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ON THE VARIETY OF LAGRANGIAN SUBALGEBRAS, |

By SaM EVENS! AND JANG-HUA LU 2

ABSTRACT. — We study subalgebras of a semi-simple Lie algebra which are Lagrangian with respect
to the imaginary part of the Killing form. We show that the varigtyf Lagrangian subalgebras carries
a natural Poisson structui@. We determine the irreducible components/hfand we show that each
irreducible component is a smooth fiber bundle over a generalized flag variety, and that the fiber is the
product of the set of real points of a De Concini—Procesi compactification and a connected component of a
real orthogonal group. We study some properties of the Poisson strilitturd show that® contains many
interesting Poisson submanifolds.
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RESUME. — Nous étudions les sous-algebres d'une algébre de Lie semi-simple qui sont lagrangiennes par
rapport & la partie imaginaire de la forme de Killing. Nous montrons que la vafiétie ces sous-algebres
posséde une structure de Poisson naturHllé\ous décrivons les composantes irréductible€ a@# nous
montrons que chaque composante irréductible est un fibré lisse de base une variété de drapeaux généralisée
et de fibre le produit des points réels d’'une compactification de De Concini—Procesi par une composante
connexe d’un groupe orthogonal. Nous étudions la structure de Paisstmous montrons qué contient
des sous-variétés de Poisson intéressantes.
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1. Introduction

Let g be a complex semi-simple Lie algebra andllet( , )) be the imaginary part of the
Killing form ((, )) of g. We will say that a real subalgebref g is Lagrangianif dimg [ = dimc g
and ifIm((z,y)) =0 forall z,y € .

In this paper, we study the geometry of the variétgf Lagrangian subalgebras gfind show
that £ carries a natural Poisson structdife We show that each irreducible componentlois
smooth and is a fiber bundle over a generalized flag variety, and the fiber is the product of the
set of real points of a De Concini—Procesi compactification and a connected component of a real
orthogonal group. We study some properties of the Poisson strdétanel show that it contains
many interesting Poisson submanifolds.

The Poisson structurg is defined using the fact that regarded as a real Lie algebra, is the
double of a Lie bialgebra structure on a compact real fowhg. The construction ofl works
for any Lie bialgebra, and we present it in the first part of the paper. In the second part, we study
the specific example of, which we regard as the most important example since it is closely
related to interesting problems in Lie theory.
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632 S.EVENS AND J.H. LU

We now explain our motivation and give more details of our results.
Let (u,u*) be any Lie bialgebra, let be its double, and let , ) be the symmetric scalar
product oro given by:

(x+&y+n)=(x,n)+E), wycu {necu”

A subalgebrd of  is said to beLagrangianif dim[ = dimu and if (a,b) =0 for all a,b € [.
Denote byL () the set of all Lagrangian subalgebra%oft is a subvariety of the Grassmannian
of n-dimensional subspaces of wheren = dimu. The motivation for studying’(d) comes
from a theorem of Drinfeld [6] on Poisson homogeneous spaces which we now recall briefly.
More details are given in Section 2.1.

Let (U, 7y ) be a Poisson Lie group witfu, u*) as its tangent Lie bialgebra. Recall that an
action of U on a Poisson manifold)M, ) is called Poisson if the action mdp x M — M
is a Poisson map. When the action is also transitié, 7) is called a(U, my)-homogeneous
Poisson space. In this case, Drinfeld [6] associated to gach)M a Lagrangian subalgebtg
of 0 and showed thdt,.,,, = Ad,l,, for everyu € U andm € M. Thus we have & -equivariant
map

(1) P:M — L0):m — [y,

whereU acts onL(d) by the adjoint action. Drinfeld’s theorem says that the assignment that
assigns to each\/, ) the image of the map in (1) gives a one-to-one correspondence between
the set ofU-equivariant isomorphism classes @, 7;/)-homogeneous Poisson spaces with
connected stabilizer subgroups and the saVairbits in a certain subset(v)c of L(d) (see
Section 2.1 for more details).

We prove the following theorem.

THEOREM 1.1. — 1)There is a Poisson structuié on £(?) with respect to which the adjoint
action of U on L(d) is Poisson.

2) EachU-orbit O in £(?) is a Poisson submanifold and consequentfar; )-homogene-
ous Poisson space.

3) For any (U, 7y )-homogeneous Poisson spacdd, ), the mapP in (1) is a Poisson map
onto theU-orbit of ,,, foranym € M.

We introduce the notion afiodel pointsn £(). For a homogeneous Poisson sp@té ), let
[= P(m) for somem € M. We showl is a model pointif and only ifthemap: M — O, =U -(
is a local diffeomorphism (and thus a covering map). When this happens, we (&yart) as a
model for the Poisson spa¢#/, ).

The second part of the paper is concerned with the vayety Lagrangian subalgebras of a
complex semi-simple Lie algebrawith respect to the imaginary part of its Killing form. Lét
be the adjoint group of. Based on the Karolinsky classification of Lagrangian subalgebras of
in [12], we prove:

THEOREM 1.2. — The irreducible components dfare smooth. Each irreducible component
fibers over a generalized flag variety, and its fiber is the product of a connected component of a
real orthogonal group and the space of real points of a De Concini—Procesi compactification of
the semi-simple part of a Levi subgroup®f

For example, wheg = s((2, C), there are two irreducible components: the first component is
theSL(2, C)-orbit througha +n and is isomorphic t@ P! (herea consists of diagonal real trace
zero matrices and strictly upper triangular matrices), and the second component contains the
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ON THE VARIETY OF LAGRANGIAN SUBALGEBRAS, | 633

SL(2,C)-orbits throughsu(2) ands((2,R) as open orbits, and ti#.(2, C)-orbit throughia + n
as the unique closed orbit. The second component may be identifiRB’as

Let ¢ be a compact real form af and K C G the connected subgroup with Lie algelira
Fix an lwasawa decompositian=t + a + n of g. Then there is a Poisson structurg on K
making(K, 7k ) into a Poisson Lie group, and the double of the tangent Lie bialgelj#d of )
is g. By Theorem 1.1, there is a Poisson structilren £ such that eacli -orbit in £, being a
Poisson submanifold (fZ, IT), is a (K, 7k )-homogeneous Poisson space, and ey&fyr )-
homogeneous Poisson space maps ortearbit in £ by a Poisson map. In particular, we show
that every point in the (unique) irreducible componggtof £ that containg is a model point.
Consequently, a number of interestiffg, = )-homogeneous Poisson spaces are containégl in
(possibly up to covering maps) as Poisson submanifolds. Among thesdl &€, 75 )-homo-
geneous Poisson structures on diyK,, where K is a closed subgroup df containing a
maximal torus ofK’. For example/{/K; could be any flag variet¢/Q = K/K N Q, whereQ
is a parabolic subgroup @f. We remark that it is shown in [21] that dlK, 7 )-homogeneous
Poisson structures o /T, whereT is a maximal torus inK, can be obtained from solutions
to theClassical Dynamical Yang—Baxter Equatif#]. Some Poisson geometrical properties of
such Poisson structures are also studied in [21].

We are motivated to studyK,rwx)-homogeneous Poisson structures because of their
connections to Lie theory. One remarkable example is the so-called Bruhat Poisson structure
Teo [17] 0N K /T It corresponds to the Lagrangian subalgebfan of g, whereg=¢+a+n
is an lwasawa decomposition @f andt = ia is the Lie algebra ofl’. The name Bruhat
Poisson structure comes from the fact that its symplectic leaves are exactly the Bruhat cells
for a Bruhat decomposition df /T [17]; its Poisson cohomology is isomorphic to a direct sum
of n-cohomology groups with coefficients in certain infinite-dimensional representatiods of
[19]; its K-invariantPoisson harmonic formare exactly the harmonic forms introduced and
studied by Kostant in [15]. This last fact is proved in [7], where we alsomiseo construct
St-equivariantly closed forms o /T and use them to reinterpret the Kostant—-Kumar approach
to the Schubert calculus d&i/T [16]. One key fact used in [7] is that the Poisson structueis
the limit of a family;, ¢ € (0, +00), of (K, 7k )-homogeneous symplectic structuresigfT .

The family 7, t € (0,+o0], corresponds to a continuous curvedn Thus, we regard. as a
natural setting for deformation problems for Poisson homogeneous spaces, and for this reason it
is desirable to study its geometry.

The paper is organized as follows.

We start our discussion in Section 2 with an arbitrary Poisson Lie gi@ugy ), its tangent Lie
bialgebra(u, u*), and the varietyC(?) of Lagrangian subalgebras of its double- u < u*. We
first review Drinfeld’s theorem of\U, 7y )-homogeneous spaces. We then give the construction
of the Poisson structud@ on £(2) and establish the properties listed in Theorem 1.1.

The rest of the paper is devoted to the Poisson Lie gr@iprx). In 83.1, we review
Karolinsky's classification of Lagrangian subalgebras, and usedetmmposée into a finite
disjoint union of submanifold€(S,e,d). The study of the closur€(S,e,d) is reduced to
studying the closure of the variety of real forms of a semi-simple Lie algebra. After some
preliminary results in Section 4, we identify the closure with the set of real points of a De
Concini—Procesi compactification in Section 5. In Section 6, we apply our results to determine
the irreducible components & and show they are smooth. We also study the set of model
points in £ and show that every Lie algebra in the irreducible compougntontainingt is a
model point. In Section 7, we study some properties of the Poisson strd¢tureparticular,
we study thek -orbits in the irreducible component, and the( K, 7 )-homogeneous Poisson
spaces arising from them. In the last section, we discuss relations with other recent work and
some unresolved problems for a sequel to this paper.
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634 S.EVENS AND J.H. LU

2. Generalities on Lie bialgebras
2.1. Drinfeld’s theorem

In this section, we review Drinfeld’s theorem on homogeneous spaces of Poisson Lie groups
in [6]. Details on Poisson Lie groups can be found in [17] and [14] and the references cited
in [14].

Let (U, my) be a Poisson Lie group with tangent Lie bialgelnau*), whereu is the Lie
algebra ofU and u* its dual space equipped with a Lie algebra structure coming from the
linearization ofry at the identity element of/. We will use letterse, y, z1,y1,. .. to denote
elementsintandé, n, &1, m1, . . . for elements in*. The pairing between elementsirand inu*
will be denoted by( , ).

Let(, ) be the symmetric non-degenerate scalar product on the direct sum vecton sp&te
defined by

2 (z1 4+ &1, 02 + §2) = (71, 82) + (22,61)-

Then there is a unique Lie bracket on the) u* such that{ , ) is ad-invariant and that botln
andu* are its Lie subalgebras with respect to the natural inclusions. The vector sgaaé
together with this Lie bracket is called the double Lie algebréuofi*) and we will denote it by
0 =unau*. Note thatU acts ono by the adjoint action (by first mappirig to the adjoint group
of 0).

Example2.1.— Letu =t be a compact semi-simple Lie algebra. Let= ¢c be the
complexification oft with an lwasawa decompositign= ¢ + a + n. Let { , ) be twice the
imaginary part of the Killing form ofy. Then the pairing betwednanda + n via (, ) gives an
identification oft* anda + n, and(¢, a + n) becomes a Lie bialgebra whose doublg.idf K
is any group with Lie algebrg then there is a Poisson structurg on K making(K, 7k ) into
a Poisson Lie group whose tangent Lie bialgebrgt,is + n). This will be our most important
example.

DEFINITION 2.2.— Letn =dimu. A Lie subalgebrd of d is calledLagrangianif (a,b) =0
for all a,b € [ and if dim [ = n. The set of all Lagrangian subalgebrasooWill be denoted

by L(0).

Both u andu* are Lagrangian. IfD is the adjoint group ob, then D acts on the set of
Lagrangian subalgebras. In Example 2.1, any real formp isfa Lagrangian subalgebra, as is
t+ n, wheret = i a is the centralizer oft in €.

Let (M, ) be a(U, my)-homogeneous Poisson space. Recall [6] that this mean&thats
on M transitively and that the action mdp x M — M is a Poisson map, wheté x M is
equipped with the direct product Poisson structured 7. Letm € M. Then, since the Poisson
structurer on M is (U, myy)-homogeneous, it must satisfy

(3) m(um) = u.w(m) + mamy (u), YueU, me M.

Here u, and m, are respectively the differentials of the maps — M :m; — wm; and
U — M :uq — uym. Thus,n is totally determined by its valug(m) € A?(T,, M) atm. Let
U, C U be the stabilizer subgroup &f at m with Lie algebrau,,. Identify T,,, M = u/u,, so
thatm(m) € A?(u/u,,). Letl, be the subspace ofdefined by

(4) ln={z+& zcu, £cu”, ¢, =0,& In(m)=z+uy,}.
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ON THE VARIETY OF LAGRANGIAN SUBALGEBRAS, | 635

THEOREM 2.3 (Drinfeld [6]). — 1)I,,, is a Lagrangian subalgebra @ffor all m € M.
2)Forall me M andu e U,

(5) [m. Nu= Um,
(6) Adyly = lym, VYueU.

3) Let M be aU-homogeneous space.(&, 7y )-homogeneous Poisson structuren M is
equivalent to d/-equivariant mafP : M — L(0) : m — [,,, such that(5) holds for allm € M.

