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ON THE VARIETY OF LAGRANGIAN SUBALGEBRAS, I

BY SAM EVENS1 AND JIANG-HUA LU 2

ABSTRACT. – We study subalgebras of a semi-simple Lie algebra which are Lagrangian with respect
to the imaginary part of the Killing form. We show that the varietyL of Lagrangian subalgebras carries
a natural Poisson structureΠ. We determine the irreducible components ofL, and we show that each
irreducible component is a smooth fiber bundle over a generalized flag variety, and that the fiber is the
product of the set of real points of a De Concini–Procesi compactification and a connected component of a
real orthogonal group. We study some properties of the Poisson structureΠ and show thatL contains many
interesting Poisson submanifolds.

 2001 Éditions scientifiques et médicales Elsevier SAS

RÉSUMÉ. – Nous étudions les sous-algèbres d’une algèbre de Lie semi-simple qui sont lagrangiennes par
rapport à la partie imaginaire de la forme de Killing. Nous montrons que la variété,L, de ces sous-algèbres
possède une structure de Poisson naturelle,Π. Nous décrivons les composantes irréductibles deL et nous
montrons que chaque composante irréductible est un fibré lisse de base une variété de drapeaux généralisée
et de fibre le produit des points réels d’une compactification de De Concini–Procesi par une composante
connexe d’un groupe orthogonal. Nous étudions la structure de PoissonΠ, et nous montrons queL contient
des sous-variétés de Poisson intéressantes.

 2001 Éditions scientifiques et médicales Elsevier SAS

1. Introduction

Let g be a complex semi-simple Lie algebra and letIm〈〈 , 〉〉 be the imaginary part of the
Killing form 〈〈 , 〉〉 of g. We will say that a real subalgebral of g is Lagrangianif dimR l = dimC g

and if Im〈〈x, y〉〉= 0 for all x, y ∈ l.
In this paper, we study the geometry of the varietyL of Lagrangian subalgebras ofg and show

thatL carries a natural Poisson structureΠ. We show that each irreducible component ofL is
smooth and is a fiber bundle over a generalized flag variety, and the fiber is the product of the
set of real points of a De Concini–Procesi compactification and a connected component of a real
orthogonal group. We study some properties of the Poisson structureΠ and show that it contains
many interesting Poisson submanifolds.

The Poisson structureΠ is defined using the fact thatg, regarded as a real Lie algebra, is the
double of a Lie bialgebra structure on a compact real formk of g. The construction ofΠ works
for any Lie bialgebra, and we present it in the first part of the paper. In the second part, we study
the specific example ofL, which we regard as the most important example since it is closely
related to interesting problems in Lie theory.
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We now explain our motivation and give more details of our results.
Let (u,u∗) be any Lie bialgebra, letd be its double, and let〈 , 〉 be the symmetric scalar

product ond given by:

〈x+ ξ, y+ η〉= (x, η) + (y, ξ), x, y ∈ u, ξ, η ∈ u∗.

A subalgebral of d is said to beLagrangianif dim l = dimu and if 〈a, b〉 = 0 for all a, b ∈ l.
Denote byL(d) the set of all Lagrangian subalgebras ofd. It is a subvariety of the Grassmannian
of n-dimensional subspaces ofd, wheren = dimu. The motivation for studyingL(d) comes
from a theorem of Drinfeld [6] on Poisson homogeneous spaces which we now recall briefly.
More details are given in Section 2.1.

Let (U,πU ) be a Poisson Lie group with(u,u∗) as its tangent Lie bialgebra. Recall that an
action ofU on a Poisson manifold(M,π) is called Poisson if the action mapU × M → M
is a Poisson map. When the action is also transitive,(M,π) is called a(U,πU )-homogeneous
Poisson space. In this case, Drinfeld [6] associated to eachm ∈M a Lagrangian subalgebralm
of d and showed thatlu·m =Adulm for everyu ∈U andm ∈M . Thus we have aU -equivariant
map

P :M −→ L(d) :m �−→ lm,(1)

whereU acts onL(d) by the adjoint action. Drinfeld’s theorem says that the assignment that
assigns to each(M,π) the image of the mapP in (1) gives a one-to-one correspondence between
the set ofU -equivariant isomorphism classes of(U,πU )-homogeneous Poisson spaces with
connected stabilizer subgroups and the set ofU -orbits in a certain subsetL(d)C of L(d) (see
Section 2.1 for more details).

We prove the following theorem.

THEOREM 1.1. – 1)There is a Poisson structureΠ onL(d) with respect to which the adjoint
action ofU onL(d) is Poisson.

2) EachU -orbit O in L(d) is a Poisson submanifold and consequently a(U,πU )-homogene-
ous Poisson space.

3) For any (U,πU )-homogeneous Poisson space(M,π), the mapP in (1) is a Poisson map
onto theU -orbit of lm for anym ∈M .

We introduce the notion ofmodel pointsin L(d). For a homogeneous Poisson space(M,π), let
l= P (m) for somem ∈M . We showl is a model point if and only if the mapP :M →Ol = U · l
is a local diffeomorphism (and thus a covering map). When this happens, we regard(Ol,Π) as a
model for the Poisson space(M,π).

The second part of the paper is concerned with the varietyL of Lagrangian subalgebras of a
complex semi-simple Lie algebrag with respect to the imaginary part of its Killing form. LetG
be the adjoint group ofg. Based on the Karolinsky classification of Lagrangian subalgebras ofg

in [12], we prove:

THEOREM 1.2. – The irreducible components ofL are smooth. Each irreducible component
fibers over a generalized flag variety, and its fiber is the product of a connected component of a
real orthogonal group and the space of real points of a De Concini–Procesi compactification of
the semi-simple part of a Levi subgroup ofG.

For example, wheng = sl(2,C), there are two irreducible components: the first component is
theSL(2,C)-orbit througha+n and is isomorphic toCP1 (herea consists of diagonal real trace
zero matrices andn strictly upper triangular matrices), and the second component contains the
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ON THE VARIETY OF LAGRANGIAN SUBALGEBRAS, I 633

SL(2,C)-orbits throughsu(2) andsl(2,R) as open orbits, and theSL(2,C)-orbit throughia+ n

as the unique closed orbit. The second component may be identified asRP3.
Let k be a compact real form ofg andK ⊂ G the connected subgroup with Lie algebrak.

Fix an Iwasawa decompositiong = k + a + n of g. Then there is a Poisson structureπK onK
making(K,πK) into a Poisson Lie group, and the double of the tangent Lie bialgebra of(K,πK)
is g. By Theorem 1.1, there is a Poisson structureΠ onL such that eachK-orbit in L, being a
Poisson submanifold of(L,Π), is a(K,πK)-homogeneous Poisson space, and every(K,πK)-
homogeneous Poisson space maps onto aK-orbit inL by a Poisson map. In particular, we show
that every point in the (unique) irreducible componentL0 of L that containsk is a model point.
Consequently, a number of interesting(K,πK)-homogeneousPoisson spaces are contained inL0

(possibly up to covering maps) as Poisson submanifolds. Among these areall (K,πK)-homo-
geneous Poisson structures on anyK/K1, whereK1 is a closed subgroup ofK containing a
maximal torus ofK . For example,K/K1 could be any flag varietyG/Q∼=K/K ∩Q, whereQ
is a parabolic subgroup ofG. We remark that it is shown in [21] that all(K,πK)-homogeneous
Poisson structures onK/T , whereT is a maximal torus inK , can be obtained from solutions
to theClassical Dynamical Yang–Baxter Equation[8]. Some Poisson geometrical properties of
such Poisson structures are also studied in [21].

We are motivated to study(K,πK)-homogeneous Poisson structures because of their
connections to Lie theory. One remarkable example is the so-called Bruhat Poisson structure
π∞ [17] onK/T . It corresponds to the Lagrangian subalgebrat + n of g, whereg = k + a + n

is an Iwasawa decomposition ofg, and t = ia is the Lie algebra ofT . The name Bruhat
Poisson structure comes from the fact that its symplectic leaves are exactly the Bruhat cells
for a Bruhat decomposition ofK/T [17]; its Poisson cohomology is isomorphic to a direct sum
of n-cohomology groups with coefficients in certain infinite-dimensional representations ofG
[19]; its K-invariantPoisson harmonic formsare exactly the harmonic forms introduced and
studied by Kostant in [15]. This last fact is proved in [7], where we also useπ∞ to construct
S1-equivariantly closed forms onK/T and use them to reinterpret the Kostant–Kumar approach
to the Schubert calculus onK/T [16]. One key fact used in [7] is that the Poisson structureπ∞ is
the limit of a familyπt, t ∈ (0,+∞), of (K,πK)-homogeneous symplectic structures onK/T .
The family πt, t ∈ (0,+∞], corresponds to a continuous curve inL. Thus, we regardL as a
natural setting for deformation problems for Poisson homogeneous spaces, and for this reason it
is desirable to study its geometry.

The paper is organized as follows.
We start our discussion in Section 2 with an arbitrary Poisson Lie group(U,πU ), its tangent Lie

bialgebra(u,u∗), and the varietyL(d) of Lagrangian subalgebras of its doubled = u �� u∗. We
first review Drinfeld’s theorem on(U,πU )-homogeneous spaces. We then give the construction
of the Poisson structureΠ onL(d) and establish the properties listed in Theorem 1.1.

The rest of the paper is devoted to the Poisson Lie group(K,πK). In §3.1, we review
Karolinsky’s classification of Lagrangian subalgebras, and use it todecomposeL into a finite
disjoint union of submanifoldsL(S, ε, d). The study of the closureL(S, ε, d) is reduced to
studying the closure of the variety of real forms of a semi-simple Lie algebra. After some
preliminary results in Section 4, we identify the closure with the set of real points of a De
Concini–Procesi compactification in Section 5. In Section 6, we apply our results to determine
the irreducible components ofL and show they are smooth. We also study the set of model
points inL and show that every Lie algebra in the irreducible componentL0 containingk is a
model point. In Section 7, we study some properties of the Poisson structureΠ. In particular,
we study theK-orbits in the irreducible componentL0 and the(K,πK)-homogeneous Poisson
spaces arising from them. In the last section, we discuss relations with other recent work and
some unresolved problems for a sequel to this paper.
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634 S. EVENS AND J.H. LU

2. Generalities on Lie bialgebras

2.1. Drinfeld’s theorem

In this section, we review Drinfeld’s theorem on homogeneous spaces of Poisson Lie groups
in [6]. Details on Poisson Lie groups can be found in [17] and [14] and the references cited
in [14].

Let (U,πU ) be a Poisson Lie group with tangent Lie bialgebra(u,u∗), whereu is the Lie
algebra ofU and u∗ its dual space equipped with a Lie algebra structure coming from the
linearization ofπU at the identity element ofU . We will use lettersx, y, x1, y1, . . . to denote
elements inu andξ, η, ξ1, η1, . . . for elements inu∗. The pairing between elements inu and inu∗

will be denoted by( , ).
Let 〈 , 〉 be the symmetric non-degenerate scalar product on the direct sum vector spaceu⊕u∗

defined by

〈x1 + ξ1, x2 + ξ2〉= (x1, ξ2) + (x2, ξ1).(2)

Then there is a unique Lie bracket on theu ⊕ u∗ such that〈 , 〉 is ad-invariant and that bothu
andu∗ are its Lie subalgebras with respect to the natural inclusions. The vector spaceu ⊕ u∗

together with this Lie bracket is called the double Lie algebra of(u,u∗) and we will denote it by
d = u �� u∗. Note thatU acts ond by the adjoint action (by first mappingU to the adjoint group
of d).

Example2.1. – Let u = k be a compact semi-simple Lie algebra. Letg = kC be the
complexification ofk with an Iwasawa decompositiong = k + a + n. Let 〈 , 〉 be twice the
imaginary part of the Killing form ofg. Then the pairing betweenk anda+ n via 〈 , 〉 gives an
identification ofk∗ anda + n, and(k,a + n) becomes a Lie bialgebra whose double isg. If K
is any group with Lie algebrak, then there is a Poisson structureπK onK making(K,πK) into
a Poisson Lie group whose tangent Lie bialgebra is(k,a + n). This will be our most important
example.

DEFINITION 2.2. – Letn= dimu. A Lie subalgebral of d is calledLagrangianif 〈a, b〉= 0
for all a, b ∈ l and if dim l = n. The set of all Lagrangian subalgebras ofd will be denoted
byL(d).

Both u and u∗ are Lagrangian. IfD is the adjoint group ofd, thenD acts on the set of
Lagrangian subalgebras. In Example 2.1, any real form ofg is a Lagrangian subalgebra, as is
t+ n, wheret = ia is the centralizer ofa in k.

Let (M,π) be a(U,πU )-homogeneous Poisson space. Recall [6] that this means thatU acts
on M transitively and that the action mapU ×M → M is a Poisson map, whereU × M is
equipped with the direct product Poisson structureπU ⊕ π. Letm ∈M . Then, since the Poisson
structureπ onM is (U,πU )-homogeneous, it must satisfy

π(um) = u∗π(m) +m∗πU (u), ∀u∈ U, m ∈M.(3)

Here u∗ and m∗ are respectively the differentials of the mapsM → M :m1 �→ um1 and
U → M :u1 �→ u1m. Thus,π is totally determined by its valueπ(m) ∈ ∧2(TmM) at m. Let
Um ⊂ U be the stabilizer subgroup ofU atm with Lie algebraum. IdentifyTmM ∼= u/um so
thatπ(m) ∈ ∧2(u/um). Let lm be the subspace ofd defined by

lm = {x+ ξ: x∈ u, ξ ∈ u
∗, ξ|um = 0, ξ π(m) = x+ um}.(4)
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THEOREM 2.3 (Drinfeld [6]). – 1)lm is a Lagrangian subalgebra ofd for all m ∈M .
2) For all m ∈M andu ∈ U ,

lm ∩ u= um,(5)

Adulm = lum, ∀u∈ U.(6)

3) LetM be aU -homogeneous space. A(U,πU )-homogeneous Poisson structureπ onM is
equivalent to aU -equivariant mapP :M →L(d) :m �→ lm such that(5) holds for allm ∈M .

DEFINITION 2.4. – We will calllm theLagrangian subalgebra ofd associated to(M,π) at
the pointm. The mapP :M →L(d) will be called theDrinfeld map.

DEFINITION 2.5. – Given aU -homogeneous spaceM , we say that aU -equivariant map
M →L(d) :m �→ lm hasProperty I (I for intersection) if (5) is satisfied for allm ∈M .

Thus 3) of Theorem 2.3 can be rephrased as follows: given aU -homogeneous spaceM , a
(U,πU )-homogeneous Poisson structure onM is equivalent to aU -equivariant mapM →L(d)
with Property I.

Remark2.6. – We explain how aU -equivariant mapM → L(d) having Property I gives a
(U,πU )-homogeneous Poisson structure onM : pick anym ∈ M . Becauselm ⊂ d is maximal
isotropic (this means thatdim lm = n and that〈a, b〉 = 0 for all a, b ∈ lm) and because of (5),
an easy linear algebra argument (see also Lemma 2.24) shows that there is a unique element
π(m) ∈ ∧2(u/um) such that (4) holds. Define a bivector fieldπ on M by (3). This is well
defined because of (6). Thisπ is Poisson becauselm is Lagrangian. It is(U,πU )-homogeneous
because (3) holds by definition.

