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THE TENSOR PRODUCT OF EXCEPTIONAL
REPRESENTATIONS ON THE GENERAL LINEAR GROUP

By ANTHONY C. KABLE

ABSTRACT. — The exceptional representations are certain infinite-dimensional projective representations
of the general linear group over a local field, somewhat analogous to the Weil representations of the
symplectic group. We examine the decomposition of the tensor product of two exceptional representations.
Our main results concern the multiplicity with which a given representation may occur in this product and
the restrictions imposed upon a representation of the principal series by the assumption that it does occur.
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RESUME. — Les représentations exceptionnelles sont certaines représentations projectives de dimension
infinie du groupe linéaire général sur un corps local, apparentées aux représentations de Weil du groupe
symplectique. Nous étudions la décomposition du produit tensoriel de deux représentations exceptionnelles.
Nos résultats principaux concernent la multiplicité avec laquelle une représentation donnée apparait dans
ce produit, et les restrictions imposées a une représentation de la série principale par le fait qu’elle apparait
dans ce produit.
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1. Introduction

The exceptional representations are certain infinite-dimensional projective representations of
the general linear grou;L(r), over a local field. Equivalently, they may be viewed as linear
representations of an appropriate double coveGbfr). The fundamental role played by the
general linear group in many parts of mathematics makes its representations objects of wide
interest. Beyond this, the exceptional representations attract attention for at least two reasons.

The first reason is analogical: drL(2) the exceptional representations are identical with
certain of the famous Weil representations @8p(2) = GL(2). While the higher Weil
representations generalize these examples to the grG$ps2r), the higher exceptional
representations generalize them to the graipér). Thus the exceptional representations may
be regarded as@L(r) analogue of the Weil representations and, given the remarkable properties
possessed by the latter, seem worthy of close investigation.

The second reason is pragmatic: the exceptional representations play an essential role in the
construction, by Bump and Ginzburg [5], of a Rankin—Selberg integral which represents the
Langlands symmetric squafefunction, L(s, I1, sym?), of an automorphic representatian, of
GL(r). To gain a more intimate understanding of thisunction would seem to require a detailed
study of the ingredients in the construction, the exceptional representations prominent amongst
them. Indeed, the work reported on here was carried out as part of a project, still underway, to
investigate the structure of the local factorsds, IT, sym?) at places wher#l is ramified.
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742 A.C. KABLE

There is no succinct and unambiguous name for the double cov8L6f) on which the
exceptional representations have their natural home. The word “metaplectic”, coined by Weil for
a certain double cover of the symplectic group, has been pressed into service for covers of other
classical groups also, thereby creating genuine ambiguity. Henceforth, bowing to convention, we
shall use the generic term “metaplectic group” to refer to the group underlying our work.

The metaplectic group is itself a rather subtle object; its existence was not established in
general until Matsumoto’s remarkable 1969 paper [13]. Unlike Weil's metaplectic group, which
was first constructed by giving a projective representatio®gfr), the metaplectic group
considered here was initially constructed group-theoretically. Even now, no a priori construction
of the exceptional representations which would yield a natural proof of the existence of the
metaplectic group is known. The subsequent history of the metaplectic group in the literature
has been cloudy, with several erroneous statements finding their way into print. We shall use the
work of Banks, Levy and Sepanski [1] as a convenient and reliable reference for the facts we
require.

The exceptional representations®E () were first introduced in generality by Kazhdan and
Patterson in [12]. It is convenient to extend their definition somewhat to include representations
of covers of products of several general linear groups and this is the first task in Section 5.
Theorem 5.1 shows that, with this extended definition, the family of exceptional representations
interacts smoothly with changing groups via parabolic induction and Jacquet functors and with
the metaplectic tensor product. Next, in Theorems 5.2, 5.3 and 5.4, we compute the derivatives of
the exceptional representations@k.(r). The second derivative has been considered previously
by Bump and Ginzburg [5], who showed that it must again be exceptional but did not need to
identify it precisely. It emerges that the first derivative is either an exceptional representation or a
sum of such and that the higher derivatives are zero (subject, at present, to a technical hypothesis).
As well as their applications to proving the main results of this paper, these facts are importantin
studying models of the exceptional representations akin to the Whittaker model. The author will
return to this topic elsewhere.

Our main results, proved in Section 6, must appear rather technical at first sight and we
certainly owe the reader some explanation of their context and the motivations for expecting
them to be true. Simplifying the notation for the purposes of exposition, wé Enote an
exceptional representation of the metaplectic group. Our aim is to study the inner tensor product
¥ ® ¢, where the two exceptional representations need not be the same. Since both exceptional
representations live on the same coveGaf(r), the tensor product may be regarded as a linear
representation o&L(r).

To see why this tensor product might be interesting, recall the role playédrbthe Rankin—
Selberg integral fol (s, IT, sym?). This integral is a product of local integrals over the places of
the ground field and the integrand in each local integral is a product of a function coming from a
model of the local factor dfl and two functions which are associated with function space models
of 9. The representation-theoretic interpretation of a product of functions belonging to function
space models for several representations is as a vector in the tensor product of the representations.
Thus we are naturally led to consider the representatien) ® «, wherer is a local factor of
IT. A more precise examination of the integral suggests, in fact, that this representation should
carry aGL(r)-invariant linear functional (essentially the residue) wiigr, 7, sym?) has a pole
at s = so. (The value ofsy depends on a normalization; it is the rightmost location at which a
pole is possible.)

The local Langlands conjectures predict the existence of a lift 86) to GL(r), if r is
even, and fronsp(r — 1) to GL(r), if r is odd, associated with the natural inclusiorsef(r, C)
into GL(r, C). It will be referred to here as the tautological lift. It is also predicted, at least for
representationss, of GL(r) with trivial central character, that should lie in the image of the
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THE TENSOR PRODUCT OF EXCEPTIONAL REPRESENTATIONS 743

tautological lift if and only if (s, 7, sym?) has a pole at = so. Thus we are led to expect that
there should be a connection between the existenc&f(a)-invariant linear form o @ 9 @

and the appearance ofin the image of the tautological lift. The first precise formulation of such
a conjecture is due to Savin and appears in [15].

The considerations of the last two paragraphs provide the motivation for the definition of a
balanced character (Definition 6.2) and for guessing at the truth of something like Theorem 6.3.
The idea is that a character of the maximal torugGaf(r) is balanced when it looks as if it
arises from a character of the maximal toru$6f(r). The theorem says that,fis a principal
series representation, thém ¢ @ = can carry an invariant linear functional only if the character
corresponding tor is balanced. The theorem should be able to be improved by replacing the
conditionyx3. = 1in the definition of a balanced characteryy ;- = 1. However, our current
methods do not seem able to yield this refinement.

The majority of the other results in Section 6 are to the effect that the space of invariant linear
functionals onj ® ¥ ® 7 is at most one-dimensional under various conditions. We can prove this
unconditionally for irreducibler on GL(2) andGL(3) (Theorem 6.5), for sufficiently general
on anyGL(r) (Corollary 6.1) and for sufficiently generalin the balanced part of the principal
series (Theorem 6.4). The author conjectures that the space of invariant linear functionals is in
fact always at most one-dimensional whers an irreducible representation. Given the analogy
between the exceptional representations and the Weil representations, this may be compared to
the final conjecture stated in [14]. In that paper the tensor product considered is with a non-
genuine representation, but a moment’s thought shows that the conjecture would imply the
analogue for the Weil representations of our conjecture for the exceptional representations (and
much more).

2. Themetaplectic group

In this section we shall review those properties of the metaplectic group that will be required
below. The notation introduced here will be used constantly in later sections.

ThroughoutF will be a non-archimedean local field, not of characteritiGiven such a field
thereisamag-,-): F* x F* — us, whereuy = {+£1}, called thequadratic Hilbert symbol
([17], 1X.5, p. 185ff). This symbol is symmetric and bimultiplicative and its left kernel is equal
to the subgroup of squares <.