DEFINITION 2.4.— We will calll,,, the Lagrangian subalgebra af associated tq M/, 7) at
the pointm. The mapP : M — L(0) will be called theDrinfeld map

DEFINITION 2.5.— Given al/-homogeneous spacl/, we say that &J-equivariant map
M — L(d):m — [, hasProperty I (I for intersection) if (5) is satisfied for ath € M.

Thus 3) of Theorem 2.3 can be rephrased as follows: giveéiRlemogeneous spadd, a
(U, v )-homogeneous Poisson structureldnis equivalent to d7-equivariant mag/ — £(9)
with Property I.

Remark2.6. — We explain how & -equivariant map\/ — L(d) having Property | gives a
(U, v )-homogeneous Poisson structure an pick anym € M. Becausd,,, C ? is maximal
isotropic (this means thatim [,,, = n and that(a,b) = 0 for all a,b € [,;,) and because of (5),
an easy linear algebra argument (see also Lemma 2.24) shows that there is a unique element
m(m) € A?(u/u,,) such that (4) holds. Define a bivector fietdon M by (3). This is well
defined because of (6). Thisis Poisson becausg, is Lagrangian. It iU, 7y )-homogeneous
because (3) holds by definition.

We now state some consequences of Theorem 2.3.

DEFINITION 2.7.— A Lagrangian subalgebrawfs said to havéroperty C(C for closed) if
the connected subgrodff of U with Lie algebral N u is closed inU.

Note that any,,, in the image of the Drinfeld map for aryM, =) has Property C, because
the connected subgroup Bfwith Lie algebra,,, N u is the identity connected component of the
stabilizer subgroup of/ atm, so it is closed inJ. Conversely, ift € £L(d) has Property C, we
have thel/-homogeneous spaé¢&/ U] and thel-equivariant map

U/U{ — L(0):uU{ — Ad,L

It has Property I. More generally, suppose thatis any closed subgroup df having the
properties:

(A) the Lie algebra of/; is [N u;

(B) Uy normalizeq,

Then we have thé& -equivariant map

U/U; — L(0):ulU; — Ad,L

It has Property I. Thus, by Theorem 2.3, we have:

COROLLARY 2.8.— Suppose thdte £(0) has PropertyC. Then, for any closed subgroéf
of U having PropertiegA) and(B), there is a(U, 7y )-homogeneous Poisson structureldfl/;
whose Drinfeld map is given by

P:U/U, — L(0):ul; — Ad,lL
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636 S.EVENS AND J.H. LU

DEFINITION 2.9.— For a Lagrangian subalgeliaf o with Property C and any subgrodf
of U with the above Properties (A) and (B), we say that the Poisson manitld/,, =)
described in Corollary 2.8 is determined by

Denote byL(?)¢ the set of all points inC(d) with Property C. It is clearly invariant under
the adjoint action ot/. For every(U, 7y )-homogeneous Poisson spddé, 7), the image of the
Drinfeld mapM — L(0) is aU-orbitin £(?)c.

COROLLARY 2.10 (Drinfeld [6]). — The map that assigns to ea¢h/, r) the image of its
Drinfeld map gives a one-to-one correspondence betwéamuivariant isomorphism classes
of (U, ny)-homogeneous Poisson spaces with connected stabilizer subgroups and the set of
U-orbits in £L(0)¢.

We close this section by an example of a Lagrangian subalgelitat does not have
Property C.

Example2.11 ([12]). — Consider the Lie bialgebfs, a + n) in Example 2.1. Lel/ = K
be a compact connected Lie group with Lie algebrand letT be the maximal torus of{
with Lie algebraia. Choose a topological generatoof 7' and let¢ = exp(X), X € t. Let
[=R-X+(an(R- X)) +n, where the perpendicular is computed relative to the Killing form.
Thenlis Lagrangian, but ifank(7") > 1 thenlN ¢ is not the Lie algebra of a closed subgroup of
K, sol does not have Property C.

2.2. A Poisson structure onZ(d)

Let (U, my) be a Poisson Lie group and let, u*) be its tangent Lie bialgebra. Let= upqu*
be its double Lie algebra equipped with the symmetric scalar prgdutigiven by (2). Recall
that£(0) is the set of Lagrangian subalgebragafith respect ta , ).

Notation 2.12. — We will useGr(n,d) to denote the Grassmannian efdimensional
subspaces af. Since the condition of being closed under Lie bracket and the condition of being
Lagrangian are polynomial condition$(d) C Gr(n,0) is an algebraic subset.

The groupU acts onGr(n,?) by the adjoint action and it leave3(d) invariant. Although
L(v) may be singular, all th&-orbits in £(2) are smooth.
In this section, we will show that there is a smooth bi-vector fi#ldn Gr(n,?) with the

property

[IL 0] (1) = 0
for everyl € £(v), where[II, IT] is the Schouten bracket 8f with itself. Moreover, we show that
IT is tangent to every/-orbit O in L(d), so(O,1I) is a Poisson manifold. In fact, ea¢t,1I) is
a (U, ny)-homogeneous Poisson space .M, 7) is a (U, 7y )-homogeneous Poisson space, we
show that the Drinfeld map : M — O is a Poisson map, whet@ is theU-orbit of [,,, for any
me M.

Notation 2.13. — We identifyo* = u* @ u in the obvious way. Denote by :0* — 0 the
isomorphism induced by the nondegenerate paifingon. It is given by

@) #:0" — 0:#(E+r)=a+E.
ForV C o, we let
Ve={fed: fly =0}.
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To define the bi-vector fieldll on Gr(n,?), we consider the elemefit € A20 defined by

R(& 421,82 +22) = (&2, 1) — (§1,22), YVa,ze€u, §,5 eu’.

The elementR? is an example of a classicalmatrix ono [14]. In particular, the Schouten bracket
[R, R] € A% of R with itself is ad-invariant and is given by

[R, RI(f1, f2, f3) = 2(# f1, [# f2, #13])

for f; € *. Denote byx*(Gr(n,0)) the space ok-vector fields onGr(n,?) (i.e., the space of
smooth sections of thith exterior power of the tangent bundle@f(n,?)). The action by the
adjoint groupD of » on Gr(n,0) gives a Lie algebra anti-homomorphism

k:0 — x'(Gr(n,0))

whose multi-linear extension from*d to x*(Gr(n,?)), for any integerk > 1, will also be
denoted by.
Define the bi-vector fieldl on Gr(n,0) by

II=-k(R).

THEOREM 2.14. — For every Lagrangian subalgebieof 0 regarded as a point ifizr(n,0),
we have

[ILTT)(H) = 0,
wherel[II, IT] is the Schouten bracket Bf with itself.

Proof. —Sincell = %K(R) and sincex is a Lie algebra anti-homomorphism, we have
1
1L 11] = _Z’%([}LRD'

Let Dy be the stabilizer subgroup @ at [ for the adjoint action, and laY; be its Lie algebra.
Sincell is tangent to theD-orbit D - [ in Gr(n,?), we only need to show th3ll, IT] = 0 when
evaluated on a tripléas, az, a3) of covectors inI'f (D - [). The map

k0 — T(D-0)

gives an identification
K :T{(D-1) — 0f.
Thus, it suffices to show

[R7R](f1>f2>f3):0
for f; €07, i=1,2,3. Sincel C v, we have#(d?) C #(I°) = . It follows that

[R, R](f1, fo, f3) = 2(# f1, [# 2, #f3]) = 0

becausé is a Lagrangian subalgebrac
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If X is an algebraic variety, denote b¥x the sheaf of algebraic functions oX, and if
Y C X is a closed subvariety, denote by C Ax the sheaf of functions vanishing an. For
locally defined functiong’ andg in Ag.(»,0), let{f,g} =(df, dg) € Aci(n,0)-

COROLLARY 2.15.—(L(d),{-,-}) is a Poisson algebraic variety.

Proof. —We have to check thdt, -} induces the structure of a Poisson algebraion,). For
[ € Acr(n,0), let &y be the local vector field defined iy (9) = {f, g}, whereg € A, (n,0)- It
follows easily from the definition that if € 1 (,), then{;(g) vanishes or(d), i.e.,{; is tangent
to £(0). It follows that the brackef-, -} descends fromig, (5 t0 Az(v). Although{-,-} does
not define a Poisson algebra structureAw.(,, o), Theorem 2.14 implies that it does define a
Poisson algebra structure iy ). O

COROLLARY 2.16.— For everyl € L(d) C Gr(n,0), the bivector fieldI defines a Poisson
structure on theD-orbit D - [ in Gr(n,?).

Since[R, R] € A%d is ad-invariant, the following bivector field_ on D is Poisson:
1
W,(d)ZE(TdR—ldR), de D,

wherer, andl; are respectively the differentials of the right and left translation®ahefined
by d. Moreover,(D,7_) is a Poisson Lie group an@/, 7yy) is @ Poisson subgroup ¢D, 7_)
(see [18)).

PROPOSITION 2.17. — For everyl € L(2), the Poisson manifoldD - [,II) is (D, 7_)-homo-
geneous.

Proof. —Let againD be the stabilizer subgroup 6fn D. ThenD - [~ D/D,. Consider the
bivector fieldII; on D defined by

1
I(d) = 5raR, deD.

ThenII = p,II;, wherep: D — D/ D, is the natural projection angl its differential. It is easy
to check that, for any,, d> € D, we have

Hl(dldg) = ldlﬂl(dg) + Td271'_(d1).

It follows that(D - [,II) is a(D, n_)-homogeneous Poisson spacel
Consider now thé/-orbits in £(2) through a point € £(d). We have:

THEOREM 2.18. —Atanyl € £(d), the bi-vector fieldI on Gr(n, d) is tangent to thé/-orbit
throughl, so that(U - [,1I) is a Poisson submanifold ¢D - [, IT).

Proof. —RegardII as a bivector field on th@®-orbit D - [, soTI(l) € A2T(D - I). Let II([)#
be the linear map

OO#:THD 1) — T(D-1):
I(H#()(8) =0 (e, f), a,BeT{(D-1).

It is enough to show that the imageldf()* is tangent to thé/-orbit through.
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By the identification T (D - [) — o7, it is enough to show that
k((E+x) JR) e T(U 1), VE+xzedy,
where(§ + z) I R € v is defined by
(E+2)JR)n+y)=R(E+xz,n+y), Yn+yed

We compute explicitly. It follows from the definition at that

n
R=Y niNei €A™,

=1
where{ey,...,e,} is a basis fou and{n,...,n,} is its dual basis fon*. It follows that

n

(E+z)dR= Z((%m)ei —(&em) =x—¢&

i=1
Hence

k(€ +2) JR) = k(z) — K(§).
But sinceé + x € o7, we haver + £ € [, sok(z + &) = 0. Thus

k((E+2) JR)=2k(z) e T(U-1). O
COROLLARY 2.19. - For everyl € L(0), the Poisson manifol(lJ - [, II) is a (U, 7y )-homo-

geneous Poisson space.

Proof. —This follows from Proposition 2.17 becaudé =) is a Poisson subgroup 6D, 7_)
and(U - I,II) is a Poisson submanifold ¢D - [,II). O

Remark2.20. — LetU* be the connected and simply connected group with Lie algehra
Then for any Lagrangian subalgebra £(), the orbitU* - [ is also a Poisson submanifold of
(D -1,1II). Indeed, the roles af andu* are symmetric in the definition dd and of£(0), but the
R-matrix for the Lie bialgebrgu*, u) differs from that for(u, u*) by a minus sign. Consequently,
if we denote byry« the Poisson structure dii* such that(U*, 7y +) is the dual Poisson Lie
group of (U, nyy), then everyU*-orbitin £(v) is a(U*, —my-)-homogeneous Poisson space.

We now look at the Drinfeld map : U - [ — £L(d) for the (U, 7y )-homogeneous Poisson space
(U - [,1I) (see Definition 2.4).

THEOREM 2.21. — For any!l € L(9), the Lagrangian subalgebra ofassociated tqU - [, IT)
atlis

T() =w+ (u+ui) N
whereu, is the normalizer subalgebra ofn u, andui- = {£ € u*: ¢|,, =0}.
Proof. —Denote by’ the Lagrangian subalgebra associatefol, IT) at[. We need to show
that!’ = T([). By definition,
= {;1:+§: reu Ecul, {JH([):I—Fu[}.
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640 S.EVENS AND J.H. LU

Let¢ € ui-. Since the inclusion
(U-LI) — (D110

is a Poisson map, it suffices to compufe:*)~!(¢ + x)) I TI(I) for any = € u such that
¢+ x €Y, wherell(l) is regarded as a bi-vector &€ D - [, and (+*) "1 : T} (D - [) — 27 is
the isomorphism induced by: 0o — T,(D - [). In the proof of Theorem 2.18, we showed that
(k*)7H(& + ) JTI(1) = k(). As aresult, we see that

l={z+& zeuy, ¢ cul, €4z €0 for somer; = x mod (u)}

=u+ #(07).