We now state some consequences of Theorem 2.3.

DEFINITION 2.7. – A Lagrangian subalgebra ofd is said to haveProperty C(C for closed) if
the connected subgroupU ′

l of U with Lie algebral∩ u is closed inU .

Note that anylm in the image of the Drinfeld map for any(M,π) has Property C, because
the connected subgroup ofU with Lie algebralm ∩ u is the identity connected component of the
stabilizer subgroup ofU atm, so it is closed inU . Conversely, ifl ∈ L(d) has Property C, we
have theU -homogeneous spaceU/U ′

l and theU -equivariant map

U/U ′
l −→ L(d) :uU ′

l �−→ Adul.

It has Property I. More generally, suppose thatU1 is any closed subgroup ofU having the
properties:

(A) the Lie algebra ofU1 is l∩ u;
(B) U1 normalizesl,
Then we have theU -equivariant map

U/U1 −→ L(d) :uU1 �−→ Adul.

It has Property I. Thus, by Theorem 2.3, we have:

COROLLARY 2.8. – Suppose thatl ∈ L(d) has PropertyC. Then, for any closed subgroupU1

ofU having Properties(A) and(B), there is a(U,πU )-homogeneous Poisson structure onU/U1

whose Drinfeld map is given by

P :U/U1 −→ L(d) :uU1 �−→ Adul.
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DEFINITION 2.9. – For a Lagrangian subalgebral of d with Property C and any subgroupU1

of U with the above Properties (A) and (B), we say that the Poisson manifold(U/U1, π)
described in Corollary 2.8 is determined byl.

Denote byL(d)C the set of all points inL(d) with Property C. It is clearly invariant under
the adjoint action ofU . For every(U,πU )-homogeneous Poisson space(M,π), the image of the
Drinfeld mapM →L(d) is aU -orbit in L(d)C .

COROLLARY 2.10 (Drinfeld [6]). – The map that assigns to each(M,π) the image of its
Drinfeld map gives a one-to-one correspondence betweenU -equivariant isomorphism classes
of (U,πU )-homogeneous Poisson spaces with connected stabilizer subgroups and the set of
U -orbits inL(d)C .

We close this section by an example of a Lagrangian subalgebral that does not have
Property C.

Example2.11 ([12]). – Consider the Lie bialgebra(k,a + n) in Example 2.1. LetU = K
be a compact connected Lie group with Lie algebrak and letT be the maximal torus ofK
with Lie algebraia. Choose a topological generatort of T and let t = exp(X), X ∈ t. Let
l= R ·X+(a∩ (R ·X)⊥)+n, where the perpendicular is computed relative to the Killing form.
Thenl is Lagrangian, but ifrank(T )> 1 thenl∩ k is not the Lie algebra of a closed subgroup of
K , sol does not have Property C.

2.2. A Poisson structure onL(d)

Let (U,πU ) be a Poisson Lie group and let(u,u∗) be its tangent Lie bialgebra. Letd = u �� u∗

be its double Lie algebra equipped with the symmetric scalar product〈 , 〉 given by (2). Recall
thatL(d) is the set of Lagrangian subalgebras ofd with respect to〈 , 〉.

Notation 2.12. – We will useGr(n,d) to denote the Grassmannian ofn-dimensional
subspaces ofd. Since the condition of being closed under Lie bracket and the condition of being
Lagrangian are polynomial conditions,L(d)⊂Gr(n,d) is an algebraic subset.

The groupU acts onGr(n,d) by the adjoint action and it leavesL(d) invariant. Although
L(d) may be singular, all theU -orbits inL(d) are smooth.

In this section, we will show that there is a smooth bi-vector fieldΠ on Gr(n,d) with the
property

[Π,Π](l) = 0

for everyl ∈L(d), where[Π,Π] is the Schouten bracket ofΠ with itself. Moreover, we show that
Π is tangent to everyU -orbitO in L(d), so(O,Π) is a Poisson manifold. In fact, each(O,Π) is
a (U,πU )-homogeneous Poisson space. If(M,π) is a(U,πU )-homogeneous Poisson space, we
show that the Drinfeld mapP :M →O is a Poisson map, whereO is theU -orbit of lm for any
m ∈M .

Notation 2.13. – We identifyd∗ ∼= u∗ ⊕ u in the obvious way. Denote by#:d∗ → d the
isomorphism induced by the nondegenerate pairing〈 , 〉 ond. It is given by

#:d∗ −→ d :#(ξ + x) = x+ ξ.(7)

ForV ⊂ d, we let

V ◦ = {f ∈ d
∗: f |V = 0}.
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To define the bi-vector fieldΠ onGr(n,d), we consider the elementR ∈ ∧2d defined by

R(ξ1 + x1, ξ2 + x2) = (ξ2, x1)− (ξ1, x2), ∀x1, x2 ∈ u, ξ1, ξ2 ∈ u∗.

The elementR is an example of a classicalr-matrix ond [14]. In particular, the Schouten bracket
[R,R]∈ ∧3d of R with itself is ad-invariant and is given by

[R,R](f1, f2, f3) = 2
〈
#f1, [#f2,#f3]

〉

for fi ∈ d∗. Denote byχk(Gr(n,d)) the space ofk-vector fields onGr(n,d) (i.e., the space of
smooth sections of thekth exterior power of the tangent bundle ofGr(n,d)). The action by the
adjoint groupD of d onGr(n,d) gives a Lie algebra anti-homomorphism

κ :d −→ χ1
(
Gr(n,d)

)

whose multi-linear extension from∧kd to χk(Gr(n,d)), for any integerk � 1, will also be
denoted byκ.

Define the bi-vector fieldΠ onGr(n,d) by

Π=
1
2
κ(R).

THEOREM 2.14. – For every Lagrangian subalgebral of d regarded as a point inGr(n,d),
we have

[Π,Π](l) = 0,

where[Π,Π] is the Schouten bracket ofΠ with itself.

Proof. –SinceΠ= 1
2κ(R) and sinceκ is a Lie algebra anti-homomorphism, we have

[Π,Π] =−1
4
κ([R,R]).

Let Dl be the stabilizer subgroup ofD at l for the adjoint action, and letdl be its Lie algebra.
SinceΠ is tangent to theD-orbit D · l in Gr(n,d), we only need to show that[Π,Π] = 0 when
evaluated on a triple(α1, α2, α3) of covectors inT∗

l (D · l). The map

κ :d −→ Tl(D · l)

gives an identification

κ∗ :T∗
l (D · l) −→ d

◦
l .

Thus, it suffices to show

[R,R](f1, f2, f3) = 0

for fi ∈ d◦l , i= 1,2,3. Sincel⊂ dl, we have#(d◦l )⊂#(l◦) = l. It follows that

[R,R](f1, f2, f3) = 2
〈
#f1, [#f2,#f3]

〉
= 0

becausel is a Lagrangian subalgebra.✷
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If X is an algebraic variety, denote byAX the sheaf of algebraic functions onX , and if
Y ⊂X is a closed subvariety, denote byIY ⊂ AX the sheaf of functions vanishing onY . For
locally defined functionsf andg in AGr(n,d), let {f, g}=Π(df, dg) ∈AGr(n,d).

COROLLARY 2.15. – (L(d),{·, ·}) is a Poisson algebraic variety.

Proof. –We have to check that{·, ·} induces the structure of a Poisson algebra onAL(d). For
f ∈ AGr(n,d), let ξf be the local vector field defined byξf (g) = {f, g}, whereg ∈ AGr(n,d). It
follows easily from the definition that ifg ∈ IL(d), thenξf (g) vanishes onL(d), i.e.,ξf is tangent
to L(d). It follows that the bracket{·, ·} descends fromAGr(n,d) to AL(d). Although{·, ·} does
not define a Poisson algebra structure onAGr(n,d), Theorem 2.14 implies that it does define a
Poisson algebra structure onAL(d). ✷

COROLLARY 2.16. – For everyl ∈ L(d) ⊂ Gr(n,d), the bivector fieldΠ defines a Poisson
structure on theD-orbit D · l in Gr(n,d).

Since[R,R]∈ ∧3d is ad-invariant, the following bivector fieldπ− onD is Poisson:

π−(d) =
1
2
(rdR− ldR), d ∈D,

whererd andld are respectively the differentials of the right and left translations onD defined
by d. Moreover,(D,π−) is a Poisson Lie group and(U,πU ) is a Poisson subgroup of(D,π−)
(see [18]).

PROPOSITION 2.17. – For everyl ∈ L(d), the Poisson manifold(D · l,Π) is (D,π−)-homo-
geneous.

Proof. –Let againDl be the stabilizer subgroup ofl in D. ThenD · l ∼=D/Dl. Consider the
bivector fieldΠ1 onD defined by

Π1(d) =
1
2
rdR, d ∈D.

ThenΠ= p∗Π1, wherep :D→D/Dl is the natural projection andp∗ its differential. It is easy
to check that, for anyd1, d2 ∈D, we have

Π1(d1d2) = ld1Π1(d2) + rd2π−(d1).

It follows that(D · l,Π) is a(D,π−)-homogeneous Poisson space.✷
Consider now theU -orbits inL(d) through a pointl ∈ L(d). We have:

THEOREM 2.18. – At anyl ∈L(d), the bi-vector fieldΠ onGr(n,d) is tangent to theU -orbit
throughl, so that(U · l,Π) is a Poisson submanifold of(D · l,Π).

Proof. –RegardΠ as a bivector field on theD-orbit D · l, soΠ(l) ∈ ∧2Tl(D · l). Let Π(l)#

be the linear map

Π(l)# :T∗
l (D · l) −→ Tl(D · l) :

Π(l)#(α)(β) = Π(l)(α,β), α, β ∈T∗
l (D · l).

It is enough to show that the image ofΠ(l)# is tangent to theU -orbit throughl.
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By the identification,T∗
l
(D · l)→ d◦

l
, it is enough to show that

κ
(
(ξ + x) R

)
∈Tl(U · l), ∀ ξ + x ∈ d◦l ,

where(ξ + x) R ∈ d is defined by

(
(ξ + x) R

)
(η + y) =R(ξ + x, η+ y), ∀η+ y ∈ d∗.

We compute explicitly. It follows from the definition ofR that

R=
n∑

i=1

ηi ∧ ei ∈ ∧2d,

where{e1, . . . , en} is a basis foru and{η1, . . . , ηn} is its dual basis foru∗. It follows that

(ξ + x) R=
n∑

i=1

(
(x, ηi)ei − (ξ, ei)ηi

)
= x− ξ.

Hence

κ
(
(ξ + x) R

)
= κ(x)− κ(ξ).

But sinceξ + x∈ d◦l , we havex+ ξ ∈ l, soκ(x+ ξ) = 0. Thus

κ
(
(ξ + x) R

)
= 2κ(x) ∈Tl(U · l). ✷

COROLLARY 2.19. – For everyl ∈L(d), the Poisson manifold(U · l, Π) is a (U,πU )-homo-
geneous Poisson space.

Proof. –This follows from Proposition 2.17 because(U,πU ) is a Poisson subgroup of(D,π−)
and(U · l,Π) is a Poisson submanifold of(D · l,Π). ✷

Remark2.20. – LetU∗ be the connected and simply connected group with Lie algebrau∗.
Then for any Lagrangian subalgebral ∈ L(d), the orbitU∗ · l is also a Poisson submanifold of
(D · l,Π). Indeed, the roles ofu andu∗ are symmetric in the definition ofD and ofL(d), but the
R-matrix for the Lie bialgebra(u∗,u) differs from that for(u,u∗) by a minus sign. Consequently,
if we denote byπU∗ the Poisson structure onU∗ such that(U∗, πU∗) is the dual Poisson Lie
group of(U,πU ), then everyU∗-orbit in L(d) is a(U∗,−πU∗)-homogeneous Poisson space.

We now look at the Drinfeld mapP :U · l→L(d) for the(U,πU )-homogeneous Poisson space
(U · l,Π) (see Definition 2.4).

THEOREM 2.21. – For any l ∈ L(d), the Lagrangian subalgebra ofd associated to(U · l,Π)
at l is

T(l) = ul +
(
u+ u⊥l

)
∩ l,

whereul is the normalizer subalgebra ofl in u, andu⊥l = {ξ ∈ u∗: ξ|ul
= 0}.

Proof. –Denote byl′ the Lagrangian subalgebra associated to(U · l, Π) at l. We need to show
thatl′ =T(l). By definition,

l′ =
{
x+ ξ: x ∈ u, ξ ∈ u⊥l , ξ Π(l) = x+ ul

}
.
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Let ξ ∈ u⊥
l

. Since the inclusion

(U · l,Π) −→ (D · l,Π)

is a Poisson map, it suffices to compute((κ∗)−1(ξ + x)) Π(l) for any x ∈ u such that
ξ + x ∈ d0

l , whereΠ(l) is regarded as a bi-vector atl ∈ D · l, and(κ∗)−1 :T∗
l (D · l) → d◦l is

the isomorphism induced byκ :d → Tl(D · l). In the proof of Theorem 2.18, we showed that
(κ∗)−1(ξ + x) Π(l) = κ(x). As a result, we see that

l′ =
{
x+ ξ: x ∈ u, ξ ∈ u⊥l , ξ + x1 ∈ d◦l for somex1 = x mod (ul)

}
= ul +#(d◦l ).

Now, the inclusionsul ⊂ dl and l ⊂ dl induce inclusions#(d◦l ) ⊂ u + u⊥l and#(d◦l ) ⊂ l, so
#(d◦l )⊂ (u+ u⊥l ) ∩ l. Hence,

ul +#(d◦l )⊂ ul +
(
u+ u

⊥
l

)
∩ l =T(l).

On the other hand, it is obvious thatT(l) is isotropic, so its dimension is at mostn. Sincel′ has
dimensionn, we must havel′ =T(l). ✷

Remark2.22. – The mapT :L(d)→L(d) is not continuous in general. For example, consider
the Lie bialgebra in Example 2.1 forg = sl(3,C). ChooseH ∈ a with the property that both
simple roots are positive onH . It is possible to choose a real formg0 of sl(3,C) that is
isomorphic tosl(3,R) such that the curveγt = exp(adtH)(sl(3,R)) in L = L(g) has a limit
γ∞ = hτ + n, whereh = a + t is a Cartan subalgebra ofsl(3,C), andτ is a conjugate linear
automorphism such thatdim(hτ ∩ t) = 1. Since the normalizer ofg0 in sl(3,C) is g0, the
normalizer ofγt in sl(3,C) is γt for t �=∞. Consequently,T(γt) = γt for all t <∞. On the other
hand, it is easy to check thatT(γ∞) = t + n. It follows thatT is not continuous. This example
can be generalized to any real form corresponding to a nontrivial diagram automorphism (see
Remark 4.9 for a generalization of this example).

