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THE TENSOR PRODUCT OF EXCEPTIONAL
REPRESENTATIONS ON THE GENERAL LINEAR GROUP

BY ANTHONY C. KABLE

ABSTRACT. – The exceptional representations are certain infinite-dimensional projective representations
of the general linear group over a local field, somewhat analogous to the Weil representations of the
symplectic group. We examine the decomposition of the tensor product of two exceptional representations.
Our main results concern the multiplicity with which a given representation may occur in this product and
the restrictions imposed upon a representation of the principal series by the assumption that it does occur.

 2001 Éditions scientifiques et médicales Elsevier SAS

RÉSUMÉ. – Les représentations exceptionnelles sont certaines représentations projectives de dimension
infinie du groupe linéaire général sur un corps local, apparentées aux représentations de Weil du groupe
symplectique. Nous étudions la décomposition du produit tensoriel de deux représentations exceptionnelles.
Nos résultats principaux concernent la multiplicité avec laquelle une représentation donnée apparaît dans
ce produit, et les restrictions imposées à une représentation de la série principale par le fait qu’elle apparaît
dans ce produit.

 2001 Éditions scientifiques et médicales Elsevier SAS

1. Introduction

The exceptional representations are certain infinite-dimensional projective representations of
the general linear group,GL(r), over a local field. Equivalently, they may be viewed as linear
representations of an appropriate double cover ofGL(r). The fundamental role played by the
general linear group in many parts of mathematics makes its representations objects of wide
interest. Beyond this, the exceptional representations attract attention for at least two reasons.

The first reason is analogical: onGL(2) the exceptional representations are identical with
certain of the famous Weil representations ofGSp(2) = GL(2). While the higher Weil
representations generalize these examples to the groupsGSp(2r), the higher exceptional
representations generalize them to the groupsGL(r). Thus the exceptional representations may
be regarded as aGL(r) analogue of the Weil representations and, given the remarkable properties
possessed by the latter, seem worthy of close investigation.

The second reason is pragmatic: the exceptional representations play an essential role in the
construction, by Bump and Ginzburg [5], of a Rankin–Selberg integral which represents the
Langlands symmetric squareL-function,L(s,Π, sym2), of an automorphic representation,Π, of
GL(r). To gain a more intimate understanding of thisL-function would seem to require a detailed
study of the ingredients in the construction, the exceptional representations prominent amongst
them. Indeed, the work reported on here was carried out as part of a project, still underway, to
investigate the structure of the local factors ofL(s,Π, sym2) at places whereΠ is ramified.
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There is no succinct and unambiguous name for the double cover ofGL(r) on which the
exceptional representations have their natural home. The word “metaplectic”, coined by Weil for
a certain double cover of the symplectic group, has been pressed into service for covers of other
classical groups also, thereby creating genuine ambiguity. Henceforth, bowing to convention, we
shall use the generic term “metaplectic group” to refer to the group underlying our work.

The metaplectic group is itself a rather subtle object; its existence was not established in
general until Matsumoto’s remarkable 1969 paper [13]. Unlike Weil’s metaplectic group, which
was first constructed by giving a projective representation ofSp(2r), the metaplectic group
considered here was initially constructed group-theoretically. Even now, no a priori construction
of the exceptional representations which would yield a natural proof of the existence of the
metaplectic group is known. The subsequent history of the metaplectic group in the literature
has been cloudy, with several erroneous statements finding their way into print. We shall use the
work of Banks, Levy and Sepanski [1] as a convenient and reliable reference for the facts we
require.

The exceptional representations ofGL(r) were first introduced in generality by Kazhdan and
Patterson in [12]. It is convenient to extend their definition somewhat to include representations
of covers of products of several general linear groups and this is the first task in Section 5.
Theorem 5.1 shows that, with this extended definition, the family of exceptional representations
interacts smoothly with changing groups via parabolic induction and Jacquet functors and with
the metaplectic tensor product. Next, in Theorems 5.2, 5.3 and 5.4, we compute the derivatives of
the exceptional representations ofGL(r). The second derivative has been considered previously
by Bump and Ginzburg [5], who showed that it must again be exceptional but did not need to
identify it precisely. It emerges that the first derivative is either an exceptional representation or a
sum of such and that the higher derivatives are zero (subject, at present, to a technical hypothesis).
As well as their applications to proving the main results of this paper, these facts are important in
studying models of the exceptional representations akin to the Whittaker model. The author will
return to this topic elsewhere.

Our main results, proved in Section 6, must appear rather technical at first sight and we
certainly owe the reader some explanation of their context and the motivations for expecting
them to be true. Simplifying the notation for the purposes of exposition, we letϑ denote an
exceptional representation of the metaplectic group. Our aim is to study the inner tensor product
ϑ⊗ ϑ, where the two exceptional representations need not be the same. Since both exceptional
representations live on the same cover ofGL(r), the tensor product may be regarded as a linear
representation ofGL(r).

To see why this tensor product might be interesting, recall the role played byϑ in the Rankin–
Selberg integral forL(s,Π, sym2). This integral is a product of local integrals over the places of
the ground field and the integrand in each local integral is a product of a function coming from a
model of the local factor ofΠ and two functions which are associated with function space models
of ϑ. The representation-theoretic interpretation of a product of functions belonging to function
space models for several representations is as a vector in the tensor product of the representations.
Thus we are naturally led to consider the representationϑ⊗ ϑ⊗ π, whereπ is a local factor of
Π. A more precise examination of the integral suggests, in fact, that this representation should
carry aGL(r)-invariant linear functional (essentially the residue) whenL(s, π, sym2) has a pole
at s = s0. (The value ofs0 depends on a normalization; it is the rightmost location at which a
pole is possible.)

The local Langlands conjectures predict the existence of a lift fromSO(r) to GL(r), if r is
even, and fromSp(r− 1) toGL(r), if r is odd, associated with the natural inclusion ofSO(r,C)
into GL(r,C). It will be referred to here as the tautological lift. It is also predicted, at least for
representations,π, of GL(r) with trivial central character, thatπ should lie in the image of the
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tautological lift if and only ifL(s, π, sym2) has a pole ats= s0. Thus we are led to expect that
there should be a connection between the existence of aGL(r)-invariant linear form onϑ⊗ϑ⊗π
and the appearance ofπ in the image of the tautological lift. The first precise formulation of such
a conjecture is due to Savin and appears in [15].

The considerations of the last two paragraphs provide the motivation for the definition of a
balanced character (Definition 6.2) and for guessing at the truth of something like Theorem 6.3.
The idea is that a character of the maximal torus ofGL(r) is balanced when it looks as if it
arises from a character of the maximal torus ofSO(r). The theorem says that, ifπ is a principal
series representation, thenϑ⊗ϑ⊗π can carry an invariant linear functional only if the character
corresponding toπ is balanced. The theorem should be able to be improved by replacing the
conditionχ2

jχ
2
j∗ = 1 in the definition of a balanced character byχjχj∗ = 1. However, our current

methods do not seem able to yield this refinement.
The majority of the other results in Section 6 are to the effect that the space of invariant linear

functionals onϑ⊗ϑ⊗π is at most one-dimensional under various conditions. We can prove this
unconditionally for irreducibleπ onGL(2) andGL(3) (Theorem 6.5), for sufficiently generalπ
on anyGL(r) (Corollary 6.1) and for sufficiently generalπ in the balanced part of the principal
series (Theorem 6.4). The author conjectures that the space of invariant linear functionals is in
fact always at most one-dimensional whenπ is an irreducible representation. Given the analogy
between the exceptional representations and the Weil representations, this may be compared to
the final conjecture stated in [14]. In that paper the tensor product considered is with a non-
genuine representation, but a moment’s thought shows that the conjecture would imply the
analogue for the Weil representations of our conjecture for the exceptional representations (and
much more).

2. The metaplectic group

In this section we shall review those properties of the metaplectic group that will be required
below. The notation introduced here will be used constantly in later sections.

Throughout,F will be a non-archimedean local field, not of characteristic2. Given such a field
there is a map( · , · ) :F× × F× → µ2, whereµ2 = {±1}, called thequadratic Hilbert symbol
([17], IX.5, p. 185ff). This symbol is symmetric and bimultiplicative and its left kernel is equal
to the subgroup of squares inF×.

Let P be the set of all finite tuples of non-zero natural numbers and, forγ = (r1, . . . , rk) ∈ P,
define thesizeof γ to be|γ|= r1 + · · ·+ rk. An elementγ ∈ P may be regarded as an ordered
partition of |γ|. We partially orderP by declaring that(r1, . . . , rk)� (s1, . . . , s�) if and only if
the partitionr1 + · · ·+ rk is a refinement ofs1 + · · ·+ s�. Note that, ifγ, δ ∈ P are comparable
under this order, then|γ|= |δ|. We shall denote byγ0 any of the minimal elements ofP under this
partial order; any such element has the form(1, . . . ,1). Whenever we discuss elements ofP, their
size will be fixed throughout the discussion and so no confusion will arise from this ambiguous
notation. Note that there is an obvious concatenation operation onP; the concatenation ofγ1 and
γ2 will be written as(γ1, γ2).

We denote byG(r) the groupGL(r,F ). As usual, the root system ofG(r) may be identified
with the set{(i, j) | 1 � i, j � r, i �= j} and, under this identification,∆ = {(i, i + 1) |
i = 1, . . . , r − 1} corresponds to the standard choice of positive simple system. For anyγ =
(r1, . . . , rk) ∈ P of sizer we let∆(γ) be the complement in∆ of the set{(r1, r1+1), . . . , (r1+
· · ·+ rk−1, r1+ · · ·+ rk−1+1)} and defineQ(γ)�G(r) to be the standard parabolic subgroup
of G(r) corresponding to∆(γ) ([4], §14.17, p. 197). The groupG(γ) =G(r1)× · · · ×G(rk),
regarded as embedded in the natural way as a block-diagonal subgroup ofG(r), is a Levi
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subgroup ofQ(γ). We let N(γ) be the unipotent radical ofQ(γ) and, for γ � δ, define
N(δ, γ) = G(δ) ∩ N(γ). The Weyl group,W , of G(r) is generated by the set{sα | α ∈ ∆}
of simple reflections. Forγ ∈ P we let W (γ) be the subgroup ofW generated by the set
{sα | α ∈∆(γ)}. The groupW (γ) is naturally identified with the Weyl group ofG(γ).

The metaplectic group, as the term will be used here, is a central extension,G̃(r), of G(r)
by µ2. That is, it is a group which fits into a short exact sequence

{1} µ2 G̃(r)
pr

G(r) {1},(2.1)

whereµ2 injects into the center of̃G(r). For an account of the construction and principal
properties ofG̃(r) we refer to [1], which, in turn, draws upon the seminal work of Matsumoto
in [13]. As we review the properties of the metaplectic group we shall make specific reference to
results in [1] as appropriate.

For any subgroup,H , of G(r) we letH̃ = p−1
r (H). This defines, in particular, a group̃G(γ)

for any γ = (r1, . . . , rk) ∈ P. It is important to note that̃G(γ) is not isomorphic to the direct
product of theG̃(rj) with the copies ofµ2 in each factor amalgamated, as one might initially
expect. Rather, ifγ1, γ2 ∈ P, r1 = |γ1|, r2 = |γ2|, r = r1 + r2 andg1, g2 ∈G(γ1, γ2) are such
thatpr(g1) ∈G(γ1)× {Ir2} andpr(g2) ∈ {Ir1}×G(γ2) then

g1g2 =
(
det(g1),det(g2)

)
g2g1,(2.2)

wheredet is being interpreted as a function oñG(r) by composition withpr . This formula
follows from [1], §3, Theorem 11.

The sequence (2.1) corresponds in the usual way to a class in the cohomology group
H2(G(r), µ2), whereG(r) acts trivially on the coefficients, and choosing a cocycle to represent
this class is equivalent to choosing a sections :G(r)→ G̃(r) of the mappr. We shall choose
s in such a way that the resulting cocycle,σr , agrees with that constructed in [1], §3. If
h = diag(h1, . . . , hr) andh′ = diag(h′1, . . . , h

′
r) are inG(γ0) then, by [1], §3, Theorem 7(a),

we have

σr(h,h′) =
∏
i<j

(hi, h′j).(2.3)

The restriction ofs to N(γ0) is a homomorphism by [1], §3, Theorem 7(e) and we let
N∗(γ) = s(N(γ)) for anyγ ∈ P. ThusN∗(γ) is a subgroup of̃G(r) isomorphic toN(γ) and we
haveQ̃(γ) = G̃(γ) ·N∗(γ) andG̃(γ)∩N∗(γ) = {e}. Furthermore,N∗(γ) is a normal subgroup
of Q̃(γ).

Forγ ∈ P we define

G2(γ) =
{
g ∈G(γ) | det(g) ∈ (F×)2

}
(2.4)

and

G2(γ) =
{
(g1, . . . , gk) ∈G(γ) | det(gj) ∈ (F×)2

}
.(2.5)

LetZ(γ) denote the center ofG(γ) and putZ2(γ) =Z(γ)∩G2(γ0).
It will be convenient to have a formula for the commutator[g̃, z̃] = g̃z̃g̃−1z̃−1 wheng̃ ∈ G̃(r)

andz̃ ∈ Z̃(r). Using (2.3) it is easily found that

[g̃, z̃] =
(
det(g), λ

)r−1
,(2.6)
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wherepr(z̃) = λIr andpr(g̃) = g. As a consequence,Z(G̃(r)), the center of̃G(r), is given by

Z(G̃(r)) =
{
Z̃(r) if r is odd,
Z̃2(r) if r is even.