Now, the inclusionsy C 9; and[ C 9, induce inclusions#(0°) C u + ui- and #(27) C [, so
#(07) C (u+ui) NI Hence,

u+#0@7) Cur+ (u+uf) NE="T(0).
On the other hand, it is obvious th&([) is isotropic, so its dimension is at mostSincel’ has
dimensionn, we must havé =T(I). O

Remark2.22. — The maff’: £L(?) — L(2) is not continuous in general. For example, consider
the Lie bialgebra in Example 2.1 fgr= s1(3,C). ChooseH < a with the property that both
simple roots are positive ofif. It is possible to choose a real forgy of sl(3,C) that is
isomorphic tos((3,R) such that the curve; = exp(ad:x)(sl(3,R)) in £ = L(g) has a limit
Yoo = h7 4+ n, whereh = a + t is a Cartan subalgebra sf(3,C), andr is a conjugate linear
automorphism such thatim(h™ N t) = 1. Since the normalizer of, in s((3,C) is go, the
normalizer ofy; in sl(3, C) is+; for t # co. ConsequentlyT'(+;) = +: for all t < co. On the other
hand, it is easy to check tha@t(vy.,) = t + n. It follows thatT is not continuous. This example
can be generalized to any real form corresponding to a nontrivial diagram automorphism (see
Remark 4.9 for a generalization of this example).

Assume now thafM, ) is an arbitrary(U, 7y )-homogeneous Poisson space. Consider the
Drinfeld map

P:M — LO):m +— .
By Theorem 2.3P is a submersion af/ onto theU-orbit O =U - 1,,, in L(?) foranym € M.
THEOREM 2.23. — The Drinfeld map

P:(M,n) — (O,II)

is a Poisson map.
Proof. —Fix m € M. Let[=1,,. ThenO = U - . Since both(M, =) and(O,II) are(U, ny)-
homogeneous, it is enough to show that

P, (m) = II(1).

Let U,, andU, be respectively the stabilizer subgroupléfat m and the normalizer subgroup
of [in U. Their Lie algebras are respectivdly u andu,. SinceP is U-equivariant, we have
U,, C U,. ldentify

M~U/U,,  O=U/U.
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Then the ma becomes
P:U/U,, — U/U;:uU,, — uly,

and we have
m(m) € A?(uw/(INu)), II(I) € A*(u/w).

Thus we only need to show thatm) goes tall(l) under the map
jiu/(INu) — w/upiz+INu — z+uy.

But this follows from a general linear algebra fact which we state as a lemma betow.

LEMMA 2.24.—LetV be ann-dimensional vector space and [Et be its dual space. On
the direct sum vector spadé® V*, consider the symmetric product ) defined by

(+&y+n)=(@n)+ ¢, zyeV, {Emevr
1) LetV; be any subspace &f. For A € A2(V/V};), define
W)\:{x+£: x eV, EeV* £y, =0, €J>\:I+Vo}.

Then\ — W, is a one-to-one correspondence between element€ ({i/V,) and maximal
isotropic subspacel” of V' ¢ V* such thath NV = Vj.
2) LetV; be another subspace &f such thatly, C ;. Let

JV/IVo — V/Vito+ Vg — v+ 1
be the natural projection. Lety € A%(V/Vp) and\; € A%(V/V4). Thenj()\o) = A1 if and only
if
(8) Wi, =Vi+ (Ve Vi) Ny,
whereVit = {£ e V*: ¢y, =0}.

Proof. —1) Given\ € A2(V/1,), itis easy to see thaty is maximal isotropic with respect to
(, ) and thatW, NV =V;. Conversely, ifi’ is a maximal isotropic subspace Bf¢ V* such
thatiW NV =V}, then

{eeV™ x+§veorsomeer}:V0L={€€V*: &lv, =0},

Define
f(V/Vo)" — V/Vy:& — x4V,

where¢ € (V/Vp)* =2 Vgt andx € V is such thatr + ¢ € W. Then £ is well defined and is
skew-symmetric. Thus there existss A%(V/Vp) such thatf (€) = ¢ X forall € € (V/Vp)*. It
is then easy to check thélt = W.

2) One way to prove this fact is to take a basis¥gr extend it first to a basis fdr; and then
extend it further to a basis 8f. One can then write down all the spaces in (8) using these basis
vectors and compare them. We omit the details.

As a special case of Theorem 2.23, we have:
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COROLLARY 2.25.—Foranyl € £(v) with PropertyC and any(U, 7y )-homogeneous space
(U/U;,7) determined by (seeDefinitions2.7 and 2.9), the map

9) P:(U/Uy,7) — (U-LID):ulU; — Ad,l
is Poisson.
2.3. Model points in £(?)

DEFINITION 2.26.— We say that a Lagrangian subalgehbisaa u-model point(in £(0)) if
[Nu=u, whereu, is the normalizer subalgebra bin u.

It is easy to see that the set of model pointLip) is invariant under thé/-action. Observe
also thatl is a model point if and only iff () = I. In general,T? # T. See Remark 3.6 for an
example. For the rest of the section, we refentmodel points simply as model points.

Every model point has Property C, forliE £(0) is a model point, the connected subgraifp
of U with Lie algebra Nu is the identity component of the stabilizer subgréumf [ in U, soU{
is closed. Consequentlydetermines U, 7y )-homogeneous Poisson structure on ahy/,
whereU; is a closed subgroup @f;, and has the same Lie algebrau = u; (see Corollary 2.8
and Definition 2.9). In this case, the mBpn (9) is a local diffeomorphism (in addition to being
a Poisson map), and is thus a covering map. Therefore, thelorbjttogether with the Poisson
structurell, is a model (up to local diffeomorphism) of af¥/, =iy )-homogeneous Poisson space
(U/Uy, ) determined by. This is the reason we cdlla model pointn £(?). Moreover, for a
model pointl, the Drinfeld map for the Poisson homogeneous sgétel, II) is the inclusion
mapU - [ C L(D).

Example2.27. — Consider the Lie bialgebi@, a + n) in Example 2.1. The Lagrangian
subalgebrd = a + n is not a model point becaugen ¢ = 0 while the normalizer subalgebra
of l'in ¢is t=1a. However,T(I) = t + n is a model point, as is any real form @fIn this case,
we will show that every point in a certain irreducible componéfit), of £(?) is a model point.

When [ is a model point and when its normalizer subgrdiipin U is not connected,
the (U, miy)-homogeneous Poisson spadé&' Uy, w) determined byt might have non-trivial
symmetries, as is shown in the following proposition.

PROPOSITION 2.28. —Let[ be a model pointand I€U/ /U, , 7) be any(U, 7y )-homogeneous
Poisson space determined byrhen all covering transformations for the covering map

(20) P:(U/Uy,7m) — (U/UL ) :ul; — ul;

are Poisson isometries f¢t/ /Uy, ).
Proof. —Let f:U/U; — U/U; be a covering transformation, $oo f = P. We know thatf
is smooth because it must be of the form

f(uUl) = quUl

for someuy in the normalizer subgroup &f, in U,. Letx € U/U; be arbitrary. We need to show
that f.m(z) = 7(f(z)). SinceP is a local diffeomorphism, it is enough to show tlfair (=) and
7(f(z)) have the same image und@r Now, sinceP is a Poisson map and siné& f = P, we
have
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P, fur(x) = (Po f)um(z) = Pur(z) = I(P(x)),
Por(f(x)) =IL(P(f())) = IL(P(x)).
ThusP, fom(x) = Pur(f(x)), andf is a Poisson map. O

In particular, in the case whebti; = U{ is the identity connected component &f, the
groupU, /U] acts onU/U] as symmetries fofU, 7y )-homogeneous Poisson structureldfi{
determined by.

3. Lagrangian subalgebras ofg

In the remainder of the paper, we will concentrate on the Lie bialg@baa+ n) as described
in Example 2.1. We first fix more notation.

Throughout the rest of the papénvill be a compact semi-simple Lie algebra ape- ¢ its
complexification. The Killing form ofg will be denoted by(( , )). Let G be the adjoint group
of g, let K be the connected subgroup @fwith Lie algebrat, let T c K be a maximal torus
with Lie algebrat. Leth = t¢ C g be the complexification of Let > be the set of roots gf with
respect tdy with the root decomposition

g:h+zga~

agX

LetX, be a choice of positive roots, and I#t> ;. ) be the set of simple roots 1, . We will also
saya >0 for o € ¥ . Seta =it and letn be the complex subspace spanned by all the positive
root vectors. Then we can identiy with a + n (heren is regarded as a real Lie subalgebra
of g) through the pairing defined by twice the imaginary part of the Killing fdfm)). This way,
(¢,a+n) becomes a Lie bialgebra whose doublg is ¢ + a + n (lwasawa decomposition @f.

Let 7 be the Poisson structure @ such that i, 7 ) is a Poisson Lie group with tangent Lie
bialgebra(t, a + n). We can describe explicitly as follows: Let) be the complex conjugation

of g defined byt. Let (( , ))» be the Hermitian positive definite inner productggiven by

(z,y)o = —(z,0y), =z,y€g.

Foreachy € ¥, chooseF,, € g, suchthat{(E,, E,))e =1.LetE_, = —0(E,) € g_, so that
{(Eo,E_q) =1.Set

Xo=FEo—FE_o=Fo+0(Es), Yo=i(Eq+FE_o)=iEq+0(iE,).

Then
t=t+spang{X,, Yo a€X ).
The Poisson bivector field oR is given by

WK(k):T‘kA—ZkA, kGK,

where

1
A:Z Z X, AY, €EAL

acX
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Recall that a real subalgebfeof g is Lagrangianif Im{(z,y)) = 0 for all =,y € [ and if
dimg [ = dim¢ g. These Lagrangian subalgebras give risg &g i) Poisson-homogeneous
spaces by Drinfeld's theorem. The set of all Lagrangian subalgebgasitifoe denoted byC. It
is an algebraic subset of the Grassmant@iatr, g) of n-dimensional subspaces g{regarded
as a2n-dimensional real vector space).

In this section, we will decompos&into a finite union of manifolds.

3.1. Karolinsky’s classification

E. Karolinsky [12] has determined all Lagrangian subalgebiafsg. To describe his result,
we need some notation. L&tC S(X.) be a subset of the set of simple roots, and$&te the
set of roots in the linear span 8t Consider

ms—h@(@9a>, ng = EB 9o ps =ms +ng,

a€ls) a€s, ~[s]

so thatpg is a parabolic subalgebra of typg ng is its nilradical, andng is a Levi factor. Let
mg 1 = [mg, mg] be the (semi-simple) derived algebrano§. The center ofng is

(11) 3S:{H€h: Oéi(H):O, VOZZ'ES},

which is also the orthogonal complement wf ; in mg with respect to the Killing form
of g restricted tomg. Thus the restriction of the Killing form tgs is nondegenerate, and we
may consider Lagrangian subspaceg®f{regarded as a real vector space) with respect to the
restriction togs of the imaginary part of the Killing form.

Now for any subsef of the set of simple roots, a Lagrangian subsptcef 35, and a real
formmg ; of mg; such that the Killing form of; is real onmy ;, set

(S,V,7) =mG, @V @ ng.

Itis easy to see that it is a Lagrangian subalgebna of

DerINITION 3.1. — We will calll(S, V, 7) thestandard Lagrangian subalgebra associated to
(S, V7).

THEOREM 3.2 ([12]). — Every Lagrangian subalgebra gfis of the formAd (I(S, V, 1)) for
somek € K.

Note that the nilradical oAd(I(S,V, 7)) is Adx(ng). Denote byPs the connected subgroup
of the adjoint groug= of g with Lie algebrapg.

ProPOSITION 3.3. — Let
[=Ady ([(S, V,T)) = Ady, ([(Sl, Vl,n))
be a Lagrangian subalgebra. Theh= S;, V =V;, k~'k;, € Ps, and is conjugate tor; in
KN Pg.

Proof. -We haveAd,,-1y, (I(S1,Vi,m1)) = (S, V, 7). Using the fact that conjugate algebras
have conjugate nilradicals, it follows easily thad;-1;, ng, =ng. From the definition ofig, it
follows thatS = S;. Since a parabolic subgroup is the normalizer of its nilradicalk; € Ps.
The remaining claims follow from the facts thas is an ideal andg is central inmgs. O
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3.2. t-model pointsin £

Recall that a Lagrangian subalgebraf g is a ¢&-model point if¢ N [ = €&, where¥, is the
normalizer subalgebra dfin . In this section, we refer té-model points simply as model
points.

LEMMA 3.4.—The normalizer ofAd,({(S,V,7) in g is Adyt(S, ), where
t(S,7) =mg, s Ong.

Proof. —It suffices to prove the statement when- e, the identity element of. It is clear
thatv(S, 7) normalizesl(S, V, 7). Conversely, ifX € g normalizes((S,V, 7), it normalizes its
nilradicalng, so it normalizes the perpendiculay of ng. Sinceps is parabolic, it equals its own
normalizer, saX € pg. Write X = X + X5, with X; € mg and X5 € ng. ThenX; normalizes
mg ;. Since a real form of a complex semi-simple Lie algebrs its own normalizer imm (see
Lemma 3.10), we know that; € mg,+3s. O

PROPOSITION 3.5. — The Lagrangian subalgebrad (1(S, V, 7)) is amodel point if and only
if V=3snt.

Proof. —Since the set of model pointsis-invariant, it suffices to prove the proposition when
k=e. Lett;=rx(S,7) Nt be the normalizer of(S,V,7) in ¢, wherer(S,7) =m§ , @ 35 ®ns
asinLemma 3.4. Then

B/ENIS, V7)) = (Gs N/ (V N,
becausgs Nt =35 N t. The proposition now follows from the definition of model pointsa

Remark3.6. — In fact, essentially the same argument shows thatfAd, (I(S,V, 1)),
thenT(I) = Adx(I(S,35 Nt, 7)) (see Theorem 2.21 for the definition @{1)). It follows that
T(T(1)) =T(I) for [ € L. For a general Lie bialgebr@,o T # T'. Indeed, for a Lie algebna, we
can form a Lie bialgebréu:, u*), whereu* has the abelian Lie algebra structure. Its double is the
semi-direct product Lie algebra structurewn u* defined by the co-adjoint action afon u*.
Consider the case whanis the three dimensional Heisenberg algebra with bé&isY, 7}
with Z central and X,Y] = Z, and letfx, fy, fz be the dual basis. Ldtbe the Lagrangian
subalgebra spanned B, fy andfz. ThenT(l) is spanned by, Z and fy while T(T(l)) = u.