Assume now that(M,π) is an arbitrary(U,πU )-homogeneous Poisson space. Consider the
Drinfeld map

P :M −→ L(d) :m �−→ lm.

By Theorem 2.3,P is a submersion ofM onto theU -orbitO = U · lm in L(d) for anym ∈M .

THEOREM 2.23. – The Drinfeld map

P : (M, π) −→ (O,Π)

is a Poisson map.

Proof. –Fix m ∈M . Let l = lm. ThenO = U · l. Since both(M,π) and(O,Π) are(U,πU )-
homogeneous, it is enough to show that

P∗π(m) = Π(l).

Let Um andUl be respectively the stabilizer subgroup ofU at m and the normalizer subgroup
of l in U . Their Lie algebras are respectivelyl ∩ u andul. SinceP is U -equivariant, we have
Um ⊂ Ul. Identify

M ∼= U/Um, O ∼= U/Ul.
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Then the mapP becomes

P :U/Um −→ U/Ul :uUm �−→ uUl,

and we have

π(m) ∈ ∧2
(
u/(l∩ u)

)
, Π(l) ∈ ∧2(u/ul).

Thus we only need to show thatπ(m) goes toΠ(l) under the map

j :u/(l∩ u) −→ u/ul :x+ l ∩ u �−→ x+ ul.

But this follows from a general linear algebra fact which we state as a lemma below.✷
LEMMA 2.24. – Let V be ann-dimensional vector space and letV ∗ be its dual space. On

the direct sum vector spaceV ⊕ V ∗, consider the symmetric product〈 , 〉 defined by

〈x+ ξ, y+ η〉= (x, η) + (y, ξ), x, y ∈ V, ξ, η ∈ V ∗.

1) LetV0 be any subspace ofV . For λ ∈ ∧2(V/V0), define

Wλ =
{
x+ ξ: x∈ V, ξ ∈ V ∗, ξ|V0 = 0, ξ λ= x+ V0

}
.

Thenλ �→ Wλ is a one-to-one correspondence between elements in∧2(V/V0) and maximal
isotropic subspacesW of V ⊕ V ∗ such thatW ∩ V = V0.

2) LetV1 be another subspace ofV such thatV0 ⊂ V1. Let

j :V/V0 −→ V/V1 :v+ V0 �−→ v+ V1

be the natural projection. Letλ0 ∈ ∧2(V/V0) andλ1 ∈ ∧2(V/V1). Thenj(λ0) = λ1 if and only
if

Wλ1 = V1 +
(
V ⊕ V ⊥

1

)
∩Wλ0 ,(8)

whereV ⊥
1 = {ξ ∈ V ∗: ξ|V1 = 0}.

Proof. –1) Givenλ ∈ ∧2(V/V0), it is easy to see thatWλ is maximal isotropic with respect to
〈 , 〉 and thatWλ ∩ V = V0. Conversely, ifW is a maximal isotropic subspace ofV ⊕ V ∗ such
thatW ∩ V = V0, then

{ξ ∈ V ∗: x+ ξ ∈W for somex ∈ V }= V ⊥
0 =

{
ξ ∈ V ∗: ξ|V0 = 0

}
.

Define

f : (V/V0)∗ −→ V/V0 : ξ �−→ x+ V0,

whereξ ∈ (V/V0)∗ ∼= V ⊥
0 andx ∈ V is such thatx + ξ ∈ W . Thenf is well defined and is

skew-symmetric. Thus there existsλ ∈ ∧2(V/V0) such thatf(ξ) = ξ λ for all ξ ∈ (V/V0)∗. It
is then easy to check thatW =Wλ.

2) One way to prove this fact is to take a basis forV0, extend it first to a basis forV1 and then
extend it further to a basis ofV . One can then write down all the spaces in (8) using these basis
vectors and compare them. We omit the details.✷

As a special case of Theorem 2.23, we have:
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COROLLARY 2.25. – For anyl ∈ L(d) with PropertyC and any(U,πU )-homogeneous space
(U/U1, π) determined byl (seeDefinitions2.7and2.9), the map

P : (U/U1, π) −→ (U · l,Π) :uU1 �−→ Adul(9)

is Poisson.

2.3. Model points inL(d)

DEFINITION 2.26. – We say that a Lagrangian subalgebral is a u-model point(in L(d)) if
l∩ u = ul, whereul is the normalizer subalgebra ofl in u.

It is easy to see that the set of model points inL(d) is invariant under theU -action. Observe
also thatl is a model point if and only ifT(l) = l. In general,T 2 �= T . See Remark 3.6 for an
example. For the rest of the section, we refer tou-model points simply as model points.

Every model point has Property C, for ifl ∈ L(d) is a model point, the connected subgroupU ′
l

of U with Lie algebral∩u is the identity component of the stabilizer subgroupUl of l in U , soU ′
l

is closed. Consequently,l determines a(U,πU )-homogeneous Poisson structure on anyU/U1,
whereU1 is a closed subgroup ofUl, and has the same Lie algebral ∩ u= ul (see Corollary 2.8
and Definition 2.9). In this case, the mapP in (9) is a local diffeomorphism (in addition to being
a Poisson map), and is thus a covering map. Therefore, the orbitU · l, together with the Poisson
structureΠ, is a model (up to local diffeomorphism) of any(U,πU )-homogeneous Poisson space
(U/U1, π) determined byl. This is the reason we calll a model pointin L(d). Moreover, for a
model pointl, the Drinfeld map for the Poisson homogeneous space(U · l,Π) is the inclusion
mapU · l ⊂L(d).

Example2.27. – Consider the Lie bialgebra(k,a + n) in Example 2.1. The Lagrangian
subalgebral = a + n is not a model point becausel ∩ k = 0 while the normalizer subalgebra
of l in k is t = ia. However,T(l) = t+ n is a model point, as is any real form ofg. In this case,
we will show that every point in a certain irreducible componentL(d)0 of L(d) is a model point.

When l is a model point and when its normalizer subgroupUl in U is not connected,
the (U,πU )-homogeneous Poisson spaces(U/U1, π) determined byl might have non-trivial
symmetries, as is shown in the following proposition.

PROPOSITION 2.28. – Let l be a model point and let(U/U1, π) be any(U,πU )-homogeneous
Poisson space determined byl. Then all covering transformations for the covering map

P : (U/U1, π) −→ (U/Ul,Π) :uU1 �−→ uUl(10)

are Poisson isometries for(U/U1, π).

Proof. –Let f :U/U1 → U/U1 be a covering transformation, soP ◦ f = P . We know thatf
is smooth because it must be of the form

f(uU1) = uu0U1

for someu0 in the normalizer subgroup ofU1 in Ul. Letx ∈ U/U1 be arbitrary. We need to show
thatf∗π(x) = π(f(x)). SinceP is a local diffeomorphism, it is enough to show thatf∗π(x) and
π(f(x)) have the same image underP . Now, sinceP is a Poisson map and sinceP ◦ f = P , we
have
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P∗f∗π(x) = (P ◦ f)∗π(x) = P∗π(x) = Π
(
P (x)

)
,

P∗π
(
f(x)

)
=Π

(
P (f(x))

)
=Π

(
P (x)

)
.

ThusP∗f∗π(x) = P∗π(f(x)), andf is a Poisson map.✷
In particular, in the case whenU1 = U ′

l is the identity connected component ofUl, the
groupUl/U

′
l

acts onU/U ′
l

as symmetries for(U,πU )-homogeneous Poisson structure onU/U ′
l

determined byl.

3. Lagrangian subalgebras ofg

In the remainder of the paper, we will concentrate on the Lie bialgebra(k,a+ n) as described
in Example 2.1. We first fix more notation.

Throughout the rest of the paper,k will be a compact semi-simple Lie algebra andg = kC its
complexification. The Killing form ofg will be denoted by〈〈 , 〉〉. Let G be the adjoint group
of g, let K be the connected subgroup ofG with Lie algebrak, let T ⊂K be a maximal torus
with Lie algebrat. Leth = tC ⊂ g be the complexification oft. LetΣ be the set of roots ofg with
respect toh with the root decomposition

g= h+
∑
α∈Σ

gα.

LetΣ+ be a choice of positive roots, and letS(Σ+) be the set of simple roots inΣ+. We will also
sayα > 0 for α ∈Σ+. Seta = i t and letn be the complex subspace spanned by all the positive
root vectors. Then we can identifyk∗ with a + n (heren is regarded as a real Lie subalgebra
of g) through the pairing defined by twice the imaginary part of the Killing form〈〈 , 〉〉. This way,
(k,a+ n) becomes a Lie bialgebra whose double isg= k+ a+ n (Iwasawa decomposition ofg).
Let πK be the Poisson structure onK such that(K,πK) is a Poisson Lie group with tangent Lie
bialgebra(k,a+ n). We can describeπK explicitly as follows: Letθ be the complex conjugation
of g defined byk. Let 〈〈 , 〉〉θ be the Hermitian positive definite inner product ong given by

〈〈x, y〉〉θ =−〈〈x, θy〉〉, x, y ∈ g.

For eachα ∈Σ+, chooseEα ∈ gα such that〈〈Eα,Eα〉〉θ = 1. LetE−α =−θ(Eα) ∈ g−α so that
〈〈Eα,E−α〉〉= 1. Set

Xα =Eα −E−α =Eα + θ(Eα), Yα = i(Eα +E−α) = iEα + θ(iEα).

Then

k = t+ spanR{Xα, Yα: α ∈Σ+}.

The Poisson bivector field onK is given by

πK(k) = rkΛ− lkΛ, k ∈K,

where

Λ=
1
4

∑
α∈Σ+

Xα ∧ Yα ∈ k ∧ k.
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Recall that a real subalgebral of g is Lagrangian if Im〈〈x, y〉〉 = 0 for all x, y ∈ l and if
dimR l = dimC g. These Lagrangian subalgebras give rise to(K,πK) Poisson-homogeneous
spaces by Drinfeld’s theorem. The set of all Lagrangian subalgebras ofg will be denoted byL. It
is an algebraic subset of the GrassmannianGr(n,g) of n-dimensional subspaces ofg (regarded
as a2n-dimensional real vector space).

In this section, we will decomposeL into a finite union of manifolds.

3.1. Karolinsky’s classification

E. Karolinsky [12] has determined all Lagrangian subalgebrasl of g. To describe his result,
we need some notation. LetS ⊂ S(Σ+) be a subset of the set of simple roots, and let[S] be the
set of roots in the linear span ofS. Consider

mS = h⊕
( ⊕

α∈[S]

gα

)
, nS =

⊕
α∈Σ+−[S]

gα, pS = mS + nS ,

so thatpS is a parabolic subalgebra of typeS, nS is its nilradical, andmS is a Levi factor. Let
mS,1 = [mS ,mS] be the (semi-simple) derived algebra ofmS . The center ofmS is

zS = {H ∈ h: αi(H) = 0, ∀αi ∈ S},(11)

which is also the orthogonal complement ofmS,1 in mS with respect to the Killing form
of g restricted tomS . Thus the restriction of the Killing form tozS is nondegenerate, and we
may consider Lagrangian subspaces ofzS (regarded as a real vector space) with respect to the
restriction tozS of the imaginary part of the Killing form.

Now for any subsetS of the set of simple roots, a Lagrangian subspaceV of zS , and a real
form mτ

S,1 of mS,1 such that the Killing form ofg is real onmτ
S,1, set

l(S,V, τ) = mτ
S,1 ⊕ V ⊕ nS .

It is easy to see that it is a Lagrangian subalgebra ofg.

DEFINITION 3.1. – We will calll(S,V, τ) thestandard Lagrangian subalgebra associated to
(S,V, τ).

THEOREM 3.2 ([12]). – Every Lagrangian subalgebra ofg is of the formAdk(l(S,V, τ)) for
somek ∈K .

Note that the nilradical ofAdk(l(S,V, τ)) isAdk(nS). Denote byPS the connected subgroup
of the adjoint groupG of g with Lie algebrapS .

PROPOSITION 3.3. – Let

l =Adk

(
l(S,V, τ)

)
=Adk1

(
l(S1, V1, τ1)

)

be a Lagrangian subalgebra. ThenS = S1, V = V1, k−1k1 ∈ PS , andτ is conjugate toτ1 in
K ∩ PS .

Proof. –We haveAdk−1k1(l(S1, V1, τ1)) = l(S,V, τ). Using the fact that conjugate algebras
have conjugate nilradicals, it follows easily thatAdk−1k1nS1 = nS . From the definition ofnS , it
follows thatS = S1. Since a parabolic subgroup is the normalizer of its nilradical,k−1k1 ∈ PS .
The remaining claims follow from the facts thatnS is an ideal andzS is central inmS . ✷
4e SÉRIE– TOME 34 – 2001 –N◦ 5



ON THE VARIETY OF LAGRANGIAN SUBALGEBRAS, I 645

3.2. k-model points inL

Recall that a Lagrangian subalgebral of g is a k-model point if k ∩ l = kl, wherekl is the
normalizer subalgebra ofl in k. In this section, we refer tok-model points simply as model
points.

LEMMA 3.4. – The normalizer ofAdk(l(S,V, τ) in g is Adkr(S, τ), where

r(S, τ) = m
τ
S,1 ⊕ zS ⊕ nS .

Proof. –It suffices to prove the statement whenk = e, the identity element ofK . It is clear
that r(S, τ) normalizesl(S,V, τ). Conversely, ifX ∈ g normalizesl(S,V, τ), it normalizes its
nilradicalnS , so it normalizes the perpendicularpS of nS . SincepS is parabolic, it equals its own
normalizer, soX ∈ pS . WriteX =X1 +X2, with X1 ∈ mS andX2 ∈ nS . ThenX1 normalizes
mτ

S,1. Since a real form of a complex semi-simple Lie algebram is its own normalizer inm (see
Lemma 3.10), we know thatX1 ∈mτ

S,1 + zS . ✷
PROPOSITION 3.5. – The Lagrangian subalgebraAdk(l(S,V, τ)) is a model point if and only

if V = zS ∩ t.

Proof. –Since the set of model points isK-invariant, it suffices to prove the proposition when
k = e. Let kl = r(S, τ) ∩ k be the normalizer ofl(S,V, τ) in k, wherer(S, τ) = mτ

S,1 ⊕ zS ⊕ nS

as in Lemma 3.4. Then

kl/k∩ l(S,V, τ) = (zS ∩ t)/(V ∩ t),

becausezS ∩ k = zS ∩ t. The proposition now follows from the definition of model points.✷
Remark3.6. – In fact, essentially the same argument shows that ifl = Adk(l(S,V, τ)),

thenT(l) = Adk(l(S, zS ∩ t, τ)) (see Theorem 2.21 for the definition ofT(l)). It follows that
T(T(l)) = T(l) for l ∈L. For a general Lie bialgebra,T ◦T �= T . Indeed, for a Lie algebrau, we
can form a Lie bialgebra(u,u∗), whereu∗ has the abelian Lie algebra structure. Its double is the
semi-direct product Lie algebra structure onu+ u∗ defined by the co-adjoint action ofu on u∗.
Consider the case whenu is the three dimensional Heisenberg algebra with basis{X,Y,Z}
with Z central and[X,Y ] = Z , and letfX , fY , fZ be the dual basis. Letl be the Lagrangian
subalgebra spanned byX , fY andfZ . ThenT(l) is spanned byX,Z andfY whileT(T(l)) = u.

