λ
P+(λ)g

〉
X

.(12.16)

Proof. –The following pairing formula was proved by Melrose [22, Proposition 13] for short-
rangeV , but the same proof also applies whenV is long-range. Also, the proof can be easily
localized, see [39, Proposition 3.3]. Suppose that forj = 1,2, uj ∈ C−∞(X),

uj = ei
√
λ/xx(n−1)/2+iα+vj,+ + e−i

√
λ/xx(n−1)/2+iα−vj,−,

(12.17)
vj,± ∈AK

phg(X \C0,sing), supp(v2,±)� X \C0,sing,

andfj = (H − λ)uj ∈ Ċ∞(X). Let aj,± = vj,±|∂X . Then

2i
√

λ

∫
∂X

(a1,+ a2,+ − a1,− a2,−)dh=
∫
X

(u1 f2 − f1 u2)dg.(12.18)
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We apply this result withu1 = P+(λ)g, u2 = P̃−(λ)f , f, g ∈ C∞c (C′
0). By the construction of

P̃ (−λ) we conclude thata2,+ = f , a2,− = 0, while for u1 we see directly from the definition of
S(λ) andP (λ) thata1,− = g, a1,+ = S(λ)g. Substitution into (12.18) proves the proposition.

Propositions 12.1 and 12.2, when combined with (12.15), allow us to deduce the structure of
the S-matrix.

THEOREM 12.4. –Let (X,C) be a locally linearizable many-body space. Suppose thatH
is a many-body Hamiltonian satisfying(10.1). Then the scattering matrix,S(λ), extends to a
continuous linear mapC−∞

c (C′
0)→C−∞(C′

0). The wave front relation ofS(λ) is given by the
generalized broken geodesic flow at timeπ.

Proof. –Let f, g ∈ C−∞
c (C′

0). Suppose also that there is no generalized broken geodesic of
length π starting at someζ ∈WF(g) and ending atζ′ ∈WF(f). That means that for any
ξ ∈ Σ̇ \ (R+(λ) ∪ R−(λ)) we cannot haveξ ∼− ζ, ζ ∈WF(g), and ξ ∼+ ζ′, ζ′ ∈WF(f),
at the same time. Proposition 12.1 (with− signs instead of+) implies that

WFSc
(
(H − λ)P̃−(λ)f

)
⊂ Σ̇ \

(
R+(λ) ∪R−(λ)

)
;(12.19)

indeed, we also haveWFSc((H − λ)P̃−(λ)f) ⊂ scT ∗
C′

0
X , so we can even replaceWFSc by

WFsc. Thus, by our assumption onWF(f) andWF(g), and by Propositions 12.1–12.2, we have

WFsc
(
(H − λ)P̃−(λ)f

)
∩WFsc

(
P+(λ)g

)
= ∅.(12.20)

But the complex pairing

〈u,u′〉X =
∫

u u′ dg(12.21)

extends by continuity fromu,u′ ∈ Ċ∞(X) to u,u′ ∈ C−∞(X) satisfyingWFsc(u) ∩WFsc(u′)
= ∅. To see this just letA ∈ Ψ0,0sc (X) with WF′

sc(A) ∩ WFsc(u) = ∅, WF′
sc(Id−A∗) ∩

WFsc(u′) = ∅, and note that

〈u,u′〉X = 〈Au,u′〉X + 〈u, (Id−A∗)u′〉X(12.22)

extends as claimed. Hence, the pairing〈
P+(λ)g, (H − λ)P̃−(λ)f

〉
X
=

〈(
(H − λ)P̃−(λ)

)∗
P+(λ)g, f

〉
X

(12.23)

defined first forf, g ∈ C∞c (C′
0) extends by continuity tof, g ∈ C−∞

c (C′
0) satisfying our wave

front condition. In other words,g can be paired with every distribution whose wave front set
has no elements related toWF(g) by the generalized broken geodesic flow at timeπ. Thus,
for any A ∈ Ψ0c(C′

0) with WF′(A) disjoint from the image ofWF(g) under the generalized
broken geodesic flow at timeπ, and for anyf ∈ C−∞

c (C′
0), 〈AS(λ)g, f〉∂X = 〈S(λ)g,A∗f〉∂X

is defined by continuity fromf ∈ C∞c (C′
0), so AS(λ)g ∈ C∞(C′

0). But this states exactly that
WF(S(λ)g) is contained in the image ofWF(g) under the generalized broken geodesic flow at
timeπ. ✷