COROLLARY 3.7.— The adjoint group of g preserves the set of model points.

Proof. —It suffices to consider model point§S,3s N t, 7). Let Ps, Mg and Ng be the
connected Lie groups with Lie algebpa, ms andng respectively. Sincd< acts transitively
on G/ Ps and preserves the set of model points, it suffices to provetiat((S,3s Nt, 7)) is a
model point forp € Ps. Using the Levi decompositioRs = MgNg we write p = mn, where
m € Mg andn € Ng. SinceAd,[(S,35 Nt,7) = (S, 35 Nt,7), it suffices to prove thaAd,,
preserves model points fry, which follows becaus@/ acts trivially onzs. O

Remark3.8. — In general, the adjoint group of the double Lie algebra does not preserve the
set of model points. Indeed, Igtbe a semi-simple Lie algebra with triangular decomposition
g=n+b+n_, Borel subalgebré, =h + n and opposite Boreh_ = + n_. Then the Lie
algebrao = g @ b is the double of the paifb,b_) with embeddingsy : b, — 0 given by
iv(H+2x)=(H+z,£H)with Heh, zenorn_. Letn € Ng(t) be a representative for the
long element of the Weyl group. Then althoughis clearly ab_ -model point,Ad,,(b;.) is not
a b -model point.
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In the following Sections 3.3, 3.4, and 3.5, we study separately the pieces that come into the
Karolinsky classification, and we write the varigtyof all Lagrangian subalgebras gfs a finite
disjoint union of smooth submanifolds of the Grassmanftiam, g).

3.3. Lagrangian subspaces ofs

For a subsef of the set of simple roots, lgt be given as in (11). Since the Killing form gf
is nondegenerate @@, its imaginary parf3 is a nondegenerate symmetric bilinear form of index
(z,2z) on3s, now regarded as 2z-dimensional real vector space. Denotefy. the variety of
Lagrangian subspaces gf with respect toB, and denote byzr(z,35) the Grassmannian of
z-dimensional real subspaces;@f soL,; C Gr(z,3s).

PROPOSITION 3.9. — L, is a smooth algebraic subvariety 6fr(z, 35) and is diffeomorphic
to the real orthogonal groui®)(z). We denote the two connected componentsafby £, _,
fore = £1, with £, , being the component containigg N t. Each componentis Zariski closed.

Proof. —Since B has signaturéz, z), there exist-dimensional real subspac®&s andV_ of
3s such thatB is respectively positive and negative definitelgnandV_, B(V,,V_) =0, and
35 = Vi +V_ isadirect sum. In fact, we také, = 35N ((1—:)t) andV_ =:V,. Denote by
the affine chart irGr(z, 35) aroundV,. given by

End(Vy,Vy) — N CGr(z,35):¢0 — lp={x+i¢(z): z €V }.

Thenitis easy to see th&, C A and that, € £, if and only if ¢ is an isometry of V., B).
Thus we can identifyC, ;. with the subvarietyD(z) =~ O(V,, B) C N. Under this identification,

35 Nt corresponds to the identity element@z), and thusZ, . , corresponds to the identity
component of)(z). These results also follow from Corollary 14.13 in [26], or as the real case of
Exercise B, pp. 102-103, in [2].00

If two Lagrangian subspaceg; and V;> of 35 correspond tog; and ¢, in O(V,,B)
respectively, therlim(V; N V4) is equal to the multiplicity ofl as an eigenvalue o;ﬁl‘lqsg.
ThusV; andV; lie in the same connected component@t if and only if dimV; NV, =2
(mod 2). In particular;s N a, wherea =it, lies in £ , if and only if z is even. This can also
be seen from the fact thgt N a corresponds to minus the identity elemen€ifk).

3.4. Real forms ofg

A real form ofg is clearly a Lagrangian subalgebragfDenote byR the set of all real forms
of g. We will recall some facts abo® in this section (see [22] or [1] for more detalils).

Let Auty be the group of complex linear automorphismsyofts identity component is the

adjoint group = Int, of interior automorphisms af. Let Aut p (4 be the automorphism group
of the Dynkin diagram of. It is well known that there is a split short exact sequence

0 — Inty; — Auty 2, Autp) — 0.

Let § be the Cartan involution of defined by the compact real fortnWe will identify a real
form gq of g with the complex conjugation on g such thaty, = g”. Define

YR — Autpg): (1) = ¢(70) = ¢(07).
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To see thatp(76) = ¢(f7), chooseg € Inty such thatr = AdgTAdg_l commutes withd
(see [10], Theorem I11.7.1). Then we get

o(10) = ¢(Ad, ' 11 Ady0) = ¢(11 Adyh) = ¢ (1100 " Ady0) = ¢(116)

and similarly,p(67) = ¢(671). Sincer; commutes with9, we havep(r6) = ¢(67). In particular,
we see that)(7) is an involution.

Conversely, letl be an involutive automorphism of the Dynkin diagrdhg). Thend extends
to a complex linear involution,; of g as follows: onf, let 5, be the automorphism induced
via the Killing form by the complex linear extension @f Fora € S(X1), setyq4(E,) = Fyq.
By [11], p. 75, there exists a unique complex Lie algebra automorphjsshg extendingy,. We
claim thaty,; commutes withf. Indeed, ift, = [E,, E_,] € b, then since,, corresponds te
using the Killing form,y,(t.) = t4a. Sincey, is a Lie algebra automorphism, it follows easily
thatyy(E_o) = F_4,. This impliesy; commutes withd on generator$E,, E_, |a € S(XT)}
of g, soy4 commutes withf. We denote the unique lift of; to G by v, also.

Set

L(g,d) =3~ (d).
Then

R=|JL(g.d)
d

is a finite disjoint union, wheré runs over the set of all involutive diagram automorphismg.of
Let 74 = v40 = 6~4. Thenr; € L(g, d). To describe all the elements ii(g, d), consider

G ={g€nty: (Adgrq)* =1} ={g€ G=1Inty: 1a(9) =g '}

Herer, also stands for the lifting of; to G by Ad,, ) = 74 Ady74. If g€ G774, thenAd,7y

is a real form ofg and¢/(Ad,74) = d, S0 Adg7q € L(g,d). Conversely, ifr € L(g,d), then
d(10) = ¢(va), SOT = Ady7y4 for someg € Inty = ker(¢). But 72 = 1, sog € G~ . Hence
every real formr in £L(g, d) is of the formr = Ad,7, for someg € G~ ™.

LEMMA 3.10. — Every real form ofj is its own normalizer irg.

Proof. —The proof follows easily by considering thel eigenspace decompositign=
g @g "ofr. O

LEmMMA 3.11. - L(g,d) is a smooth submanifold dfr(n, g) of dimensiordimc g.

Proof. —Note thatInt, acts onL(g,d) by the actiong - 7 = Ad,7 Ad;l. The orbits of the
larger groupAut, on the set of all real forms are the equivalence classes of real forms, and there
are only finitely many of them (see [22]). Sinést, is the identity connected component of
Autg andAutg has only finitely many components, it follows tHait, has only finitely many
orbits on the set of all real forms. Singdg, d) is a subset of the set of all real forms, it follows
that £(g, d) is a finite union oflnt4 orbits. Now the action ofnty on Gr(n, g) by (g,1) — g(I)
is smooth andC(g, d) C Gr(n, g) is a disjoint union of finitely manyntg-orbits. It follows that
eachlntg-orbit in £(g, d) is a smooth submanifold d&r(n, g). Moreover, by Lemma 3.10, all
orbits have the same dimension. Thdsg, d) is a smooth submanifold &r(n, g) of dimension
dimcg. O

We will show later that the closure @f(g, d) in Gr(n, g) (in the classical topology) is a smooth
connected submanifold &fr(n, g).
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In Karolinsky’s classification, the real formsg ; of mg; are such that the Killing form
of g restricted tomj, is real. We characterize such real forms in terms of their diagram
automorphism.

Letc=hNmg ;. Itis a Cartan subalgebra ofs ;. The Killing form of g has nondegenerate
restriction toc and thus induces a bilinear form, denofedon ¢*.

DEFINITION 3.12.— A diagram automorphism of the Dynkin diagramugf; is said to be
isometric if its complex linear extension to preservess..

PrRoPOSITION 3.13. — The Killing form ofg is real on a real formmg ; of mg ; if and only if
the diagram automorphism of the Dynkin diagrammof ; associated tany , is isometric.

Proof. —The Cartan involutiod of g defined byt preservesng ; and restricts to give a Cartan
involution of mg ;. Denote byB the restriction of the Killing form of; to mg ;. Letmj ; be a

real form ofms ;. ThenB is real onmy , if and only if B(rx,7y) = B(z,y) forall x, y € mg 1,
which is equivalent torf preservingB. By composing with an inner automorphismafk ;
which necessarily preservés we can assume that leavesc invariant. Then it follows from
the ad-invariance oB that76 preserves3 if and only if it preserves the restriction &f to c. By
definition, this is equivalent to the automorphism of the Dynkin diagram@f induced byr6
being isometric. O

Remark3.14. — IfS contains exactly two orthogonal simple rootsofith different lengths,
then there is a diagram automorphismnof ; interchanging thel(2)’s corresponding to the
simple roots which is not an isometry. An explicit description of all involutive isometries of
the Dynkin diagram ofmg; can be given in terms of involutive automorphisms of simple
factors, and automorphisms which interchange simple fagtoedt, of mg; such that the
restriction of the Killing form tor; coincides with the restriction of the Killing form te after
composition with the automorphism. For example§ 1 = so(8) @ s0(8), then there are2 such
involutive automorphisms of the Dynkin diagram if the Killing form has the same restriction to
each factor. Indeed, there ateinvolutions of the Dynkin diagram ofo(8), so there ard6
involutions which preserve the two factors.dfis an automorphism of the Dynkin diagram of
50(8), then(i,j) — (¢71(4), (7)) is an involution of the diagram afis ;. Thus each of thé
automorphisms of the Dynkin diagram &d#(8) gives an involution of the Dynkin diagram of
ms.

3.5. Lagrangian data

DEFINITION 3.15.— Atriple(S,e,d) is called Lagrangian datum § C S(X.) is a subset
of the set of simple roots,= +1, andd is an involutive isometric diagram automorphism for the
Dynkin diagramD(mg 1) of mg ;. If [ = Ad(I(S,V,7)), k € K, is a Lagrangian subalgebra,
then [ has associated Lagrangian dat@l) = (S,e,d), wheree = 1 if V lies in the same
connected component af,, aszs Nt and is—1 otherwise, and! is the isometric diagram
automorphism ofng ; defined byr (see Proposition 3.13). It follows from Proposition 3.3 that
the triple(S, e, d) is determined by.

Given Lagrangian daturfs, ¢, d), we let
L(S,e,d) ={l: () =(S5,¢e,d)}.
Recall thatZ is the set of all Lagrangian subalgebragio€learly, we have

L= |J L(S.ea).
(S,e,d)
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Note that this is a finite disjoint union.

PropPOSITION 3.16. — For each Lagrangian datuniS,e,d), £(S,e,d) is a smooth sub-

manifold of the Grassmanniddr(n, g) of dimensionlim () + @ wherez = dimc 35, and
it fibers overG/ Ps with the fiber being the product @, . andL(mg,1,d).

Proof. —Let
Lyps(S,e,d)={mG, +V +ng: m§, € L(mg,1,d), V €Ly} CGr(n,g).

It can be identified withL(mg1,d) x L;, .. Indeed,L(ms,1,d) is a submanifold of the
Grassmanniafur(m, mg,1), wherem = dimc(mg,1), £, . iS a submanifold ofzr(z, 35), and
the direct sum magsr(m, ms 1) x Gr(z,3s) — Gr(n,g), (U, V) — U @V @ ng is a closed
embedding.

We consider the multiplication map

m:K Xgnaps Lps(S,e,d) — Gr(n,g) :m(k,[) = Adg(l).

The fiber product is a smooth manifold since it is a fiber bundle &JeK N Ps 2 G/ Ps with
smooth fiberl, (S,e,d). The mapm is clearly smooth and proper, and the imagenofis
L(S,¢e,d) by the Karolinsky classification Theorem 3.2. We will show thats an immersion,
and it will follow that m is an embedding and thal(S,¢,d) is a smooth submanifold of
Gr(n, g).