COROLLARY 3.7. – The adjoint groupG of g preserves the set of model points.

Proof. –It suffices to consider model pointsl(S, zS ∩ t, τ). Let PS , MS and NS be the
connected Lie groups with Lie algebrapS , mS andnS respectively. SinceK acts transitively
onG/PS and preserves the set of model points, it suffices to prove thatAdp(l(S, zS ∩ t, τ)) is a
model point forp ∈ PS . Using the Levi decompositionPS =MSNS we writep=mn, where
m ∈ MS andn ∈NS . SinceAdnl(S, zS ∩ t, τ) = l(S, zS ∩ t, τ), it suffices to prove thatAdm

preserves model points inpS , which follows becauseM acts trivially onzS . ✷
Remark3.8. – In general, the adjoint group of the double Lie algebra does not preserve the

set of model points. Indeed, letg be a semi-simple Lie algebra with triangular decomposition
g = n + h + n−, Borel subalgebrab+ = h + n and opposite Borelb− = h + n−. Then the Lie
algebrad = g ⊕ h is the double of the pair(b+,b−) with embeddingsi± :b± → d given by
i±(H + x) = (H + x,±H) with H ∈ h, x ∈ n or n−. Letn ∈NG(t) be a representative for the
long element of the Weyl group. Then althoughb+ is clearly ab+-model point,Adn(b+) is not
ab+-model point.
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In the following Sections 3.3, 3.4, and 3.5, we study separately the pieces that come into the
Karolinsky classification, and we write the varietyL of all Lagrangian subalgebras ofg as a finite
disjoint union of smooth submanifolds of the GrassmannianGr(n,g).

3.3. Lagrangian subspaces ofzS

For a subsetS of the set of simple roots, letzS be given as in (11). Since the Killing form ofg

is nondegenerate onzS , its imaginary partB is a nondegenerate symmetric bilinear form of index
(z, z) on zS , now regarded as a2z-dimensional real vector space. Denote byLzS the variety of
Lagrangian subspaces ofzS with respect toB, and denote byGr(z, zS) the Grassmannian of
z-dimensional real subspaces ofzS , soLzS ⊂Gr(z, zS).

PROPOSITION 3.9. – LzS is a smooth algebraic subvariety ofGr(z, zS) and is diffeomorphic
to the real orthogonal groupO(z). We denote the two connected components ofLzS byLzS,ε ,
for ε=±1, withLzS,1 being the component containingzS ∩ t. Each component is Zariski closed.

Proof. –SinceB has signature(z, z), there existz-dimensional real subspacesV+ andV− of
zS such thatB is respectively positive and negative definite onV+ andV−, B(V+, V−) = 0, and
zS = V+ +V− is a direct sum. In fact, we takeV+ = zS ∩ ((1− i)t) andV− = iV+. Denote byN
the affine chart inGr(z, zS) aroundV+ given by

End(V+, V+) −→ N ⊂Gr(z, zS) :φ �−→ lφ = {x+ iφ(x): x ∈ V+}.

Then it is easy to see thatLzS ⊂N and thatlφ ∈ LzS if and only if φ is an isometry of(V+,B).
Thus we can identifyLzS with the subvarietyO(z)∼=O(V+,B)⊂N . Under this identification,
zS ∩ t corresponds to the identity element inO(z), and thusLzS,1 corresponds to the identity
component ofO(z). These results also follow from Corollary 14.13 in [26], or as the real case of
Exercise B, pp. 102–103, in [2].✷

If two Lagrangian subspacesV1 and V2 of zS correspond toφ1 and φ2 in O(V+,B)
respectively, thendim(V1 ∩ V2) is equal to the multiplicity of1 as an eigenvalue ofφ−1

1 φ2.
ThusV1 andV2 lie in the same connected component ofLzS if and only if dimV1 ∩ V2 = z
(mod 2). In particular,zS ∩ a, wherea = i t, lies inLzS,1 if and only if z is even. This can also
be seen from the fact thatzS ∩ a corresponds to minus the identity element inO(z).

3.4. Real forms ofg

A real form ofg is clearly a Lagrangian subalgebra ofg. Denote byR the set of all real forms
of g. We will recall some facts aboutR in this section (see [22] or [1] for more details).

Let Autg be the group of complex linear automorphisms ofg. Its identity component is the
adjoint groupG= Intg of interior automorphisms ofg. LetAutD(g) be the automorphism group
of the Dynkin diagram ofg. It is well known that there is a split short exact sequence

0 −→ Intg −→ Autg
φ−→ AutD(g) −→ 0.

Let θ be the Cartan involution ofg defined by the compact real formk. We will identify a real
form g0 of g with the complex conjugationτ ong such thatg0 = gτ . Define

ψ :R −→ AutD(g): ψ(τ) = φ(τθ) = φ(θτ).
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To see thatφ(τθ) = φ(θτ), chooseg ∈ Intg such thatτ1 = AdgτAd−1
g commutes withθ

(see [10], Theorem III.7.1). Then we get

φ(τθ) = φ
(
Ad−1

g τ1Adgθ
)
= φ(τ1Adgθ) = φ

(
τ1θθ

−1Adgθ
)
= φ(τ1θ)

and similarly,φ(θτ) = φ(θτ1). Sinceτ1 commutes withθ, we haveφ(τθ) = φ(θτ). In particular,
we see thatψ(τ) is an involution.

Conversely, letd be an involutive automorphism of the Dynkin diagramD(g). Thend extends
to a complex linear involutionγd of g as follows: onh, let γ̃d be the automorphism induced
via the Killing form by the complex linear extension ofd. Forα ∈ S(Σ+), setγ̃d(Eα) = Edα.
By [11], p. 75, there exists a unique complex Lie algebra automorphismγd of g extending̃γd. We
claim thatγd commutes withθ. Indeed, iftα = [Eα,E−α] ∈ h, then sincetα corresponds toα
using the Killing form,γd(tα) = tdα. Sinceγd is a Lie algebra automorphism, it follows easily
thatγd(E−α) =E−dα. This impliesγd commutes withθ on generators{Eα,E−α | α ∈ S(Σ+)}
of g, soγd commutes withθ. We denote the unique lift ofγd to G by γd also.

Set

L(g, d) = ψ−1(d).

Then

R=
⋃
d

L(g, d)

is a finite disjoint union, whered runs over the set of all involutive diagram automorphisms ofg.
Let τd = γdθ= θγd. Thenτd ∈ L(g, d). To describe all the elements inL(g, d), consider

G−τd =
{
g ∈ Intg: (Adgτd)2 = 1

}
=

{
g ∈G= Intg: τd(g) = g−1

}
.

Hereτd also stands for the lifting ofτd to G by Adτd(g) = τd Adgτd. If g ∈ G−τd , thenAdgτd
is a real form ofg andψ(Adgτd) = d, so Adgτd ∈ L(g, d). Conversely, ifτ ∈ L(g, d), then
φ(τθ) = φ(γd), so τ = Adgτd for someg ∈ Intg = ker(φ). But τ2 = 1, so g ∈ G−τd . Hence
every real formτ in L(g, d) is of the formτ =Adgτd for someg ∈G−τd .

LEMMA 3.10. – Every real form ofg is its own normalizer ing.

Proof. –The proof follows easily by considering the±1 eigenspace decompositiong =
gτ ⊕ g−τ of τ . ✷

LEMMA 3.11. – L(g, d) is a smooth submanifold ofGr(n,g) of dimensiondimC g.

Proof. –Note thatIntg acts onL(g, d) by the actiong · τ = Adgτ Ad−1
g . The orbits of the

larger groupAutg on the set of all real forms are the equivalence classes of real forms, and there
are only finitely many of them (see [22]). SinceIntg is the identity connected component of
Autg andAutg has only finitely many components, it follows thatIntg has only finitely many
orbits on the set of all real forms. SinceL(g, d) is a subset of the set of all real forms, it follows
thatL(g, d) is a finite union ofIntg orbits. Now the action ofIntg onGr(n,g) by (g, l) �→ g(l)
is smooth andL(g, d)⊂Gr(n,g) is a disjoint union of finitely manyIntg-orbits. It follows that
eachIntg-orbit in L(g, d) is a smooth submanifold ofGr(n,g). Moreover, by Lemma 3.10, all
orbits have the same dimension. Thus,L(g, d) is a smooth submanifold ofGr(n,g) of dimension
dimC g. ✷

We will show later that the closure ofL(g, d) in Gr(n,g) (in the classical topology) is a smooth
connected submanifold ofGr(n,g).
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In Karolinsky’s classification, the real formsmτ
S,1 of mS,1 are such that the Killing form

of g restricted tomτ
S,1 is real. We characterize such real forms in terms of their diagram

automorphism.
Let c = h ∩ mS,1. It is a Cartan subalgebra ofmS,1. The Killing form of g has nondegenerate

restriction toc and thus induces a bilinear form, denotedBc on c∗.

DEFINITION 3.12. – A diagram automorphism of the Dynkin diagram ofmS,1 is said to be
isometric if its complex linear extension toc∗ preservesBc.

PROPOSITION 3.13. – The Killing form ofg is real on a real formmτ
S,1 of mS,1 if and only if

the diagram automorphism of the Dynkin diagram ofmS,1 associated tomτ
S,1 is isometric.

Proof. –The Cartan involutionθ of g defined byk preservesmS,1 and restricts to give a Cartan
involution of mS,1. Denote byB the restriction of the Killing form ofg to mS,1. Let mτ

S,1 be a

real form ofmS,1. ThenB is real onmτ
S,1 if and only ifB(τx, τy) =B(x, y) for all x, y ∈ mS,1,

which is equivalent toτθ preservingB. By composing with an inner automorphism ofmS,1

which necessarily preservesB, we can assume thatτθ leavesc invariant. Then it follows from
the ad-invariance ofB thatτθ preservesB if and only if it preserves the restriction ofB to c. By
definition, this is equivalent to the automorphism of the Dynkin diagram ofmS,1 induced byτθ
being isometric. ✷

Remark3.14. – IfS contains exactly two orthogonal simple roots ofg with different lengths,
then there is a diagram automorphism ofmS,1 interchanging thesl(2)’s corresponding to the
simple roots which is not an isometry. An explicit description of all involutive isometries of
the Dynkin diagram ofmS,1 can be given in terms of involutive automorphisms of simple
factors, and automorphisms which interchange simple factorsr1 and r2 of mS,1 such that the
restriction of the Killing form tor1 coincides with the restriction of the Killing form tor2 after
composition with the automorphism. For example ifmS,1

∼= so(8)⊕so(8), then there are22 such
involutive automorphisms of the Dynkin diagram if the Killing form has the same restriction to
each factor. Indeed, there are4 involutions of the Dynkin diagram ofso(8), so there are16
involutions which preserve the two factors. Ifφ is an automorphism of the Dynkin diagram of
so(8), then(i, j) �→ (φ−1(j), φ(i)) is an involution of the diagram ofmS,1. Thus each of the6
automorphisms of the Dynkin diagram ofso(8) gives an involution of the Dynkin diagram of
mS,1.

3.5. Lagrangian data

DEFINITION 3.15. – A triple(S, ε, d) is called Lagrangian datum ifS ⊂ S(Σ+) is a subset
of the set of simple roots,ε=±1, andd is an involutive isometric diagram automorphism for the
Dynkin diagramD(mS,1) of mS,1. If l = Adk(l(S,V, τ)), k ∈ K , is a Lagrangian subalgebra,
then l has associated Lagrangian dataΦ(l) = (S, ε, d), whereε = 1 if V lies in the same
connected component ofLzS as zS ∩ t and is−1 otherwise, andd is the isometric diagram
automorphism ofmS,1 defined byτ (see Proposition 3.13). It follows from Proposition 3.3 that
the triple(S, ε, d) is determined byl.

Given Lagrangian datum(S, ε, d), we let

L(S, ε, d) = {l: Φ(l) = (S, ε, d)}.

Recall thatL is the set of all Lagrangian subalgebras ofg. Clearly, we have

L=
⋃

(S,ε,d)

L(S, ε, d).
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Note that this is a finite disjoint union.

PROPOSITION 3.16. – For each Lagrangian datum(S, ε, d), L(S, ε, d) is a smooth sub-
manifold of the GrassmannianGr(n,g) of dimensiondim(k) + z(z−3)

2 , wherez = dimC zS , and
it fibers overG/PS with the fiber being the product ofLzS,ε andL(mS,1, d).

Proof. –Let

LpS (S, ε, d) =
{
mτ

S,1 + V + nS : mτ
S,1 ∈ L(mS,1, d), V ∈ LzS,ε

}
⊂Gr(n,g).

It can be identified withL(mS,1, d) × LzS,ε . Indeed,L(mS,1, d) is a submanifold of the
GrassmannianGr(m,mS,1), wherem= dimC(mS,1), LzS,ε is a submanifold ofGr(z, zS), and
the direct sum mapGr(m,mS,1) × Gr(z, zS) → Gr(n,g), (U,V ) �→ U ⊕ V ⊕ nS is a closed
embedding.

We consider the multiplication map

m :K ×K∩PS LpS (S, ε, d) −→ Gr(n,g) :m(k, l) = Adk(l).

The fiber product is a smooth manifold since it is a fiber bundle overK/K ∩ PS
∼=G/PS with

smooth fiberLpS (S, ε, d). The mapm is clearly smooth and proper, and the image ofm is
L(S, ε, d) by the Karolinsky classification Theorem 3.2. We will show thatm is an immersion,
and it will follow that m is an embedding and thatL(S, ε, d) is a smooth submanifold of
Gr(n,g).

The fact thatm is injective follows from Proposition 3.3. In order to show that the tangent
map m∗ is injective, it suffices to showm∗ is injective at points of the form(e, l(S,V, τ))
by K-equivariance. Recall that the tangent space at a planeU to the GrassmannianGr(n,V )
of n-planes in a spaceV can be identified withHom(U,V/U). Using this identification,
the tangent space to the fiber productK ×K∩PS Gr(n,pS) at l(S,V, τ) is the quotient of
k ⊕Hom(l(S,V, τ),pS/l(S,V, τ)) by the relation(X − Y, ξ(Y ) + Z) ∼ (X,Z), whereX ∈ k,
Y ∈ k∩pS , ξ(Y ) is the induced vector field atl(S,V, τ), andZ ∈Hom(l(S,V, τ),pS/l(S,V, τ)).
Observe that forZ to be tangent to the fiberLpS (S, ε, d), we must haveZ :nS → 0. When
we identify the tangent space toGr(n,g) at l(S,V, τ) with Hom(l(S,V, τ),g/l(S,V, τ)), the
tangent map ism∗(X,Z) = ξ(X) + Z , whereξ(X) is the induced vector field. Now the claim
that m∗ is injective follows since for anyX /∈ k ∩ pS , ξ(X) · nS �⊂ l(S,V, τ). To verify this
last assertion, letX ∈ k � k ∩ pS , and choose a maximal rootα /∈ [S] such that the projection
p−α(X) of X to the−α root spaceg−α is nonzero. Then[X,gα] = [p−α(X),gα] + Y where
〈〈Y,Y 〉〉 = 〈〈Y, [p−α(X),gα]〉〉 = 0. Since[p−α(X),gα] = [gα,g−α], which is a2-dimensional
real vector space on which the imaginary part of the Killing form is not isotropic, it follows that
[X,gα] is not isotropic. Thus,[X,gα] is not contained in any Lagrangian subalgebra.