Let P be the set of all finite tuples of non-zero natural numbers andy fer(r, ..., r;) € P,
define thesizeof v to be|y| =r; + - - - + rr. An elementy € P may be regarded as an ordered
partition of |y|. We partially ordei® by declaring thatry,...,r;) < (s1,...,s¢) if and only if
the partitionry + - - - + 7 is a refinement of; + - - - + s,. Note that, ify, § € P are comparable
under this order, thepy| = |§|. We shall denote by, any of the minimal elements &under this
partial order; any such element has the f¢im . ., 1). Whenever we discuss element$otheir
size will be fixed throughout the discussion and so no confusion will arise from this ambiguous
notation. Note that there is an obvious concatenation operati@ntve concatenation of; and
~vo Will be written as(vy1,y2)-

We denote byG(r) the groupGL(r, F). As usual, the root system 6f(r) may be identified
with the set{(i,7) | 1 <¢,5 <r, i # j} and, under this identificationd = {(i,7 + 1) |
i=1,...,r — 1} corresponds to the standard choice of positive simple system. Foy any
(r1,...,7r,) € P of sizer we letA(y) be the complement i of the set{(ry,r +1),...,(r1 +
<ot rg_1,r1+ -+ 1-1 + 1)} and defing) () < G(r) to be the standard parabolic subgroup
of G(r) corresponding ta\(v) ([4], §14.17, p. 197). The grou@(y) = G(r1) X - -+ x G(rg),
regarded as embedded in the natural way as a block-diagonal subgratip-)ofis a Levi
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subgroup ofQ(vy). We let N(vy) be the unipotent radical of)(v) and, for~y < d, define
N(d,v) = G(6) N N (). The Weyl groupWW, of G(r) is generated by the sék, | o € A}
of simple reflections. Fory € P we let W () be the subgroup otV generated by the set
{sa | @ € A(7)}. The group¥V () is naturally identified with the Weyl group @ (~).

The metaplectic group, as the term will be used here, is a central exte6ion,of G(r)
by uo. That s, it is a group which fits into a short exact sequence

(2.1) {1} 142 G(r) —=G(r) {1},

where p» injects into the center oé(r). For an account of the construction and principal
properties ol’GN(r) we refer to [1], which, in turn, draws upon the seminal work of Matsumoto
in [13]. As we review the properties of the metaplectic group we shall make specific reference to
results in [1] as appropriate.

For any subgroupH, of G(r) we let H = p, ' (H). This defines, in particular, a grou(~)
for anyy = (r1,...,r,) € P. It is important to note thaﬁ(y) is not isomorphic to the direct
product of the@(rj) with the copies ofu, in each factor amalgamated, as one might initially
expect. Rather, ify, 72 € P, r1 = |11, r2 = |2|, r =71 + 2 @andg, g2 € G(v1,72) are such
thatp,(g1) € G(71) x {1, } andp,(g2) € {1, } x G(72) then

(2.2) 9192 = (det(g1),det(g2)) 9291,

wheredet is being interpreted as a function aﬁ‘(r) by composition withp,.. This formula
follows from [1], §3, Theorem 11.

The sequence (2.1) corresponds in the usual way to a class in the cohomology group
H2(G(r), u2), whereG(r) acts trivially on the coefficients, and choosing a cocycle to represent
this class is equivalent to choosing a sectioii(r) — G(r) of the mapp,.. We shall choose
s in such a way that the resulting cocycle,, agrees with that constructed in [1], 83. If
h = diag(hq,...,h,) andh’ = diag(h},...,h.) are inG(yy) then, by [1], §3, Theorem 7(a),
we have

(2.3) or(h, h') =] [ (s, ).
i<j
The restriction ofs to N(v9) is @ homomorphism by [1], 83, Theorem 7(e) and we let

N*(v) =s(N(v)) foranyy € P. ThusN*(v) is a subgroup of(r) isomorphic taN () and we
haveQ(vy) = G(v)-N*(v) andG(y) N N*(v) = {e}. FurthermoreN*(v) is a normal subgroup

of Q(v).
For~ € P we define
(2.4) G*(7) = {9 € G() | det(g) € (F*)*}
and
(2.5) Ga(v) ={(91,---,9x) € G(y) | det(g;) € (F*)*}.

Let Z(v) denote the center &¥ () and putZz(y) = Z(v) N Ga (o). N
It will be convenient to have a formula for the commuterz] = gzg~1z7' wheng e G(r)
andz € Z(r). Using (2.3) it is easily found that

r—1

(2.6) [9,2] = (det(g),A)"
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THE TENSOR PRODUCT OF EXCEPTIONAL REPRESENTATIONS 745
wherep, () = A, andp,.(§) = g. As a consequencé,(G(r)), the center of3(r), is given by

~ [ Z(r) if risodd,
@D Z(G(r) _{Z(r) if r iseven.

It also follows from (2.6) that the grouﬁ(r) is abelian regardless of the parity:of

Let us giveG(r) the weakest topology under which all polynomial functions frGix) to F'
are continuous. With this topologg(r) becomes ar-group, that is, a Hausdorff topological
group which has a neighborhood base at the identity consisting of compact open subgroups.
There is no notion of a polynomial function @i(r), but it is nevertheless possible to equip it
with a topology under which it becomes &group and such that the map in (2.1) becomes a
local homeomorphism. For a discussion of this see [11], §5. In future we shall always understand
the metaplectic group to carry this topology.

3. Metaplectic tensor products

One of the basic constructions in the representation theoty(ef is to start with a list of
representations, one for each@fr;),...,G(r;), and then form their tensor product to obtain
a representation of(vy), v = (r1,...,7%). Sinceé(y) is not simply the amalgamated direct
product of the varioué(rj), this construction cannot be carried over directly to the metaplectic
case and our aim in this section is to find a replacement which shares as many of the useful
properties of the tensor product as possible.

To be more precise we first require some notation and terminology. Ij,$ot, ..., k, H; is
a subgroup of}(rj) containingus, then we define

H; ;EHQ;E ;Hk :pr_ll_k..._krk (prl(Hl) Koo Xpm-(Hk))a

wherep,, (Hy) x --- x p,, (Hy) is regarded as a subgroup@fry + - - - + ) via the standard
block-diagonal embedding @& (r1) x --- x G(rx) into G(r1 + --- + r). In particular, with
v =(r1,...,r), We haveG(y) = G(r1) X --- X G(ry).
We shall make use of the standard terminology of representation theory without explanation
in what follows. For concepts specific to the representation theofygnbups we shall follow
the usage of [2]. Further, a representatio:¢fy) will be calledgenuinef it is not trivial on ..
Givenr; a representation (ﬁ‘(yj) for j =1, 2, we aim to define a metaplectic tensor product

71 @ 7y Which is to be a representation@(yl) X 6(72). In [10], Huang addressed this problem
for the real metaplectic group in the case wherandr, are irreducible and in [6] the problem is
briefly discussed over a non-archimedean field, again for irreducible representations. This is too
restrictive for our applications and we shall focus instead on genuine admissible representations
of finite length.

If 7 is a representation of a grodpwith centerZ andw is a character of then we say that
m admitsw if there is a non-zero subquotientofon whichZ acts viaw. If G is an/-group and
m is an admissible indecomposable representatiof of finite length thenr admits one and
only one character of, which we shall denote by, .

The following lemma is standard with “irreducible” in place of “indecomposable” and the
usual proof is easily modified to cover the more general case.

LEMMA 3.1.— Let G be a group, H a normal subgroup of finite index ang an
indecomposable representation@f Letc be any summand af| ; and suppose that, if ¢ H,
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746 A.C. KABLE

thenHompy (Y0,0) = {0}, whereYc denotes the conjugate representatior(h) = o(g~1hg).
Thenrm & indg(a). Conversely, it is an indecomposable representationffof finite length
which satisfies the above condition, thern$ () is indecomposable.

The groupG2(v) (see(2.4)) is a normal subgroup @ (y ) andG(v)/G2(v) = F* /(F*)2.
If 7 is a representation of a subgroup@(y) conta|n|ngG2( ) then we shall denote by?
the restriction ofr to G2(v). Our next task is to determine how? decomposes when is an
indecomposable representatiorﬁ‘n(h).