(2.7)

It also follows from (2.6) that the group̃Z(r) is abelian regardless of the parity ofr.
Let us giveG(r) the weakest topology under which all polynomial functions fromG(r) to F

are continuous. With this topology,G(r) becomes an�-group, that is, a Hausdorff topological
group which has a neighborhood base at the identity consisting of compact open subgroups.
There is no notion of a polynomial function oñG(r), but it is nevertheless possible to equip it
with a topology under which it becomes an�-group and such that the mappr in (2.1) becomes a
local homeomorphism. For a discussion of this see [11], §5. In future we shall always understand
the metaplectic group to carry this topology.

3. Metaplectic tensor products

One of the basic constructions in the representation theory ofG(r) is to start with a list of
representations, one for each ofG(r1), . . . ,G(rk), and then form their tensor product to obtain
a representation ofG(γ), γ = (r1, . . . , rk). SinceG̃(γ) is not simply the amalgamated direct
product of the various̃G(rj), this construction cannot be carried over directly to the metaplectic
case and our aim in this section is to find a replacement which shares as many of the useful
properties of the tensor product as possible.

To be more precise we first require some notation and terminology. If, forj = 1, . . . , k, Hj is
a subgroup of̃G(rj) containingµ2, then we define

H1 ×̃H2 ×̃ · · · ×̃Hk = p−1
r1+···+rk

(
pr1(H1)× · · · × prk

(Hk)
)
,

wherepr1(H1)× · · · × prk
(Hk) is regarded as a subgroup ofG(r1 + · · ·+ rk) via the standard

block-diagonal embedding ofG(r1) × · · · × G(rk) into G(r1 + · · · + rk). In particular, with
γ = (r1, . . . , rk), we haveG̃(γ) = G̃(r1) ×̃ · · · ×̃ G̃(rk).

We shall make use of the standard terminology of representation theory without explanation
in what follows. For concepts specific to the representation theory of�-groups we shall follow
the usage of [2]. Further, a representation ofG̃(γ) will be calledgenuineif it is not trivial on µ2.

Givenπj a representation of̃G(γj) for j = 1, 2, we aim to define a metaplectic tensor product
π1 ⊗̃π2 which is to be a representation ofG̃(γ1) ×̃ G̃(γ2). In [10], Huang addressed this problem
for the real metaplectic group in the case whereπ1 andπ2 are irreducible and in [6] the problem is
briefly discussed over a non-archimedean field, again for irreducible representations. This is too
restrictive for our applications and we shall focus instead on genuine admissible representations
of finite length.

If π is a representation of a groupG with centerZ andω is a character ofZ then we say that
π admitsω if there is a non-zero subquotient ofπ on whichZ acts viaω. If G is an�-group and
π is an admissible indecomposable representation ofG of finite length thenπ admits one and
only one character ofZ , which we shall denote byωπ.

The following lemma is standard with “irreducible” in place of “indecomposable” and the
usual proof is easily modified to cover the more general case.

LEMMA 3.1. – Let G be a group,H a normal subgroup of finite index andπ an
indecomposable representation ofG. Letσ be any summand ofπ|H and suppose that, ifg /∈H ,
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thenHomH(gσ,σ) = {0}, wheregσ denotes the conjugate representationgσ(h) = σ(g−1hg).
Thenπ ∼= indGH(σ). Conversely, ifσ is an indecomposable representation ofH of finite length
which satisfies the above condition, thenindGH(σ) is indecomposable.

The groupG̃2(γ) (see(2.4)) is a normal subgroup of̃G(γ) andG̃(γ)/G̃2(γ) ∼= F×/(F×)2.
If π is a representation of a subgroup ofG̃(γ) containingG̃2(γ) then we shall denote byπ2

the restriction ofπ to G̃2(γ). Our next task is to determine howπ2 decomposes whenπ is an
indecomposable representation ofG̃(γ).

Suppose thatρ is a finite-dimensional indecomposable representation ofZ̃(r). Using the well-
known classification of finite-dimensional indecomposable representations ofG(1) we easily
see thatρ|

Z̃2(r)
is indecomposable and that a cyclic vector forρ remains cyclic forρ|

Z̃2(r)
.

Furthermore, if a finite-dimensional representation ofZ̃(r) has a cyclic vector and admits only
one character then it must be indecomposable.

PROPOSITION 3.1. – Let γ ∈ P, r = |γ| and suppose thatr is odd. Letπ be an admissible
indecomposable representation of̃G(γ) of finite length. Thenπ2 is indecomposable and if
χ ∈ (G̃(γ)/G̃2(γ))̂, the group of characters of̃G(γ)/G̃2(γ), andHom

G̃(γ)
(χ⊗ π,π) �= {0},

thenχ= χ0, the trivial character. Moreover, we have

indG̃(γ)

G̃2(γ)

(
π2

) ∼= ⊕
χ∈(G̃(γ)/G̃2(γ))̂

χ⊗ π.

Proof. –We know from (2.7) thatZ(G̃(r)) = Z̃(r) whenr is odd and so

s(tIr) ∈ Z
(
G̃(r)

)
∩ G̃(γ)⊆Z

(
G̃(γ)

)
for all t ∈ F×.

Sincedet(s(tIr)) = tr andr is odd, we may choose coset representatives forG̃(γ)/G̃2(γ) from
Z̃(r). The restriction tõZ(r) of the character ofZ(G̃(γ)) admitted byχ⊗ π is χ|

Z̃(r)
· ωπ|Z̃(r)

and this equalsωπ|Z̃(r)
if and only if χ|

Z̃(r)
is trivial. Combining these two observations proves

the second claim.
To show thatπ2 is indecomposable we shall in fact prove more: ifD is a G̃2(γ)-submodule

of Eπ thenD is stable under̃G(γ). Suppose not. ThenD cannot be stable underπ(Z̃(r)) and
so we may chooseξ ∈ D such thatV = spanC{π(z)ξ | z ∈ Z̃(r)} is not contained inD. We
claim thatV is finite-dimensional. Ifp is the length ofπ, then(π(z)−ωπ(z))pEπ = {0} for all
z ∈ Z̃(r) and this implies that, for everyz ∈ Z̃(r),

spanC

{
π(zc) | c ∈ Z

}
= spanC

{
π(zc) | c= 0, . . . , (p− 1)

}
,

where the spans are taken in the algebraEnd
G̃(γ)

(Eπ). Sinceπ is admissible there is somef � 0

such thatπ(z)ξ = ±ξ provided thatpr(z) ∈ (1 + PfF )Ir , wherePF denotes the maximal ideal
in the ring of integers ofF . The groupF×/(1 + PfF ) is finitely-generated and if we choose
z1, . . . , zb ∈ Z̃(r) so that{pr(z1), . . . , pr(zb)} generates it, then

V = spanC

{
π(zc11 )π(z

c2
2 ) · · ·π(z

cb

b )ξ | ci = 0, . . . , (p− 1)
}

which is visibly finite-dimensional. NowV has a cyclic vector, by its very definition, and admits
only the characterωπ . By the remarks made above on the representation theory ofZ̃(r) it
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follows first thatV is indecomposable and secondly thatV = spanC{π(z)ξ | z ∈ Z̃2(r)}. But
Z̃2(r) ⊆ G̃2(γ) and henceV ⊆ D, a contradiction. This proves the claim and with it the first
statement of the proposition.

Finally, the isomorphism is well known, relying as it does simply on the fact thatG̃(γ)/G̃2(γ)
is abelian. ✷

PROPOSITION 3.2. – Let γ ∈ P, r = |γ| and suppose thatr is even. Letπ be a genuine
admissible indecomposable representation ofG̃(γ) of finite length. Suppose thatσ is any of the
indecomposable summands ofπ2. Then

π ∼= indG̃(γ)

G̃2(γ)
(σ),

χ ⊗ π ∼= π for all χ ∈ (G̃(γ)/G̃2(γ))̂ and π2 ∼=
⊕

g∈G̃(γ)/G̃2(γ)
gσ. Moreover, ifg /∈ G̃2(γ),

thenHom
G̃2(γ)

(gσ,σ) = {0}.

Proof. –Sincer is even,Z̃(r)⊆ G̃2(γ) and it follows from (2.6) that̃Z(r) is central inG̃2(γ).
Sinceσ is an indecomposable admissible representation ofG̃2(γ) of finite length, it admits a
unique characterωσ of Z̃(r). Sinceπ is genuine, so isσ and henceωσ . If g ∈ G̃(γ), then for
t ∈ F×, we have

ωgσ

(
s(tIr)

)
= ωσ

(
g−1s(tIr)g

)
=

(
det(g), t

)r−1
ωσ

(
s(tIr)

)
on using (2.6). Thus ifωgσ = ωσ, then(det(g), t)r−1 = 1 for all t ∈ F×, which implies that
det(g) ∈ (F×)2. From this we conclude that, ifg /∈ G̃2(γ), thenHom

G̃2(γ)
(gσ,σ) = {0} and

consequently an appeal to Lemma 3.1 shows that

π ∼= indG̃(γ)

G̃2(γ)
(σ).

We have thus established the first and last claims of the proposition. The second follows from
the first by a purely formal argument and the third from the first by an appeal to the Mackey
subgroup theorem.✷

The groupG̃2(γ1) ×̃ G̃2(γ2) is isomorphic to(G̃2(γ1) × G̃2(γ2))/B, whereB = {(ε, ε) |
ε ∈ µ2}. If π1 is a genuine representation ofG̃(γ1) andπ2 is a genuine representation ofG̃(γ2),
thenB acts trivially onπ2

1 ⊗ π2
2 and so this may be regarded as a genuine representation of

G̃2(γ1) ×̃ G̃2(γ2). If ω1 is a genuine character of̃Z2(r) andω2 is a genuine character of̃Z2(s),
then we obtain a genuine characterω1 ⊗ ω2 of Z̃2(r) ×̃ Z̃2(s) by a similar construction. Given
charactersω1 andω2 of groups which contaiñZ2(r) and Z̃2(s), respectively, we shall allow
ourselves to writeω1 ⊗ ω2 for the tensor product, in this sense, of their restrictions toZ̃2(r) and
Z̃2(s). Note thatZ̃2(|γ1|) ×̃ Z̃2(|γ2|) acts onπ2

1 ⊗π2
2 via the characterωπ1 ⊗ωπ2 . These remarks

may be extended to the group̃G(γ1) ×̃ G̃2(γ2) since it is isomorphic to(G̃(γ1)× G̃2(γ2))/B.

THEOREM 3.1. – Let πj be a genuine admissible indecomposable representation ofG̃(γj)
of finite length forj = 1,2, and putr = |γ1|+ |γ2|. Suppose thatω is a character ofZ(G̃(r))
such that

ω|
Z̃2(r)

=
(
ωπ1 ⊗ωπ2

)
|
Z̃2(r)

.(3.1)
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Then the representation

Π= indG̃(γ1) ×̃ G̃(γ2)

G̃2(γ1) ×̃ G̃2(γ2)

(
π2

1 ⊗ π2
2

)
has an indecomposable summand on whichZ(G̃(r)) acts byω. Any two indecomposable
summands ofΠ on whichZ(G̃(r)) acts by the same character are isomorphic. The restriction
of an indecomposable summand ofΠ to G̃2(γ1) ×̃ G̃2(γ2) is isomorphic to the direct sum of
[F× : (F×)2] copies ofπ2

1 ⊗ π2
2 if both |γ1| and |γ2| are odd and toπ2

1 ⊗ π2
2 otherwise.

Proof. –If G is a group,H is a normal subgroup of finite index andJ is an intermediate group
with J/H abelian then it is easy to check thatindGH(ρ|H) ∼=

⊕
χ∈(J/H)̂indGJ (χ ⊗ ρ) for any

representationρ of J . If we takeG to beG̃(γ1) ×̃ G̃(γ2), H to beG̃2(γ1) ×̃ G̃2(γ2), J to be
G̃(γ1) ×̃ G̃2(γ2) andρ= π1 ⊗ π2

2 then the above hypotheses are satisfied and we obtain

Π∼=
⊕

χ∈(G̃(γ1)/G̃2(γ1))̂
indG̃(γ1) ×̃ G̃(γ2)

G̃(γ1) ×̃ G̃2(γ2)

(
(χ⊗ π1)⊗ π2

2

)
.

If g2 ∈ G̃(γ2) then we use the symbolχg2 to denote the character of̃G(γ1)/G̃2(γ1) given
by χg2(g1) = (det(g1),det(g2)). The non-degeneracy of the Hilbert symbol implies that every
element of(G̃(γ1)/G̃2(γ1))̂arises in this way and, by (2.2), we haveg−1

2 g1g2 = χg2(g1)g1 for
all g1 ∈ G̃(γ1) andg2 ∈ G̃(γ2). From this it follows that, ifρ1 is a representation of̃G(γ1) and
ρ2 is a representation of̃G2(γ2), theng1g2(ρ1 ⊗ ρ2) = (χg2 ⊗ g1ρ1)⊗ g2ρ2 for g1 ∈ G̃(γ1) and
g2 ∈ G̃(γ2).