The fact thatm is injective follows from Proposition 3.3. In order to show that the tangent
map m.. is injective, it suffices to shown, is injective at points of the fornge, [(S,V, 7))
by K-equivariance. Recall that the tangent space at a glate the Grassmannia@r(n, V)
of n-planes in a spac& can be identified withHom (U, V/U). Using this identification,
the tangent space to the fiber productx xnp, Gr(n,ps) at (S, V,7) is the quotient of
t ® Hom(I(S,V,7),ps/I(S,V,7)) by the relation( X — Y, £(Y) + Z) ~ (X, Z), whereX € ¢,
Y etnpg, £(Y) isthe induced vector field &S, V, 1), andZ € Hom([(S,V, 7),ps/(S,V,T)).
Observe that fotZ to be tangent to the fibef, (S, e, d), we must haveZ :ng — 0. When
we identify the tangent space tor(n, g) at [(S,V, ) with Hom({(S,V,7),g/l(S,V, 7)), the
tangent map isn.. (X, Z) = {(X) + Z, where{(X) is the induced vector field. Now the claim
that m.. is injective follows since for anyX ¢ ¢ N pg, £(X) - ng ¢ (S, V, 7). To verify this
last assertion, lei € ¢\ ¢ pg, and choose a maximal roet¢ [S] such that the projection
p—o(X) of X to the—a root spacgy_, is nonzero. ThehX, g,] = [p—a(X), 8] + Y where
(YY) = (Y, [p-a(X),84]) =0. Since[p_.(X), ga] = [, 9—a), Which is a2-dimensional
real vector space on which the imaginary part of the Killing form is not isotropic, it follows that
[X, g4] is not isotropic. Thus,X, g, ] is not contained in any Lagrangian subalgebra.

The dimension statement follows from Proposition 3.9 and Lemma 3.411.

Remark3.17. — Note tha€ preserve< (S, e, d). The proofis similar to that of Corollary 3.7.
Example3.18. — WhenS is the set of all simple roots, we hawe; = g ande can only bel,
S0L(S,e,d) = L(g,d).

Example3.19. - Forg = sl(2,C), there are three(S,¢,d)’s. First, £(S(X4),1,id) is a
disjoint union of the two symmetric spacg®(3,C)/SO(3,R) andSO(3,C)/SO(2,1), where
the first piece consists of compact real forms and the second piece consists of real forms
isomorphic toso(2,1). £(0,1,id) is the SL(2,C) orbit of t + n and is isomorphic taC P*.
L£(0,-1,id) is also isomorphic teC P!, and is theSL(2,C) orbit througha + n. As we will
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show in Section 6£(0,1,id) C £(S(X4), 1,id). This last closure can be identified wiftP?,
the projectivization o2 x 2 Hermitian matrices.

In caseg = sl(3), there are eightL(S,e,d)’s. £L(S(X4),1,id) is a union of components
consisting of the real forms isomorphic 4a(p,3 — p). It is a union of symmetric spaces. Let
o be the nontrivial involution of the Dynkin diagram ef(3). Then£(S(X24),1,0) consists of
real forms isomorphic tel(3, R). There are four pieces of the forf{«;, £1,1d) corresponding
to the two choices ofy; and the two choices of-1. Each of these pieces fibers ov@y P;
for a parabolicP; with the fiber being a symmetric space fok(2,C). The final two pieces
are of the form£(0, £1,id). These are bundles over the full flag vari€ty B with the fiber
being a connected component of the orthogonal g@(@). The only nontrivial inclusions are
L(o;,1,id) € L(S(X4),1,id).

Because of the fiber bundle decompositionfgf, ¢, d) and the fact that the base adg, .

are compact, the study of the closufésS, e, d) can be reduced to the study 6fg, d) for g
semi-simple. In the following Sections 4 and 5, we show thé$, d) is a smooth connected
submanifold ofGr(n, g). We will also determine its decomposition infdorbits. These results
will be applied in Section 6 to show th&X{S, ¢, d) is a smooth submanifold d&r(n, g).

4. Extended signatures and the corresponding Lagrangian subalgebras gf
4.1. Extendedd-signatures

Let d be an involutive diagram automorphism for the Dynkin diagrang.of this section,
we define Lagrangian subalgebfas associated textendedi-signaturess of the root system
¥, a notion that is a slight generalization of one from [23]. We will show that éaghis in

L(g,d) and study the7-orbit throughl, . In Section 5, we will show that evetyin £(g,d) is
G-conjugate to somg; .
Recall thatS(X1) = {a1, a9, ..., a;} is the set of simple roots iR ..

DEFINITION 4.1.— Anextended!-signatureof the root systent. isamapr: 3 — {—1,0,1}
satisfyingo(d(«;)) = o(«;) fori=1,2,...,1,and

l

(12) ola) = H o(ag)mil, Wherea:Zmiai.

i #0 i=1

We say that is ad-signatureif o(«) # 0 foranya € X.

An extended!-signatures is determined by its value on the simple rootsz lis an extended
d-signature, lesupp(o) = {a € X: o(a) #0}. ThenS, := S(X1) Nsupp(o) is d-invariant. If
we use[S,,] to denote the set of roots that are in the linear spa$i,othensupp(c) = [S,]. Let

Soa={ai € S(X4): o(a) =—1}, p1= Z hi €a,

;€851

where{h;: i = L,.. .,1} C a is the set of fundamental coweights corresponding to the simple
roots, namelyy;(h;) =, ; fori,j=1,...,1. Then

(13) o(a) = { 0 1%,
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Conversely, for anyl-invariant subsef of S(X,) and anyd-invariant subseb; of S, there is
an extended-signatures such thatS = S, andS; = S, ;.
For an extended-signaturer, let

ma—msg—hga( @ 9a>, Ny =Mng, = @ o, pa:pSG:ma’@na

a€[S,] a€Xy —[Ss]

as in Section 3.1. Also lef, = 35, be the center ofn,, and letm, ; = [m,,m,]. Theno
determines a complex linear involutiag of m, by

aslp =1d, aslg, =0(a)-id,
wherea € supp(o). In other words,

a, = Ad

exp(7if1)-

Let 7; = 40 be the conjugate linear involution gfdiscussed in Section 3.4. Then it is routine
Td,o

to check thatry » := a,74 iS @ conjugate linear involution ef, so the Lie algebré,; , = m¢'
is a real form ofn,. Set

[d,a' = Ed,a’ + oy

It is easy to check thalf; , is a Lagrangian subalgebra gf Since S, is d-invariant, m, is
invariant undery;. Regarded as an complex automorphisrmegf;, -4 defines an automorphism
of the Dynkin diagram ofn, ; which is justd|s, . Let37¢ be the fixed point set of; restricted
to 3,. Sete =1 if 37¢ lies in the same component gsn t ande = —1 otherwise. Then, since
a, is an inner automorphism af, ;, we know thaty , € £(S,,¢,d|s, ).

We can give a more explicit descriptionlgf, . Let E,, E_,, fora € ¥, be the root vectors
chosen as in Section 3. Then

(14) =0 +n, +spang{ Eq — 0(a)V4(E—q), i Ea +io(a)ya(E-a): @ € ¥4 N[S,]}.

Example4.2. — Whers(a) = 0 for all a, we havel; , = h7™@ + n. On the other handy is a
d-signature if and only if; , is a real form ofg. In this casely , € L(g,d).

4.2. d-signatures and real forms inL(g, d)

We will now show that every real from ir(g,d) is G-conjugate to an,, for some
d-signatures. The following proposition (and its proof) is analogous to a result of Karolinsky.

PROPOSITION 4.3. — For anyT € L(g, d), there exisy € G andt¢ € T of order2 such that
T = Adg(AdtTd)Adgfl.

Proof. —By [10], Theorem I11.7.1, we can find € G so thatAd, T Ad,-» commutes withp.
By [27], Theorem 1, there exists a Cartan subalgébraf g which isAd,r Ad,-: andf stable.
h? is the Lie algebra of a maximal torus &f, so by conjugacy of maximal tori i, there
existsk € K such thatAd,h{ = t. It follows that Ad, Ad, 7 Ad,-1Ad, 1 preserves and its
complexification). By conjugating by an element itV (h), we can further assume that a
K-conjugate, denoted,, of Ad; Ad,7 Ad,-1Ad,-. preserved) and maps the positive roots
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to the negative roots. Moreover, commutes withd, so m 0 is a complex linear involution
of b preserving the set of positive roots. Heneged = Ady,yy for someh € H (see [1],
Proposition 2.8). Them, = Ady, 4.

Since; commutes withd, it follows that 8(h) = h, so h € T. Write h = exp(z), with
T =121+ a2, 11 €4, zo € 774, SinceAdy, 7, is areal form, it follows thakr,(h) = 1. Hence,
exp(z1) exp(az) exp(z1) exp(—z2) = 1, so if we sett = exp(z1), t* = 1. Let go = exp(%2).
Thenr = Adg,Ads7y Adggl. Sincer; is G-conjugate tor, this completes the proof.O

COROLLARY 4.4.— Every real formr € L(g,d) is conjugate to an, , for somed-signature
o. Moreover,

Golge=KA" 1y,

Proof. —By Proposition 4.3, there ig € G such thatr = Ad Ad;7qAd,-1 with ¢t € T of
order2. The eigenvalues oAd; on each root spacg, are+1, and the mapr: ¥ — {1,—1}
defined this way is d-signature becauséd, ;) = Ad,. By definition, the real fornt, ,, is the
fixed point set of the involutiothd, 4. Thereforeg™ = Ad,ly4 -, Which gives the first assertion.
By Proposition 7.1.3 in [29], we can decompas@sg = ka g1, Wherek € K, a € A% and
g1 € GAd7a_ Thus

T :Adka(AdtTd)Adaflkfl. Od
We now identify theG-orbits in £(g, d) with certain symmetric spaces.

PROPOSITION 4.5. — Let 7 be a real form of a semi-simple Lie algebgawith its lifting to
G also denoted by. Then the normalizeN¢(g™) of g7 in G coincides withG™ := {g € G:

7(9) =g}

Proof. —Let g € G. Theng € N¢(g™) if and only if Ad,7Ad,-» = 7, or equivalently,
TAd,T = Ad,. But by the definition of the lifting of to G, 7 Ad,7 = Ad, (). Thusg € Ng(g™)
if and only if Ad, (4 = Ad,. SinceG is the adjoint group, we see that Ng(g7) if and only if
T(g)=gorgeGT. 0O

COROLLARY 4.6. — For a d-signatures, the orbitG - (4 , is the semi-simple symmetric space
G/GTde,

Proof. —The above proposition implies that the stabili2ét(l;,) = G™-. O

4.3. Extendedd-signatures and£(g, d)

We have seen that the sétg, d) is the union of the-orbitsG - (4 , asc runs over the set of
all d-signatures. We now consider theorbitsG - [; ., whereo is anyextendedi-signature. We

show that each such orbit is ifi(g, d), the closure ofZ(g, d) in the Grassmannia@r(n, g) in
the classical topology. In Section 5 we will show th{, d) is precisely the union of all these

G-orbits.

LEMMA 4.7.— Suppose that ando’ are two extended-signatures such thaf, C S, and
o(a) =0'(a)forall « € S,. LetH € a be such thatv(H) =0 for o € S, and(H) > 0 for all
a€ S(X1)N S, Then

(15) lim Adexp(tH) [d,a’ = [d,a

t——+o0

in Gr(n,g). Consequenthyi - 3, C G - [

4° SERIE— TOME 34 — 2001 N° 5



ON THE VARIETY OF LAGRANGIAN SUBALGEBRAS, | 653

Proof. —Fora € ¥4 N [Sy], setx, = Ey — o(a)ya(E—q) andy, = iEy + io(a)va(E—a).
We know from Equation (14) that

li,or =07 + 1, + spanR{xa,ya: a€eXiN [Sg/}}.

Pickug € AP(§™ 4+ 1n,/), ug # 0, wherep = dim(h™ + n,/). Let

Vg = ug N H xa/\yQE/\nga
aEE+O[Sal]

whereg is regarded as 2n-dimensional real vector space. ThRm, € RP(A"g) is the image
of [4 -~ under the Plucker embedding Gf(n, g) into A™g. Since

Adcxp(tH)xoz = eta(H) (Ea - J(a)eiﬂa(H) ’Yd(E—a))7
Adexp(ti) Yo = ete(H) (iEa + ia(a)e_zta(H)de(E,a)),

we see thalfim; ., ; oo Adexp(¢ )00 iS the image of; , in R P(A"g) under the Plucker embedding
of Gr(n, g). Hence (15) holds. O

COROLLARY 4.8. — For every extended-signatures, we have

G lgeCL(g,d) and G-(h™"+n)=2G/BCG ly,s,

whereB is the Borel subgroup aff with Lie algebrah + n.

Proof. —Let ¢’ be anyd-signature such that'|s, = 0. Then by Lemma 4.7,

G lge CG lgo CL(g,d).

On the other hand, let, be the extended-signature such thai;(a) = 0 for all a. Then
l4,00 =™ +n. By Lemma 4.7, th&7-orbit G - (h7@ +n) 2 G/Bis contained irG - [y ,. O

Remark4.9. — Whend is non-trivial ando is a d-signature, a continuous curvgt) in
G - lg,, with lim;_, 4o, ¥(t) = h7@ 4+ n can be used to show that the map L — L defined
in Theorem 2.21 is not continuous. See also Remark 2.22.

We now give a more precise description of tieorbit G - [; , for any extended-signature
o.Let P, andM, ; be the connected subgroup@fwith Lie algebrag, andm, ; respectively.
Recall thatry , = a,74 defines a real from ah, ; such that, , = m;‘f’{’ + 374 4+ n,.

ProPOSITION 4.10. — For any extendedi-signatureo, the G-orbit G - [;, fibers over
G/P,, and the fibers are diffeomorphic to the symmetric sp&ﬁgl/M;ﬁ”. In particular,
dimg G - 4, = dimc g — dimc 3,. The G-orbit G - [, is compact if and only it(a) =0
forall a € 3.