Suppose that is a finite-dimensional indecomposable representati(ﬁ‘(ej. Using the well-
known classification of finite-dimensional indecomposable representatiofi$19fwe easily
see thatp\Z(T) is indecomposable and that a cyclic vector foremains cyclic forp\z(r)

Furthermore, if a finite-dimensional representatiorﬁ()f) has a cyclic vector and admits only
one character then it must be indecomposable.

PROPOSITION 3.1. — Lety € P, = || and suppose that is odd. Letr be an admissible
indecomposable representation éf(’y) of finite length. Thenr? is indecomposable and if
x € (G(7)/G2(v))", the group of characters of/(y)/G2(v), and Homa(w)(x @ m,m) # {0},
theny = xo, the trivial character. Moreover, we have

. 1G() 2\ ~
1nd52(7) (7‘(’ ) = EBN AX Q.
XE(G(v)/G2(7))

Proof. —~We know from (2.7) tha (G(r)) = Z(r) whenr is odd and so
s(tl,) € Z(G(r)) NG(y) C Z(G(y)) forallte F*.

Sincedet(s(t1,)) =t" andr is odd, we may choose coset representatlveél(o,r)/G2( ) from
Z(r). The restriction toZ (r') of the character o/ (G(v)) admitted byy ® = is X\ ﬂ\g(r)
and this equals;,r| Zr) if and only |fX\ |s trivial. Combining these two observatlons proves
the second claim.

To show thatr? is indecomposable we shall in fact prove morebDifis aéQ(y)-submodule
of E, thenD is stable unde€(v). Suppose not. Thef cannot be stable undetZ(r)) and
so we may choosé € D such that)’ = spanc{m(z)¢ | z € Z(r)} is not contained inD. We
claim thatV” is finite-dimensional. Ip is the length ofr, then(r(2) — wx(2))? Ex = {0} for all
= € Z(r) and this implies that, for everye Z(r),

spanc{7(2°) | c € Z} =spanc{7(z°) | c=0,...,(p— 1)},

where the spans are taken in the aIge]EEde( )(

such thatr(z)¢ = £¢ provided thap,.(z) € (1 + P}Q)IT, wherePr denotes the maximal ideal
in the ring of integers off". The groupF > /(1 + 7?1{:) is finitely-generated and if we choose
21,...,2 € Z(r) so that{p,.(z1),...,pr(2)} generates it, then

V =spanc{m(2{)m(252) - w(25°)€ | ¢ =0,...,(p— 1)}

which is visibly finite-dimensional. Now” has a cyclic vector, by its very definition, and admits
only the charactew,.. By the remarks made above on the representation theo&(of it

E.). Sincer is admissible there is sonye> 0
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THE TENSOR PRODUCT OF EXCEPTIONAL REPRESENTATIONS 747

follows first thatV' is indecomposable and secondly that= spanc{r(z)¢ | z € Z»(r)}. But
Z5(r) € G2(v) and hencéd/ C D, a contradiction. This proves the claim and with it the first
statement of the proposition. B B

Finally, the isomorphism is well known, relying as it does simply on the factdtiay /G2 ()
is abelian. O

PROPOSITION 3.2. — Let v € P, r = |y| and suppose that is even. Letr be a genuine

admissible indecomposable representatiod¢f) of finite length. Suppose thatis any of the
indecomposable summandsit Then

G(v)
(7)(

m=indZ (o),

x @27 forall x € (G(y)/G?(y)) and 7% =
thenHomGQ( )( o) ={0}.

~ ~ g B "'2
9l G20y Moreover, ifg ¢ G=(v),

Proof. —Sincer is even,Z(r) C G*(y) and it follows from (2.6) thaZ () is central inG ().
Sinceos is an indecomposable admissible representatio@dfy) of finite length, it admits a

unique character,, of Z(r). Sincer is genuine, so is and hencev,. If g € G(v), then for
t € F*, we have

wag (s(t1,)) =wo (g7 "s(t1,)g) = (det(g),t)" ™ wy (s(¢1,))

on using (2.6). Thus ifvs, = w,, then (det(g),t)“iz 1 for all t € F*, which implies that
det(g) € (F*)2. From this we conclude that, if ¢ G?(v), thenHomg, _ (%0,0) = {0} and
consequently an appeal to Lemma 3.1 shows that

G(v)
NG

7r_1nd

We have thus established the first and last claims of the proposition. The second follows from
the first by a purely formal argument and the third from the first by an appeal to the Mackey
subgroup theorem. O

The groupG2 (1) x G%(72) is isomorphic to(G2 (1) x G%(72))/B, where B = {(e;€) |
e€uxt. Ifmisa genume representaﬂon@(yl) andm, is a genuine representation©f),
then B acts trivially on7? ® 73 and so this may be regarded as a genuine representation of
G2(y1) X G2(y2). If wy is a genuine character & (1) andw, is a genuine character &k (s),
then we obtain a genuine charactgr® w, of Z(r) X Z(s) by a similar construction. Given
charactersu; andws, of groups which contairfg(r) and 22(3), respectively, we shall allow
ourselves to writev; ® wo for the tensor product, in this sense, of their restrictionggt(r) and
Zy(s). Note thatZs (|y1]) X Za(|72|) acts onw} @ 73 via the charactev,, ® wr,. These remarks
may be extended to the groGf{~1) x G2(v2) since it is isomorphic t6G(y1) x G2(y2))/B.

THEOREM 3.1. — Let7; be a genuine admissible indecomposable representanoﬁ(qj)

of finite length forj = 1,2, and putr = |y1| + |72|. Suppose that is a character of Z(G(r))
such that

(31) W‘EQ(T) = (wﬂ'l ®Wﬂ'2) ‘22(’[')'
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Then the representation
GO XGle) (2 2
M=indz » 20 (mf ®73)

has an indecomposable summand on whittG(r)) acts byw. Any two indecomposable
summands ofl on whichZ(G(r)) acts by the same character are isomorphic. The restriction
of an indecomposable summandIbfto G2(v1) x G2(v,) is isomorphic to the direct sum of
[F>:(F*)?] copies ofr? ® w2 if both |y;| and |y2| are odd and tar? ® 73 otherwise.

Proof. —If G is a group,H is a normal subgroup of finite index adds an intermediate group
with J/H abelian then it is easy to check thatl% (p|z) = @XE(J/H)AindS;(X ® p) for any

representatiop of .J. If we takeG to be G(m1) X G(72), H to be G?(11) X G*(72), J to be
G (1) x G%(2) andp = 7; ® 72 then the above hypotheses are satisfied and we obtain

II

1%

. 1G(y1) X G(32) )
~ @~ Alndé(ﬁl);52(72)((x®7r1)®7T2)-
X€(G(v1)/G2(711))

If go € G(72) then we use the symba,, to denote the character 6f(v,)/G2(y1) given
by x4, (91) = (det(g1),det(g2)). The non-degeneracy of the Hilbert symbol implies that every
element of( G(71)/G? (1)) arises in this way and, by (2.2), we hayg' g1 g, = Xg2(g1)g1 for
all g; € G(71) andg, € G(v,). From this it follows that, ifp, is a representation @ (~,) and
ps is a representation @i2(v,), then9:92 (p; @ py) = (xg, © 9 p1) © 92 ps for g, € G(v1) and

g2 € G(72).

If g2 € G(’Yz), then

G(m) X G(y2) 2\ v i 1G(11) X G(72) 9t 2
B % G (Yo ® ) @72) Zind oz P (m@ % )
~ indg(’h) X G(y2)

2
- 5(%);52(%)(7“ ®7T2)

. -1 .
since’> 73 = 2. Thus, if we put

_ i 1Gy) X G(32) 2
I, = 1nd(~;(%);(~;2 () (7r1 & 7r2),

thenII = H?[FX:(FX)Q] and it follows that it is sufficient for us to prove our claims with in
place ofII.
If both |v1| and|v2| are odd, them? is indecomposable by Proposition 3.1 andrsa» 73 is

indecomposable. If we takg € G(72) ~ G2(y2), then

Homg <z (% (m @7F),m @ 73)

o Homa(%)(xg2 ®m,m) @ Homéz(w) (7’(’%,71’%) = {0},

where we have used Proposition 3.1. Lemma 3.1 then impliesithat indecomposable. Since
r is even, (3.1) determines uniquely and it is equal to the character by whi€hG(r)) acts
onII;. The last claim follows from the Mackey subgroup theorem.