If g2 ∈ G̃(γ2), then

indG̃(γ1) ×̃ G̃(γ2)

G̃(γ1) ×̃ G̃2(γ2)

(
(χg2 ⊗ π1)⊗ π2

2

)∼= indG̃(γ1) ×̃ G̃(γ2)

G̃(γ1) ×̃ G̃2(γ2)

(
π1 ⊗ g−1

2 π2
2

)
∼= indG̃(γ1) ×̃ G̃(γ2)

G̃(γ1) ×̃ G̃2(γ2)

(
π1 ⊗ π2

2

)
sinceg

−1
2 π2

2
∼= π2

2 . Thus, if we put

Π1 = ind
G̃(γ1) ×̃ G̃(γ2)

G̃(γ1) ×̃ G̃2(γ2)

(
π1 ⊗ π2

2

)
,

thenΠ∼= Π⊕[F×:(F×)2]
1 and it follows that it is sufficient for us to prove our claims withΠ1 in

place ofΠ.
If both |γ1| and|γ2| are odd, thenπ2

2 is indecomposable by Proposition 3.1 and soπ1 ⊗ π2
2 is

indecomposable. If we takeg2 ∈ G̃(γ2)� G̃2(γ2), then

Hom
G̃(γ1) ×̃ G̃2(γ2)

(
g2

(
π1 ⊗ π2

2

)
, π1 ⊗ π2

2

)
∼=Hom

G̃(γ1)
(χg2 ⊗ π1, π1)⊗HomG̃2(γ2)

(
π2

2 , π
2
2

)
= {0},

where we have used Proposition 3.1. Lemma 3.1 then implies thatΠ1 is indecomposable. Since
r is even, (3.1) determinesω uniquely and it is equal to the character by whichZ(G̃(r)) acts
onΠ1. The last claim follows from the Mackey subgroup theorem.

If either |γ1| or |γ2| is even, then we may assume without loss of generality that|γ2| is even
(otherwise we would make the initial reduction step leading toΠ1 with the roles ofγ1 andγ2

interchanged). Letσ2 be an indecomposable summand ofπ2
2 . Then from Proposition 3.2 we have
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Π1
∼=

⊕
g2∈(G̃(γ2)/G̃2(γ2))

indG̃(γ1) ×̃ G̃(γ2)

G̃(γ1) ×̃ G̃2(γ2)

(
π1 ⊗ g2σ2

)

∼=
⊕

χ∈(G̃(γ1)/G̃2(γ1))̂
indG̃(γ1) ×̃ G̃(γ2)

G̃(γ1) ×̃ G̃2(γ2)

(
(χ⊗ π1)⊗ σ2

)
.

Let us put

Σχ = ind
G̃(γ1) ×̃ G̃(γ2)

G̃(γ1) ×̃ G̃2(γ2)

(
(χ⊗ π1)⊗ σ2

)
.

Since, by Proposition 3.2, all the conjugates ofσ2 are distinct, it follows as above thatΣχ
is indecomposable. If|γ1| is also even, then Proposition 3.2 implies thatχ ⊗ π1

∼= π1 for

all χ ∈ (G̃(γ1)/G̃2(γ1))̂ and soΠ1
∼= Σ⊕[F× : (F×)2]

χ0 . Again r = |γ1| + |γ2| is even, (3.1)
determinesω uniquely and it does equal the restriction of the central character ofΣχ0 to
Z(G̃(r)). Computing the restriction ofΣχ0 to G̃2(γ1) ×̃ G̃2(γ2) in stages one finds that it equals
π2

1 ⊗ π2
2 and the theorem is proved in this case.

Finally, suppose that|γ2| is even but that|γ1| is odd. Thenr = |γ1|+ |γ2| is odd and so the
groupZ(G̃(r)) = Z̃(r) is contained inG̃(γ1) ×̃ G̃2(γ2) and is central inG̃(γ1) ×̃ G̃(γ2). Thus
Z(G̃(r)) acts onΣχ via the restriction of the character(χ⊗ ωπ1)⊗ωσ2 toZ(G̃(r)). Since|γ1|
is odd, this restriction determinesχ and so the variousΣχ are distinct. Moreover, asχ runs over
(G̃(γ1)/G̃2(γ1))̂, the restriction of(χ⊗ωπ1)⊗ωσ2 toZ(G̃(r)) runs over all charactersω that
satisfy (3.1). This proves the first two statements of the theorem in the final case and the last one
follows as above. ✷

DEFINITION 3.1. – Letπj be a genuine admissible indecomposable representation ofG̃(γj)
of finite length forj = 1,2, and putr = |γ1|+ |γ2|. Letω be a character ofZ(G̃(r)) that satisfies

ω|
Z̃2(r)

= (ωπ1 ⊗ωπ2)|Z̃2(r)
.

Then we shall denote byπ1 ⊗̃ω π2 any indecomposable summand of the representationΠ defined
in the statement of Theorem 3.1 on whichZ(G̃(r)) acts by the characterω.

We require a few details about the construction ofπ1 ⊗̃ω π2 drawn from the proof of
Theorem 3.1. To avoid referring directly to the proof in future, we isolate these in the following
result.

COROLLARY 3.1. – Let hypotheses and notation be as in Definition3.1.
1. If |γ1| and|γ2| are both odd, then

π1 ⊗̃ω π2
∼= indG̃(γ1) ×̃ G̃(γ2)

G̃(γ1) ×̃ G̃2(γ2)

(
π1 ⊗ π2

2

)
.

2. If |γ1| and|γ2| are both even, then

π1 ⊗̃ω π2
∼= indG̃(γ1) ×̃ G̃(γ2)

G̃(γ1) ×̃ G̃2(γ2)
(π1 ⊗ σ2),

whereσ2 is any indecomposable summand ofπ2
2 .

3. If |γ1| is odd and|γ2| is even, then, for eachω, there is a unique indecomposable summand
σ2 of π2

2 such that

π1 ⊗̃ω π2
∼= indG̃(γ1) ×̃ G̃(γ2)

G̃(γ1) ×̃ G̃2(γ2)
(π1 ⊗ σ2).
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This summand is determined by requiring that the conditionω= (ωπ1 ⊗ωσ2)|Z(G̃(r))
hold.

A similar result holds,mutatis mutandis, if |γ1| is even and|γ2| is odd.

Proof. –This follows immediately from Definition 3.1 and the proof of Theorem 3.1.✷
Next we shall state several propositions showing that the metaplectic tensor product⊗̃ shares

enough of the useful properties of the usual tensor product to make it an effective substitute. We
shall employ the notation introduced in Theorem 3.1 and Definition 3.1 throughout.

PROPOSITION 3.3. – Let π be a genuine irreducible admissible representation of the group
G̃(γ1) ×̃ G̃(γ2) on whichZ(G̃(r)) acts by the characterω. Then there are genuine irreducible
admissible representationsπ1 andπ2 of G̃(γ1) andG̃(γ2), respectively, such thatπ ∼= π1 ⊗̃ω π2.
Conversely, any such tensor product is irreducible.

Proof. –In what follows only the converse implication will be required and so the direct
implication is left to the interested reader. We recall that restriction to and induction from a
subgroup of finite index preserve both semisimplicity and the condition of being of finite length.
Thus if π1 andπ2 are irreducible, thenπ2

1 andπ2
2 are semisimple, from which it follows that

π2
1 ⊗ π2

2 is semisimple. HenceΠ as in Theorem 3.1 is semisimple. Sinceπ1 ⊗̃ω π2 � Π is
indecomposable, by construction, it follows that it is irreducible.✷

In the following proposition we use the notation̂π for the contragredient of the representa-
tion π.

PROPOSITION 3.4. – Suppose thatπj is a genuine admissible representation ofG̃(γj) of
finite length forj = 1, 2, and thatω is a character ofZ(G̃(r)) such thatπ1 ⊗̃ω π2 is defined.
Thenπ̂1 ⊗̃ω−1 π̂2 is defined and isomorphic to the contragredient ofπ1 ⊗̃ω π2.

Proof. –This follows from the fact that the operations of inducing from a subgroup of finite
index and forming the contragredient commute.✷

PROPOSITION 3.5. – Suppose thatπj is a genuine admissible indecomposable representation
of G̃(γj) of finite length forj = 1,2,3, and puts= |γ1|+ |γ2|+ |γ3|. Then, for any characterω
of Z(G̃(s)) such thatω|

Z̃2(s)
= (ωπ1 ⊗ωπ2 ⊗ωπ3)|Z̃2(s)

, we have

π1 ⊗̃ω (π2 ⊗̃π3)∼= (π1 ⊗̃π2) ⊗̃ω π3.

Here the two parenthetical metaplectic tensor products may be formed using any suitable
character ofZ(G̃(|γ2|+ |γ3|)) andZ(G̃(|γ1|+ |γ2|)), respectively.

Proof. –Using the definition of⊗̃ω and the transitivity of induction it is routine to check
that bothπ1 ⊗̃ω (π2 ⊗̃π3) and (π1 ⊗̃π2) ⊗̃ω π3 are isomorphic to any of the indecomposable
summands of

indG̃(γ1) ×̃ G̃(γ2) ×̃ G̃(γ3)

G̃2(γ1) ×̃ G̃2(γ2) ×̃ G̃2(γ3)

(
π2

1 ⊗ π2
2 ⊗ π2

3

)
on whichZ(G̃(s)) acts by the characterω. ✷

Finally, we want to extend the definition of̃⊗ω to allow factors which are not necessarily
indecomposable. We shall call a representationπ of G̃(γ) homogeneousif it admits only one
character ofZ(G̃(γ)). Thus indecomposable representations of finite length are homogeneous
and if π is a homogeneous representation, then it still makes sense to writeωπ. If πj is a
genuine admissible homogeneous representation ofG̃(γj) of finite length forj = 1, 2, andω
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is a character ofZ(G̃(r)) satisfyingω|
Z̃2(r)

= (ωπ1 ⊗ ωπ2)|Z̃2(r)
, then we defineπ1 ⊗̃ω π2 by

requiring that⊗̃ω distribute over direct sums. It follows from the Krull–Schmidt theorem in
this category that this extension is well defined. The properties of⊗̃ω given in Propositions 3.4
and 3.5 remain valid in the extended setting.

4. A parade of functors

The goal of this section is to introduce a number of functors whose properties will be essential
in the proofs of our main results. Although we shall complete the theory in a number of points,
most of what we say constitutes a review of known facts and so we shall be brief.

If G is any �-group then we letRalg(G) denote the category of algebraic representations
of G. Suppose thatγ, δ ∈ P and thatγ � δ. Then we letiγ,δ :Ralg(G̃(γ))→ Ralg(G̃(δ)) be
the normalized induction functor andϕδ,γ :Ralg(G̃(δ))→Ralg(G̃(γ)) the normalized Jacquet
functor corresponding to the groups̃G(δ), G̃(γ) and N∗(δ, γ) and the trivial character on
N∗(δ, γ). The definitions ofiγ,δ and ϕδ,γ together with many properties enjoyed by these
functors are given in [3], beginning on p. 444.

Let γ, δ ∈ P with |γ| = |δ| = r andγ � δ. We define the mapµδ,γ : G̃(γ)→ R×
+ to be the

modular character of̃G(γ) acting by conjugation onN∗(δ, γ). It is the same as the modular
character ofG̃(γ) acting onÑ(δ, γ) and, after composition withpr, it also equals the modular
character ofG(γ) acting onN(δ, γ). If β is a third partition ofr and β � γ � δ, then we
haveN(δ, β) = N(δ, γ) · N(γ,β) and N(δ, γ) ∩ N(γ,β) = {1}. It follows from this that
µδ,β = µδ,γ · µγ,β as characters of eitherG(β) or of G̃(β).

The following result is a further example of the good behavior of the metaplectic tensor product
defined in Section 3.

PROPOSITION 4.1. – Let πj be a genuine admissible homogeneous representation ofG̃(δj)
of finite length forj = 1,2, and suppose thatγ1 � δ1 andγ2 � δ2. Then

ϕ(δ1,δ2),(γ1,γ2)(π1 ⊗̃ω π2)∼= ϕδ1,γ1(π1) ⊗̃ω ϕδ2,γ2(π2)

for every characterω of Z(G̃(|δ1|+ |δ2|)) for whichπ1 ⊗̃ω π2 is defined.