The dimension statement follows from Proposition 3.9 and Lemma 3.11.✷
Remark3.17. – Note thatG preservesL(S, ε, d). The proof is similar to that of Corollary 3.7.

Example3.18. – WhenS is the set of all simple roots, we havemS = g andε can only be1,
soL(S, ε, d) = L(g, d).

Example3.19. – Forg = sl(2,C), there are threeL(S, ε, d)’s. First, L(S(Σ+),1, id) is a
disjoint union of the two symmetric spacesSO(3,C)/SO(3,R) andSO(3,C)/SO(2,1), where
the first piece consists of compact real forms and the second piece consists of real forms
isomorphic toso(2,1). L(∅,1, id) is the SL(2,C) orbit of t + n and is isomorphic toCP1.
L(∅,−1, id) is also isomorphic toCP1, and is theSL(2,C) orbit througha + n. As we will
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show in Section 6,L(∅,1, id) ⊂ L(S(Σ+),1, id). This last closure can be identified withRP3,
the projectivization of2× 2 Hermitian matrices.

In caseg = sl(3), there are eightL(S, ε, d)’s. L(S(Σ+),1, id) is a union of components
consisting of the real forms isomorphic tosu(p,3 − p). It is a union of symmetric spaces. Let
σ be the nontrivial involution of the Dynkin diagram ofsl(3). ThenL(S(Σ+),1, σ) consists of
real forms isomorphic tosl(3,R). There are four pieces of the formL(αi,±1, id) corresponding
to the two choices ofαi and the two choices of±1. Each of these pieces fibers overG/Pi

for a parabolicPi with the fiber being a symmetric space forSL(2,C). The final two pieces
are of the formL(∅,±1, id). These are bundles over the full flag varietyG/B with the fiber
being a connected component of the orthogonal groupO(2). The only nontrivial inclusions are
L(αi,1, id)⊂L(S(Σ+),1, id).

Because of the fiber bundle decomposition ofL(S, ε, d) and the fact that the base andLzS,ε

are compact, the study of the closureL(S, ε, d) can be reduced to the study ofL(g, d) for g

semi-simple. In the following Sections 4 and 5, we show thatL(g, d) is a smooth connected
submanifold ofGr(n,g). We will also determine its decomposition intoG-orbits. These results
will be applied in Section 6 to show thatL(S, ε, d) is a smooth submanifold ofGr(n,g).

4. Extended signatures and the corresponding Lagrangian subalgebras ofg

4.1. Extendedd-signatures

Let d be an involutive diagram automorphism for the Dynkin diagram ofg. In this section,
we define Lagrangian subalgebrasld,σ associated toextendedd-signaturesσ of the root system
Σ, a notion that is a slight generalization of one from [23]. We will show that eachld,σ is in
L(g, d) and study theG-orbit throughld,σ. In Section 5, we will show that everyl in L(g, d) is
G-conjugate to someld,σ.

Recall thatS(Σ+) = {α1, α2, . . . , αl} is the set of simple roots inΣ+.

DEFINITION 4.1. – Anextendedd-signatureof the root systemΣ is a mapσ :Σ→{−1,0,1}
satisfyingσ(d(αi)) = σ(αi) for i= 1,2, . . . , l, and

σ(α) =
∏

i:mi �=0

σ(αi)|mi|, whereα=
l∑

i=1

miαi.(12)

We say thatσ is ad-signatureif σ(α) �= 0 for anyα ∈Σ.

An extendedd-signatureσ is determined by its value on the simple roots. Ifσ is an extended
d-signature, letsupp(σ) = {α ∈ Σ: σ(α) �= 0}. ThenSσ := S(Σ+) ∩ supp(σ) is d-invariant. If
we use[Sσ] to denote the set of roots that are in the linear span ofSσ, thensupp(σ) = [Sσ]. Let

Sσ,1 = {αi ∈ S(Σ+): σ(αi) =−1}, ρ̌1 =
∑

αi∈Sσ,1

ȟi ∈ a,

where{ȟi: i = 1, . . . , l} ⊂ a is the set of fundamental coweights corresponding to the simple
roots, namelyαi(ȟj) = δi,j for i, j = 1, . . . , l. Then

σ(α) =
{
0, α /∈ [Sσ],
(−1)α(ρ̌1), α ∈ [Sσ].

(13)
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Conversely, for anyd-invariant subsetS of S(Σ+) and anyd-invariant subsetS1 of S, there is
an extendedd-signatureσ such thatS = Sσ andS1 = Sσ,1.

For an extendedd-signatureσ, let

mσ = mSσ = h⊕
( ⊕

α∈[Sσ]

gα

)
, nσ = nSσ =

⊕
α∈Σ+−[Sσ]

gα, pσ = pSσ = mσ ⊕ nσ

as in Section 3.1. Also letzσ = zSσ be the center ofmσ , and letmσ,1 = [mσ,mσ]. Thenσ
determines a complex linear involutionaσ of mσ by

aσ|h = id, aσ|gα = σ(α) · id,

whereα ∈ supp(σ). In other words,

aσ =Adexp(πiρ̌1).

Let τd = γdθ be the conjugate linear involution ofg discussed in Section 3.4. Then it is routine
to check thatτd,σ := aστd is a conjugate linear involution ofmσ so the Lie algebrakd,σ = m

τd,σ
σ

is a real form ofmσ . Set

ld,σ = kd,σ + nσ+.

It is easy to check thatld,σ is a Lagrangian subalgebra ofg. SinceSσ is d-invariant,mσ is
invariant underγd. Regarded as an complex automorphism ofmσ,1, γd defines an automorphism
of the Dynkin diagram ofmσ,1 which is justd|Sσ . Let zτd

σ be the fixed point set ofτd restricted
to zσ . Setε= 1 if zτd

σ lies in the same component aszσ ∩ t andε= −1 otherwise. Then, since
aσ is an inner automorphism ofmσ,1, we know thatld,σ ∈ L(Sσ, ε, d|Sσ).

We can give a more explicit description ofld,σ. LetEα, E−α, for α ∈Σ+, be the root vectors
chosen as in Section 3. Then

l = hτd + nσ + spanR

{
Eα − σ(α)γd(E−α), iEα + iσ(α)γd(E−α): α ∈Σ+ ∩ [Sσ]

}
.(14)

Example4.2. – Whenσ(α) = 0 for all α, we haveld,σ = hτd + n. On the other hand,σ is a
d-signature if and only ifld,σ is a real form ofg. In this case,ld,σ ∈ L(g, d).

4.2. d-signatures and real forms inL(g, d)

We will now show that every real from inL(g, d) is G-conjugate to anld,σ for some
d-signatureσ. The following proposition (and its proof) is analogous to a result of Karolinsky.

PROPOSITION 4.3. – For anyτ ∈ L(g, d), there existg ∈G andt ∈ T γd of order2 such that

τ =Adg(Adtτd)Adg−1 .

Proof. –By [10], Theorem III.7.1, we can findv ∈G so thatAdvτ Adv−1 commutes withθ.
By [27], Theorem 1, there exists a Cartan subalgebrah1 of g which isAdvτ Adv−1 andθ stable.
hθ
1 is the Lie algebra of a maximal torus ofK , so by conjugacy of maximal tori inK , there

existsk ∈ K such thatAdkhθ
1 = t. It follows thatAdk Advτ Adv−1Adk−1 preservest and its

complexificationh. By conjugating by an element inNK(h), we can further assume that a
K-conjugate, denotedτ1, of Adk Advτ Adv−1Adk−1 preservesh and maps the positive roots
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to the negative roots. Moreover,τ1 commutes withθ, so τ1θ is a complex linear involution
of h preserving the set of positive roots. Hence,τ1θ = Adhγd for someh ∈ H (see [1],
Proposition 2.8). Thenτ1 =Adhτd.

Since τ1 commutes withθ, it follows that θ(h) = h, so h ∈ T . Write h = exp(x), with
x= x1 +x2, x1 ∈ tγd , x2 ∈ t−γd . SinceAdhτd is a real form, it follows thathτd(h) = 1. Hence,
exp(x1) exp(x2) exp(x1) exp(−x2) = 1, so if we sett = exp(x1), t2 = 1. Let g2 = exp(x2

2 ).
Thenτ1 =Adg2Adtτd Adg−1

2
. Sinceτ1 is G-conjugate toτ , this completes the proof.✷

COROLLARY 4.4. – Every real formτ ∈ L(g, d) is conjugate to anld,σ for somed-signature
σ. Moreover,

G · ld,σ =KAγd · ld,σ.

Proof. –By Proposition 4.3, there isg ∈ G such thatτ = AdgAdtτdAdg−1 with t ∈ T γd of
order2. The eigenvalues ofAdt on each root spacegα are±1, and the mapσ :Σ→ {1,−1}
defined this way is ad-signature becauseAdτd(t) =Adt. By definition, the real formld,σ is the
fixed point set of the involutionAdtτd. Thereforegτ =Adgld,σ, which gives the first assertion.
By Proposition 7.1.3 in [29], we can decomposeg asg = k ag1, wherek ∈ K , a ∈ Aγd and
g1 ∈GAdtτd . Thus

τ =Adka(Adtτd)Ada−1k−1 . ✷
We now identify theG-orbits inL(g, d) with certain symmetric spaces.

PROPOSITION 4.5. – Let τ be a real form of a semi-simple Lie algebrag with its lifting to
G also denoted byτ . Then the normalizerNG(gτ ) of gτ in G coincides withGτ := {g ∈ G:
τ(g) = g}.

Proof. –Let g ∈ G. Then g ∈ NG(gτ ) if and only if Adgτ Adg−1 = τ , or equivalently,
τAdgτ =Adg. But by the definition of the lifting ofτ toG, τ Adgτ =Adτ(g). Thusg ∈NG(gτ )
if and only ifAdτ(g) =Adg . SinceG is the adjoint group, we see thatg ∈NG(gτ ) if and only if
τ(g) = g or g ∈Gτ . ✷

COROLLARY 4.6. – For a d-signatureσ, the orbitG · ld,σ is the semi-simple symmetric space
G/Gτd,σ .

Proof. –The above proposition implies that the stabilizerNG(ld,σ) =Gτd,σ . ✷
4.3. Extendedd-signatures andL(g, d)

We have seen that the setL(g, d) is the union of theG-orbitsG · ld,σ asσ runs over the set of
all d-signatures. We now consider theG-orbitsG · ld,σ , whereσ is anyextendedd-signature. We
show that each such orbit is inL(g, d), the closure ofL(g, d) in the GrassmannianGr(n,g) in
the classical topology. In Section 5 we will show thatL(g, d) is precisely the union of all these
G-orbits.

LEMMA 4.7. – Suppose thatσ andσ′ are two extendedd-signatures such thatSσ ⊂ Sσ′ and
σ(α) = σ′(α) for all α ∈ Sσ . LetH ∈ a be such thatα(H) = 0 for α ∈ Sσ andα(H)> 0 for all
α ∈ S(Σ+)� Sσ . Then

lim
t→+∞

Adexp(tH)ld,σ′ = ld,σ(15)

in Gr(n,g). Consequently,G · ld,σ ⊂G · ld,σ′ .
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Proof. –Forα ∈ Σ+ ∩ [Sσ′ ], setxα = Eα − σ(α)γd(E−α) andyα = iEα + iσ(α)γd(E−α).
We know from Equation (14) that

ld,σ′ = hτd + nσ′ + spanR

{
xα, yα: α ∈Σ+ ∩ [Sσ′ ]

}
.

Picku0 ∈ ∧p(hτd + nσ′), u0 �= 0, wherep= dim(hτd + nσ′). Let

v0 = u0 ∧
∏

α∈Σ+∩[Sσ′ ]

xα ∧ yα ∈ ∧ng,

whereg is regarded as a2n-dimensional real vector space. ThenRv0 ∈ RP(∧ng) is the image
of ld,σ′ under the Plucker embedding ofGr(n,g) into∧ng. Since

Adexp(tH)xα = etα(H)
(
Eα − σ(α)e−2tα(H)γd(E−α)

)
,

Adexp(tH)yα = etα(H)
(
iEα + iσ(α)e−2tα(H)γd(E−α)

)
,

we see thatlimt→+∞Adexp(tH)v0 is the image ofld,σ in RP(∧ng) under the Plucker embedding
of Gr(n,g). Hence (15) holds. ✷

COROLLARY 4.8. – For every extendedd-signatureσ, we have

G · ld,σ ⊂L(g, d) and G · (hτd + n)∼=G/B ⊂G · ld,σ,

whereB is the Borel subgroup ofG with Lie algebrah+ n.

Proof. –Let σ′ be anyd-signature such thatσ′|Sσ = σ. Then by Lemma 4.7,

G · ld,σ ⊂G · ld,σ′ ⊂L(g, d).

On the other hand, letσ0 be the extendedd-signature such thatσ0(α) = 0 for all α. Then
ld,σ0 = hτd + n. By Lemma 4.7, theG-orbit G · (hτd + n)∼=G/B is contained inG · ld,σ. ✷

Remark4.9. – Whend is non-trivial andσ is a d-signature, a continuous curveγ(t) in
G · ld,σ with limt→+∞ γ(t) = hτd + n can be used to show that the mapT :L → L defined
in Theorem 2.21 is not continuous. See also Remark 2.22.

We now give a more precise description of theG-orbit G · ld,σ for any extendedd-signature
σ. LetPσ andMσ,1 be the connected subgroup ofG with Lie algebraspσ andmσ,1 respectively.
Recall thatτd,σ = aστd defines a real from ofmσ,1 such thatld,σ =m

τd,σ

σ,1 + zτd
σ + nσ.

PROPOSITION 4.10. – For any extendedd-signatureσ, the G-orbit G · ld,σ fibers over
G/Pσ, and the fibers are diffeomorphic to the symmetric spaceMσ,1/M

τd,σ

σ,1 . In particular,
dimR G · ld,σ = dimC g − dimC zσ . TheG-orbit G · ld,σ is compact if and only ifσ(α) = 0
for all α ∈Σ.