Appendix A. The proof of Proposition 6.3

In this appendix we prove Proposition 6.3 under the assumption thatC is totally geodesic,
roughly following Lebeau’s original proof in [18]. As noted after the statement of the proposition
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we can proceed inductively, using the order onC. So assume thatγ(t0) = ξ0 ∈ Σn(λ) ∩
scT ∗

C′
a
(Ca;X). The inductive hypothesis is that we have already proved the proposition forb

with Ca ⊂ Cb. Thus, by Definition 6.2, part (ii), there existsδ′ > 0 such that the conclusion
of the proposition holds if we replacet0 by t �= t0, assuming|t− t0| < δ′. Let ξ̃±(t) ∈ Σ∆−λ,
t �= t0, be the points given by the inductive hypothesis. We often write

ξ̃±(t) =
(
y(t), z(t), τ(t), µ±(y), ν(t)

)
(A.1)

in local coordinates, so e.g.τ(ξ̃±(t)) = τ(t). Note thatπ(ξ̃±(t)) = γ(t), hence the independence
of theπ-invariant coordinates,y, z, τ andν, of the± signs.

Notice first thatτ is π-invariant, so fort �= t0 we have

d(τ ◦ γ)/dt|t± = scHgτ
(
ξ̃±(t)

)
=−2h

(
ξ̃±(t)

)
= 2

(
τ
(
ξ̃±(t)

)2 − λ
)

= 2
(
τ
(
γ(t)

)2 − λ
)

(A.2)

where we used thatτ2+h= λ inΣ∆−λ. Thus,τ(t) = τ(γ(t)) is differentiable on(t0 − δ′, t0 + δ′)
except possibly att0, it is continuous att0, and its derivativeτ ′(t) extends to a continuous
function on(t0 − δ′, t0 + δ′). Henceτ(t) is differentiable att0 andτ ′(t0) = 2(τ(t0)2 − λ) =
scHgτ(ξ̃0) for any ξ̃0 ∈ Σ∆−λ. Notice also that, with the notation of (10.54) in the proof of
Proposition 10.1,τ ′(t0) =W0τ = (scHgτ)(ξ̃0). In particular,

|τ(t)− τ0|� C1|t− t0| if |t− t0|< δ′.(A.3)

In fact, the ODEτ ′(t) = 2(τ(t)2 − λ), satisfied for|t− t0|< δ′, has a uniqueC∞ solution, so
on (t0 − δ′, t0 + δ′), τ(t) is C∞ and∣∣τ(t)− (

τ0 + (W0τ)(t− t0)
)∣∣ � C|t− t0|2.(A.4)

From now on we only consider differentiability issues from the left att0; of course, the
situation on the right is similar. We define theπ-invariant functionsη = y ·µ, ω0, ω andφ= φ(ε,δ)

as in the proof of Proposition 10.1. It is shown there that there existC0 > 0 andδ0 > 0 such that
if ε ∈ (0,1), δ ∈ (0, δ0), δ < C0ε

2 and ξ̃ = (y, z, τ, µ, ν) ∈ Σ∆−λ satisfiesτ0 − τ � −2δ and
φ(ξ̃)� 2δ thenscHgφ � c0 > 0. So suppose that we fixed some

0< T <min(δ′,C1δ0)(A.5)

and let

δ =C1T, ε= 2(δ/C0)1/2.(A.6)

Thus, fort ∈ [t0−T, t0), |τ(t)−τ0|< 2δ. Asφ is aπ-invariant function which vanishes atξ0, we
see thatF = φπ ◦γ satisfiesF (t)< 0 anddF/dt|t± = scHgφ(ξ̃±(t))� c0 > 0 for t ∈ [t0−T, t0)
(cf. the proof of Proposition 7.1 after (7.35)). Taking into account the form ofφ and (A.3), we
deduce that fort ∈ [t0 − T, t0), ω(t) = ω(γ(t)) satisfies

ω(t)� C1ε
4δ3|t− t0|.(A.7)

Applying this witht= t0 − T we see that

ω(t0 − T )� C2T
6.(A.8)
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Sinceω is independent ofε andδ, we have deduced that there existsδ1 > 0 such that

t0 − δ1 < t < t0⇒ ω(t)� C|t− t0|6.(A.9)

In particular, under the same assumption,

ω0(t)� C′|t− t0|3,(A.10)

so ∣∣∣∣τ(t)−
(

τ0 +
(

W0τ

W0η

)
η(t)

)∣∣∣∣ � C′′|t− t0|3/2.(A.11)

SinceW0τ �= 0 andτ(t) is C∞, this shows thatη(t) is differentiable from the left att0 and∣∣η(t)− (W0η)(t− t0)
∣∣ � C|t− t0|3/2,

W0η = scHgη(ξ̃), ξ̃ ∈ π̂−1(ξ0) arbitrary.(A.12)

Using this and the definition ofω0 we also conclude that∣∣zj(t)− (W0zj)(t− t0)
∣∣ � C|t− t0|3/2,(A.13)

∣∣νj(t)− (W0νj)(t− t0)
∣∣ � C|t− t0|3/2.(A.14)

This proves the proposition for theπ-invariant functionsτ , zj , νj andη, and indeed it provides
a better error estimate. However, we still need to estimateyj .