Proof. –Set δ = (δ1, δ2) and γ = (γ1, γ2). We begin by applying Theorem 5.2 of [3]
to compute the composition ofϕδ,γ with induction from G̃(δ1) ×̃ G̃2(δ2) to G̃(δ). Since
we may choose coset representatives forG̃2(δ2) � G̃(δ2) from G̃(γ2), there is a single
(G̃(δ1) ×̃ G̃2(δ2), G̃(γ) ·N∗(δ, γ)) double coset iñG(δ). Using this observation, we obtain an
isomorphism of functors

ϕδ,γ ◦ indG̃(δ1) ×̃ G̃(δ2)

G̃(δ1) ×̃ G̃2(δ2)
∼= indG̃(γ1) ×̃ G̃(γ2)

G̃(γ1) ×̃ G̃2(γ2)
◦
(
ϕδ1,γ1 ⊗ ϕ2

δ2,γ2

)
,(4.1)

whereϕ2
δ2,γ2

:Ralg(G̃2(δ2))→ Ralg(G̃2(γ2)) is the Jacquet functor with respect to the trivial
character onN∗(δ2, γ2). Also, |

G̃2(γ2)
◦ ϕδ2,γ2 ∼= ϕ2

δ2,γ2
◦ |

G̃2(δ2)
, where the vertical bars

represent restriction functors. If both|δ1| = |γ1| and |δ2| = |γ2| are odd, then it follows from
Corollary 3.1 that

π1 ⊗̃ω π2
∼= indG̃(δ1) ×̃ G̃(δ2)

G̃(δ1) ×̃ G̃2(δ2)

(
π1 ⊗ π2

2

)
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and similarly for the representations of̃G(γ1) andG̃(γ2). In this case the Proposition follows
directly from (4.1).

If either |δ1| or |δ2| is even, then we shall assume that|δ2| is even, the other case being
similar. We may also assume thatπ1 andπ2 are both indecomposable, since both sides of the
proposed isomorphism respect direct sums. It follows from Corollary 3.1 that, for each possible
characterω, there is an indecomposable summandσ2 of π2

2 such that

π1 ⊗̃ω π2
∼= indG̃(δ1) ×̃ G̃(δ2)

G̃(δ1) ×̃ G̃2(δ2)
(π1 ⊗ σ2).

With this choice ofσ2 we have

ϕδ,γ(π1 ⊗̃ω π2)∼= indG̃(γ1) ×̃ G̃(γ2)

G̃(γ1) ×̃ G̃2(γ2)

(
ϕδ1,γ1(π1)⊗ ϕ2

δ2,γ2(σ2)
)
.(4.2)

The representationϕδ2,γ2(π2) will generally have several indecomposable summands, say
ϕδ2,γ2(π2) = ρ1 ⊕ · · · ⊕ ρk. The indecomposable summands ofρ2

j are distinguished from one

another by the character via which̃Z(|γ2|) acts on them. We fix a particular character among the
possibilities and letνj be the indecomposable summand ofρ2

j corresponding to that character
for j = 1, . . . , k. It then follows from Proposition 3.2 thatρ2

j
∼=

⊕
g∈G̃(γ2)/G̃2(γ2)

gνj and so if
we setν = ν1 ⊕ · · · ⊕ νk, then

ϕ2
δ2,γ2

(
π2

2

) ∼=
⊕

g∈G̃(γ2)/G̃2(γ2)

gν(4.3)

andZ̃(|γ2|) acts on eachgν via a single character. If the character via whichZ̃(|γ2|) acts onν
was chosen correctly, then it follows from (4.3) and Corollary 3.1 that

ϕδ1,γ1(π1) ⊗̃ω ϕδ2,γ2(π2)∼= indG̃(γ1) ×̃ G̃(γ2)

G̃(γ1) ×̃ G̃2(γ2)

(
ϕδ1,γ1(π1)⊗ ν

)
.(4.4)

In addition, π2
2
∼=

⊕
g∈G̃(γ2)/G̃2(γ2)

gσ2, since we can choose coset representatives for

G̃(δ2)/G̃2(δ2) from G̃(γ2), and so

ϕ2
δ2,γ2

(
π2

2

) ∼=
⊕

g∈G̃(γ2)/G̃2(γ2)

gϕ2
δ2,γ2(σ2).(4.5)

Sinceσ2 is indecomposable, it is homogeneous forZ̃(|δ2|) and henceϕ2
δ2,γ2

(σ2) is homoge-

neous forZ̃(|γ2|) and this group acts on each conjugate in (4.5) via a different character. Com-
paring homogeneous summands in (4.3) and (4.5) we see that there is someg ∈ G̃(γ2) such that
ϕ2
δ2,γ2

(σ2)∼= gν. Using this in (4.2) we obtain

ϕδ,γ(π1 ⊗̃ω π2)∼= indG̃(γ1) ×̃ G̃(γ2)

G̃(γ1) ×̃ G̃2(γ2)

(
ϕδ1,γ1(π1)⊗ gν

)
.(4.6)

If |γ1| is even then (4.4) and (4.6) imply at once thatϕδ,γ(π1 ⊗̃ω π2)∼= ϕδ1,γ1(π1) ⊗̃ω ϕδ2,γ2(π2).
If, on the other hand,|γ1| is odd, then the fact thatZ(G̃(|δ1| + |δ2|)) acts viaω on the left-
hand side of both (4.4) and (4.6) implies thatg ∈ G̃2(γ2) and this, in turn, gives the required
isomorphism. ✷
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Our next task is to discuss theΦ andΨ functors introduced by Bernstein and Zelevinsky in
connection with their theory of derivatives. This theory is described in its fully elaborated form
in [3] after having been prefigured in [2] and [9]. At its heart is the subgroupP (r) of G(r)
defined to be the stabilizer inG(r) of the vector(0,0, . . . ,0,1) ∈ F r whenG(r) acts onF r on
the right in the usual way. The groupP (r) is called themirabolic subgroupof G(r). If s > r,
thenP (r) may be regarded as a subgroup ofG(s) via the standard embeddingG(r) ↪→ G(s).
We defineYr =N((r), (r− 1,1)); Yr is equal to the unipotent radical ofP (r). The image ofYr
under the homomorphisms :N(γ0)→N∗(γ0) will be denoted byY ∗

r .
Let us fix a non-trivial continuous additive characterψ of the fieldF . This gives rise to a

character ofN(γ0), also denoted byψ, whose value at the matrix(nab) isψ(n12+ · · ·+nr−1,r).
Sinces :N(γ0)→N∗(γ0) is an isomorphism,ψ may also be regarded as a character ofN∗(γ0).

We now introduce six functors as shown in the diagram.

Ralg(G̃(r− 1))

Ψ+

Ralg(P̃ (r))

Ψ−, Ψ̂−

Φ−

Ralg(P̃ (r− 1)).

Φ+, Φ̂+

Except forΨ̂−, which Bernstein and Zelevinsky do not discuss, all these functors are the exact
analogues in the metaplectic setting of the eponomous functors described in [3]. It is important
to note that both the Jacquet functors and the extension functors are normalized by a suitable
modular character. The functor̂Ψ− is defined as follows: ifτ ∈ Ralg(P̃ (r)), then G̃(r − 1)
preserves the space ofY ∗

r -invariant vectors in the space ofτ and restrictingτ to this subspace
yields an algebraic representation ofG̃(r−1). This representation twisted by the inverse square-
root of the modular character of̃G(r − 1) acting onY ∗

r will be, by definition, Ψ̂−(τ). If
T ∈ Hom

P̃ (r)
(τ1, τ2), thenΨ̂−(T ) will simply be the restriction ofT to the space of̂Ψ−(τ1).

We note that̂Ψ−Ψ+ = Id.
The basic properties ofΨ±, Φ± andΦ̂+, as recorded in §3 of [3], remain unchanged in the

metaplectic setting. Indeed, they are formal consequences of the properties of induction and
Jacquet functors which were proved in [2] in the setting of general�-groups. We also note that
all six functors take genuine representations into genuine representations.

The modular characters which appear in the definitions of theΨ andΦ functors may all be
expressed as powers of the character|det | restricted to various subgroups ofG(r). Since this
character will occur frequently, we introduce the abbreviationd = |det |.

If τ ∈ Ralg(P̃ (r)), then, following [3], we define a sequence of representationsτ (k) ∈
Ralg(G̃(r − k)) by τ (k) = Ψ− ◦ (Φ−)k−1(τ) for k = 1, . . . , r, and callτ (k) thekth derivative
of τ . If π ∈ Ralg(G̃(r)), then thekth derivative of the representationπ|

P̃ (r)
is also referred to

as thekth derivativeof π and denoted byπ(k). In this case the notation is naturally extended by
settingπ(0) = π.

Generally, in later applications of the discussion in this section we shall be dealing with
admissible representations ofG̃(r) rather than with general algebraic representations. However,
even ifπ ∈Ralg(G̃(r)) is admissible, the representationπ|

P̃ (r)
will not generally be admissible

and so we shall be forced to consider general algebraic representations ofP̃ (r). If G is
any �-group andτ1, τ2, τ3 ∈ Ralg(G), then, for purely algebraic reasons, we have natural
isomorphisms

HomG(τ1 ⊗ τ2, τ̂3)∼=HomG(τ1 ⊗ τ2 ⊗ τ3,1)∼=HomG(τ1 ⊗ τ3, τ̂2).(4.7)
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The following propositions record the adjointness properties of theΨ andΦ functors and their
behavior under the formation of contragredients.

PROPOSITION 4.2. – Let ρ ∈ Ralg(G̃(r − 1)), τ ∈ Ralg(P̃ (r)) and κ ∈ Ralg(P̃ (r − 1)).
Then:

1.Hom
P̃ (r)

(τ,Ψ+(ρ))∼=Hom
G̃(r−1)

(Ψ−(τ), ρ);

2.Hom
P̃ (r)

(Ψ+(ρ), τ)∼=Hom
G̃(r−1)

(ρ, Ψ̂−(τ));
3.Hom

P̃ (r)
(Φ+(κ), τ)∼=Hom

P̃ (r−1)
(κ,Φ−(τ));

4.Hom
P̃ (r−1)

(Φ−(τ), κ)∼=Hom
P̃ (r)

(τ, Φ̂+(κ)).
All the implied maps underlie natural transformations.

Proof. –Statements 1, 3 and 4 are in [3], Proposition 3.2. SinceY ∗
r acts trivially onΨ+(ρ),

the image of any homomorphism fromΨ+(ρ) to τ is contained in the space of̂Ψ−(τ). Thus the
map from the right-hand side of statement 2 to the left given by composition with the inclusion
Ψ̂−(τ) ↪→ τ yields the required isomorphism. This makes the naturality claim clear.✷

PROPOSITION 4.3. – Let ρ ∈ Ralg(G̃(r − 1)), τ ∈ Ralg(P̃ (r)) and κ ∈ Ralg(P̃ (r − 1)).
Then:

1. Ψ̂+(ρ)∼= d−1 ⊗Ψ+(ρ̂ );
2. Ψ̂−(τ)∼= d⊗ Ψ̂−(τ̂ );
3. Φ̂+(κ)∼= d−1 ⊗ Φ̂+(d⊗ κ̂);
4. Φ̂−(τ)∼=Φ−(τ̂ ).
The implied maps in statements1 and2 underlie natural transformations.

Proof. –Statements 1 and 3 are in [3], Proposition 3.4 except for the naturality claim for 1;
however, this follows immediately from the proof. The proofs of 2 and 4 are similar.✷

5. Exceptional representations

In [12] the notion of an exceptional representation ofG̃(r) is introduced and the fundamental
properties of these representations are established. Our first task here is to extend this notion to
the groupG̃(γ) for anyγ ∈ P, as was suggested, but not systematically pursued, in [5]. Having
the metaplectic tensor product available will prove particularly convenient in this connection.
Secondly, we shall compute the derivatives of an exceptional representation ofG̃(r). As far as
the author is aware, the first derivative has not previously been considered. It is shown in [5] that
the second derivative is an exceptional representation ofG̃(r− 2); we shall identify it precisely.
Subject to a presumably unnecessary technical hypothesis, the remaining derivatives are shown
to be zero.

We begin with two technical lemmas. Ifπ is a representation of any�-group andπ has a chain

π = πk � πk−1 � · · ·� π1 � π0 = 0

of subrepresentations such thatπi/πi−1
∼= τi for i= 1, . . . , k, then we shall follow [3] in saying

thatπ is glued fromthe representationsτ1, . . . , τk.

LEMMA 5.1. – Let γ, δ ∈ P with γ � δ and |δ| = r and suppose thatρ is an algebraic
representation ofG̃(γ0). Thenϕδ,γ(iγ0,δ(ρ)) is glued from the representationsiγ0,γ(wρ) asw
runs overW (γ)�W (δ).
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Proof. –The usual Bruhat decomposition ofG(δ) with respect to the parabolic subgroup
G(γ) ·N(δ, γ) lifts to a decomposition of̃G(δ). Given this observation, the lemma is simply
a version of Bernstein’s and Zelevinsky’s geometric lemma and it follows from Theorem 5.2
of [3] just as in that paper. ✷

LEMMA 5.2. – Let γ, δ ∈ P with γ � δ and |δ|= r and suppose thatw ∈W (δ) is such that
wµδ,γ0 = µδ,γ0 on the groupZ2(γ). Thenw ∈W (γ).

Proof. –This follows from a routine combinatorial argument based upon the explicit expres-
sion forµδ,γ0 . ✷

It follows from (2.3) thatG̃(1)∼= F× × µ2 and hence every characterχ of F× gives rise to a
genuine character of̃G(1); we shall use the same symbol to denote both objects. Ifχ is such a
character, thenχ[r] = (χ|

G̃2(1)
)⊗ · · · ⊗ (χ|

G̃2(1)
) (r factors) is a genuine character ofG̃2(γ0).