Proof. –Let rd,σ andRd,σ be the normalizers ofld,σ in g andG respectively. ThenRd,σ ⊂ Pσ ,
and by Lemma 3.4,rd,σ = m

τd,σ

σ,1 + zσ + nσ . It follows that the map

G · ld,σ −→G/Pσ :Adgld,σ �−→ gPσ

is a well-defined fibration and its fibers are diffeomorphic toPσ/Rd,σ
∼= Mσ,1/M

τd,σ

σ,1 . The
dimension forG · ld,σ follows from the formula forrd,σ. If σ is not identically zero, the fiber
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of the projection fromG · ld,σ to G/Pσ is not compact, soG · ld,σ can not be compact. Thus
G · ld,σ is compact when and only whenσ(α) = 0 for all α. ✷

Similarly to Corollary 4.4, we have

PROPOSITION 4.11. – For any extendedd-signatureσ, G · ld,σ =KAγd
σ · ld,σ , where

Aγd
σ = exp

(
(a∩mσ,1)γd

)
.

Proof. –Let Mσ andNσ be the connected subgroups ofG with Lie algebrasmσ and nσ

respectively. ThenPσ = MσNσ. SinceK acts onG/Pσ transitively, we can write anyg ∈ G
as g = kmn, where k ∈ K , m ∈ Mσ and n ∈ Nσ. Since Nσ normalizesld,σ, we have
Adgld,σ = AdkAdmld,σ. Recall thatld,σ = m

τd,σ

σ,1 + zτd
σ + nσ. Applying Corollary 4.4 to the

real form m
τd,σ

σ,1 for mσ,1, we know that there existk1 ∈ K ∩ Mσ,1 and a ∈ Aγd
σ such that

Admm
τd,σ

σ,1 =Adk1am
τd,σ

σ,1 . ThusAdmld,σ =Adk1ald,σ andAdgld,σ =Adkk1ald,σ. ✷

5. L(g, d) as the real part of the De Concini–Procesi compactificationZd of G

Let d be an involutive diagram automorphism of the Dynkin diagram ofg. In this section, we
identify the varietyL(g, d) with the set of real points of a De Concini–Procesi compactification
Zd of the groupG. SinceZd is known to be smooth, it follows thatL(g, d) is a smooth irreducible
algebraic subvariety ofGr(n,g). We also show thatL(g, d) is connected and determine the
G-orbits inL(g, d).

5.1. The complexification ofg

Regardg as a real Lie algebra and denote its complex structure byJ0 ∈ EndR(g). We may
identify its complexificationgC with (g⊕ g, J0 ⊕ J0) via the map

gC −→ (g⊕ g, J0 ⊕ J0) : x+ iy �−→
(
x+ J0y, θ(x) + J0θ(y)

)
, x, y ∈ g.

Under this identification, the complex conjugation operatorτ ongC becomes

τ(x, y) =
(
θ(y), θ(x)

)
,

with its set of real points realized as

(g⊕ g)τ =
{(

x, θ(x)
)
: x∈ g

}
.

If r ⊂ g is a real subalgebra, thenrC = r+ i r is regarded as a complex subalgebra ofg⊕ g. For
example,kC is the diagonal subalgebrag∆ = {(x,x): x ∈ g} and(t + n)C = h∆ + n1 + n−2,
wheren− = θ(n) and for a Lie subalgebrar of g,

r∆ = {(x,x): x ∈ r}, r1 = {(x,0): x ∈ r}, r2 = {(0, x): x∈ r}.(16)

The proof of the following lemma is straightforward.

LEMMA 5.1. – For an extendedd-signatureσ, the complexificationld,σ,C of ld,σ is

ld,σ,C =
{(

x, aσγd(x)
)
: x ∈ mσ

}
⊕ nσ1 ⊕ nσ−2,

wherenσ− = θ(nσ).
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Recall that〈〈 , 〉〉 is the Killing form ofg. Consider the symmetric formI ong⊕ g given by

I
(
(x1, x2), (y1, y2)

)
= 〈〈x1, y1〉〉 − 〈〈x2, y2〉〉.

Thenl ⊂ g is a real Lagrangian subalgebra ofg with respect to the imaginary part of the Killing
form if and only if lC ⊂ g⊕g is a complex Lagrangian subalgebra with respect toI. If we denote
byLC the set of all complex Lagrangian subalgebras ofg⊕ g with respect toI, then we have the
injective map

L −→ LC : l �−→ lC.

With respect to the adjoint action ofG onL, we have

(Adgl)C =Ad(g,θ(g))(lC).

On the group level, we have the analogous identificationGC
∼= G × G. We lift τ to an

involution, also denoted byτ , of G×G. In this context,G (as the set of real points) is identified
with the fixed point set ofτ as {(g, θ(g)): g ∈ G}. Let G∆,d = {(g, γd(g)): g ∈ G}. Then
(G×G)/G∆,d is an example of a complex symmetric space, and De Concini and Procesi [4]
have exhibited a particular smooth compactificationZd of (G×G)/G∆,d.

5.2. The De Concini–Procesi compactificationZd

Note thatG × G acts on the Grassmannian ofn-dimensional complex subspaces ofg ⊕ g

through the adjoint action, wheren= dimC g. Consider theγd-diagonal subalgebra

g∆,d =
{(

x, γd(x)
)
: x∈ g

}

of g⊕g and the orbit(G×G) ·g∆,d inside the Grassmannian. The stabilizer subgroup ofG×G at
g∆,d isG∆,d, so(G×G) ·g∆,d

∼= (G×G)/G∆,d. By definition, the De Concini–Procesi variety
is the closure (with respect to the Zariski or the classical topology) of(G × G) · g∆,d in the
Grassmannian. It will be denoted byZd and it is called the De Concini–Procesi compactification
of (G×G)/G∆,d. It is a smooth complex manifold of complex dimensionn (see [4] for more
details). Since the variety of complex Lagrangian subalgebras isG × G stable, it follows that
every element inZd is a complex Lagrangian subalgebra ofg⊕ g of dimensionn.

It is known [4] thatG × G has finitely many orbits inZd. We describe the orbits. Recall
thatS(Σ+) = {α1, . . . , αl} is the set of all simple roots. Letη :S(Σ+)→ {0,1} be any map.
Regardingη as an extended signature for the trivial involution, we have the parabolic subalgebra
pη = mη + nη of g. Setnη− = θ(nη). Consider the subalgebra

gd,η =
{(

x, γd(x)
)
: x∈ mη

}
⊕ nη1 ⊕ γdnη−2

.

It is easy to check thatgd,η ∈ Zd. In particular,g∆,d = gd,η1 , whereη1(α) = 1 for all rootsα.

THEOREM 5.2 ([4]). – Every pointr ∈ Zd is in aG×G orbit of gd,η for someη.

DEFINITION 5.3. – We say that a complex subalgebra ofg⊕ g has a real structure if it is the
complexification of a real subalgebra ofg under the identificationgC

∼= g ⊕ g. We useZd,R to
denote the set of all Lie subalgebras inZd that have a real structure.

Note that a complex subalgebrar of g ⊕ g is in Zd,R if and only if τ(r) = r, and in this
case,r = (rτ )C, whererτ ⊂ g ⊕ g, the fixed point set ofτ in r, is identified with its image ing
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under the projectiong⊕ g → g : (x, y) �→ x. We can regardτ as an anti-holomorphic involution
on the GrassmannianGr(n,g ⊕ g) of n-dimensional complex subspaces ofg ⊕ g. Then since
τ(g∆,d) = g∆,d and since

τ Ad(g1,g2) =Ad(θ(g2),θ(g1))τ,

the subvarietyZd of Gr(n,g⊕g) is τ -invariant, andZd,R is the set of fixed points ofτ . Therefore
Zd,R is a smooth and compact subvariety ofGr(n,g⊕ g) (see Section 1.3.4 in [30]).

Note also thatgd,η ∈ Zd,R if and only if η is constant on thed-orbits, and in this case,gd,η =
ld,η,C. On the other hand, for any extendedd-signatureσ, we haveld,σ ∈ (G×G) · gd,|σ| ∈ Zd,
so ld,σ ∈ Zd,R.

5.3. G-orbits in Zd,R

Recall that for every Lagrangian subalgebral ⊂ g,

(Adgl)C =Ad(g,θ(g))(lC), ∀g ∈G.(17)

PROPOSITION 5.4. – Every r ∈ Zd,R is in the G-orbit of an ld,σ,C for some extended
d-signatureσ, whereG acts onZd,R byg · (lC) = Ad(g,θ(g))lC.

Proof. –Let r =Ad(g1,g2)gd,η for someη, so

r =
{(

Adg1(y + z1),Adg2γd(y+ z2)
)
: y ∈ mη, z1 ∈ nη, z2 ∈ nη−

}
.

Sincer has a real structure,τ(r) = r, so(Adθ(g2)τd(y + z2), Adθ(g1)θ(y + z1)) is in r, so that
Adθ(g2)τd(y+ z2) =Adg1(u+ v1) for someu ∈ mη andv1 ∈ nη. But

pη =
{
θ(y + z2): y ∈ mη, z2 ∈ nη−

}
,

soAdg−1
1 θ(g2)

γd(pη)⊂ pη. Sinceγd(pη) isG-conjugate topη, it follows thatγd(pη) = pη. Since

Pη is the normalizer ofpη, it follows thatg−1
1 θ(g2) ∈ Pη , sog2 = θ(g1p), for somep ∈ Pη . Thus,

r =
{(

Adg1(y+ z1), Adθ(g1)θ(p)γd(y+ z2)
)
: y ∈ mη, z1 ∈ nη, z2 ∈ nη−

}
.

Thus, up toG-conjugacy,

r =
{(

(y+ z1),Adθ(p)γd(y+ z2)
)
: y ∈ mη, z1 ∈ nη, z2 ∈ nη−

}

andmη, nη andnη− areγd-stable. Writeθ(p) = lu with l ∈Mη, u ∈Nη−. Since

{
Adu(y+ z2): y ∈mη, z2 ∈ nη−

}
=

{
(y+w2): y ∈mη, w2 ∈ nη−

}

it follows that

r=
{(

(y+ z1),Adlγd(y+ z2)
)
: y ∈ mη, z1 ∈ nη, z2 ∈ nη−

}
=Ad(1,l)gd,η.

We now use again the assumption thatr has a real structure and the facts thatθ(mη) = mη,
θ(nη) = nη−, Mη preserves the decompositionspη = mη + nη andθ(pη) = mη + nη−. Since

τ
(
y+ z1,Adlγd(y+ z2)

)
=

(
Adθ(l)γd

(
θ(y) + θ(z2)

)
, θ(y) + θ(z1)

)
,
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we see that

{Adθ(l)γdy, y): y ∈ mη}=
{(

y,Adlγd(y)
)
: y ∈mη

}
=

{(
γd(Adl−1y), y

)
: y ∈mη

}
.

Hence,Adθ(l)γd = γdAdl−1 , and it follows that(Adlτd)2 = 1.
Now, by Proposition 4.3, after acting by an element ofMη, we may assume thatr =

Ad(1,t)gd,η, wheret ∈ T γd is such thatt2 = 1. As before, letσt(α) be the eigenvalue ofAdt

on the root spacegα. Thenσt is ad-signature and we can define a new extendedd-signatureσ
by σ(α) = η(α)σt(α). ThenAd(1,t)gd,η = ld,σ,C by Lemma 5.1, which completes the proof of
the proposition. ✷
5.4. The identification ofL(g, d) with Zd,R and its geometry

Let d be any involutive diagram automorphism of the Dynkin diagram ofg. Recall thatL(g, d)
is the closure ofL(g, d) in Gr(n,g) in the classical topology. Denote byGr(n,g ⊕ g) the
Grassmannian ofn-dimensional complex subspaces ing⊕ g.

THEOREM 5.5. – The map

C :Gr(n,g) −→ Gr(n,g⊕ g) : l �−→ lC

gives an identificationL(g, d) ∼= Zd,R. Consequently,L(g, d) is an n-dimensional smooth
irreducible algebraic subvariety ofGr(n,g).

Proof. –The mapC is G-equivariant, whereg ∈ G acts onGr(n,g) by Adg and on
Gr(n,g⊕ g) byAd(g,θ(g)). By Corollary 4.4 and the fact that everyld,σ,C ∈Zd,R, we know that

C(L(g, d))⊂ Zd,R, soC(L(g, d))⊂ Zd,R becauseC is continuous. On the other hand, it follows
from Proposition 5.4 and Corollary 4.8 thatZd,R ⊂ C(L(g, d)). HenceC(L(g, d)) = Zd,R.
SinceC is an embedding, and sinceZd,R is a smooth submanifold ofGr(n,g ⊕ g), we know
that L(g, d) is a smooth submanifold ofGr(n,g). SinceGr(n,g) is the set of real points of
Gr(n,g ⊕ g) underC andZd is a complex algebraic subvariety ofGr(n,g ⊕ g), we see that
L(g, d) is a real algebraic subvariety ofGr(n,g). It is irreducible becauseZd is irreducible and
Zd is the complexification ofL(g, d) (see [30], p. 9). ✷

As a direct consequence of Theorem 5.5, we have:

COROLLARY 5.6. – Every Lagrangian subalgebral in L(g, d) is G-conjugate to anld,σ for
some extendedd-signatureσ.

COROLLARY 5.7. – TheG-orbit G · (hτd +n)∼=G/B is the only closed orbit inL(g, d), and
it is contained in the closure of everyG-orbit in L(g, d).

Proof. –ClearlyG · (hτd + n)∼=G/B is closed. By Corollary 5.6, everyG-orbitO in L(g, d)
is of the formG · ld,σ for some extendedd-signatureσ. It follows from Corollary 4.8 that
G · (hτd + n) ⊂ O. On the other hand, ifO = G · ld,σ is closed, and therefore compact, then
σ(α) = 0 for all α ∈Σ by Proposition 4.10. Thusld,σ = hτd + n andO =G · (hτd + n). ✷

COROLLARY 5.8. – L(g, d) is connected.

Proof. –SinceG is connected, we know by Corollary 5.6 that everyl ∈ L(g, d) is path-
connected to someld,σ which, by Lemma 4.7, is then path-connected tohτd + n. ✷

COROLLARY 5.9. – The Zariski closure ofL(g, d) coincides with its closure in the classical
topology.
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Proof. –We know from Theorem 5.5 that the closureL(g, d) of L(g, d) in the classical
topology is Zariski closed, so it contains the Zariski closure. But the Zariski closure contains
the classical closure. It follows that they coincide.✷

COROLLARY 5.10. – For any real form τ ∈ L(g, d), the Zariski closure of theG-orbit
G · gτ ∼=G/Gτ in Gr(n,g) is L(g, d).

Proof. –Denote byZτ the Zariski closure ofG · gτ in Gr(n,g). ThenZτ ⊂ L(g, d). Since
L(g, d) is irreducible andZτ has the same dimension asL(g, d), it follows thatZτ = L(g, d)
(Exercise 1.10 in [9]). ✷

Recall that a Lagrangian subalgebral of g is a k-model point if k ∩ l = kl, wherekl is the
normalizer subalgebra ofl in k. Denote byM the set of allk-model points. We now show thatM
is the union of theG-orbits through some special subalgebras.

Denote byAutI,S
D the subset of all involutive, isometric automorphisms of the Dynkin

diagram of the semi-simple subalgebramS,1 of g. For eachd ∈ AutI,S
D , let Sd,S be the set

of all d-signaturesσ of mS,1. If d ∈ AutI,S
D , andσ is a d-signature ofmS,1, let τd,σ be the

corresponding real form ofmS,1. Let

lSd,σ = m
τd,σ

S,1 + zS ∩ t+ nS .