If either |y1] or |v2| is even, then we may assume without loss of generality|th&ts even
(otherwise we would make the initial reduction step leadingltowith the roles ofy; and~,
interchanged). Let, be an indecomposable summand9f Then from Proposition 3.2 we have
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~ . G (1) X G(y2) g2
= @~ ndz 5 Golny (M & 7 02)
92€(G(v2)/G?(2))
~ Gy )XG(’Y2)
= @ ind< ) % Bt )((X®771)®02).

XE(G(n)/G2 (1)
Let us put
. 2G(71) X G(y2
Y= deEz ; . ng )) (x®@m)®o2).
Since, by Proposition 3.2, all the conjugatesogf are distinct, it follows as above that,
is indecomposable. Ify;| is also even, then Proposition 3.2 implies tha® m; = m; for
all x € (G(n)/G2(m))" and soll; = xEF ™ 7)) Again ¢ = |y,| + || is even, (3.1)
determinesv uniquely and it does equal the restriction of the central charactet,gfto
Z(G(r)). Computing the restriction of,, to G2(v,) X G2(2) in stages one finds that it equals
77 @ 73 and the theorem is proved in this case.

Finally, suppose thaty.| is even but that71| is odd. Then = |1| + |72 is odd and so the
groupZ(G(r)) = Z(r) is contained inG(v,) X G2(v,) and is central |rG(71) X G(v2). Thus
Z(G(r)) acts onX, via the restriction of the charactéy ® wx,) ® w,, t0 Z(G(r)). Since|y|
is odd, this restncuon determingsand so the various,, are distinct. Moreover, ag runs over
(G(11)/G*(71))", the restriction of Y ® wy, ) @ wy, to Z(é(r)) runs over all characters that

satisfy (3.1). This proves the first two statements of the theorem in the final case and the last one
follows as above. O

DEFINITION 3.1.— Letr; be a genuine admissible indecomposable representat'@’m;ﬁ
of finite length forj = 1,2, and put- = |y1| + |2|. Letw be a character of (G(r)) that satisfies
= (Wr, ®Wn, )|

wlz, (r) Za(r)"

Then we shall denote by, ®,, m any indecomposable summand of the representétidefined
in the statement of Theorem 3.1 on whiglG(r)) acts by the character.

We require a few details about the constructionmgf®,, 72 drawn from the proof of
Theorem 3.1. To avoid referring directly to the proof in future, we isolate these in the following
result.

COROLLARY 3.1. - Let hypotheses and notation be as in Definitioh
1. If |y1| and|y2| are both odd, then

G(m) X G(72) 2
1 @y Mo de( 03 G?(;) (7r1 ® 7r2).

2. If |y1| and|v2| are both even, then

} JGON XG0
M@y Hindz s o o (T ©02),

whereo is any indecomposable summandrof
3. If |41| is odd and .| is even, then, for each, there is a unique indecomposable summand
oy of 72 such that

) (G XG0 .
m®,m 2 indg o B (M ©02)
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This summand is determined by requiring that the conditien (w,, ® w,, )|
A similar result holdsmutatis mutandisf |y, | is even andy,| is odd.

2@y 0ld.

Proof. —This follows immediately from Definition 3.1 and the proof of Theorem 3.4

Next we shall state several propositions showing that the metaplectic tensor progheres
enough of the useful properties of the usual tensor product to make it an effective substitute. We
shall employ the notation introduced in Theorem 3.1 and Definition 3.1 throughout.

_ProPosITION 3.3. — Let  be a genuine irreducible admissible representation of the group
G(71) x G(v2) on whichZ(G(r)) acts by the charactep. Then there are genuine irreducible
admissible representations andms of @(71) andé(yg), respectively, such that= m; ®,, 7.
Conversely, any such tensor product is irreducible.

Proof. —In what follows only the converse implication will be required and so the direct
implication is left to the interested reader. We recall that restriction to and induction from a
subgroup of finite index preserve both semisimplicity and the condition of being of finite length.
Thus if 7; and 7 are irreducible, them? and =3 are semisimple, from which it follows that
72 ® 73 is semisimple. Hencél as in Theorem 3.1 is semisimple. Since®,, m < II is
indecomposable, by construction, it follows that it is irreduciblel

In the following proposition we use the notati@nfor the contragredient of the representa-
tion 7.

PROPOSITION 3.4. — Suppose thatr; is a genuine admissible representation @{yj) of

finite length forj = 1, 2, and thatw is a character of Z(G(r)) such thatr; ®,, T, is defined.
Thenw; ®,,-1 7, is defined and isomorphic to the contragredientgf,, .

Proof. —This follows from the fact that the operations of inducing from a subgroup of finite
index and forming the contragredient commutex

ProPoOSITION 3.5. — Suppose that; is a genuine admissible indecomposable representation
of G(v;) of finite length forj = 1,2, 3, and puts = |y1| + |y2| + |y3]. Then, for any charactep
of Z(G(s)) such tha‘w|52(s) = (W, ® Wn, ®wﬂ3)|52(s), we have
T1 Qo (T2 @T3) 2 (M1 @ T2) @y 3.

Here the two parenthetical metaplectic tensor products may be formed using any suitable
character of Z(G(|v2| + |v3])) and Z(G(|y1| + |12])), respectively.

Proof. —Using the definition of®,, and the transitivity of induction it is routine to check
that bothm ®,, (m2 ® 73) and (m; ® m2) ®,, w3 are isomorphic to any of the indecomposable
summands of

G (1) X G(72) X G(s)

2 2 2
G2(71) X G2(72) X G2(73) (7T1 ® ®7T3)

on whichZ(G(s)) acts by the character. O

Finally, we want to extend the definition af,, to allow factors which are not necessarily
indecomposable. We shall call a representatioof G(+) homogeneous it admits only one

character ofZ(G(v)). Thus indecomposable representations of finite length are homogeneous
and if 7 is a homogeneous representation, then it still makes sense towyritef =; is a

genuine admissible homogeneous representatiafi(qj) of finite length forj =1, 2, andw

4° SERIE— TOME 34 — 2001 N° 5



THE TENSOR PRODUCT OF EXCEPTIONAL REPRESENTATIONS 751

is a character of (G(r)) satisfyingw\gz(r) = ( o(r)?
requiring that®,, distribute over direct sums. It follows from~the Krull-Schmidt theorem in
this category that this extension is well defined. The properties ofgiven in Propositions 3.4
and 3.5 remain valid in the extended setting.

Wiy @ Wiy )| then we definer, ®,, m by

4. A parade of functors

The goal of this section is to introduce a number of functors whose properties will be essential
in the proofs of our main results. Although we shall complete the theory in a number of points,
most of what we say constitutes a review of known facts and so we shall be brief.

If G is any¢-group then we letR, . (G) denote the category of algebraic representations

of G. Suppose that,d € P and thaty < ¢. Then we leti,, 5: Rag(G(7)) — Raig(G(9)) be
the normalized induction functor arwi;ﬁ:Ralg(é(é)) — Ralg(é(y)) the normalized Jacquet
functor corresponding to the grougs(s), G(y) and N*(6,~) and the trivial character on
N*(6,7v). The definitions ofi., ; and ¢s -~ together with many properties enjoyed by these
functors are given in [3], beginning on p. 444. B

Let v,6 € P with || = |§| = r and~y < §. We define the mapis, : G(v) — R to be the
modular character of/(y) acting by conjugation oiV*(8,7). It is the same as the modular
character of3(v) acting onN (,~) and, after composition witp,, it also equals the modular
character ofGG(v) acting onN(4,~). If 3 is a third partition ofr and 5 < v < 4, then we
have N (4, 5) = N(d,v) - N(v,8) and N(6,7) N N(v,5) = {1}. It follows from this that
115,86 = 15, - 11, @S characters of eith€¥(3) or of G(3).