We may choose a characterω of Z(G̃(r)) which satisfies

ω|
Z̃2(r)

= χ[r]|
Z̃2(r)

.(5.1)

Whenω andχ as above satisfy (5.1), then we shall call themcompatible. For any compatibleχ
andω we setχr,ω = χ ⊗̃ω χ ⊗̃ · · · ⊗̃χ (r factors). This is a genuine irreducible representation
of G̃(γ0). We remark that, in contrast to the usual tensor product, the metaplectic tensor product
of one-dimensional representations is not usually one-dimensional.

We claim thatwχr,ω ∼= χr,ω for all w ∈ W . It suffices to verify this whenw = sα for
some simple rootα. In order to see this we first note thatwω = ω, so thatZ(G̃(r)) acts on
wχr,ω andχr,ω via the same character. Then the associativity of the metaplectic tensor product
(Proposition 3.5) reduces us to the case of two factors and, in this case, the claim is clear directly
from the definition.

For anyγ ∈ P with |γ|= r and any compatible charactersω andχ we define

πγ(χ,ω) = iγ0,γ
(
µ−1/4
γ,γ0 ⊗ χr,ω

)
.

PROPOSITION 5.1. – Let γ, δ ∈ P satisfyγ � δ and |δ|= r. Then

ϕδ,γ
(
πδ(χ,ω)

)∼= ⊕
w∈W (γ)�W (δ)

iγ0,γ
(
wµ

−1/4
δ,γ0

⊗ χr,ω
)
.

Proof. –From Lemma 5.1 and the fact thatwχr,ω ∼= χr,ω it follows that ϕδ,γ(πδ(χ,ω)) is
glued from the indicated constituents. Lemma 5.2 implies that theZ̃2(γ) characters of these
constituents are all distinct and hence there are no non-trivial extensions between them.✷

Suppose thatη is a character of̃G2(γ0). Then, following [12], we letη2 be the character of
G(γ0) defined byη2(h) = η(s(h2)). From any characterλ of G(γ0) and rootα= (i, j) of G(r)
we obtain a characterλα of F× by settingλα(x) = λ(hα(x)) where

hα(x) = diag
(
1, . . . ,1, x

i
,1, . . . ,1, x

j

−1,1, . . . ,1
)
.

A characterη of G̃2(γ0) (or ofZ(G̃(r)) ·G̃2(γ0)) is calledexceptionalby Kazhdan and Patterson
if it satisfiesη2

α = | · | for all α ∈∆.
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If we denote byw0 the longest element ofW with respect to our chosen positive system
then it is routine to check thatw0(µ−1/4

(r),γ0
⊗ χ[r]) is an exceptional character. Knowing this,

Theorem I.2.9 of [12] implies that, for every pair of compatible charactersχ and ω, the
representationπ(r)(χ,ω) has a unique irreducible subrepresentation. This subrepresentation is
isomorphic to the unique irreducible quotient of

iγ0,(r)
(
w0

(
µ
−1/4
(r),γ0

⊗ χr,ω
)) ∼= iγ0,(r)

(
µ

1/4
(r),γ0

⊗χr,ω
)

and is called by Kazhdan and Patterson anexceptional representation. We shall denote the unique
irreducible subrepresentation ofπ(r)(χ,ω) by ϑ(r)(χ,ω). For anyγ ∈ P satisfying|γ| = r we
define

ϑγ(χ,ω) = µ
1/4
(r),γ ⊗ϕ(r),γ

(
ϑ(r)(χ,ω)

)
(5.2)

and extend the scope of the term “exceptional representation” to include all theϑγ(χ,ω).
Although it has been convenient to allow arbitrary charactersχ up to this point, changingχ is

equivalent to twisting the associated representation by a character and so no information is lost
if we restrictχ to be the trivial character. Ifω is a character ofZ(G̃(r)) which is compatible
with the trivial character then we shall callω suitable. If ω1 andω2 are suitable characters, then
ω1 · ω−1

2 is trivial on Z̃2(r) and it easily follows that there is a unique suitable character ifr is
even and that there are[F× : (F×)2] suitable characters ifr is odd. Ifγ ∈ P andω is a suitable
character then we shall writeϑγ,ω in place ofϑγ(χ0, ω).

We remark that whenr is odd the various exceptional representationsϑγ,ω for suitable
charactersω are all twists of one another. However, there doesn’t seem to be a canonical way of
choosing one of the twists.

THEOREM 5.1. – Letω be a suitable character andγ, δ ∈ P be such thatγ � δ and |δ|= r.

1. We haveϕδ,γ(ϑδ,ω)∼= µ
−1/4
δ,γ ⊗ ϑγ,ω.

2. There is an isomorphismϑγ0,ω ∼= χr,ω.
3. The representationϑγ,ω is isomorphic to the unique irreducible subrepresentation of
πγ(χ0, ω).

4. If γ = (γ1, γ2), then ϑγ,ω ∼= ϑγ1,ω1 ⊗̃ω ϑγ2,ω2 , where ωj is a suitable character of
Z(G̃(|γj |)) for j = 1,2.

5. The contragredient ofϑγ,ω is isomorphic toϑγ,ω−1 .
6. The representationϑδ,ω is isomorphic to the unique irreducible subrepresentation of

iγ,δ(µ
−1/4
δ,γ ⊗ ϑγ,ω).

Proof. –1. This is an easy consequence of the definition ofϑδ,ω.
2. When rewritten in our terminology, the so-called Periodicity Theorem (Theorem I.2.9(e)

of [12]) asserts thatϕ(r),γ0(ϑ(r),ω) ∼= µ
−1/4
(r),γ0

⊗ (χ0)r,ω . Combining this isomorphism with the
definition gives part 2.

3. Using parts 1 and 2 and the Frobenius reciprocity law we obtain

Hom
G̃(γ)

(
ϑγ,ω, πγ(χ0, ω)

)∼=Hom
G̃(γ0)

(
µ−1/4
γ,γ0 ⊗ (χ0)r,ω, µ−1/4

γ,γ0 ⊗ (χ0)r,ω
)
.

The identity map fromµ−1/4
γ,γ0 ⊗ (χ0)r,ω to itself corresponds under this isomorphism to an

embedding ofϑγ,ω into πγ(χ0, ω). Thus ϑγ,ω may be regarded as a subrepresentation of
πγ(χ0, ω). Now, πγ(χ0, ω) is an induced representation and it follows from the metaplectic
analogue of [3], Theorem 2.4 (a) and (d) thatπγ(χ0, ω) has no cuspidal constituents. In
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particular,ϑγ,ω has no cuspidal constituents and, sinceϕγ,γ0(ϑγ,ω) ∼= µ
−1/4
γ,γ0 ⊗ (χ0)r,ω is

irreducible, it follows thatϑγ,ω is irreducible. Finally, we must show thatπγ(χ0, ω) has no
other irreducible subrepresentations. So letρ� πγ(χ0, ω) be an irreducible representation other
thanϑγ,ω. Using Proposition 5.1, the fact that Jacquet functors are exact and the observations

just made, we see thatϕγ,γ0(ρ)∼= wµ
−1/4
γ,γ0 ⊗ (χ0)r,ω for somew ∈W (γ)� {1}. The transitivity

of induction implies thatπ(r)(χ0, ω) ∼= iγ,(r)(µ
−1/4
(r),γ ⊗ πγ(χ0, ω)) and soiγ,(r)(µ

−1/4
(r),γ ⊗ ρ) is

a subrepresentation ofπ(r)(χ0, ω). Sinceϑ(r),ω is the unique irreducible subrepresentation of

π(r)(χ0, ω), it follows thatHom
G̃(r)

(ϑ(r),ω, iγ,(r)(µ
−1/4
γ,(r) ⊗ ρ)) �= {0}. However, this space is

isomorphic to

Hom
G̃(γ)

(
µ
−1/4
(r),γ ⊗ ϑγ,ω, µ

−1/4
(r),γ ⊗ ρ

)∼=Hom
G̃(γ)

(ϑγ,ω, ρ)

and consequentlyϑγ,ω ∼= ρ. This isomorphism gives rise to a contradiction, since Lemma 5.2
shows thatϕγ,γ0(ϑγ,ω) is not isomorphic toϕγ,γ0(ρ).

4. Using Propositions 4.1 and 3.5 we obtainϕγ,γ0(ϑγ1,ω1 ⊗̃ω ϑγ2,ω2)∼= µ
−1/4
γ,γ0 ⊗ (χ0)r,ω and

consequently the representationϑγ1,ω1 ⊗̃ω ϑγ2,ω2 may be regarded as a subrepresentation of
πγ(χ0, ω). From Proposition 3.3 this representation is also irreducible and hence it is isomorphic
to ϑγ,ω by part 3.

5. From Proposition 1.9 (d) of [3] and Proposition 3.4 we obtain the isomorphism
π(r)(χ0, ω)̂ ∼= iγ0,(r)(µ

1/4
(r),γ0

⊗ (χ0)r,ω−1). We know thatϑ(r),ω−1 is the unique irreducible
quotient of the right-hand representation in this isomorphism and that, under the pairing between
π(r)(χ0, ω) and its contragredient, the irreducible subrepresentationϑ(r),ω must be paired with

an irreducible quotient. Thereforêϑ(r),ω
∼= ϑ(r),ω−1 . The general case follows on using part 4

and Proposition 3.4.
6. From part 3 and the exactness of induction we know that the representationiγ,δ(µ

−1/4
δ,γ ⊗

ϑγ,ω)may be regarded as a subrepresentation ofiγ,δ(µ
−1/4
δ,γ ⊗πγ(χ0, ω))∼= πδ(χ0, ω). The claim

now follows from an application of part 3.✷
THEOREM 5.2. – Letωr be a suitable character ofZ(G̃(r)). If r is odd, then

ϑ
(1)
(r),ωr

∼= d−1/4 ⊗ ϑ(r−1),ωr−1 ,

whereωr−1 is the unique suitable character ofZ(G̃(r− 1)). If r is even, then

ϑ
(1)
(r),ωr

∼=
⊕
ωr−1

d−1/4 ⊗ ϑ(r−1),ωr−1 ,

where the sum is over all suitable characters ofZ(G̃(r − 1)).

Proof. –By definition,ϑ(1)
(r),ωr

=Ψ−(ϑ(r),ωr
|
P̃ (r)

) and, since Jacquet functors and restriction

functors commute, this may be expressed alternatively asϑ
(1)
(r),ωr

= ϕ(r),(r−1,1)(ϑ(r),ωr
)|
G̃(r−1)

.

By part 1 of Theorem 5.1 we haveϕ(r),(r−1,1)(ϑ(r),ωr
) ∼= µ

−1/4
(r),(r−1,1) ⊗ ϑ(r−1,1),ωr

and using

part 4 of the same result givesϑ(r−1,1),ωr
∼= ϑ(r−1),ωr−1 ⊗̃ωr ϑ(1),ω1

∼= ϑ(r−1),ωr−1 ⊗̃ωr ω1,

whereω1 is a suitable character ofZ(G̃(1)) = G̃(1). We haveµ(r),(r−1,1)(g,1) = d(g) for
g ∈G(r − 1) and so it remains to evaluate(ϑ(r−1),ωr−1 ⊗̃ωr ω1)|G̃(r−1)

.
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Suppose thatr is odd, so thatr− 1 is even. Letσ be an irreducible summand ofϑ2
(r−1),ωr−1

.
Then, according to Corollary 3.1,

ϑ(r−1),ωr−1 ⊗̃ωr ω1
∼= indG̃(r−1) ×̃ G̃(1)

G̃2(r−1) ×̃ G̃(1)
(σ⊗ ω1)

and using the Mackey subgroup theorem to compute the restriction of this representation to
G̃(r− 1) we find that it is

(
ϑ(r−1),ωr−1 ⊗̃ωr ω1

)
|
G̃(r−1)

∼= indG̃(r−1)

G̃2(r−1)
(σ)∼= ϑ(r−1),ωr−1,

by Proposition 3.2. This proves the first isomorphism.
If r is even thenr− 1 is odd and so Corollary 3.1 shows that

ϑ(r−1),ωr−1 ⊗̃ωr ω1
∼= indG̃(r−1) ×̃ G̃(1)

G̃2(r−1) ×̃ G̃(1)

(
ϑ2

(r−1),ωr−1
⊗ω1

)
and proceeding as in the previous paragraph we find that the restriction of this toG̃(r − 1) is
isomorphic to

⊕
χ∈(G̃(r−1)/G̃2(r−1))̂χ⊗ ϑ(r−1),ωr−1 . This sum has the same terms as the one

given in the statement.✷
In order to identify the second derivative ofϑ(r),ω precisely we require some preliminary

observations. It follows from (2.6) that̃Z(r) centralizes every subgroup ofN∗(r). Consequently,
if we apply a Jacquet functor with respect to any subgroup ofN∗(r) to a representation of̃G(r)
then the result may be regarded as a representation ofZ̃(r). This remark applies, in particular, to
the derivatives. In order to make use of it, we next describe all genuine characters ofZ̃(r).