Proof. —Lett, , andRq , be the normalizers df, , in g andG respectively. The®y , C P,
and by Lemma 3.4, , = mgff + 35 + n,. It follows that the map

G- lgo— G/P;:Adyly, — gP,

is a well-defined fibration and its fibers are diffeomorphicRo/Rq,, = M0,1/M;d1*’. The
dimension forG - [; , follows from the formula fore, . If o is not identically zero, the fiber
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of the projection fromG - [; , to G/ P, is not compact, s@- - [, can not be compact. Thus
G - 14, is compact when and only wher{o) =0 forall . O

Similarly to Corollary 4.4, we have

ProPOSITION 4.11. — For any extended-signatures, G - 3 , = K AY¢ - (4 », where
AY =exp ((aNmg1)7?).

Proof. —Let M, and N, be the connected subgroups @Gfwith Lie algebrasm, andn,
respectively. Ther?, = M, N,. SinceK acts onG/P, transitively, we can write any € G
as g = kmn, wherek € K, m € M, andn € N,. Since N, normalizesl;,, we have
Adgyly» = AdkAd,,lg,-. Recall thatly , = m;‘ff + 37¢ + n,. Applying Corollary 4.4 to the
real form m;‘fi" for m, 1, we know that there exist; € K N M, anda € A2 such that
Admm:’l’f = Adk]am‘rd’“ . ThUSAdm [d,o = Adkla[d,o andAdg [d,o = Adkkla[d,o- O

o,1

5. L(g,d) as the real part of the De Concini—Procesi compactificatiotZ; of G

Let d be an involutive diagram automorphism of the Dynkin diagrarg.dh this section, we
identify the varietyL(g, d) with the set of real points of a De Concini—Procesi compactification
Z4 of the group. SinceZ, is known to be smooth, it follows th#}(g, d) is a smooth irreducible
algebraic subvariety ofir(n,g). We also show that’(g,d) is connected and determine the
G-orbits inL(g, d).

5.1. The complexification ofg

Regardg as a real Lie algebra and denote its complex structurdby Endg(g). We may
identify its complexificatioryc with (g ® g, Jo @ Jo) via the map

gc — (@®9,Jo®Jo) iz +iy — (z+Joy,0(z)+ Job(y)), =z, y€g.
Under this identification, the complex conjugation operaton gc becomes
7(z,y) = (0(y),0(x)),
with its set of real points realized as
(gpg) = {(m,ﬁ(m)): T € g}.
If v C g is areal subalgebra, thea =t + it is regarded as a complex subalgebrg ef g. For
example tc is the diagonal subalgebga, = {(z,z): = € g} and(t+ n)c = ha +ny + n_,,
wheren_ = #(n) and for a Lie subalgebnaof g,
(16) ta ={(z,z): x €1}, v = {(,0): z €1}, o ={(0,2): z €t}.

The proof of the following lemma is straightforward.

LEMMA 5.1. — For an extended-signatures, the complexificatioty, , ¢ of [4,, iS

lg,0.c = {(7,a07a(2)): TEM} B gy By,

wheren,_ =6(n,).
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Recall that{( , }) is the Killing form of g. Consider the symmetric forthon g @ g given by

I((z1,22), (y1,92)) = (@1, 91)) — (22, 92))-

Then! C g is a real Lagrangian subalgebragoivith respect to the imaginary part of the Killing
formif and only if[c C g @ g is a complex Lagrangian subalgebra with respedt tbwe denote
by L¢ the set of all complex Lagrangian subalgebrag &fg with respect ta/, then we have the
injective map

L — Lol — Ic.

With respect to the adjoint action 6f on £, we have

(Adghc = Ad(g,6(¢)) (Ic)-

On the group level, we have the analogous identification>~ G x G. We lift 7 to an
involution, also denoted by, of G x G. In this context(F (as the set of real points) is identified
with the fixed point set ofr as {(g,6(g)): g € G}. Let Ga,a = {(9,74(9)): g € G}. Then
(G x G)/Ga,q is an example of a complex symmetric space, and De Concini and Procesi [4]
have exhibited a particular smooth compactificatinof (G x G)/Ga 4.

5.2. The De Concini—Procesi compactificatiol;

Note thatG x G acts on the Grassmannian @fdimensional complex subspacesg g
through the adjoint action, where= dim¢ g. Consider they,-diagonal subalgebra

gAd= {(x,yd(x)): T e g}

of g@ g and the orbitG x G) - ga 4 inside the Grassmannian. The stabilizer subgroup»fG at
94,4 1SGA.4, SO(G X G) - ga,a = (G x G)/Ga 4. By definition, the De Concini—Procesi variety
is the closure (with respect to the Zariski or the classical topologyjzok G) - ga 4 in the
Grassmannian. It will be denoted B, and it is called the De Concini—Procesi compactification
of (G x G)/Ga 4. Itis a smooth complex manifold of complex dimensiotfsee [4] for more
details). Since the variety of complex Lagrangian subalgebrés;isG stable, it follows that
every elementirZ, is a complex Lagrangian subalgebragab g of dimensiom.

It is known [4] thatG x G has finitely many orbits inZ;. We describe the orbits. Recall
thatS(¥4) = {a1,..., o} is the set of all simple roots. Let: S(X1) — {0,1} be any map.
Regarding; as an extended signature for the trivial involution, we have the parabolic subalgebra
p, =m, +n, of g. Setn,, = 6(n,). Consider the subalgebra

ga.n =1 (z,7a(2)): z €my} ©nyy S yany,_ .

Itis easy to check thaty,,, € Z,. In particularga,q = g4, , Wheren, (o) = 1 for all rootsa.
THEOREM 5.2 ([4]). — Every pointt € Z; is in aG x G orbit of g4 ,, for somen.

DEeFINITION 5.3.— We say that a complex subalgebrg ef g has a real structure if it is the
complexification of a real subalgebra gfunder the identificatione = g 4 g. We useZ, i to
denote the set of all Lie subalgebrasdp that have a real structure.

Note that a complex subalgebraof g @ g is in Zr if and only if 7(xr) = ¢, and in this
caseyr = (t7)¢, wherer” C g @ g, the fixed point set of in v, is identified with its image i
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under the projectiog ® g — g: (z,y) — x. We can regard as an anti-holomorphic involution
on the Grassmanniafr(n,g @ g) of n-dimensional complex subspacesg® g. Then since
7(9a.4) = 9a,4 and since

T Ad(g, g2) = Ad(6(g2).6(9) >
the subvarietyZ, of Gr(n, g® g) is T-invariant, andZ r is the set of fixed points of. Therefore
Z4r is a smooth and compact subvariety@f(n, g ® g) (see Section 1.3.4 in [30]).

Note also thatyq,, € Zq4r if and only if  is constant on thé-orbits, and in this casey , =
la,n,c. On the other hand, for any extendégignaturer, we havely , € (G x G) - g4,|0| € Zd,
SO [d,g’ € Zd,R-

5.3. G-orbits in Zr

Recall that for every Lagrangian subalgebrag,

(17) (Adg[)c = Ad(g’g(g))([c), Vg cd.

PROPOSITION 5.4. — Every t € Z;r is in the G-orbit of an l;, ¢ for some extended
d-signatures, whereG acts onZ; g by g - (Ic) = Ad(g,9(4)) lc-

Proof. —Lett = Ad(y, 4,)84,, fOr somen, so

v={(Ady, (y +21),Adg,va(y + 22)): yEmMy, z1 €Ny, 22€0,_}.

Sincer has a real structure;(t) =, s0(Adg(g,)7a(y + 22), Adg(g,)0(y + 21)) is in ¢, so that
Adg(g,)Ta(y + 22) = Ady, (u +v1) for someu € m,, andv; € n,,. But

pp={0(y+2): yem,, zcn, },

soAdgfle(myd(pn) C py. Sincevq(py,) is G-conjugate tg,, it follows thatyy(p,,) = p,,. Since
P, is the normalizer of,), it follows thatg; '6(g2) € P,, s0gs = 0(g1p), for somep € P,,. Thus,

t= {(Adm (y + 21), Adg(gy)a(p)va(y + 22)): yemy, 21 €0y, 22 € ”n—}‘
Thus, up taG-conjugacy,
v={((y+21),Adg)va(y + 22)): yEmMy, 21 €Ny, 22€n,_}
andm,, n,, andn,,  are~,-stable. Write(p) = lu with | € M,,, u € N,,_. Since
{Adu(y +2z)yeEm,, 2 € “nf} = {(y +ws): y €My, wo € nnf}
it follows that
v={((y+21), Adya(y + 22)): y€my, 21 €ny, 22 €y} = Ad(1,)8d,n-

We now use again the assumption thdtas a real structure and the facts thatn,) = m,,
6(ny,) =n,_, M, preserves the decompositians=m, +n, andé(p,) =m, +n, _. Since

T(y + 21, Adiya(y + 22)) = (Adg(l)’Yd (H(y) + 9(22)) ,0(y) + 9(21))7
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we see that

{Adgyvay.y): y € my} = { (v, Adrya(y)): y € my} = { (va(Adj-1y),y): y €my}.

Hence Ady(;)vq = 7¢Ad;-1, and it follows that{ Ad;74)* = 1.

Now, by Proposition 4.3, after acting by an element/df,, we may assume that=
Ad(1,4)84,n, Wheret € T74 is such that? = 1. As before, leto;(«) be the eigenvalue okd,
on the root spacg,. Theng; is ad-signature and we can define a new extendisihnatures
by o(a) = n(a)os(a). ThenAd 484,y = la,o,c by Lemma 5.1, which completes the proof of
the proposition. O

5.4. The identification of £(g, d) with Z; r and its geometry

Letd be any involutive diagram automorphism of the Dynkin diagram. &ecall thatC(g, d)
is the closure of£(g,d) in Gr(n,g) in the classical topology. Denote Wyr(n,g & g) the
Grassmannian af-dimensional complex subspacesim g.

THEOREM 5.5. — The map

C:Gr(n,g) — Gr(n,g®g):l — [¢

gives an identification(g,d) = Z,r. ConsequentlyL(g,d) is an n-dimensional smooth
irreducible algebraic subvariety dir(n, g).

Proof. -The map C' is G-equivariant, whereg € G acts onGr(n,g) by Ad, and on
Gr(n,g @ g) by Ad(4 ¢(4)). By Corollary 4.4 and the fact that evely, c € Z; r, we know that

C(L(g,d)) C Zar,S0C(L(g,d)) C Z4r becaus€ is continuous. On the other hand, it follows

from Proposition 5.4 and Corollary 4.8 th&,r C C(L(g,d)). HenceC(L(g,d)) = Za .
SinceC is an embedding, and sincg; r is a smooth submanifold dkr(n,g @ g), we know

that £(g,d) is a smooth submanifold dfr(n,g). SinceGr(n,g) is the set of real points of
Gr(n,g @ g) underC and Z,; is a complex algebraic subvariety 6fr(n,g ¢ g), we see that
L(g,d) is a real algebraic subvariety 6fr(n, g). Itis irreducible becausg is irreducible and

Z4 is the complexification of (g, d) (see [30], p. 9). O

As a direct consequence of Theorem 5.5, we have:

COROLLARY 5.6. — Every Lagrangian subalgebriain £(g,d) is G-conjugate to ary , for
some extendedtsignatures.

COROLLARY 5.7.—TheG-orbit G- (h™ +n) = G/ B is the only closed orbitirL(g, d), and

it is contained in the closure of evey-orbitin L(g, d).

Proof. —ClearlyG - (h™ + n) = G/ B is closed. By Corollary 5.6, eveg-orbit O in L(g, d)
is of the formG - (4, for some extended-signaturec. It follows from Corollary 4.8 that
G - (h™ +n) C O. On the other hand, i©® = G - l4,- is closed, and therefore compact, then
o(a) =0forall « € ¥ by Proposition 4.10. Thug , = h™ +nandO =G - (h™ +n). O

COROLLARY 5.8.— L(g,d) is connected.

Proof. —Since G is connected, we know by Corollary 5.6 that evérg L£(g,d) is path-
connected to somig , which, by Lemma 4.7, is then path-connecte§to+n. O

COROLLARY 5.9.— The Zariski closure of (g, d) coincides with its closure in the classical
topology.
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Proof. -We know from Theorem 5.5 that the closufdg,d) of L(g,d) in the classical
topology is Zariski closed, so it contains the Zariski closure. But the Zariski closure contains
the classical closure. It follows that they coincidez

COROLLARY 5.10.— For any real formr € L(g,d), the Zariski closure of the7-orbit
G-¢g"=2G/G"inGr(n,g)is L(g,d).

Proof. —Denote byZ, the Zariski closure of7 - g" in Gr(n,g). ThenZ, C L(g,d). Since

L(g,d) is irreducible andZ, has the same dimension 4$g, d), it follows that Z, = L(g, d)
(Exercise 1.101in [9]). O

Recall that a Lagrangian subalgeliraf g is a ¢-model point if¢ N [ = ¢, whereg, is the
normalizer subalgebra ¢fn ¢. Denote byM the set of alk-model points. We now show thad
is the union of the5-orbits through some special subalgebras.