The following resultis a further example of the good behavior of the metaplectic tensor product
defined in Section 3.

PROPOSITION 4.1. — Let 7; be a genuine admissible homogeneous representatici &f)
of finite length forj = 1, 2, and suppose that; < §; andvz < é3. Then

P(61,02),(v1,72) (71—1 éw 71—2) = Ps1,m (71—1) éw Pd2,72 (772)

for every charactet of Z(G(|d;| + |02|)) for whichm; &, 7, is defined.

Proof. —Set § = (d1,02) and v = (y1,72). We begin by applying Theorem 5.2 of [3]
to compute the composition aps .~ with induction from G(8,) X G%(65) to G(5). Since
we may choose coset representatives @&1(d,) ~ G(d,) from G(12), there is a single
(G(81) X G%(6,),G(v) - N*(3,)) double coset irG(d). Using this observation, we obtain an
isomorphism of functors

(4.1) Q5 © indg(&) XG(62) indg(’h) ;é(’Yz)
’ G

2
(1) XG2(82) G(m)XG2(r2) (#5104 © ¢ 3):

whereg?, | Raig(G2(d2)) — Raig(G2(12)) is the Jacquet functor with respect to the trivial
character onN*(d3,72). Also, \52(72) O Dby = 3, 4, O |52(52), where the vertical bars

represent restriction functors. If botby | = |y1| and|d2| = |y2| are odd, then it follows from
Corollary 3.1 that

& s G(81) X G(62) 2
T ®, Mo =2 1nd5(5]);52(62) (7r1 ® 772)
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and similarly for the representations éf(yl) and é(’YQ). In this case the Proposition follows
directly from (4.1).

If either |61] or |d2] is even, then we shall assume thé&i| is even, the other case being
similar. We may also assume that and s are both indecomposable, since both sides of the
proposed isomorphism respect direct sums. It follows from Corollary 3.1 that, for each possible
charactetw, there is an indecomposable summanaf 73 such that

T ®, T X ind=

G61) X G(2) (
G(61) X G2(52)

1 ®O’2).

With this choice ofr, we have

= ~ i gGn) X G(2) 2
(42) ©s,y (71—1 Quw 71—2) = 1nd5(11) ;52’&2) (‘p51 71 (7T1) ® P22 (0-2)) .

The representationps, ,(m2) will generally have several indecomposable summands, say
065,42 (T2) = p1 B - -+ & pi. The indecomposable summandsa@fare distinguished from one

another by the character via whiéh{|,|) acts on them. We fix a particular character among the
possibilities and let’; be the indecomposable summandp(gﬁfcorresponding to that character
for j=1,...,k. It then follows from Proposition 3.2 th@g &b 9y; and so if

we setr =v; & - -- B v, then

(43) 90%2,72 (W%) = @ v

9€G(72)/G2(72)

9EG(12)/G2(v2)

andZ(|y2|) acts on eacHr via a single character. If the character via whi¢ty.|) acts onv
was chosen correctly, then it follows from (4.3) and Corollary 3.1 that

= G G
(4.4) 93100 (1) B 5.0 (m2) 2 ndZNZED (i, (m) @),

In addition, 72 = ~ ~ 904, Since we can choose coset representatives for
2 = Dycin) @ 72 P

G(82)/G2(85) from G(72), and so

(4.5) (™) = @ 965, (00).
9€G (72) /G2 (72)

Sinceo, is indecomposable, it is homogeneous #id,|) and hencepgm2 (02) is homoge-
neous forZ(|v2|) and this group acts on each conjugate in (4.5) via a different character. Com-

paring homogeneous summands in (4.3) and (4.5) we see that there ig Eoﬁf(eyg) such that
03, ~, (02) = 9. Using this in (4.2) we obtain

G(71) X G(32) ‘
(4.6) Po(m Buma) 2indZ "IET (051, (M) @ ).
If [11] is eventhen (4.4) and (4.6) imply at once that, (11 @ m2) == @5, 1, (T1) B P55 7, (T2).-
If, on the other hand}y,| is odd, then the fact thaf (G(|d1] + |d2])) acts viaw on the left-

hand side of both (4.4) and (4.6) implies that 52(72) and this, in turn, gives the required
isomorphism. O
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Our next task is to discuss thle and ¥ functors introduced by Bernstein and Zelevinsky in
connection with their theory of derivatives. This theory is described in its fully elaborated form
in [3] after having been prefigured in [2] and [9]. At its heart is the subgrBgp) of G(r)
defined to be the stabilizer ifi(r) of the vector(0,0,...,0,1) € F" whenG(r) acts onF" on
the right in the usual way. The group(r) is called themirabolic subgroupf G(r). If s > r,
then P(r) may be regarded as a subgroupfs) via the standard embeddirg(r) — G(s).
We defineY,. = N((r), (r — 1,1)); Y; is equal to the unipotent radical &f(r). The image of,.
under the homomorphisgr N (vy) — N* () will be denoted by *.

Let us fix a non-trivial continuous additive characterf the field F'. This gives rise to a
character ofV (), also denoted by, whose value at the matrixq) is¥(ni2 +- - +np_1.,).
Sinces: N(y9) — N*(v0) is an isomorphismy may also be regarded as a characteN6f~).

We now introduce six functors as shown in the diagram.

U, U ot Pt

Raig(G(r—1)) Raig (P(r)) Raig(P(r —1)).
vt o~

Except for—, which Bernstein and Zelevinsky do not discuss, all these functors are the exact
analogues in the metaplectic setting of the eponomous functors described in [3]. It is important
to note that both the Jacquet functors and the extension functors are normalized by a suitable
modular character. The functdr— is defined as follows: ifr € R, (P(r)), thenG(r — 1)
preserves the space b -invariant vectors in the space ofand restrictingr to this subspace

yields an algebraic representatioré;(fr —1). This representation twisted by the inverse square-
root of the modular character af(r — 1) acting onY;* will be, by definition, ¥~ (7). If

Te HomF(T)(n,Tg), thenWw—(T") will simply be the restriction ofl" to the space ofs (7).

We note thath ~ ¥+ =1Id. ~

The basic properties of*, ®* and®*, as recorded in §3 of [3], remain unchanged in the
metaplectic setting. Indeed, they are formal consequences of the properties of induction and
Jacquet functors which were proved in [2] in the setting of genegabups. We also note that
all six functors take genuine representations into genuine representations.

The modular characters which appear in the definitions oflttend ® functors may all be
expressed as powers of the charagtktt | restricted to various subgroups 6fr). Since this
character will occur frequently, we introduce the abbreviatica | det |.

If 7€ Ralg(ﬁ(r)), then, following [3], we define a sequence of representatidfis €
Raig(G(r — k)) by 70) = U~ o (®~)*~1(7) for k =1,...,r, and call7*) the kth derivative
of r. If me Ralg(é(r)), then thekth derivative of the representaticmg(r) is also referred to

as thekth derivativeof = and denoted by(¥). In this case the notation is naturally extended by
settingr(®) = r.

Generally, in later applications of the discussion in this section we shall be dealing with
admissible representations@fr) rather than with general algebraic representations. However,

even ifr € Ra1:(G(r)) is admissible, the representatiﬁh;(m will not generally be admissible

and so we shall be forced to consider general algebraic representatidﬁ(srpflf G is
any (-group andry, 72,73 € Ras(G), then, for purely algebraic reasons, we have natural
isomorphisms

4.7) Homg (1 ® 72,73) 2 Homg (11 @ 72 ® 73,1) 2 Homg (11 ® 73, T2).
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The following propositions record the adjointness properties oltlaad® functors and their
behavior under the formation of contragredients.