If t1, t2 ∈ F× then (2.3) shows thatσr(t1Ir, t2Ir) = (t1, t2)r(r−1)/2 and it follows that
Z̃(r)∼= G̃(1)∼= F× × µ2 whenr ≡ 0,1 (4). Whenr ≡ 2,3 (4), Z̃(r) may be identified with the
groupH with underlying setF××µ2 and multiplication law[t1, ε1][t2, ε2] = [t1t2, (t1, t2)ε1ε2].
We have already observed that, in the first case, the set of genuine characters ofZ̃(r) is in one-
to-one correspondence with the set of characters ofF×. It is a remarkable fact that, after fixing
an additive characterψ of F , the same is true in the second case also. Recall that in [16], Weil
associates to each additive characterψ of F a complex numberγ(ψ). If ψ is such a character
anda ∈ F×, then we putψa(x) = ψ(ax) for all x ∈ F . The essential property ofγ for our
purposes is expressed by the equation(a, b) = γ(ψab)γ(ψ)γ(ψa)−1γ(ψb)−1 for all a, b ∈ F×.
Following [8] we introduce a function onF× by µψ(a) = γ(ψ)/γ(ψa). With this notation, the
above relation may be written as(a, b) = µψ(a)µψ(b)µψ(ab)−1. If χ is a character ofF×, then
we defineχψ byχψ([t, ε]) = χ(t)µψ(t)ε for [t, ε] ∈H . One sees thatχψ is a character ofH and
that all genuine characters ofH arise in this way.

What we actually require is the character via whichZ̃(2) acts onϑ(2)
(2),ω2

, whereω2 is the

unique suitable character ofZ(G̃(2)). Fortunately, this has already been computed by Gelbart
and Piatetski-Shapiro.

LEMMA 5.3. – Let ω2 be the unique suitable character ofZ(G̃(2)). Thenϑ(2)
(2),ω2

is one-

dimensional and̃Z(2) acts on it via the character(χ0)ψ , whereψ is the additive character ofF
with respect to which the derivative is formed.

Proof. –This is Theorem 2.2 of [8]. Note that it follows from the definition ofϑ(2),ω2 together
with Proposition 2.3.3 of [8] thatϑ(2),ω2 is the representation which Gelbart and Piatetski-
Shapiro denote byrχ0 . ✷
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THEOREM 5.3. – Letωr be a suitable character ofZ(G̃(r)). Then

ϑ
(2)
(r),ωr

∼= d−1/2 ⊗ ϑ(r−2),ωr−2 ,

whereωr−2 is related toωr by the equation

ωr =
(
ωr−2 ⊗ (χ0)ψ

)
|
Z(G̃(r))

,(5.3)

whereψ is the additive character ofF with respect to which the derivative is formed.

Proof. –The second derivative functor factors throughϕ(r),(r−2,2) and we begin with the

isomorphismsϕ(r),(r−2,2)(ϑ(r),ωr
)∼= µ

−1/4
(r),(r−2,2) ⊗ ϑ(r−2,2),ωr

and

ϑ(r−2,2),ωr
∼= ϑ(r−2),ν ⊗̃ωr ϑ(2),ω2(5.4)

which are furnished by Theorem 5.1. Hereν is any suitable character ofZ(G̃(r − 2)) andω2

is as in Lemma 5.3. Forg ∈ G̃(r − 2) we haveµ(r),(r−2,2)(g) = |det(g)|2 and so it remains

to apply the Jacquet functorRalg(G̃(r − 2) ×̃ G̃(2))→ Ralg(G̃(r − 2)) which corresponds to
the characterψ of N∗(2) to the right-hand side of (5.4). This may be done in stages by first
restricting the representation tõG(r − 2) ×̃ G̃2(2) and then applying the Jacquet functor with
respect toψ in the second factor.

By Corollary 3.1 we may choose an irreducible subrepresentationσ of ϑ2
(2),ω2

so that

ϑ(r−2),ν ⊗̃ωr ϑ(2),ω2
∼= indG̃(r−2) ×̃ G̃(2)

G̃(r−2) ×̃ G̃2(2)
(ϑ(r−2),ν ⊗ σ),

and hence

(ϑ(r−2),ν ⊗̃ωr ϑ(2),ω2)|G̃(r−2) ×̃ G̃2(2)
∼=

⊕
g∈G̃(2)/G̃2(2)

g(ϑ(r−2),ν ⊗ σ)(5.5)

∼=
⊕

g∈G̃(2)/G̃2(2)

(χg ⊗ ϑ(r−2),ν)⊗ gσ,

where, as before,χg(h) = (det(g),det(h)). Sincer andr− 2 have the same parity,Z(G̃(r))⊆
Z(G̃(r− 2)) ×̃ Z̃(2) and (5.5) implies that, for allg ∈ G̃(2)/G̃2(2), we have

ωr =
(
(χg ⊗ ν)⊗ ω(gσ)

)
|
Z(G̃(r))

.(5.6)

From Lemma 5.3 we know thatϑ(2)
(2),ω2

is one-dimensional and that̃Z(2) acts on it via(χ0)ψ .
Thus, after applying the(N∗(2), ψ) Jacquet functor, all the summands in (5.5) give zero except
for the one which satisfiesω(gσ) = (χ0)ψ . This remaining summand yields the representation
χg ⊗ ϑ(r−2),ν . This, in turn, is isomorphic toϑ(r−2),ωr−2 where, according to (5.6),ωr−2

satisfies (5.3). ✷
In the following theorem the assumption thatF is not dyadic is expected to be unnecessary.

That it is so would follow from a fully elaborated theory of the trace formula for the group
G̃(r) (cf. the remarks in Section 4 of [7]). At present it seems that the necessary facts are known
only whenr � 3 but, when they are established in general, the hypothesis may be removed. The
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restriction to non-dyadicF in the next section enters only through this theorem and so it could
be removed at the same time.

THEOREM 5.4. – Let ω be a suitable character ofZ(G̃(r)). Thenϑ(3)
(r),ω = 0. If F is not

dyadic, thenϑ(k)
(r),ω = 0 for 3� k � r.

Proof. –Since thekth derivative functor factors throughϕ(r),(r−k,k) andϕ(r),(r−k,k)(ϑ(r),ω)
is a twist ofϑ(r−k),ωr−k

⊗̃ω ϑ(k),ωk
by Theorem 5.1, we are reduced to showing thatϑ

(k)
(k),ωk

= 0.
Fork = 3 and anyF this is Lemma 6 in Section 4 of [7]. AssumingF is non-dyadic, we instead
use Theorem I.3.5 of [12]. To see how it applies, observe thatϑ

(k)
(k),ωk

is the space of Whittaker
functionals onϑ(k),ωk

. According to [12], it remains to show that the symmetric group onk

letters has no free orbits on(Z/2Z)k whenk � 3. This follows at once from the pidgeonhole
principle. ✷

6. The main results

Throughout this section,ω and ν will be suitable characters ofZ(G̃(r)). The burden of
notation will be quite heavy and, in order to lighten it as far as possible, we shall denote the
exceptional representationϑ(r),ω by ϑr,ω if ω must be specified and byϑr if not. Since all
exceptional representations are genuine,µ2 acts trivially on the inner tensor productϑr,ω ⊗ ϑr,ν
which may therefore be viewed as a representation ofG(r). As explained in the introduction, we
shall study the space ofG(r)-invariant linear functionals onϑr,ω⊗ϑr,ν⊗π for π a representation
of G(r). This space will be denoted byL(ω, ν;π), abbreviated toL(ω;π) if ω = ν.

For the reasons discussed at the end of the previous section we must presently assume thatF
is not a dyadic field or thatr = 2 or 3. For the rest of this section we assume, without further
notice, that one of these two conditions holds true.

If π ∈Ralg(G(r)) then we shall refer toπ(1), . . . , π(r−1) as theintermediate derivativesof π
(that is, intermediate betweenπ(0) = π and the last derivativeπ(r)).

DEFINITION 6.1. – Letπ ∈Ralg(G(r)) ands ∈ C. We say thatπ is general with respect tos
if no non-zero subquotient of any intermediate derivative ofπ has central character,α, satisfying
α2 =d−2s−1/2.

It will be convenient to make a couple of simple observations which will be used repeatedly in
what follows. First, the non-genuine characterω · ν is trivial onZ2(r) and hence we always have
(ω ·ν)−1 = ω ·ν regardless of the parity ofr. Note that whenr is odd it isn’t necessarily true that
ω−1 = ω. Secondly, the restriction of the modular characterµ(r),(r−1,1) to P (r) is equal tod.
Finally, we remark that ifγ ∈ P thenµ(r),γ , which we have previously defined to be a character

of G̃(γ), extends to a character of̃Q(γ) by declaring it to be trivial onN∗(γ). The extension is
equal to the modular character of the groupQ̃(γ). We shall use the same symbol for the extended
character.

THEOREM 6.1. – Suppose thats ∈ C andπ is a homogeneous admissible representation of
G(r) of finite length which is general with respect tos. Then the dimension of the space of
G(r)-invariant functionals on the representation

ϑr,ω ⊗ i(r−1,1),(r)

(
µs(r),(r−1,1) ⊗ ϑ(r−1,1),ν

)
⊗ π

is at most the dimension of the space of Whittaker functionals onπ.
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Proof. –The proof will be a variation on the proof of Theorem 5.1 in [5], keeping track of the
exceptional parameter values. If(ω · ν) ⊗ ωπ is not trivial onpr(Z(G̃(r))), then the space in
question is zero and the claim is clear. We assume from now on that(ω · ν)⊗ ωπ is trivial on
pr(Z(G̃(r))).

Suppose thatr is odd. Then the space ofG(r)-invariant functionals is

Hom
G̃(r)

(
ϑr,ω ⊗ i(r−1,1),(r)(µs(r),(r−1,1) ⊗ ϑ(r−1,1),ν)⊗ π,1

)
(6.1)

∼=Hom
G̃(r)

(
ϑr,ω ⊗ π, i(r−1,1),(r)(µ−s

(r),(r−1,1) ⊗ ϑ(r−1,1),ν−1)
)

∼=Hom
Q̃(r−1,1)

(
ϑr,ω ⊗ π,µ−s

(r),(r−1,1) ⊗Ψ
+(ϑ(r−1,1),ν−1)

)
.

Sincer is odd, the representations in the first and second places in (6.1) have the same character
underZ̃(r) and, becausẽQ(r− 1,1) = Z̃(r) · P̃ (r), the space in (6.1) is isomorphic to

Hom
P̃ (r)

(
ϑr,ω ⊗ π,d−s ⊗Ψ+(ϑ(r−1,1),ν−1 |

G̃(r−1)
)
)
.(6.2)

But (r− 1) is even and soϑ(r−1,1),ν−1 ∼= ϑr−1,νr−1 , whereνr−1 is the unique suitable character

of Z(G̃(r− 1)). Thus (6.2) is isomorphic to

Hom
P̃ (r)

(
ϑr,ω ⊗ π,d−s ⊗Ψ+(ϑr−1,νr−1)

)
.(6.3)

If r is even then we must reach (6.3) by a slightly different route. In this case(r − 1) is odd
and so

ϑ(r−1,1),ν−1 ∼= indG̃(r−1) ×̃ G̃(1)

G̃(r−1) ×̃ G̃2(1)
(ϑr−1,νr−1 ⊗ χ0),

whereνr−1 is any suitable character ofZ(G̃(r − 1)) andχ0 denotes the genuine character
of G̃2(1) which corresponds to the trivial character ofF×. Thus, if we setQ̃2(r − 1,1) =
Z̃2(r) · P̃ (r), then by the transitivity of induction we have

i(r−1,1),(r)

(
µs(r),(r−1,1) ⊗ ϑ(r−1,1),ν−1

)∼= indG̃(r)

Q̃2(r−1,1)

(
µs(r),(r−1,1) ⊗ ϑr−1,νr−1 ⊗ χ0

)
and repeating the steps which led to (6.1) starting from this representation we find that the space
of G(r)-invariant functionals is isomorphic to

Hom
Q̃2(r−1,1)

(
ϑr,ω ⊗ π,µ−s

(r),(r−1,1) ⊗Ψ
+(ϑr−1,νr−1 ⊗ χ0)

)
.

Since theZ̃2(r)-characters of the representations in the first and second places in thisHom-space
agree, we find that it is again isomorphic to (6.3).

This completes the first part of the proof. From this point onwards the suitable characters with
respect to which the exceptional representations are formed will not play a significant role and
we shall allow ourselves to omit them from the notation.

For0� k � r− 1 andz ∈ C we shall consider the space

Hk(π, z) = HomP̃ (r−k)
(
Ψ+(ϑr−k−1)⊗ (Φ−)k(π)⊗ ϑr−k,dz

)
.

The space (6.3), whose dimension we wish to estimate, is isomorphic toH0(π,1− s). This may
be seen by using part 5 of Theorem 5.1, (4.7) and part 1 of Proposition 4.3.
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As recorded in Section 3 of [3], we have a short exact sequence

0 −→ Φ+Φ−(ϑr−k) −→ ϑr−k −→ Ψ+Ψ−(ϑr−k) −→ 0(6.4)

and, since the tensor product yields an exact functor on the category of vector spaces, we obtain
from this a short exact sequence

0−→Ψ+(ϑr−k−1)⊗ (Φ−)k(π)⊗Φ+Φ−(ϑr−k)

−→Ψ+(ϑr−k−1)⊗ (Φ−)k(π)⊗ ϑr−k

−→Ψ+(ϑr−k−1)⊗ (Φ−)k(π)⊗Ψ+Ψ−(ϑr−k) −→ 0.