Note thatlSd,σ ∈ L(S,1, d).

PROPOSITION 5.11. – We have

M=
⋃

S⊂S(Σ+)

⋃
d∈AutI,S

D

⋃
σ∈Sd,S

G · lSd,σ.

Proof. –Letd ∈AutI,S
D . It is easy to see from the definition oflSd,σ and Proposition 3.5 thatlSd,σ

is in M for everyσ ∈ Sd,S . SinceM is G-invariant by Corollary 3.7, we know thatG · lSd,σ ∈M
for every suchσ. Now assume thatl ∈ M. By Proposition 3.5,l = Adk(mτ

S,1 + zS ∩ t + nS)
for somek ∈ K , S ⊂ S(Σ+) and a real formτ of mS,1. By Corollary 4.4 applied tomS,1,
mτ

S,1 = Admm
τd,σ

S,1 for somed ∈ AutI,S
D , someσ ∈ Sd,S , and somem ∈ MS,1 := [MS ,MS].

SinceMS,1 acts trivially onzS and normalizesnS , it follows thatl=AdkAdmlSd,σ. ✷
5.5. Another description forL(g, id)

The setL(g, id) has been most important for applications. It will follow from the description
of irreducible components in Section 6 thatL(g, id) is the unique irreducible component ofL
containingk. In this section, we give another description of it.

Set

L0 = {l ∈L: rank(k ∩ l) = rank(k)}.

It is the set of Lagrangian subalgebras ofL containing the Lie algebra of a maximal torus ofK .

PROPOSITION 5.12. – L0 = L(g, id).

Proof. –Write lσ for ld,σ for d trivial. First assumel =Adglσ lies inL(g, id). By Corollary 5.6
and Proposition 4.11, we can writel = AdkAdalσ , for k ∈ K , a ∈ A. But lσ containst, so
AdkAdalσ containsAdk(t), sinceA acts trivially ont. Thus,l ∈ L0.
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Now, assume a Lagrangian subalgebral contains the Lie algebra of a maximal torus ofK .
By [12], we knowl =Adk(mτ

S,1 ⊕V ⊕ nS), for some(S,V, τ). By the assumption onl, we may
assume thatmτ

S,1 ⊕ V containst. ThenV = t ∩ zS andmτ
S,1 contains a Cartan subalgebra of

mS,1 ∩ k. But it is easy to show that ifτ does not have trivial diagram automorphism, thenmτ
S,1

does not contain a Cartan subalgebra ofmS,1 ∩ k. It follows easily thatl ∈ L(g, id). ✷
We remark that it follows thatG acts onL0, a fact that is not clear from the definition ofL0.

Remark5.13. – It is not difficult to show that everyld,σ ∈ L(g, id) is a k-model point. It
follows from Corollary 3.7 and Corollary 5.6 that everyl ∈ L(g, id) is a k-model point inL. It
follows from Section 2.3 that many familiar Poisson structures are contained inL(g, id) asG
or K orbits with the Poisson structures being the restriction of the Poisson structureΠ on L
defined in Section 2.2. For example, we can identifyG · k ∼= G/K , and the Poisson structure
induced byΠ onG/K ∼=AN is the negative of the Poisson structureπAN that makesAN into
the dual Poisson Lie group ofK . More generally, by looking atG-orbits inL(g, d), we obtain in
this manner a Poisson structure onG/G0 for every real formG0 of G. The Poisson manifolds
arising fromK-orbits inL(g, id) are studied in more detail in Section 7.

Remark5.14. – Not all points inL(g, d) arek-model points whend is not trivial. The criterion
for ld,σ to be ak-model point is that ifσ(α) = 0, thend(α) = α.

In [7], we introduced certainK-invariant metricsgλ on T∗(K/T ) for λ ∈ ar, the set of
elements ina whose centralizer inK is T . These metrics are important for showing that an
operatorS introduced by Kostant is a limit of some Hodge LaplaciansSλ. The existence of this
family simplifies the proof of Kostant’s basic result thatKer(S) is isomorphic toH∗(K/T ).
We remark that the metricsgλ can be understood in terms of the restriction of a Riemannian
metric on the Riemannian symmetric spaceG/K . SinceL(g, id) is a compactification ofG/K
with closed orbit the flag manifoldG/B, this observation provides evidence that embedding the
Bruhat–Poisson structure onG/B into the manifoldL(g, id) is useful in Poisson geometry.

We give the construction of this metric. We can identify the tangent space ofG/K atgK with
Adg(i k). The Killing form is positive definite atAdg(i k), and we lets be the metric onG/K
given by taking the square root of the Killing form metric onAdg(i k).

Let Hλ ∈ a be such thatλ(H) = (Hλ,H) and letaλ = exp(Hλ). Then theK-orbit through
aλK ∈ G/K can be identified withK/T . If we restrict the above metrics to a metricsλ on
K · aλK ⊂G/K , and usesλ to identify the cotangent bundle with the tangent bundle, then one
can show by easy calculations that we obtain the metricgλ from [7].

6. Irreducible components ofL

Recall from Section 3.5 that the varietyL of all Lagrangian subalgebras ofg can be
decomposed as the disjoint union

L=
⋃

(S,ε,d)

L(S, ε, d)

where, for the Lagrangian datum(S, ε, d) (see Definition 3.15),

L(S, ε, d) =
{
Adk(mτ

S,1 + V + nS): k ∈K, τ ∈L(mS,1, d), V ∈ LzS,ε

}
.

In this section, we will determine the irreducible components ofL (as a real algebraic variety)
using the closuresL(S, ε, d) of L(S, ε, d) in the GrassmannianGr(n,g) in the classical topology.
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We first combine results from Sections 3 and 5 to describe the geometry of the closures
L(S, ε, d).

THEOREM 6.1. – EachL(S, ε, d) is a smooth connected submanifold of the Grassmannian
Gr(n,g) of dimensiondim(k)+ z(z−3)

2 . It fibers overG/PS , and the fiber is the product ofLzS,ε

with L(mS,1, d), the set of real points of a De Concini–Procesi variety.

Proof. –Recall from the proof of Proposition 3.16 that

LpS (S, ε, d) :=
{
mτ

S,1 + V + nS : k ∈K, τ ∈L(mS,1, d), V ∈ LzS,ε

}
.

It can be identified with the image ofL(mS,1, d)×LzS,ε ⊂Gr(m,mS,1)×Gr(z, zS) under the
embedding

E :Gr(m,mS,1)×Gr(z, zS) −→ Gr(n,g) : (U,V ) �−→ U ⊕ V ⊕ nS .

Thus LpS (S, ε, d), the closure ofLpS (S, ε, d) in Gr(n,g) in the classical topology, can be
identified with the image ofL(mS,1, d)×LzS,ε underE. ThusLpS (S, ε, d)⊂Gr(n,g) is smooth
and connected by Theorem 5.5. Consider now the map

m :K ×K∩PS LpS (S, ε, d) −→ Gr(n,g) : (k, l) �−→ Adkl.

It is clear thatm is smooth and proper, and arguments similar to those used in the proof of
Proposition 3.16 show thatm is an immersion. Thusm is an embedding. But Karolinsky’s
Theorem 3.2 implies that the image ofm is L(S, ε, d). ThusL(S, ε, d) is a smooth connected
submanifold ofGr(n,g). The dimension statement is clear from Proposition 3.16.✷

PROPOSITION 6.2. – L(S, ε, d)⊂Gr(n,g) is closed and irreducible in the Zariski topology.

Proof. –SinceLpS (S, ε, d) is Zariski closed inGr(n,g) by Proposition 3.9 and Theorem 5.5,
it follows thatG×PS LpS (S, ε, d) is Zariski closed inG×PS Gr(n,g). The map

m :G×PS Gr(n,g)→Gr(n,g) :m(g, l) = Adgl

is projective, so the image ofG ×PS LpS (S, ε, d) underm is Zariski closed, and irreducible
since the domain is irreducible. Thus, the proposition follows from the proof of Theorem 6.1,
sinceG/PS

∼=K/K ∩ PS . ✷
DEFINITION 6.3. – Lagrangian data(S, ε, d) is said to beinessentialif S = S(Σ+)− {αi},

d= d′|S for some involutive diagram automorphismd′ of S(Σ+), andε= 1. Otherwise,(S, ε, d)
is called essential.

PROPOSITION 6.4. – Lagrangian data(S, ε, d) is inessential if and only if

L(S, ε, d)⊂ ∂L(S′, ε′, d′)

for some Lagrangian data(S′, ε′, d′).

Proof. –If (S, ε, d) is inessential, then we claimL(S, ε, d)⊂L(S(Σ+),1, d′), whered′|S = d.
Indeed, sincedimC(zS) = 1 andε= 1, the setLzS,ε consists of only one point, namelyzS ∩ t. It
follows from Theorem 3.2 and Corollary 4.4 that each subalgebra inL(S, ε, d) is G-conjugate to
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m
τd,σ

S,1 ⊕ zS ∩ t ⊕ nS for somed-signatureσ. But this algebra coincides withld′,σ which lies in

∂L(g, d′) by Lemma 4.7. Hence,L(S, ε, d) =
⋃

σ G · ld′,σ ⊂ ∂L(g, d′).
Suppose thatL(S, ε, d)⊂ ∂L(S′, ε′, d′). ThenS ⊂ S′ sodimC(zS) > dimC(zS′). Moreover,

by Theorem 6.1, we have

dimC(zS)(dimC(zS)− 3)
2

<
dimC(zS′)(dimC(zS′)− 3)

2
.

It follows that dimC(zS) = 1 or 2 anddimC(zS′) = 0. Thus,L(S′, ε′, d′) = L(g, d′) consists
of real forms. But every subalgebra inL(S, ε, d) is G conjugate to someld,σ by Corollary 5.6.
Suppose first thatdimC zS = 1. Sinceγd′ acts by permutations onh, it follows that γd′ acts
trivially on zS , so the Lagrangian subalgebra ofzS associated by Karolinsky’s classification with
ld,σ is zS ∩ t. Thus,ld,σ ∈ L(S,1, d′|S), and the assertion follows.

If dimC zS = 2, we will show thatdim(L(S, ε, d) ∩ L(g, d′)) < dim(L(S, ε, d)), and it will
follow that

L(S, ε, d) �⊂ L(g, d′) =L(S′, ε′, d′).

To prove the dimension claim, note

L(S, ε, d)∩L(g, d′)⊂
⋃

σ:[Sσ ]=S

G · ld,σ

so thatdim(L(S, ε, d)∩Zd′,R) = dimC g−dimC zS =dimC g−2 by Proposition 4.10. However,
whendimC(zS) = 2, dim(L(S, ε, d)) = dimC g− 1 by Theorem 6.1. ✷

COROLLARY 6.5. –

L=
⋃

essential(S,ε,d)

L(S, ε, d)

is the decomposition ofL into irreducible components.

Proof. –By Proposition 6.2, eachL(S, ε, d) is irreducible. Thus, the irreducible components
are theL(S, ε, d)’s not properly contained in any otherL(S′, ε′, d′). By Proposition 6.4, these
correspond to essential data.✷

COROLLARY 6.6. – L(S(Σ+),1, id)∼= L(g, id)∼= L0 is the only irreducible component ofL
containingk.

Proof. –By Corollary 5.10, the Zariski closure ofG · k is L(g, id), which is not contained in
any other irreducible component by Corollary 6.5.✷

Note also thatL itself is typically not smooth, because different irreducible components can
intersect. This does not happen forsl(2), but for sl(3), the componentsL(g, id) andL(∅,1, id)
intersect in the flag variety ofSL(3,C).

7. The Poisson structureΠ on L

In this section, we study some properties of the Poisson structureΠ onL defined in Section 2.
More specifically, we relateΠ to the Bruhat Poisson structure and determine the(K,πK)-homo-
geneous Poisson spaces defined by points inL0

∼= L(g, id).
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7.1. The fiber projectionL(S, ε, d)→G/PS is Poisson

It is clear from the definition ofΠ that everyG-invariant smooth submanifold ofL is a
Poisson submanifold. Thus, eachL(S, ε, d) is a Poisson submanifold. On the other hand, equip
G/PS with the Bruhat Poisson structureπ∞, which is the unique(K,πK)-homogeneous Poisson
structure onG/PS that vanishes at the identity cosetePS . Recall from Theorem 6.1 that we have
the fiber bundleL(S, ε, d)→G/PS .

PROPOSITION 7.1. – The fiber projectionφ fromL(S, ε, d) to G/PS is a Poisson map.

Proof. –First, we observe that the projectionφ is G-equivariant. Indeed, we can identify
K ×K∩PS LpS (S, ε, d) with G ×PS LpS (S, ε, d) via the obvious inclusion, and the map from
G×PS LpS (S, ε, d) toL(S, ε, d) is given by the adjoint action(g, l) �→Adgl. Then the projection
to G/PS is given by(g, l) �→ gPS , which is obviouslyG-equivariant.

Recall that the Poisson structure onL(S, ε, d) is induced by the element12R ∈ ∧2g given in
Section 2.2. Sinceφ isG-equivariant, it follows thatφ∗Π is given by the bi-vector field onG/PS

induced by1
2R, so we just have to check that1

2 R induces the Bruhat Poisson structure onG/PS .
It follows from the definition of the Drinfeld map that the Lagrangian subalgebra associated with
the pointePS by π∞ is (k∩ pS)⊕ nS . By Theorem 2.23, the Drinfeld map

P : (G/PS, π∞) −→
(
K ·

(
(k ∩ pS)⊕ nS

)
,Π

)

is a Poisson map. The normalizer of(k∩pS)⊕nS in K isK∩PS , and it follows that the Drinfeld
map is a diffeomorphism, soπ∞ coincides withΠ. Since the Poisson structureΠ is induced by
1
2R, the result follows. ✷
7.2. (K,πK)-homogeneous Poisson spaces determined by points inL0

We now turn to the Poisson submanifold(L0,Π), where L0
∼= L(g, id) is the unique

irreducible component ofL that containsk. We study the(K,πK)-homogeneous Poisson spaces
determined by points inL0 (see Definition 2.9).

By Proposition 5.11 and Corollary 5.6, every point inL0 is a k-model point. It follows from
the discussion in Section 2.3 that eachl ∈ L0 can determine a number of(K,πK)-homogeneous
Poisson spaces, Indeed, letNK(l) be the normalizer subgroup ofl in K . Then, for any subgroup
K1 of NK(l) with the same Lie algebral∩ k asNK(l), the spaceK/K1 carries a unique Poisson
structureπ such that the covering map

P :K/K1 −→ K/NK(l)∼=K · l ⊂L0 :kK1 �−→ kNK(l)

is a Poisson map. The space(K/K1, π) is automatically(K,πK)-homogeneous, and the mapP
is its Drinfeld map (see Definition 2.4). Examples ofK1 areK1 =NK(l) orK1 is the connected
component of the identity ofNK(l). We can characterize these(K,πK)-homogeneous Poisson
spaces determined by pointsl ∈ L0 as follows.