PROPOSITION 4.2. — Let p € Rag(G(r — 1)), 7 € Rag(P(r)) and & € R (P(r — 1)).
Then

1. HomP( )(T,\P+(p)) Homg(ril)(\ll_(T),p);
2. Homy, (¥*(p),7) zHomg(r_l)(p,@*(T));
3.Homp,, )(<I>+(n),7) = Homg 1)(/1,(1)7(7'));
4. Homy )(<I>_(7'), K) = Homp )(T dt (k).

All the implied maps underlie natural transformations.

Proof. —Statements 1, 3 and 4 are in [3], Proposition 3.2. Siriteacts trivially on¥*(p),

the image of any homomorphism fro#™(p) to 7 is contained in the space &~ (7). Thus the
map from the right-hand side of statement 2 to the left given by composition with the inclusion
U~ (1) — 7 yields the required isomorphism. This makes the naturality claim clear.

PROPOSITION 4.3. — Let p € Rag(G(r — 1)), 7 € Rag(P(r)) and & € R (P(r — 1)).
Then
1. ‘If+(p) Lo Ut (p);
(T) U (7);
3. <I>+(f£) ~d-! ®(I)+(d®,‘€)
4.9- ( ) 2D (7).
The implied maps in statemeritsind 2 underlie natural transformations.

IIZ

HZ

Proof. —Statements 1 and 3 are in [3], Proposition 3.4 except for the naturality claim for 1;
however, this follows immediately from the proof. The proofs of 2 and 4 are similar.

5. Exceptional representations

In [12] the notion of an exceptional representatior@jfﬂ) is introduced and the fundamental
properties of these representations are established. Our first task here is to extend this notion to
the groupG(v) for any~y € P, as was suggested, but not systematically pursued, in [5]. Having
the metaplectic tensor product available will prove particularly convenient in this connection.
Secondly, we shall compute the derivatives of an exceptional representatitim ofAs far as
the author is aware, the first derivative has not previously been considered. Itis shown in [5] that
the second derivative is an exceptional representatiaf(of- 2); we shall identify it precisely.
Subject to a presumably unnecessary technical hypothesis, the remaining derivatives are shown
to be zero.

We begin with two technical lemmas.-fis a representation of arfygroup andr has a chain

T=Tp 2 M1 = 2=2m =79 =0

of subrepresentations such thafw;_; = 7; fori =1, ..., k, then we shall follow [3] in saying
thatr is glued fromthe representations, .. ., 7%.

LEMMA 5.1.— Let v, 6 € P with v < § and |§| = r and suppose thap is an algebraic
representation of (7). Thenys -, (i~,.6(p)) is glued from the representationig, -, (*'p) asw
runs overiV (y) ~ W (9).
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Proof. —The usual Bruhat decomposition 6f(5) with respect to the parabolic subgroup
G(v) - N(8,7) lifts to a decomposition ofi(5). Given this observation, the lemma is simply
a version of Bernstein's and Zelevinsky’s geometric lemma and it follows from Theorem 5.2
of [3] just as in that paper. O

LEMMA 5.2.—Let, 6 € Pwithy < § and|d| = r and suppose that € W (J) is such that
Y Ls o = I,y ON the groupZs (). Thenw € W ().

Proof. —This follows from a routine combinatorial argument based upon the explicit expres-
sion forps .. O

It follows from (2.3) thaté(l) =~ F'* x us and hence every characteiof F'* gives rise to a
genuine character a¥(1); we shall use the same symbol to denote both objecfsidfsuch a
character, then "] = (X\@(l)) ® - ® (X|52(1)) (r factors) is a genuine character @t (vo).

We may choose a charactemnf Z(G(r)) which satisfies

(51) w|§2(r) = X[T]|§2(T)'
Whenw andy as above sat|sfy (5 1), then we shall call thesmpatible For any compatible
andw we sety,., = Y ®, X @ --- @ (r factors). This is a genuine irreducible representation
of 5(70). We remark that, in contrast to the usual tensor product, the metaplectic tensor product
of one-dimensional representations is not usually one-dimensional.

We claim that“y, . = xr. for all w € W. It suffices to verify this whenw = s, for
some simple rootv. In order to see this we first note thét, = w, so thatZ(G(r)) acts on
“xrw andy, ., via the same character. Then the associativity of the metaplectic tensor product
(Proposition 3.5) reduces us to the case of two factors and, in this case, the claim is clear directly
from the definition.

For any~ € P with |y| = r and any compatible charactersandy we define

1/4

Ty (w ) = lyg,y (/J,,Y,,YO ® Xr,w) .

PROPOSITION 5.1. — Let, d € P satisfyy < § and |§| =r. Then

s (ms(x,w)) = @ o,y (" 115 »1y({4®Xr,w)~
wEW (v)NW (4)

Proof. —-From Lemma 5.1 and the fact th#f, ., = x . it follows that s ~ (75 (), w)) is

glued from the indicated constituents. Lemma 5.2 implies thatfti(ey) characters of these
constituents are all distinct and hence there are no non-trivial extensions between them.

Suppose that is a character 062(70). Then, following [12], we let;? be the character of
G(vo) defined byn?(h) = n(s(h?)). From any charactex of G(v) and roota = (i, 5) of G(r)
we obtain a charactey,, of F* by setting\, (z) = A(h,(z)) where

ho(z) =diag(1,...,1,2,1,..., 1,27 1,...,1).
1

A character) of Ga (o) (or of Z(G(r)) - G2 (70)) is calledexceptionaby Kazhdan and Patterson
if it satisfiesn? =| - | forall a € A.
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If we denote byw, the longest element di” with respect to our chosen positive system
then it is routine to check that°( 1/4 ® x!") is an exceptional character. Knowing this,
Theorem 1.2.9 of [12] implies that tyor every pair of compatible characierand w, the
representation . (x,w) has a unique irreducible subrepresentation. This subrepresentation is
isomorphic to the unique irreducible quotient of

() (" (e @ X)) Z g () (s @ Xi)

and is called by Kazhdan and Pattersomaceptional representatiokVe shall denote the unique
irreducible subrepresentation of,.)(x,w) by 9, (x,w). For anyy € P satisfying|y| = r we
define

(52) 197 (X7w) = ’uz"(i’)’ @ P(r),y (19(7‘) (Xa w))

and extend the scope of the term “exceptional representation” to include &l trew).

Although it has been convenient to allow arbitrary characteup to this point, changing is
equivalent to twisting the associated representation by a character and so no information is lost
if we restrict x to be the trivial character. I is a character oZ(G(r)) which is compatible
with the trivial character then we shall callsuitable If w; andw, are suitable characters, then
w1 - w2 is trivial on Z2( ) and it easily follows that there is a unique suitable characteisf
even and that there af& > : (F*)?] suitable characters if is odd. Ify € P andw is a suitable
character then we shall writ, ., in place ofd., (xo,w).

We remark that wherr is odd the various exceptional representatidys, for suitable
charactersy are all twists of one another. However, there doesn’t seem to be a canonical way of
choosing one of the twists.

THEOREM 5.1. — Letw be a suitable character angl, 6 € P be such thaty < § and |§| =r.

1. We haveps , (9s..) = 11, i/“ @00

2. There is an isomorphlsnﬁmw >~ X

3. The representationd, ., is isomorphic to the unique irreducible subrepresentation of

7T"/(X0>w)' .

4. 1f v = (y1,72), thend, , = 9, 0, ®uVy,.w,, Wherew; is a suitable character of
Z(G(|;])) forj =1,2.

. The contragredient of), , is isomorphic tod, 1.

6. The representation?m is isomorphic to the unique irreducible subrepresentation of

Z"/ 5(!“’57 ®19’Y7 )

Proof. —1. This is an easy consequence of the definitiofi,Qf.

2. When rewritten in our terminology, the so-called Periodicity Theorem (Theorem 1.2.9(e)
of [12]) asserts thap ) ,, (I(r) ) = 1, §/4 ® (X0)r.w- Combining this isomorphism with the
definition gives part 2.