Using this sequence and the definition ofHk(π, z) we obtain an exact sequence

0−→Hom
P̃ (r−k)

(
Ψ+(ϑr−k−1)⊗ (Φ−)k(π)⊗Ψ+Ψ−(ϑr−k),dz

)
(6.5)

−→Hk(π, z)

−→Hom
P̃ (r−k)

(
Ψ+(ϑr−k−1)⊗ (Φ−)k(π)⊗Φ+Φ−(ϑr−k),dz

)
.

Now

Hom
P̃ (r−k)

(
Ψ+(ϑr−k−1)⊗ (Φ−)k(π)⊗Ψ+Ψ−(ϑr−k),dz

)
(6.6)

∼=Hom
P̃ (r−k)

(
Ψ+(ϑr−k−1)⊗ (Φ−)k(π),dz−1 ⊗Ψ+( ̂Ψ−(ϑr−k))

)
∼=Hom

G̃(r−k−1)

(
Ψ−(Ψ+(ϑr−k−1)⊗ (Φ−)k(π)),dz−3/4 ⊗⊕ϑr−k−1

)
∼=Hom

G̃(r−k−1)

(
d1/2 ⊗ ϑr−k−1 ⊗ π(k+1),dz−3/4 ⊗⊕ϑr−k−1

)
∼=Hom

G̃(r−k−1)

(
ϑr−k−1 ⊗⊕ϑr−k−1 ⊗ π(k+1),dz−5/4

)
,

where⊕ϑr−k−1 denotes a finite direct sum of exceptional representations formed with respect to
various suitable characters. Here we have used (4.7) and Proposition 4.3 from the first line to the
second, Proposition 4.2 and Theorem 5.2 from the second to the third, the definitions ofΨ−,Ψ+

and the derivative functors from the third to the fourth and (4.7) and Theorem 5.1 from the fourth
to the last. All the exceptional representations in (6.6) transform via a suitable character under
Z̃2(r − k − 1). The representationπ(k+1) is of finite length and comparing thẽZ2(r − k − 1)
characters in both entries of (6.6) we see that the space of homomorphisms is{0} provided
that no non-zero subquotient ofπ(k+1) has central character,α, satisfyingα2 = d2z−5/2. If this
proviso is satisfied then (6.5) shows thatHk(π, z) may be regarded as a subspace of the space

Hom
P̃ (r−k)

(
Ψ+(ϑr−k−1)⊗ (Φ−)k(π)⊗Φ+Φ−(ϑr−k),dz

)
(6.7)

∼=Hom
P̃ (r−k)

(
Ψ+(ϑr−k−1)⊗ (Φ−)k(π),dz−1 ⊗ Φ̂+(d⊗ ̂Φ−(ϑr−k))

)
∼=Hom

P̃ (r−k−1)

(
Φ−(Ψ+(ϑr−k−1)⊗ (Φ−)k(π)),dz ⊗ ̂Φ−(ϑr−k)

)
∼=Hom

P̃ (r−k−1)

(
d1/2 ⊗ ϑr−k−1 ⊗Φ−(ϑr−k)⊗ (Φ−)k+1(π),dz

)
.

In this sequence of isomorphisms we have used (4.7) and Proposition 4.3 from line one to line
two, Proposition 4.2 from line two to line three, and finally (4.7), the definition ofΦ− and the
fact thatY ∗

r−k acts trivially onΨ+(ϑr−k−1) from line three to line four.
Up until now no use has been made of the standing assumption in this section that eitherF is

not dyadic orr = 2 or 3. It becomes necessary when we seek to analyze (6.7) further. Applying
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the standard short exact sequence of functors given in Section 3 of [3] to the representation
Φ−(ϑr−k) we obtain a short exact sequence

0 −→ Φ+(Φ−)2(ϑr−k) −→ Φ−(ϑr−k) −→ Ψ+
(
ϑ

(2)
r−k

)
−→ 0.(6.8)

Since ϑ(j)
r−k = 0 if j � 3, by Theorem 5.4, we see thatall the proper derivatives of the

representation(Φ−)2(ϑr−k) are zero. But, according to Corollary 5.14 in [2], a non-zero
representation must have at least one non-zero proper derivative and we conclude that
(Φ−)2(ϑr−k) = 0. Hence (6.8) and Theorem 5.3 give

Φ−(ϑr−k)∼=Ψ+
(
ϑ

(2)
r−k

) ∼=d−1/2 ⊗Ψ+(ϑr−k−2).(6.9)

Using this isomorphism we see that (6.7) is isomorphic to

Hom
P̃ (r−k−1)

(
Ψ+(ϑr−k−2)⊗ (Φ−)k+1(π)⊗ ϑr−k−1,dz

)
,

which is, by definition,Hk+1(π, z). Thus, if π(k+1) has no non-zero subquotient with central
character,α, satisfying α2 = d2z−5/2, then Hk(π, z) may be regarded as a subspace of
Hk+1(π, z).

With the analysis ofHk(π, z) complete, it is time to return to the space ofG(r)-invariant
linear functionals whose dimension we are seeking to estimate. In the first part of the proof we
saw that this space is isomorphic to (6.3), which is, in turn, isomorphic toH0(π,1− s). Since we
are assuming thatπ is general with respect tos, no intermediate derivative ofπ has a non-zero
subquotient with central character,α, satisfyingα2 = d−2s−1/2. The second part of the proof
shows that, under this condition,Hk(π,1− s)may be regarded as a subspace ofHk+1(π,1− s).
HenceH0(π,1− s) may be regarded as a subspace of

Hr−1(π,1− s) = Hom
P̃ (1)

(
Ψ+(ϑ0)⊗ (Φ−)r−1(π)⊗ ϑ1,d1−s).(6.10)

Bothϑ1 andΨ+(ϑ0) are one-dimensional and(Φ−)r−1(π) is realized on the same space asπ(r).
Hence (6.10) has the same dimension as the space of Whittaker functionals onπ. ✷

COROLLARY 6.1. – Let π be a homogeneous admissible representation ofG(r) of finite
length which is general with respect to1/4. Then the dimension ofL(ω, ν;π) is at most the
dimension of the space of Whittaker functionals onπ.

Proof. –Combining parts5 and6 of Theorem 5.1, we see thatϑr,ν is isomorphic to a quotient
of

i(r−1,1),(r)

(
µ

1/4
(r),(r−1,1) ⊗ ϑ(r−1,1),ν

)
and hence there is an injective map fromL(ω, ν;π) into the space ofG(r)-invariant functionals
on

ϑr,ω ⊗ i(r−1,1),(r)

(
µ

1/4
(r),(r−1,1) ⊗ ϑ(r−1,1),ν

)
⊗ π.

The result now follows directly from Theorem 6.1.✷
Note that if π is a cuspidal representation ofG(r) then, by Theorem 4.4 of [3], all the

intermediate derivatives ofπ are zero and soπ is automatically general with respect to any
s ∈ C. If π is also irreducible thenπ(r) = 1 and it follows from Corollary 6.1 that the dimension
of L(ω, ν;π) is at most one.
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The hypothesis of generality with respect to1/4 in Corollary 6.1 is necessary. To see this, let us
takeπ to be the trivial representation ofG(r) with r � 2. Thenπ carries no Whittaker functionals
but L(ω,ω−1;π) is exactly one-dimensional becauseϑr,ω is irreducible and its contragredient
is isomorphic toϑr,ω−1 . The first derivative ofπ is the characterd−1/2 onG(r − 1) and all the
higher derivatives are zero. Thusπ is not general with respect to1/4.

The following result allows us to study the spaceL(ω, ν;π) inductively when π is
parabolically induced from a smaller group.

THEOREM 6.2. – Let ρ be a homogeneous admissible representation ofG(r − 1) of finite
length. Ifr is odd then define a characterα of F× by

α(z) = ωρ(zIr−1)−1 · (ω · ν)(zIr),(6.11)

whereωρ is the central character ofρ. If r is even, then defineα by (6.11)for z ∈ (F×)2 and
extend it in any way to a character ofF×. Letπ = i(r−1,r),(r)(ρ⊗ α). If r is odd, then there is
an exact sequence

{0} −→ L(η;ρ) −→ L(ω, ν;π) −→ L
(
ω′, ν′;ρ(1)

)
,

whereη is the unique suitable character ofZ(G̃(r − 1)) andω′ andν′ are suitable characters
ofZ(G̃(r− 2)) related toω andν by the equations

ω =
(
ω′ ⊗ (χ0)ψ

)
|
Z(G̃(r))

and ν =
(
ν′ ⊗ (χ0)ψ

)
|
Z(G̃(r))

.(6.12)

If r is even, thenω = ν and there is a spaceV which completes the diagram

L(ω;π)

{0}
⊕

η1,η2
L(η1, η2;ρ) V L(ω′;ρ(1))

with the row exact. Hereω′ is the unique suitable character onZ(G̃(r− 2)) and the direct sum
is over all pairs of suitable charactersη1 andη2 ofZ(G̃(r− 1)). The spaceV is independent of
the extension ofα from (F×)2 to F× and ifV is non-zero, thenL(ω;π) is non-zero for at least
one choice of this extension.

Proof. –The spaceL(ω, ν;π) is isomorphic to

HomG(r)

(
ϑr,ω ⊗ ϑr,ν ⊗ π,1

)
(6.13)

∼=HomG(r)

(
ϑr,ω ⊗ ϑr,ν , i(r−1,1),(r)

(
ρ̂⊗ α−1

))
∼=HomQ((r−1,1))

(
ϑr,ω ⊗ ϑr,ν ,Ψ+

(
ρ̂⊗ α−1

))
.

We note explicitly that the symbol̂ρ in (6.13) refers to the contragredient ofρ as a representation
of G(r − 1). The characters of the representations in the first and second places in (6.13)
underpr(Z(G̃(r))) have been arranged to be equal. Ifr is odd then, sinceQ((r − 1,1)) =
pr(Z(G̃(r))) ·P (r), it follows that (6.13) is isomorphic to

HomP (r)

(
ϑr,ω ⊗ ϑr,ν ,Ψ+(ρ̂ )

)
.(6.14)
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If r is even then (6.14) will be the space denoted byV in the statement. It evidently does
not depend on the extension ofα which was chosen and since theP (r)-intertwining property
required of elements of (6.14) is less restrictive than theQ((r − 1,1))-intertwining property
required of elements of (6.13),L(ω;π) is always a subspace of (6.14). SinceZ(r)/Z2(r) is a
finite abelian group, any element of (6.14) may be expressed as a sum of linear maps between
the underlying spaces each of which isP (r)-intertwining and transforms underZ(r) by one of
the square-trivial characters. These summands are elements of the variousL(ω;π) whereπ is
formed with the various possible extensions ofα to F×. If the original map is non-zero, then at
least one of its summands must be non-zero and this shows that ifV �= {0} thenL(ω;π) �= {0}
for at least one choice of extension.

After these observations it remains to analyze (6.14). We shall begin with the short exact
sequence

0 −→ Φ+Φ−(ϑr,ω)⊗ ϑr,ν −→ ϑr,ω ⊗ ϑr,ν −→ Ψ+Ψ−(ϑr,ω)⊗ ϑr,ν −→ 0

which yields an exact sequence

{0} −→HomP (r)

(
Ψ+Ψ−(ϑr,ω)⊗ ϑr,ν ,Ψ+(ρ̂ )

)
(6.15)

−→HomP (r)

(
ϑr,ω ⊗ ϑr,ν ,Ψ+(ρ̂ )

)
−→HomP (r)

(
Φ+Φ−(ϑr,ω)⊗ ϑr,ν ,Ψ+(ρ̂ )

)
.

The firstHom-space in (6.15) is easy to analyze. Indeed, by Proposition 4.2, statement 1, it is
isomorphic to

HomG(r−1)

(
d1/2 ⊗Ψ−(ϑr,ω)⊗Ψ−(ϑr,ν), ρ̂

)∼=HomG(r−1)

(
d1/2 ⊗ ϑ(1)

r,ω ⊗ ϑ(1)
r,ν ⊗ ρ,1

)
and, by Theorem 5.2, this is isomorphic toL(η;ρ) if r is odd and to

⊕
η1,η2

L(η1, η2;ρ) if r is
even.