To do so, we consider the second term inω, see (10.51). Thus, from (A.9),

∣∣|y(t)|2 − µ−2
0 η(t)2

∣∣ � C|t− t0|3, µ0 =
(
λ− τ20 − h̃(z0, ν0)

)1/2
.(A.15)

Taking into account (A.12), we deduce that

r(t) = |y(t)|(A.16)

satisfies ∣∣r(t)2 − 4µ20(t− t0)2
∣∣ � C|t− t0|5/2.(A.17)

Thus,

|r(t) + 2µ0(t− t0)|� C|t− t0|3/2.(A.18)

Hence,r(t) is also differentiable from the left att0, and in particular

|y(t)|= r(t)� C|t− t0|.(A.19)

Now, ∣∣∣∣y(t)− η(t)
µ20

µ±(t)
∣∣∣∣2 = |y(t)|2 − η(t)2

µ20
− η(t)2

µ20 − |µ±(t)|2
µ20

.(A.20)

By (10.67), (A.10) and (A.19),∣∣|µ±(t)|2 − µ20
∣∣ � C

(
|y(t)|+ ω0(t)1/2

)
� C′|t− t0|.(A.21)
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Thus, by (A.15), ∣∣∣∣y(t)− η(t)
µ20

µ±(t)
∣∣∣∣2 � C|t− t0|3.(A.22)

In particular, for eachj we have

∣∣∣∣yj(t)− η(t)
µ20

µj,±(t)
∣∣∣∣2 � C|t− t0|3.(A.23)

Let

θj = yj/r,(A.24)

soθj is aπ-invariant function away fromCa, and we have|θj |� 1. Also let

θj(t) =
yj(t)
r(t)

, t0 − δ1 < t < t0.(A.25)

By the inductive hypothesis,θj(t) is differentiable fort ∈ (t0− δ1, t0) from both the left and the
right and

dθj
dt

∣∣∣∣
t±
= r(t)−1

dyj
dt
− yj(t)r(t)−2

dr

dt
(A.26)

with

dyj/dt|t± = 2µj,±(t)(A.27)

and

dr/dt|t± =
1
2
|y(t)|−1

(
d|y|2/dt|t±

)
= 2

η(t)
r(t)

.(A.28)

Thus,

dθj
dt

∣∣∣∣
t±
= 2r(t)−1

(
µj,±(t)−

yj(t)η(t)
r(t)−2

)
,(A.29)

so by (A.23) and (A.12),∣∣∣∣dθj
dt

∣∣∣∣
t±
− 2r(t)−1yj(t)

(
µ20η(t)

)−1 − η(t)r(t)−2|� C|t− t0|−1/2.(A.30)

But, by (A.18) and (A.12), this gives∣∣∣∣dθj
dt

∣∣∣∣
t±

� C|t− t0|−1/2.(A.31)

Integrating fromt0 − δ1 to t0 gives thatθj,−(t0) = limt→t0− θj(t) exists and

|θj,−(t0)− θj(t)|� C′|t− t0|1/2.(A.32)

Returning to the original notation,θj = yj/r, we see that

|yj(t) + 2µ0θj,−(t0)(t− t0)|� C′|t− t0|3/2,(A.33)
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soyj(t) is differentiable att0 from the left. We then let

ξ̃−(t0) =
(
0, z(t0), τ(t0), ν(t0),−µ0θj,−(t0)

)
.(A.34)

Then the compositions of theπ-invariant coordinate functionsyj , zj , τ andνj with γ are all
differentiable from the left att0 and the derivative is given byscHg applied to the appropriate
coordinate function, evaluated atξ̃−(0). Note also that from (A.23) and (A.33) we have

|µ±(t)− µ−(t0)|� C|t− t0|1/2, t ∈ (t0 − δ1, t0).(A.35)

Since a general smoothπ-invariant functionf has the form

f(y, z, τ, µ, ν) = f0(z, τ, ν) +
∑

yjfj(z, τ, µ, ν) +
∑

yjykfjk(y, z, τ, µ, ν),(A.36)

f0, fj , fjk all C∞, this finishes the proof of the proposition.
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