Denote byAuth the subset of all involutive, isometric automorphisms of the Dynkin
diagram of the semi-simple subalgebng ; of g. For eachd € Autgs, let Sq ¢ be the set

of all d-signaturess of mg ;. If d € Autgs, ando is ad-signature ofmg 1, let 7; , be the
corresponding real form afig ;. Let

[}, =mgy +35Nt+ng.

Note thatl§ , € £(S,1,d).

ProPOSITION 5.11. — We have

M= |J U U ¢4,

SCS8(24) deAutl;® 9€Sa,s

Proof. —Letd € Autl;°. Itis easy to see from the definition gf, and Proposition 3.5 thaj
is in M for everyo € S, . SinceM is G-invariant by Corollary 3.7, we know that - [3’0 eM
for every suchr. Now assume thate M. By Proposition 3.5/ = Adg(mj; + 35 Nt +ng)
for somek € K, S € S(X;) and a real formr of mg ;. By Corollary 4.4 applied tang i,
mf, = Ad,,mg'y for somed € Auth®, someo € Sy 5, and somen € Mg, := [Ms, Mg].
SinceMg ; acts trivially onzs and normalizesg, it follows that( = AdkAdm[jU. a

5.5. Another description for £(g,id)

The setl(g,id) has been most important for applications. It will follow from the description
of irreducible components in Section 6 thatg, id) is the unique irreducible component 6f
containingt. In this section, we give another description of it.

Set

Lo={le L: rank(tNT) =rank(t)}.

Itis the set of Lagrangian subalgebrasfofontaining the Lie algebra of a maximal toruskof

PROPOSITION 5.12. — Ly = L(g,id).

Proof. —Write [, for [ , for d trivial. Firstassumé= Adl, liesinL(g,id). By Corollary 5.6
and Proposition 4.11, we can write= AdiAd,l,, for k € K, a € A. But [, containst, so
AdiAd,l, containsAd(t), sinceA acts trivially ont. Thus,l € L.
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Now, assume a Lagrangian subalgebmntains the Lie algebra of a maximal torusof
By [12], we knowl = Ady(mG ; © V @ ng), for some(S, V, 7). By the assumption oh we may
assume thaing , @ V' containst. ThenV =t N 35 andmj , contains a Cartan subalgebra of
mg, 1 NE Butitis easy to show that if does not have trivial diagram automorphism, thef,

does not contain a Cartan subalgebrangf; N ¢. It follows easily that € L(g,id). O
We remark that it follows thaff acts onlg, a fact that is not clear from the definition 8f.

Remark5.13. — It is not difficult to show that everly, , € £(g,id) is a t-model point. It
follows from Corollary 3.7 and Corollary 5.6 that everg £(g,id) is at-model point inL. It
follows from Section 2.3 that many familiar Poisson structures are containé@gind) asG
or K orbits with the Poisson structures being the restriction of the Poisson strattarel
defined in Section 2.2. For example, we can idenfify ¢ > G/ K, and the Poisson structure
induced byll onG/K =2 AN is the negative of the Poisson structatgy that makesAN into
the dual Poisson Lie group @€. More generally, by looking a&-orbits in £L(g, d), we obtain in
this manner a Poisson structure GG, for every real formG, of G. The Poisson manifolds
arising fromK-orbits in £(g, id) are studied in more detail in Section 7.

Remark5.14. — Notall pointsinC(g, d) areé-model points whed is not trivial. The criterion
for (4, to be at-model point is that it (o) = 0, thend(a) =

In [7], we introduced certairK -invariant metricsg, on T*(K/T) for A € a,, the set of
elements ina whose centralizer irK is 7. These metrics are important for showing that an
operatorS introduced by Kostant is a limit of some Hodge Laplaciays The existence of this
family simplifies the proof of Kostant's basic result tH&tr(.S) is isomorphic toH*(K/T).

We remark that the metricg, can be understood in terms of the restriction of a Riemannian
metric on the Riemannian symmetric sp@egk . SinceL(g,id) is a compactification off/ K

with closed orbit the flag manifol@/ B, this observation provides evidence that embedding the
Bruhat—Poisson structure @/ B into the manifoldZ(g,id) is useful in Poisson geometry.

We give the construction of this metric. We can identify the tangent spaG¢ &f at g K with
Ad,(i€). The Killing form is positive definite atd, (i £), and we lets be the metric orG/K
given by taking the square root of the Killing form metric Ad (i ¢).

Let Hy € a be such thah(H) = (Hx, H) and letay = exp(H,). Then theK -orbit through
a)K € G/K can be identified withi{/T. If we restrict the above metri¢ to a metrics, on
K -a)yK C G/K, and uses) to identify the cotangent bundle with the tangent bundle, then one
can show by easy calculations that we obtain the mejricom [7].

6. Irreducible components of L

Recall from Section 3.5 that the variety of all Lagrangian subalgebras @f can be
decomposed as the disjoint union

U £(S.ed)

(S,e,d)
where, for the Lagrangian datuff, ¢, d) (see Definition 3.15),
E(S,&‘,d) = {Adk(m;l +V —I-Ils)Z keK, T€e ﬁ(msjl,d), Ve ‘C;&s,g}'

In this section, we will determine the irreducible componentg£ ¢as a real algebraic variety)
using the closureb (S, e, d) of L(S, e,d) in the Grassmanniadr(n, g) in the classical topology.
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We first combine results from Sections 3 and 5 to describe the geometry of the closures
L(S,e,d).

THEOREM 6.1. — EachL(S,e,d) is a smooth connected submanifold of the Grassmannian

Gr(n, g) of dimensiorlim(¢) + @ It fibers overG'/ Ps, and the fiber is the product af, , .

with £(mg 1, d), the set of real points of a De Concini—Procesi variety.

Proof. —Recall from the proof of Proposition 3.16 that
Ly (S,e,d) = {m;l +V4ns: ke K, 1€ L(ms,d), VeL,, }

It can be identified with the image @f(ms 1,d) x £, . C Gr(m,mg1) x Gr(z,35) under the
embedding

E:Gr(m,mg1) x Gr(z,35) — Gr(n,g): (U, V) — UV &ng.

Thus £, (S,¢,d), the closure ofL,(S,e,d) in Gr(n,g) in the classical topology, can be
identified with the image of (mg,1,d) x £, . underE. ThusL, . (S,e,d) C Gr(n, g) is smooth
and connected by Theorem 5.5. Consider now the map

m: K Xgnps Lps(S,€,d) — Gr(n,g):(k,[) — Adgl.

It is clear thatm is smooth and proper, and arguments similar to those used in the proof of
Proposition 3.16 show that is an immersion. Thusn is an embedding. But Karolinsky’s
Theorem 3.2 implies that the image wf is £(S,¢,d). ThusL(S,¢,d) is a smooth connected
submanifold ofGr(n, g). The dimension statement is clear from Proposition 3.16.

PROPOSITION 6.2. — L(S,e,d) C Gr(n, g) is closed and irreducible in the Zariski topology.
Proof. —SinceL, (S, ¢, d) is Zariski closed inGr(n, g) by Proposition 3.9 and Theorem 5.5,
it follows thatG x pg L, (S, e, d) is Zariski closed irG x p; Gr(n,g). The map
m:G X pg Gr(n,g) — Gr(n,g):m(g,[) = Adgyl

is projective, so the image @ xp, L, (S,¢,d) underm is Zariski closed, and irreducible
since the domain is irreducible. Thus, the proposition follows from the proof of Theorem 6.1,
sinceG/Ps 2 K/KNPs. O

DEFINITION 6.3.— Lagrangian datgS, ¢, d) is said to banessentialf S =5(3;) — {«;},
d = d'|s for some involutive diagram automorphisihof S(X. ), ande = 1. Otherwise(S, , d)
is called essential.

PROPOSITION 6.4. — Lagrangian data(S, , d) is inessential if and only if
L(S,e,d) COL(S e, d")

for some Lagrangian dat&S’,<’, d’).

Proof. —If (S, ¢, d) is inessential, then we claif(S,e,d) C L(S(X4),1,d"), whered'|s =d.
Indeed, sincelimc(35) = 1 ande =1, the set’; . consists of only one point, namejy N t. It
follows from Theorem 3.2 and Corollary 4.4 that each subalgebfd.f)e, d) is G-conjugate to
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mgd'l” @ 35 Nt & ng for somed-signatures. But this algebra coincides withy. , which lies in

0L(g,d’') by Lemma 4.7. Henc&(S,¢,d) =, G - lo,o COL(g,d").
Suppose that(S,e,d) C L(S’,¢',d’). ThenS C S’ sodimc(35) > dime(3s/). Moreover,
by Theorem 6.1, we have

dimc(js)(dimc(js) — 3) < dimc(jsl)(dimc(js/) — 3)
2 2 '

It follows thatdimc¢(35) = 1 or 2 anddimc(3s/) = 0. Thus,£(57,¢',d") = L(g,d’) consists
of real forms. But every subalgebra (S, ¢, d) is G conjugate to somg; , by Corollary 5.6.
Suppose first thadlimc 35 = 1. Since~y acts by permutations ok, it follows that~, acts
trivially on 3¢, so the Lagrangian subalgebraggfassociated by Karolinsky’s classification with
la.0 iS3s Nt Thus,l;, € £(S,1,d'|s), and the assertion follows.

If dimc 35 = 2, we will show thatdim(L(S,e,d) N L(g,d")) < dim(L(S,¢e,d)), and it will
follow that

L(S,e,d) ¢ L(g,d") =L(S",&',d').
To prove the dimension claim, note

L(S,e,d)nLg.d)c | G-lus
o:[Ss]=S

so thatdim(L(S,e,d)NZy r) = dimc g — dime 35 = dime g — 2 by Proposition 4.10. However,
whendime (35) = 2, dim(£(S,¢,d)) = dimc g — 1 by Theorem 6.1. O
COROLLARY 6.5.—
L= U Z(Sead)
essential(S,e,d)
is the decomposition af into irreducible components.

Proof. —By Proposition 6.2, eacli(5,¢,d) is irreducible. Thus, the irreducible components
are theL(S,e,d)’s not properly contained in any oth&(S’,¢’,d’). By Proposition 6.4, these
correspond to essential data

COROLLARY 6.6.— L(S(X4),1,id) = L(g,id) = L, is the only irreducible component gf
containingg.

Proof. —By Corollary 5.10, the Zariski closure @f - ¢ is £(g,id), which is not contained in
any other irreducible component by Corollary 6.53

Note also thai’ itself is typically not smooth, because different irreducible components can
intersect. This does not happen f0(2), but for s((3), the component£ (g, id) and £(0, 1,id)
intersect in the flag variety &fL(3, C).

7. The Poisson structurell on £

In this section, we study some properties of the Poisson strudtorel defined in Section 2.
More specifically, we relatll to the Bruhat Poisson structure and determind #ier x )-homo-
geneous Poisson spaces defined by pointyige L(g, id).
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7.1. The fiber projection L(S,e,d) — G/ Ps is Poisson

It is clear from the definition ofil that everyG-invariant smooth submanifold of is a
Poisson submanifold. Thus, eacliS, <, d) is a Poisson submanifold. On the other hand, equip
G/ Ps with the Bruhat Poisson structurg,, which is the uniquéK’, 7 )-homogeneous Poisson
structure orG/ Ps that vanishes at the identity coge®s. Recall from Theorem 6.1 that we have

the fiber bundleC(S,e,d) — G/ Ps.
PrRoPOSITION 7.1. — The fiber projectiory from L(S, e, d) to G/ Ps is a Poisson map.

Proof. —First, we observe that the projectignis G-equivariant. Indeed, we can identify
K X gnps Lps(S,e,d) with G xpg L,,,(S,¢€,d) via the obvious inclusion, and the map from
G xpg Ly (S,e,d) 10 L(S,e,d) is given by the adjoint actiofy, [) — Ad,l. Then the projection
to G/ Ps is given by(g, ) — gPs, which is obviouslyG-equivariant.

Recall that the Poisson structure 605, ¢, d) is induced by the elemer%{R € A%2g given in
Section 2.2. Since is G-equivariant, it follows that. IT is given by the bi-vector field o0&/ Ps
induced by%R, so we just have to check th§u‘R induces the Bruhat Poisson structure@nPs.

It follows from the definition of the Drinfeld map that the Lagrangian subalgebra associated with

the pointePs by 7, is (ENps) @ ng. By Theorem 2.23, the Drinfeld map

PZ(G/Ps,ﬂ'OO) — (K ((Eﬂps)@ns),ﬂ)

is a Poisson map. The normalizer®Nps) ®ng in K is KN Ps, and it follows that the Drinfeld
map is a diffeomorphism, so., coincides withll. Since the Poisson structuikis induced by
1R, the result follows. O

7.2. (K, mx)-homogeneous Poisson spaces determined by pointsdp

We now turn to the Poisson submanifo{d,,II), where £y = L(g,id) is the unique
irreducible component of that containg. We study th€ K, 7 )-homogeneous Poisson spaces
determined by points i, (see Definition 2.9).

By Proposition 5.11 and Corollary 5.6, every pointdp is a .-model point. It follows from
the discussion in Section 2.3 that edehL, can determine a number 0K, 7 )-homogeneous
Poisson spaces, Indeed, Jék (I) be the normalizer subgroup bin K. Then, for any subgroup
K of Nk (I) with the same Lie algebriant as N (1), the spacd(/ K carries a unique Poisson
structurer such that the covering map

P:K/K, — K/Ng()2K-1C Lo: kK — kNg(l)

is a Poisson map. The spad€/ K, ) is automatically K, 7 )-homogeneous, and the m&p
is its Drinfeld map (see Definition 2.4). Examplesiof are K; = N (I) or K is the connected
component of the identity oV, ([). We can characterize the§E, 7 )-homogeneous Poisson
spaces determined by poirits £, as follows.