3. Using parts 1 and 2 and the Frobenius reciprocity law we obtain

(€2}

Homgm (ﬂ’Y,wa Ty (Xo05 w)) = Homa( )(Iu"y}y{;l ® (X0)rws /‘;,%4 ® (XO)T,w)-

The identity map fromu;lv{]4 ® (xo0)rw 1o itself corresponds under this isomorphism to an
embedding ofd, ., into 7, (xo,w). Thusd, ., may be regarded as a subrepresentation of
7 (x0,w). Now, 7, (xo0,w) is an induced representation and it follows from the metaplectic
analogue of [3], Theorem 2.4 (a) and (d) thaf(xo,w) has no cuspidal constituents. In
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particular, 9., ., has no cuspidal constituents and, singg.,(9-.w) = 1, ,y{) ® (xX0)rw IS
irreducible, it follows thatd, ., is irreducible. Finally, we must show that,(xo,w) has no
other irreducible subrepresentations. Sglet 7., (xo,w) be an irreducible representation other

thand, .,. Using Proposition 5.1, the fact that Jacquet functors are exact and the observations
just made, we see that, ., (p) =" 11, ,y{) ® (x0)rw for somew € W(v) \ {1}. The transitivity

: P ~1/4 ; —1/4 ;
of induction implies thatr(, (xo,w) = Zw,(r)(ﬂ(r) ., ® my(xo,w)) and sm%(r)(u(r) L ®p)is
a subrepresentation af,.)(xo,w). Sinced,,, is the unique irreducible subrepresentation of
7(r) (X0, w), it follows thatHom&—(T) (19(1~),W7iy,(r)(u;1(7{;1 ® p)) # {0}. However, this space is

isomorphic to
—1/4 —1/4
Homg (1) ® Vyor (', @ p) = Homg ) (9.0, )

and consequently., ., = p. This isomorphism gives rise to a contradiction, since Lemma 5.2
shows thatp, -, (¢, ,.,) is not isomorphic ta . (p).
—1/4

4. Using Propositions 4.1 and 3.5 we obtain.,, (9, w; @w Frs.ws) = fiyrg @ (X0)rw and
consequently the representation, ., ®, 9., ., may be regarded as a subrepresentation of
7 (x0,w). From Proposition 3.3 this representation is also irreducible and hence it is isomorphic
to v, ., by part 3.

5. From Proposition 1.9 (d) of [3] and Proposition 3.4 we obtain the isomorphism
Ty (X0, W)™ = iy () (10 (1T/)4W ® (X0)rw-1). We know thatd, -1 is the unique irreducible
guotient of the right-hand representation in this isomorphism and that, under the pairing between
7 (x0,w) and its contragredient, the irreducible subrepresentation, must be paired with

an irreducible quotient. Therefoﬁmw = 9(),.-1- The general case follows on using part 4
and Proposition 3.4.

6. From part 3 and the exactness of induction we know that the representa,;(qr} )

Y,,.,) may be regardedas a subrepresentatl(m,gn(fug’7 ®7r7(><0, )) = 75(x0,w). The claim
now follows from an application of part 3.0

THEOREM 5.2. — Letw, be a suitable character of (G(r)). If r is odd, then

19(1)

(r),wr

= d71/4 ® ﬂ(r—l),wr,l 3
wherew,_, is the unique suitable character a{G(r — 1)). If  is even, then

ﬁgig,wr =P aed 1w .

Wr—1

where the sum is over all suitable characterszgf7(r — 1)).

i S .
Proof. —By definition, o) , =¥~ (¥().0. |5,

functors commute, this may be expressed alternativeﬂ%]z}s =0),r-1,1) (V) w,.)

) and, since Jacquet functors and restriction

o ‘5@—1)'
By part 1 of Theorem 5.1 we havg) (-—1,1)(V(r)w,) = ( =11 @ Y (r—1,1),w, @nd using
part 4 of the same result give, _ i) Jwr = ﬂ(r Vw1 @w, V(1)w1 = Fr—1),0,1 P, W1,
wherew, is a suitable character of (G(1)) = G(1). We haveji (., -—1,1y(g,1) = d(g) for
g € G(r —1) and so it remains to evaluaté,_1) ., , ®uw, w1)|5(r_1).
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Suppose that is odd, so that — 1 is even. Letr be an irreducible summand 6fT_1) wrq"
Then, according to Corollary 3.1,
indg(’r‘—l) X G(l) (O' ® (_4.)1)

V(r—1) w1 B, W1 = G2(r—1) % G(1)

and using the Mackey subgroup theorem to compute the restriction of this representation to
G(r—1)we find that it is

~ ~ e 5 r—1 ~
(?9("'_1)7“-))"—1 ®Wr (.4.)1) ‘5(7“,1) = lnd ( ) (U) = ?9(7'_1)7“-))"—]7

G2(r—1)
by Proposition 3.2. This proves the first isomorphism.
If r is even then — 1 is odd and so Corollary 3.1 shows that
~ o Gr—1)XG(1) 42
V1), Dy 1 EindZy 72 O @01)

and proceeding as in the previous paragraph we find that the restriction of ﬁ(&t@ 1) is
|s.omo_rph|c to@xe(é(rq)/&Z(rq))AX ®V(r—1),w,_,- This sum has the same terms as the one
given in the statement.O

In order to identify the second derivative 6f,, ., precisely we require some preliminary
observations. It follows from (2.6) that(r) centralizes every subgroup & (r). Consequently,
if we apply a Jacquet functor with respect to any subgrouly tfr) to a representation a(r)
then the result may be regarded as a representatiﬁ(m)f This remark applies, in particular, to
the derivatives. In order to make use of it, we next describe all genuine charac#fs of

If ti,to € F* then (2.3) shows that, (t;1,,to1,) = (t1,t2)"""1/2 and it follows that
Z(r) = G(1) 2 F* x puy whenr = 0,1 (4). Whenr = 2,3 (4), Z(r) may be identified with the
groupH with underlying sef"> x yu, and multiplication lawit,, e1][ts, £2] = [t1t2, (t1,t2)e162].
We have already observed that, in the first case, the set of genuine characférs isfin one-
to-one correspondence with the set of characteids’6fIt is a remarkable fact that, after fixing
an additive charactep of F', the same is true in the second case also. Recall that in [16], Weil
associates to each additive charaetesf F' a complex numbet (). If ¢ is such a character
anda € F*, then we puty),(x) = ¢ (ax) for all z € F. The essential property of for our
purposes is expressed by the equatiorb) = v (Vap) (%) (%) ~1y(1p) ! for all a,b € F>.
Following [8] we introduce a function o™ by puy (a) = v(v)/v(1,). With this notation, the
above relation may be written &8, b) = j1,, () (b) iy (ab) =1 If x is a character of"*, then
we definexy by x4 ([t €]) = x () ()€ for [t, €] € H. One sees thaty, is a character off and
that all genuine characters &f arise in this way.

What we actually require is the character via whi¢t2) acts onﬂgg e

unique suitable character &f(G(2)). Fortunately, this has already been computed by Gelbart
and Piatetski-Shapiro.

, wWherew, is the

LEmMmMA 5.3.— Let wy be the unique suitable character &f(G(2)). Thenﬂgg s

dimensional andZ(2) acts on it via the charactefyo ), wherey is the additive character of”
with respect to which the derivative is formed.

Proof. —This is Theorem 2.2 of [8]. Note that it follows from the definitiong¥, .., together
with Proposition 2.3.3 of [8] that)(,) ., is the representation which Gelbart and Piatetski-
Shapiro denote by,,. O

is one-
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THEOREM 5.3. — Letw, be a suitable character of (G(r)). Then

()
V(o) on

= d_1/2 & ﬂ(r—Q),wr,ga
wherew,_» is related tow, by the equation
(53) Wy = (MT*Q ® (XO)T/J) ‘Z(é(r))’

wherey is the additive character of” with respect to which the derivative is formed.