PROPOSITION 7.2. – All (K,πK)-homogeneous Poisson spaces(K/K1, π) determined by
points inL0 (seeDefinition 2.9) have the property thatK1 contains a maximal torus ofK .
Conversely, all(K,πK)-homogeneous Poisson spaces with this property are determined by
points inL0.

Proof. –The first part of the proposition follows from the definition ofL0. Now, let(K/K1, π)
be any(K,πK)-homogeneous Poisson space such thatK1 contains a maximal torus ofK . Then
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the Lie algebrak1 of K1 contains the Lie algebra of a maximal torus ofK . Consider the Drinfeld
map

P :K/K1 −→ L.
Let l = P (eK1) ∈ L. Then by Drinfeld’s Theorem 2.3,k1 = l ∩ k andK1 ⊂NK(l). Thusl ∈ L0

by the definition ofL0, and(K/K1, π) is determined byl. ✷
The second part of Proposition 7.2 can be rephrased as the following.

COROLLARY 7.3. – Every(K,πK)-homogeneous Poisson space(K/K1, π), whereK1 is a
closed subgroup ofK containing a maximal torus ofK , is a Poisson submanifold of(L0,Π) up
to a covering given by its Drinfeld map.

Remark7.4. – Examples ofK1 in Proposition 7.3 areK∩Q, whereQ is a parabolic subgroup
of G, so the corresponding homogeneous space is a flag manifoldK/(K ∩Q)∼=G/Q.

7.3. The normalizer subgroup ofl ∈L0 in K

We now study the normalizer subgroupNK(l) of an arbitraryl ∈ L0 in K and determine
when it is connected. By Corollary 5.6 and Proposition 4.11, we can writel =AdkAdexpH ld,σ

for somek ∈ K , H ∈ a ∩ mσ,1 and extended signatureσ for d = id, the trivial diagram
automorphism. In what follows, we will writelσ = lid,σ and call an extended signature for
d= id simply anextended signature. We will write lH,σ = AdexpH lσ. Clearly,l andlH,σ have
isomorphic normalizers inK .

LEMMA 7.5. – For lH,σ =AdexpH lσ, whereσ is an extended signature andH ∈ a∩mσ,1,

lH,σ ∩ k = t+ spanR

{
Xα, Yα: σ(α) = 1, α(H) = 0

}
.

Proof. –This follows from the fact that

AdexpH lσ = t+ nσ + spanR

{
AdexpHXα, AdexpHYα: σ(α) = 1

}
+ spanR

{
iAdexpHXα, iAdexpHYα: σ(α) =−1

}
. ✷

We now describe the normalizer subgroup oflH,σ in K .

Notation 7.6. – For an extended signatureσ andH ∈ a∩mσ,1, letΣσ = {α ∈Σ: σ(α) = 1}.
Let Wσ be the subgroup of the Weyl group generated by the simple reflections corresponding to
the simple roots in the support ofσ. Let

WH,σ = {w ∈Wσ: wΣσ =Σσ, wH =H} ⊂Wσ ⊂W.

Let

N ′(lH,σ) = p−1(WH,σ),

wherep :NK(t)→W = NK(t)/T is the projection from the normalizer subgroupNK(t) of t

in K to the Weyl group. Finally, letKH,σ be the connected subgroup ofK with Lie algebra
lH,σ ∩ k.

PROPOSITION 7.7. – For an extended signatureσ andH ∈ a∩mσ,1, the normalizer subgroup
NK(lH,σ) of lH,σ =AdexpH lσ is given by

NK(lH,σ) =N ′(lH,σ)KH,σ =KH,σN
′(lH,σ).
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Proof. –It is clear from Lemma 7.5 thatN ′(lH,σ) normalizeslH,σ , so it normalizeslH,σ ∩ k

and the corresponding connected groupKH,σ. This implies the second equality, and the inclusion
KH,σN

′(lH,σ)⊂NK(lH,σ).
Conversely, suppose thatk ∈K normalizeslH,σ. Then it normalizes the groupKH,σ, soAdkT

is a maximal torus ofKH,σ, whereT is the maximal torus ofK with Lie algebrat. Thus there
existsk1 ∈KH,σ such thatAdk−1

1
AdkT = T , i.e.,k−1

1 k ∈NK(T ) =NK(t). Write n= k−1
1 k,

so thatk = k1n. It remains to show thatn ∈N ′(lH,σ).
Denote bywn the Weyl group elementnT ∈ W . Sincen normalizeslH,σ , it normalizes its

nilradicalnσ. Thuswn ∈Wσ . Now for eachα ∈ [Sσ], the support ofσ, consider the space

Vα = lH,σ ∩ (gα ⊕ g−α).

By the description of the basis oflσ, we know that the Killing form ofg restricted toVα is either
negative definite or positive definite depending on whetherσ(α) = 1 or σ(α) =−1. Now, since
n normalizeslH,σ , it permutes the spacesVα, for α ∈ [Sσ]. But n preserves the Killing form, so
σ(α) = 1 impliesσ(wnα) = 1. In other words,wnΣσ = Σσ . It also follows thatn normalizes
lσ. Therefore we have

Adexp(wnH)lσ =AdexpH lσ.

An easy calculation shows that this impliesα(H) = α(wnH) for all α ∈ [Sσ]. SinceH ∈
a ∩ mσ,1 andwn ∈ Wσ , it follows that H = wnH . Thereforewn ∈ WH,σ , or, equivalently,
n ∈N ′(lH,σ). ✷

COROLLARY 7.8. – Let the notation be as in Notation7.6. Then

NK(lH,σ)/KH,σ
∼=N ′(lH,σ)/N ′(lH,σ) ∩KH,σ.

Remark7.9. – For an extended signatureσ, the group

W0,σ = {w ∈Wσ: wΣσ =Σσ}

contains the subgroupRσ generated by reflections{sα} for α ∈ Σσ as a normal subgroup.
Indeed, this follows from the formula forsα and Formula (13) forσ. SetZσ = W0,σ/Rσ.
Regardσ as a signature for the root system[Sσ]. Thenσ defines a signature for each irreducible
subsystem of[Sσ], and we can calculateZσ separately for each irreducible subsystem. The group
Zσ is computed for each simple Lie algebra in [23], Table 3, p. 80, and explicit elements are
given. For example, wheng = sl(n,C), then if lσ �∼= su(n/2, n/2), thenZσ is trivial, and if
lσ ∼= su(n/2, n/2) thenZσ is a group with two elements.Zσ has no more than two elements
except in the case wheng = so(4n,C) and lσ

∼= so(2n,2n), whenZσ is the Klein 4-group.
In particular, the groupW0,σ can be calculated explicitly in each case. It follows that we can
compute the groupWH,σ explicitly.

7.4. (K,πK)-homogeneous Poisson structures onK/T

In this section, we determine all(K,πK)-homogeneous Poisson structures on the full flag
varietyK/T , whereT is the maximal torus ofK with Lie algebrat.

By Proposition 7.2, we only need to identify thosel ∈ L0 such thatl ∩ k = t. We can assume
l = lH,σ =AdexpH lσ , whereσ is an extended signature andH ∈ a ∩mσ,1, because the Poisson
structure onK/T determined by anyl = AdklH,σ for somek ∈K (such thatl ∩ k = t) will be
K-equivariantly isomorphic to the one determined bylH,σ.

4e SÉRIE– TOME 34 – 2001 –N◦ 5



ON THE VARIETY OF LAGRANGIAN SUBALGEBRAS, I 665

PROPOSITION 7.10. – Let σ be an extended signature and letH ∈ a ∩ mσ,1. Let
lH,σ =AdexpH lσ. ThenlH,σ ∩ k = t if and only ifα(H) �= 0 for all α ∈Σσ.

Proof. –This is a direct consequence of Lemma 7.5.✷
For everylH,σ such thatlH,σ ∩ k = t, denote byπH,σ the associated(K,πK)-homogeneous

Poisson structure onK/T .

COROLLARY 7.11. – The collection{πH,σ}, asσ runs over all extended signatures and asH
takes all elements ina∩mσ,1 such thatα(H) �= 0 whenσ(α) = 1, gives all(K,πK)-homogene-
ous Poisson structure onK/T .

An explicit formula forπH,σ is given in [21] as

πH,σ = p∗πK +
1
2

( ∑
α∈[Sσ]∩Σ+

1
1− σ(α) e2α(H)

Xα ∧ Yα

)0

,

wherep :K → K/T is the natural projection, and the second term on the right hand side is
theK-invariant bi-vector field onK/T whose value ate = eT is the expression given in the
parenthesis. The fact that these are all the(K,πK)-homogeneous Poisson structures onK/T
up to K-equivariant isomorphisms is also proved in [21] by a different method. Namely, we
show in [21] that every such Poisson structure comes from a solution to theClassical dynamical
Yang–Baxter equation[8]. In [21], we also study some geometrical properties of these Poisson
structures such as their symplectic leaves, modular vector fields, and moment maps for the
T -action.

Recall from Proposition 7.7 and Notation 7.6 that whenlH,σ ∩ k = t, the normalizer subgroup
NK(lH,σ) of lH,σ in K lies in the normalizer subgroup oft in K , and we have

NK(lH,σ)/T =WH,σ = {w ∈Wσ: wΣσ =Σσ, wH =H}.

WhenWH,σ is trivial, the Poisson manifold(K/T,πH,σ) embeds into(L0,Π) as a Poisson
submanifold. WhenWH,σ is not trivial, it follows from Proposition 2.28 that action ofWH,σ on
K/T from the right defined by

(K/T )×WH,σ −→ K/T : (kT,w) �−→ kwT

is by Poisson isomorphisms. Thus, the groupWH,σ gives symmetries of the Poisson structure.
As we mentioned in Remark 7.9, this group can be calculated case by case.

Remark7.12. – IfH ∈ a is regular in the sense that it is not fixed by any Weyl group element,
thenWH,σ is trivial for anyσ. On the other hand, Borel and de Siebenthal showed that every
nontrivial signatureσ corresponding to the trivial diagram automorphism can be put in a form
such thatσ(αk) = −1 for exactly one simple rootαk [3] or [23], Appendix. In particular, the
groupW0,σ contains the Weyl group of a maximal Levi subgroup, so forWH,σ to be trivial,H
cannot be fixed by any element in a maximal Levi subgroup, so in particular,H can lie in at most
one wall.

Example7.13. – We can compute the Poisson structureΠ on L0 explicitly for the case of
g = sl(2,C). In this case, it follows from [4] thatL0 can beG = PSL(2,C)-equivariantly
identified withRP3, regarded as the projectivization of the spaceH of 2×2 Hermitian matrices,
where the action ofG onH is by

g ◦X = gXgt, g ∈G, X ∈H.
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TheR-matrixR ∈ g∧ g (see Section 2.2) is explicitly given by

R=−1
2
(
ih∧ h−Xα ∧ iEα + Yα ∧Eα

)
,

where

h=
1

2
√
2

(
1 0
0 −1

)
, Xα =

1
2

(
0 1
−1 0

)
, Yα =

1
2

(
0 i
i 0

)
,

andEα = 1
2 (Xα − iYα). Denote byv :g→ χ1(H) the Lie algebra anti-homomorphism defined

by the above action ofG onH, whereχ1(H) is the space of vector fields onH. ThenΠ= 1
2 v(R)

is a Poisson structure onH. Write an element ofH as

X =
(

x u+ iv
u− iv y

)

with x, y, u, v ∈ R. Then the Poisson brackets forΠ are given by

{x, y}= 0, {x, u}=−1
4
yv, {x, v}= 1

4
yu,

{y, u}= 1
4
yv, {y, v}=−1

4
yu, {u, v}= 1

8
y(y− x).

Note that

c1 = x+ y and c2 = xy− u2 − v2

are two Casimir functions. Hence allSU(2)-orbits are Poisson submanifolds. Since this Poisson
structure is quadratic, it gives rise to one onRP3, which is the Poisson structureΠ onL0. It can
be checked that by looking at theSU(2)-orbits through the points inRP3 corresponding to

(
b 0
0 1

)
, b ∈ R, b �= 1,

we get all the(K,πK)-homogeneous Poisson structuresπH,σ onSU(2)/S1, up toK-equivariant
isomorphisms, as discussed in Section 7.4. By identifyingSU(2)/S1 with S2 = {(x, y, z) ∈
R

3: x2 + y2 + z2 = 1}, these Poisson structures are given by

{x, y}= 1
4
(x+ 2a− 1)z, {y, z}= 1

4
(x+ 2a− 1)x, {z, x}= 1

4
(x+2a− 1)y,

for a ∈ R. Note that the antipodal map is a symmetry for the case whena= 1
2 . This corresponds

to the fact that the stabilizer subgroup inSU(2) of the point inRP3 corresponding to( 1 0
0 −1 ) has

two connected components.

8. Remarks

We define aLagrangian pair in g to be a pair of Lagrangian subalgebras(l, l′) such that
l ∩ l′ = 0. Clearly a Lagrangian pair ing is the same as a Lie bialgebra whose double isg

together withIm〈〈 , 〉〉 (or a scalar multiple of it) as the invariant scalar product. Thus associated
to each Lagrangian pair(l, l′) there is a Poisson structureΠl,l′ on the varietyL. There are many
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examples of Lagrangian pairs ing other than the example(k,a + n). We can take, for example,
l = t + n− and l′ = a + n. Lagrangian pairs ing have been classified by Delorme in [5] up to
conjugacy by elements inG. In particular, it can be shown that for everyl ∈ L there is at least
onel′ such thatl andl′ form a Lagrangian pair. It would be interesting to study the geometries
of the Poisson structures onL(d) defined by different Lagrangian pairs and the relations among
them. Note that our discussions in Sections 3–6 about the geometry ofL are independent of the
choice of the Lagrangian pair.

In general, assume thatd is a 2n-dimensional Lie algebra over the fieldk = R or C, and
assume that〈 , 〉 is a non-degenerate ad-invariant symmetric scalar product ond. Whenk = R,
we assume that the signature of〈 , 〉 is (n,n). Then we have the notion of Lagrangian subalgebras
in d, and we can form the algebraic varietyL(d). One example of(d, 〈 , 〉), which is the
complexification of our main example in this paper, isd = g ⊕ g with 〈(x1, x2), (y1, y2)〉 =
〈〈x1, y1〉〉−〈〈x2, y2〉〉 for any semi-simple complex Lie algebrag. In this case, one can understand
the geometry ofL(d) by using results in [13] and similar techniques as in Sections 3–6. Some
connections between Lagrangian subalgebras ofg and ofg ⊕ g and solutions to the classical
dynamical Yang–Baxter equation studied by Etingof–Varchenko [8] and Schiffmann ([28]) can
be found in [21]. More examples of(d, 〈 , 〉) can be found in [5], [24], [25]. The geometry of
L(d) is different for each example, and so are the classification of Lagrangian pairs ind and the
geometries of the Poisson structuresΠl,l′ . We plan to study these problems in additional cases in
a sequel to this paper.
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