We now turn to analyze the thirdHom-space in (6.15). First, we have

HomP (r)

(
Φ+Φ−(ϑr,ω)⊗ ϑr,ν ,Ψ+(ρ̂ )

)
∼=HomP (r)

(
Φ+Φ−(ϑr,ω)⊗ ϑr,ν ,d⊗ Ψ̂+(ρ)

)
∼=Hom

P̃ (r)

(
d−1 ⊗Ψ+(ρ)⊗ ϑr,ν , ̂Φ+Φ−(ϑr,ω)

)
by Proposition 4.3 and (4.7). This, in turn, is isomorphic to

Hom
P̃ (r)

(
d−1 ⊗Ψ+(ρ)⊗ ϑr,ν ,d−1 ⊗ Φ̂+(d⊗ ̂Φ−(ϑr,ω))

)
(6.16)

∼=Hom
P̃ (r−1)

(
d1/2 ⊗ ρ⊗Φ−(ϑr,ν),d⊗ ̂Φ−(ϑr,ω)

)
∼=HomP (r−1)

(
d−1/2 ⊗ ρ⊗Φ−(ϑr,ω)⊗Φ−(ϑr,ν),1

)
,

where we have used Proposition 4.3 to reach the first line, Proposition 4.2 from the first to the
second and then (4.7) to reach the last line. From (6.9) and Theorem 5.3, we know that

Φ−(ϑr,ω)∼=Ψ+
(
ϑ(2)
r,ω

)∼= d−1/2 ⊗Ψ+(ϑr−2,ω′),

whereω′ is as described in the statement, and similarly withω replaced byν. Hence (6.16) is
isomorphic to
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HomP (r−1)

(
d−3/2 ⊗ ρ⊗Ψ+(ϑr−2,ω′)⊗Ψ+(ϑr−2,ν′),1

)
∼=HomP (r−1)

(
d−3/2 ⊗Ψ+(ϑr−2,ω′)⊗Ψ+(ϑr−2,ν′), ρ̂

)
∼=HomP (r−1)

(
d−1 ⊗Ψ+(ϑr−2,ω′ ⊗ ϑr−2,ν′), ρ̂

)
,

where the symbol̂ρ now denotes the contragredient ofρ|P (r−1). Finally, this is isomorphic to

HomG(r−2)

(
d−1 ⊗ ϑr−2,ω′ ⊗ ϑr−2,ν′ , Ψ̂−(ρ̂ )

)
∼=HomG(r−2)

(
d−1 ⊗ ϑr−2,ω′ ⊗ ϑr−2,ν′ ,d−1 ⊗ Ψ̂−(ρ)

)
∼=HomG(r−2)

(
ϑr−2,ω′ ⊗ ϑr−2,ν′ ⊗Ψ−(ρ),1

)
= L(ω′, ν′;ρ(1)),

where we have used Proposition 4.2 to reach the first line, Proposition 4.3 from the first line to
the second and (4.7) from the second to the third.✷

Our first use for Theorem 6.2 will be as an aid in understandingL(ω, ν;π) when π is a
representation of the principal series. For notational simplicity, we shall letχ= (χ1, . . . , χr) be a
character ofG(γ0) and writeI(χ) = iγ0,(r)(χ1 ⊗ · · ·⊗χr) for the principal series representation
of G(r) arising by normalized parabolic induction fromχ.

DEFINITION 6.2. – A characterχ= (χ1, . . . , χr) of G(γ0) will be calledbalancedif there is
an involutionj �→ j∗ of the set{1, . . . , r} such that, for all1� j � r, χ2

jχ
2
j∗ = 1 if j �= j∗ and

χ2
j = 1 if j = j∗.

THEOREM 6.3. – If L(ω, ν; I(χ)) �= {0} for some choice ofω andν, thenχ is balanced.

Proof. –We note that, ifr = 1 or 2, thenχ is balanced if and only ifI(χ) has square-trivial
central character. Sinceϑr,ω⊗ϑr,ν transforms underpr(Z(G̃(r))) byω ·ν, a necessary condition
for L(ω, ν;π) �= {0} is thatωπ = ω · ν onpr(Z(G̃(r))). In particular,ωπ must be square-trivial.
It follows that the claim is true whenr � 2.

We shall proceed by induction onr. Suppose thatr � 3 and thatL(ω, ν; I(χ)) �= {0}. By the
transitivity of induction we have

I(χ)∼= indG(r)
Q((r−1,1))

(
I(χ1, . . . , χr−1)⊗χr

)
.

If we setρ= I(χ1, . . . , χr−1), thenωρ(zIr−1) =
∏r−1
j=1 χj(z) and it follows from the remarks in

the first paragraph thatωρ(zIr−1) ·χr(z) = (ω ·ν)(zIr) for zIr ∈ pr(Z(G̃(r))). Thus, regardless
of the parity ofr, α= χr is one appropriate choice to use in applying Theorem 6.2. We conclude
from that theorem that eitherL(η1, η2;ρ) �= {0} for some choice of suitable charactersη1 andη2

or thatL(ω′, ν′;ρ(1)) �= {0}. If the first possibility obtains then we conclude inductively that
(χ1, . . . , χr−1) is balanced. In particular,

∏r−1
j=1 χ

2
j = 1 and henceχ2

r = 1. If we extend the
involutionj �→ j∗ of {1, . . . , r− 1} to {1, . . . , r} by settingr∗ = r then we obtain an involution
which shows thatχ is balanced. This completes the induction step in this case.

Suppose now that the second of the above possibilities obtains. Using Corollary 4.6 of [3] (the
so-called Leibniz rule for derivatives) we see thatρ(1) is glued from the representationsρ� =
I(χ1, . . . , χ̂�, . . . , χr−1), where the hat denotes omission. SinceL(ω′, ν′;ρ(1)) �= {0}, it follows
that we must haveL(ω′, ν′;ρ�) �= {0} for some�. Then, by induction,(χ1, . . . , χ̂�, . . . , χr−1) is
balanced for that value of�. In particular,

∏r−1
j=1,j 	=� χ

2
j = 1 and, since

∏r
j=1 χ

2
j = 1, it follows

thatχ2
�χ

2
r = 1. Thus, if we take the involutionj �→ j∗ of {1, . . . , r}� {�, r} corresponding to the
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induction datum ofρ� being balanced and extend it to{1, . . . , r} by setting�∗ = r then we have
an involution showing thatχ is balanced. This completes the induction step in this case.✷

It is not too hard to show that, ifχ1, . . . , χr are square-trivial characters satisfying
∏r
j=1 χj =

ω · ν, thenL(ω, ν; I(χ)) �= {0}. Thus, in the definition of balanced,χ2
j cannot be replaced byχj

if Theorem 6.3 is to be true.
The next result gives information on the dimension of the spaceL(ω, ν; I(χ)). It overlaps with

Theorem 6.1, but does not have exactly the same range of applicability, and the technique is
different. As usual, we callχ regular if it is not fixed by any non-identity element of the Weyl
group; here this simply means that the charactersχ1, . . . , χr are distinct.

THEOREM 6.4. – Suppose thatχ= (χ1, . . . , χr) is balanced and thatχ2 is regular. Then, for
anyω andν,

dimC

(
L(ω, ν; I(χ))

)
� 1.(6.17)

Proof. –We shall use induction onr, beginning with the cases wherer = 1 and r = 2. If
r = 1 then I(χ) = χ1 is a square-trivial character and so the dimension ofL(ω, ν; I(χ)) is
one if χ1 = ω · ν and zero otherwise. Thus (6.17) holds in this case. Ifr = 2 then we have an
induction datumχ= (χ1, χ2) which satisfiesχ2

1χ
2
2 = 1 andχ2

1 �= χ2
2; in particular,χ2

1 �= 1. Thus
L(η1, η2;χ1) = {0} for all suitable charactersη1 andη2. Using Theorem 6.2 withρ = χ1 and

α= χ2 we obtain an injectionL(ω; I(χ)) ↪→L(ω′;χ(1)
1 ). Butχ(1)

1 is the trivial representation of

G(0) and henceL(ω′;χ(1)
1 )∼=C. Thus (6.17) holds in this case also.

Now suppose thatr � 3. We shall apply Theorem 6.2 withρ= I(χ1, . . . , χr−1) andα= χr .
First, assume thatχ2

r �= 1. Then ω2
ρ = χ−2

r �= 1 and soL(η1, η2;ρ) = {0} for all suitable
charactersη1 andη2. Theorem 6.2 then implies that there is an injection

L
(
ω, ν; I(χ)

)
L

(
ω′, ν′;ρ(1)

)
.(6.18)

As in the proof of Theorem 6.3,ρ(1) is glued from the representationsρ� = I(χ1, . . . , χ̂�, . . . ,
χr−1) for �= 1, . . . , (r− 1). If � �= �′ but the central characters ofρ� andρ�′ have equal squares,
then we would conclude thatχ2

� = χ2
�′ , contradicting the regularity assumption. Thus the squares

of the central characters of theρ� are all distinct. It follows thatρ(1) ∼=
⊕r−1

�=1 ρ� and that at most
one of theρ� has square-trivial central character.

Suppose thatρk does have square-trivial central character; we claim that its induction datum
is balanced and that the square of its induction datum is regular. The regularity is clear. On the
other hand, we have

∏r−1
�=1, � 	=k χ

2
j = 1 and henceχ2

kχ
2
r = 1. Let j �→ j∗ be an involution which

corresponds toχ being balanced. Sinceχ2
k �= 1 andχ2

r �= 1, k∗ �= k andr∗ �= r. Thus we may
define a new involutionj �→ j′ by j′ = j∗ if j /∈ {k, k∗, r, r∗}, k′ = r and(k∗)′ = r∗ andj �→ j′

will be a second involution showing thatχ is balanced (of course,j �→ j∗ andj �→ j′ might be
equal). Restrictingj �→ j′ to the set{1, . . . , r}� {k, r} gives an involution which shows that the
character(χ1, . . . , χ̂k, . . . , χr−1) is balanced. Our claim follows.

From the argument of the previous two paragraphs we conclude that

L
(
ω′, ν′;ρ(1)

) ∼= r−1⊕
�=1

L(ω′, ν′;ρ�),(6.19)

that all but one of the summands on the right of (6.19) are zero (on central character grounds)
and that if one of the summands is non-zero then the induction datum of the correspondingρ�
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is balanced and its square is regular. Thus if one of the summands is non-zero it is at most
one-dimensional by the induction hypothesis. Hence the left-hand side of (6.19) is at most
one-dimensional and it follows from (6.18) thatL(ω, ν; I(χ)) is at most one-dimensional. This
completes the induction in this case.

Now, assume thatχ2
r = 1. Thenχ2

j �= 1 for all j = 1, . . . , (r− 1) and so the involutionj �→ j∗

of {1, . . . , r} which corresponds toχ being balanced must satisfyr∗ = r. If r were even then
the restriction ofj �→ j∗ to {1, . . . , r − 1} would necessarily have a fixed point and this would
give us somej between1 and(r− 1) such thatχ2

j = 1. This is impossible and sor must be odd.
Hence we have an exact sequence

{0} −→ L(η, ρ) −→ L
(
ω, ν; I(χ)

)
−→ L

(
ω′, ν′;ρ(1)

)
(6.20)

from Theorem 6.2. The central character ofρ is square-trivial and thus ifρ�, as above, had
square-trivial central character for some� then we would conclude thatχ2

� = 1, thus contradicting
regularity. Therefore noρ� has square-trivial central character,L(ω′, ν′;ρ�) = {0} for all � and
henceL(ω′, ν′;ρ(1)) = {0}. From this and (6.20) we obtain an isomorphismL(ω, ν; I(χ)) ∼=
L(η;ρ). Since we have seen thatr∗ = r, the induction datum ofρ is balanced and its square
is clearly regular. ThusL(η;ρ) is at most one-dimensional, by the induction hypothesis, and
consequentlyL(ω, ν; I(χ)) is at most one-dimensional. This completes the inductive step in this
case and hence the proof.✷

THEOREM 6.5. – If π is an irreducible admissible representation ofG(2), thendimC L(ω;π)
� 1. If π is an irreducible admissible representation ofG(3), thendimC L(ω, ν;π)� 1.

Proof. –If π is a cuspidal representation ofG(2), then, as we have remarked previously,π is
general with respect to1/4 and so Corollary 6.1 gives the claim, since cuspidal representations
have a unique Whittaker model. Otherwise,π is a constituent of some principal series
representationI(χ). Replacingχ = (χ1, χ2) by (χ2, χ1), if necessary, we may assume thatπ
occurs as a quotient ofI(χ). ThenL(ω;π) is a subspace ofL(ω; I(χ)) and so it suffices to show
that this last space is at most one-dimensional for allχ.

If L(ω; I(χ)) �= {0} thenχ2
1χ

2
2 = 1. The required result follows from Theorem 6.4 unlessχ2 is

irregular; that is, unlessχ2
1 = χ2

2. Let us suppose that this is so. The only intermediate derivative
of I(χ) is I(χ)(1), which is glued fromχ1 andχ2. We cannot haveχ2

j = | · |−1 for j = 1 or 2
sinceχ4

j = 1 and soI(χ) is general with respect to1/4. By Corollary 6.1, the dimension of
L(ω; I(χ)) is at most the dimension of the space of Whittaker models onI(χ) and it is well
known that this is one.

We now consider the situation onG(3). First, observe that it suffices to demonstrate the claim
whenν = ω−1 since twisting bothπ and the second exceptional representation by a square-
trivial character reduces the general case to this. Ifπ is cuspidal then the claim follows from
Corollary 6.1 as before. Next suppose thatπ is a constituent ofi(2,1),(3)(ρ⊗ α), whereρ is a
cuspidal representation ofG(2). According to Theorem 4.2 of [3], this induced representation is
irreducible and hence equal toπ. By Theorem 6.2 we have an exact sequence

{0} −→ L(η;ρ) −→ L
(
ω,ω−1;π

)
−→ L

(
ω′, (ω′)−1;ρ(1)

)
and sinceρ(1) = 0 it follows thatL(ω,ω−1;π) is isomorphic toL(η;ρ). From the first part of
the proof, this space is at most one-dimensional and we obtain the required result for theseπ.
Finally, π might be a constituent of some principal series representationI(χ). In this case our
claim is the main result of [15]. This completes the proof.✷
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