PROPOSITION 7.2. — All (K, 7k )-homogeneous Poisson spadés/ K, ) determined by
points in £y (seeDefinition 2.9) have the property thak(; contains a maximal torus oK.
Conversely, all(K, 7k )-homogeneous Poisson spaces with this property are determined by
pointsinLg.

Proof. —The first part of the proposition follows from the definition&f. Now, let(K /K, )
be any(K, 7 )-homogeneous Poisson space such Hiatontains a maximal torus df . Then
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the Lie algebra&; of K; contains the Lie algebra of a maximal torugof Consider the Drinfeld
map

P:K/K;, — L.

Letl= P(eK;) € L. Then by Drinfeld’s Theorem 2.3; =[Nt andK; C Nk (I). Thusl € £
by the definition ofCo, and(K/K7, ) is determined by. O

The second part of Proposition 7.2 can be rephrased as the following.

COROLLARY 7.3.— Every(K, mx)-homogeneous Poisson spad€/ K1, ), whereK; is a
closed subgroup ok containing a maximal torus dk, is a Poisson submanifold ¢£,,IT) up
to a covering given by its Drinfeld map.

Remark7.4. — Examples of; in Proposition 7.3 ar& N, whereQ is a parabolic subgroup
of G, so the corresponding homogeneous space is a flag mahiftle N Q) = G/Q.
7.3. The normalizer subgroup oft € £y in K

We now study the normalizer subgroyy (I) of an arbitraryl € £, in K and determine
when it is connected. By Corollary 5.6 and Proposition 4.11, we can WeitAd; Adexp #7140
for somek € K, H € a N m,; and extended signature for d = id, the trivial diagram
automorphism. In what follows, we will writé, = ;3 , and call an extended signature for
d = id simply anextended signaturéVe will write [ , = Adexp vlo. Clearly,l andly , have
isomorphic normalizers ik .

LEMMA 7.5. - For Iy, = Adexp 1 s, Whereo is an extended signature adfl € a N m, 1,
(0 NE=t+spang{Xa, Ya: o(a) =1, a(H) =0}.
Proof. —This follows from the fact that

AdexpHle =t+n, + spanR{AdCXp #Xa, Adexp rY: o(a) = 1}
+spanR{iAdcpoXa, T AdexprYa: o(a) = —1}. O

We now describe the normalizer subgroug®f, in K.

Notation 7.6. — For an extended signatwr@andH € aNm, 1, let¥, = {a € ¥: o(a) =1}.
Let W, be the subgroup of the Weyl group generated by the simple reflections corresponding to
the simple roots in the support of Let

Who ={weW,: wSy=%,, wH=H}CW,CW.

Let

N/([H,U) :pil(WH,U)y

wherep: Nk (t) — W = Nk (t)/T is the projection from the normalizer subgroiyx (t) of t
in K to the Weyl group. Finally, lef{ , be the connected subgroup &f with Lie algebra
[H’a' ne.

PROPOSITION 7.7. — For an extended signatuseand H € aNm, 1, the normalizer subgroup
Ni(lg,6) of lg o = Adexp mlo IS given by

Nk(lgo) =N'(lgo) Ko =KuoN'(l,0).
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Proof. —It is clear from Lemma 7.5 thaV’ (I ,) normalizedy ., so it normalizesy , N ¢
and the corresponding connected grédg .. This implies the second equality, and the inclusion
K oN'(lg,0) C Nk (lp,0)-

Conversely, suppose that K normalizedy . Then it normalizes the grou§ i », SOAd, T
is a maximal torus oy ,, whereT" is the maximal torus of{ with Lie algebrat. Thus there
existsk; € K, such thathd, 1 Ad, T =T, i.e., ki'k € Ng(T) = Nk (t). Write n = k; 'k,
so thatk = kyn. It remains to show that € N'([ ).

Denote byw,, the Weyl group elemenil € W. Sincen normalizesly ., it normalizes its
nilradicaln,. Thusw,, € W,. Now for eachn € [S, ], the support ofr, consider the space

Va = [H,O' N (ga @g—a)-

By the description of the basis &f, we know that the Killing form ofj restricted tdV/, is either
negative definite or positive definite depending on whett{er) = 1 or o(a) = —1. Now, since
n normalizedy ,, it permutes the spacés,, for a € [S,]. Butn preserves the Killing form, so
o(a) =1 implieso(w,a) = 1. In other wordsw,, X, = %, . It also follows thatn normalizes
I. Therefore we have

Adexp(wnH) l, = Adcxp Hlo.

An easy calculation shows that this implie$H) = a(w, H) for all « € [S,]. Since H €
anNmy; andw, € W, it follows that H = w, H. Thereforew,, € Wg , or, equivalently,
nec N/([H,O')' O

COROLLARY 7.8.— Let the notation be as in Notatioh6. Then
Nk(l,0)/Kio =N (lao)/N' (Itr,0) VKb o
Remark7.9. — For an extended signaturethe group
Woo={weW,: wi,=3%,}

contains the subgrouR, generated by reflection§s,} for o« € ¥, as a normal subgroup.
Indeed, this follows from the formula fos, and Formula (13) fow. SetZ, = Wy »/R,.
Regards as a signature for the root systéfy]. Theno defines a signature for each irreducible
subsystem ofS,;|, and we can calculat8, separately for each irreducible subsystem. The group
Z, is computed for each simple Lie algebra in [23], Table 3, p. 80, and explicit elements are
given. For example, whep = sl(n,C), then if [, 2 su(n/2,n/2), then Z, is trivial, and if

I = su(n/2,n/2) thenZ, is a group with two elementsZ, has no more than two elements
except in the case whem= so(4n,C) and [, = s0(2n,2n), when Z, is the Klein 4-group.

In particular, the group?,, , can be calculated explicitly in each case. It follows that we can
compute the groupVg » explicitly.

7.4. (K, mk)-homogeneous Poisson structures o /T

In this section, we determine &K, 75 )-homogeneous Poisson structures on the full flag
variety K /T, whereT is the maximal torus oK with Lie algebrat.

By Proposition 7.2, we only need to identify thdse £, such that N ¢ = t. We can assume
[ =gy, = Adexp 1o, Whereo is an extended signature afifle a N'm, ;, because the Poisson
structure onk'/T determined by any= Adyly , for somek € K (such that N ¢ = t) will be
K-equivariantly isomorphic to the one determined gy, .
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PROPOSITION 7.10.— Let ¢ be an extended signature and léf € a N m,;. Let
lg,60 = Adexp Hlo. Thenly . NE=tifand only ifa(H) # 0 for all o € X,.

Proof. —This is a direct consequence of Lemma 7.&

For everyly , such thatiy , N € =t, denote byry , the associatedK’, 7k )-homogeneous
Poisson structure oA’ /T.

COROLLARY 7.11.—The collection{n . }, aso runs over all extended signatures andfs
takes all elements innm, ; such thatv(H) # 0 wheno (o) = 1, gives all( K, 7 )-homogene-
ous Paisson structure oR /T.

An explicit formula forrg - is givenin [21] as

1 1 0
”H=”:p*”K+§< 2 WXMY&>>
a€[Ss]NEy

wherep: K — K/T is the natural projection, and the second term on the right hand side is
the K -invariant bi-vector field onK'/T whose value at¢ = €T is the expression given in the
parenthesis. The fact that these are all the 7, )-homogeneous Poisson structuresiofAT
up to K-equivariant isomorphisms is also proved in [21] by a different method. Namely, we
show in [21] that every such Poisson structure comes from a solution @aissical dynamical
Yang—Baxter equatiof8]. In [21], we also study some geometrical properties of these Poisson
structures such as their symplectic leaves, modular vector fields, and moment maps for the
T-action.

Recall from Proposition 7.7 and Notation 7.6 that wiign N ¢ = t, the normalizer subgroup
Nk (lg») of Iy in K lies in the normalizer subgroup éfn K, and we have

Ni(.0)/T =Wi.o = {w € Wy: wSy =S, wH = H}.

When Wy, is trivial, the Poisson manifoldK /T, 7y, ,) embeds into(Ly,1I) as a Poisson
submanifold. WheWy ,, is not trivial, it follows from Proposition 2.28 that action Bfy , on
K/T from the right defined by

(K/T)x Wy,o — K/T:(kT,w) — kwT

is by Poisson isomorphisms. Thus, the grolip , gives symmetries of the Poisson structure.
As we mentioned in Remark 7.9, this group can be calculated case by case.

Remark7.12. — IfH € ais regular in the sense that it is not fixed by any Weyl group element,
thenWp - is trivial for any 0. On the other hand, Borel and de Siebenthal showed that every
nontrivial signaturer corresponding to the trivial diagram automorphism can be put in a form
such thato(«) = —1 for exactly one simple roaty, [3] or [23], Appendix. In particular, the
groupW, , contains the Weyl group of a maximal Levi subgroup, sol#gf , to be trivial, H
cannot be fixed by any element in a maximal Levi subgroup, so in partidiilean lie in at most
one wall.

Example7.13.— We can compute the Poisson structiliren £, explicitly for the case of
g = sl(2,C). In this case, it follows from [4] thally can beG = PSL(2,C)-equivariantly
identified withR P3, regarded as the projectivization of the spacef 2 x 2 Hermitian matrices,
where the action off on’H is by

goX =gXg', g€G, X€EH.
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The R-matrix R € g A g (See Section 2.2) is explicitly given by

R:_%(ihAh—XaAiEaJrYaAEa)v

1 1 0 1 0 1 1/0 4
=amlo ) %e=s(Go) m=s(f)

andE, = %(Xa —1iY,,). Denote byv: g — x!'(H) the Lie algebra anti-homomorphism defined
by the above action af on#, wherey! (1) is the space of vector fields . ThenIl = $ v(R)
is a Poisson structure dr. Write an element oH as

X—< ;1:. u+i1}>
u— Y

with z,y, u,v € R. Then the Poisson brackets fidrare given by

where

1 1
{m7y}:0> {J},U}:—Zy’l), {m,v}zzyu,
ub =<y, (g0} =—syu, {uv}=2yy—2)
y,u—4yv, Y,y = 411% u, v —8?/?/ x).
Note that
2 2

co=xz+y and co=xzy—u’—v

are two Casimir functions. Hence &lU(2)-orbits are Poisson submanifolds. Since this Poisson
structure is quadratic, it gives rise to onel®R?, which is the Poisson structufeon L. It can
be checked that by looking at tI%&J(2)-orbits through the points iR P? corresponding to

b 0
(0 1), beR, b#1,

we get all the{ K, 7 )-homogeneous Poisson structures, onSU(2) /S, up to K -equivariant
isomorphisms, as discussed in Section 7.4. By identifhg2)/S! with S? = {(x,y,2) €
R3: 22 +y? + 2% = 1}, these Poisson structures are given by

1 1 1
{Iay}:Z(I+2a_l)Za {y,z}:z(x+2a—1)x7 {Z,I}:Z(I+26l—1)y,
for a € R. Note that the antipodal map is a symmetry for the case wher%. This corresponds
to the fact that the stabilizer subgroupSbi(2) of the point inRP? corresponding t¢;, ° ) has
two connected components.

8. Remarks

We define aLagrangian pairin g to be a pair of Lagrangian subalgebrds’) such that
[N I'=0. Clearly a Lagrangian pair ig is the same as a Lie bialgebra whose doublg is
together withim(( , ) (or a scalar multiple of it) as the invariant scalar product. Thus associated
to each Lagrangian pajt, ') there is a Poisson structurk ;- on the varietyC. There are many
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examples of Lagrangian pairs gnother than the examplg, a + n). We can take, for example,
[=t+n_ andl’ = a + n. Lagrangian pairs ig have been classified by Delorme in [5] up to
conjugacy by elements i¥. In particular, it can be shown that for everg £ there is at least
onel’ such that and!’ form a Lagrangian pair. It would be interesting to study the geometries
of the Poisson structures @{v) defined by different Lagrangian pairs and the relations among
them. Note that our discussions in Sections 3—6 about the geomefrgaf independent of the
choice of the Lagrangian pair.

In general, assume thatis a 2n-dimensional Lie algebra over the fiekd= R or C, and
assume that, ) is a non-degenerate ad-invariant symmetric scalar produet Whenk = R,
we assume that the signature(9f) is (n,n). Then we have the notion of Lagrangian subalgebras
in 9, and we can form the algebraic variefi(d). One example ofo,( , )), which is the
complexification of our main example in this paperpis= g © g with ((x1,22), (y1,¥2)) =
{(z1,11)) — {z2,y2)) for any semi-simple complex Lie algehgaln this case, one can understand
the geometry of£(9) by using results in [13] and similar techniques as in Sections 3—-6. Some
connections between Lagrangian subalgebrag ahd of g © g and solutions to the classical
dynamical Yang—Baxter equation studied by Etingof—Varchenko [8] and Schiffmann ([28]) can
be found in [21]. More examples @b, (, )) can be found in [5], [24], [25]. The geometry of
L(v) is different for each example, and so are the classification of Lagrangian paieniththe
geometries of the Poisson structufgg,. We plan to study these problems in additional cases in
a sequel to this paper.
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