Proof. —The second derivative functor factors through, (._22) and we begin with the

. . ~  —1/4
isomorphismsp .y, (r—2,2) (V(r),w, ) = 'u“(r),/(r—2,2) ® YV (r_2,2)w, and

(5.4) D r—2,2) 00 =V (r—2)0 Do U (2)
which are furnished by Theorem 5.1. Herds any suitable character ¢f(G(r — 2)) andws
is as in Lemma 5.3. Fog € G(r — 2) we haveys(,,(r—2,2)(9) = | det(g)|* and so it remains
to apply the Jacquet funct®,., (G(r — 2) X G(2)) — Rais(G(r — 2)) which corresponds to
the character) of N*(2) to the right-hand side of (5.4). This may be done in stages by first
restricting the representation @(r — 2) X G2(2) and then applying the Jacquet functor with
respect tap in the second factor.

By Corollary 3.1 we may choose an irreducible subrepresentatm@)m so that

Q ~ . 1G(r— ~5
Vir—2)0 Ouw, V(2),w, = mda( 2) X G(2)

(r—2) ’;52 2) (19(7‘—2),1/ & 0)7

and hence

14

D Wio.20)

9€G(2)/G2(2)

P e@9i-2.) 0%,
9€G(2)/G2(2)

(55) (19(7“72)# éwr 19(2)1“’2)‘5(7"72);52(2)

1%

where, as beforey, (h) = (det(g), det(h)). Sincer andr — 2 have the same parit (G(r)) C
Z(G(r —2)) x Z(2) and (5.5) implies that, for alj € G(2)/G?(2), we have

(56) Wy = ((Xg@]/)@w(gg))‘z(é(r))o

From Lemma 5.3 we know thaﬁtgm is one-dimensional and that(2) acts on it via(xo) -
Thus, after applying théN*(2), ) Jacquet functor, all the summands in (5.5) give zero except
for the one which satisfies s,y = (xo). This remaining summand yields the representation

Xg @ VU(r—2),,- This, in turn, is isomorphic t@},_s) ., _, Where, according to (5.6}, 2
satisfies (5.3). O

In the following theorem the assumption thatis not dyadic is expected to be unnecessary.
That it is so would follow from a fully elaborated theory of the trace formula for the group
G(r) (cf.the remarks in Section 4 of [7]). At present it seems that the necessary facts are known
only whenr < 3 but, when they are established in general, the hypothesis may be removed. The
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restriction to non-dyadié’ in the next section enters only through this theorem and so it could
be removed at the same time.

THEOREM 5.4. — Let w be a suitable character o2 (G(r)). Thenﬁgi; _=0.1f Fis not
dyadic, themgf)) L=0for3<k<r.

Proof. —Since thekth derivative functor factors through), (- —x.x) andy). (r—k.k) (I (r).w)
isatwist ofd (. _p) o, Quw Y (k),w,, DY Theorem 5.1, we are reduced to showing t?fé}wk =0.
For k = 3 and anyF' this is Lemma 6 in Section 4 of [7]. Assumirigis non-dyadic, we instead
use Theorem 1.3.5 of [12]. To see how it applies, observeﬂft%ywk is the space of Whittaker
functionals on?dy, ... According to [12], it remains to show that the symmetric groupkon

letters has no free orbits oiZ./2Z)* whenk > 3. This follows at once from the pidgeonhole
principle. O

6. Themain results

Throughout this sectiony and v will be suitable characters of(G(r)). The burden of
notation will be quite heavy and, in order to lighten it as far as possible, we shall denote the
exceptional representatiafy, ., by ¥, ., if w must be specified and by, if not. Since all
exceptional representations are genujneacts trivially on the inner tensor produgt,, ® 9, ,
which may therefore be viewed as a representatiari(ef. As explained in the introduction, we
shall study the space 6f(r)-invariant linear functionals o\, , ® ¥, , ® 7 for 7 a representation
of G(r). This space will be denoted b(w, v; 7), abbreviated t& (w; ) if w =v.

For the reasons discussed at the end of the previous section we must presently assime that
is not a dyadic field or that = 2 or 3. For the rest of this section we assume, without further
notice, that one of these two conditions holds true.

If ™ € Raig(G(r)) then we shall refer ta(V), ... 7("=1) as theintermediate derivativesf =
(that is, intermediate between®) =  and the last derivative(™).

DEFINITION 6.1. — Letr € R,1,(G(r)) ands € C. We say thatr is general with respect te

if no non-zero subqguotient of any intermediate derivative bfis central character, satisfying
a2 =d-2s-1/2.

It will be convenient to make a couple of simple observations which will be used repeatedly in
what follows. First, the non-genuine character is trivial on Z;(r) and hence we always have
(w-v)~! =w-vregardless of the parity of Note that whem is odd it isn’t necessarily true that
w~! = w. Secondly, the restriction of the modular charagtgs (.1 1) to P(r) is equal tod.
Finally, we remark that ify € I theny, .,, which we have previously defined to be a character
of G(7), extends to a character 6K~) by declaring it to be trivial oriV*(v). The extension is

equal to the modular character of the gr(@l@y). We shall use the same symbol for the extended
character.

THEOREM 6.1. — Suppose that € C andr is a homogeneous admissible representation of
G(r) of finite length which is general with respect ¢0 Then the dimension of the space of
G(r)-invariant functionals on the representation

o ® i(r—1,0),(r) (H(r), (r-1,1) ®Vr-1,1),0) @ T
is at most the dimension of the space of Whittaker functionats on
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Proof. —The proof will be a variation on the proof of Theorem 5.1 in [5], keeping track of the
exceptional parameter values.(l§ - v) ® w, is not trivial onp,.(Z(G(r))), then the space in
question is zero and the claim is clear. We assume from now or{dhat) ® w, is trivial on
pr(Z(G(r))).

Suppose that is odd. Then the space 6f(r)-invariant functionals is

(6.1) Hom&—m (197",0.1 ® i(r71,1),(r)(Mfr),(rq@) RV (r_1,1),0) @, 1)

= Homg(r) (V0 @, i(r—1,1),(r)(#(_3,(r_1,1) @D (r—1,1),0-1))

o Hom@(r—l,l) (ﬂr,w &, ’U/(;;(T—l,l) ® \IJ+(19(T_1,1)7V71)).
Sincer is odd, the representations in the first and second places in (6.1) have the same character
underZ(r) and, becaus@(r — 1,1) = Z(r) - P(r), the space in (6.1) is isomorphic to

(6.2) HOII]E(T) (ﬂr,w Qmd*® \IJ+(?9(T_171),1,*1 |5(r—1))) .

But (r — 1) is even and SO _1,1),p-1 = Vr—1,,_,, Wherev,_ is the unique suitable character
of Z(G(r — 1)). Thus (6.2) is isomorphic to

(6.3) Homl;(r) (ﬂr,w Rmd R \IJ+(?97_17,,T71 )) .

If » is even then we must reach (6.3) by a slightly different route. In this @asel) is odd
and so

. AGr—1)XG(1)
19("“_1)1)7’/71 = lndg(rfl);52(1)(197’*171%—1 ® XO)’

wherev,_; is any suitable character &f(G(r — 1)) and x, denotes the genuine character
of G*(1) which corresponds to the trivial character Bf¢. Thus, if we setQq(r — 1,1) =

Z»(r) - P(r), then by the transitivity of induction we have

r)

1.1y . (r=1.0) © Vr—1, 1 @ X0)

; s o 1G

Z(T7171)1(T) (M(T)7(T_1,1) ® 19(7“7111)7”71) = lndai
and repeating the steps which led to (6.1) starting from this representation we find that the space
of G(r)-invariant functionals is isomorphic to

—s +
Homéz(r—m) (19“" T By, (r—1,1) © U (-1, ® XO))'

Since theng(r)—characterS of the representations in the first and second placeslivthispace
agree, we find that it is again isomorphic to (6.3).

This completes the first part of the proof. From this point onwards the suitable characters with
respect to which the exceptional representations are formed will not play a significant role and
we shall allow ourselves to omit them from the notation.

For0 < k <r—1andz € C we shall consider the space

Hi(m,z) = Homp (T (1) @ (@7)F () @ Fy_p, 7).

The space (6.3), whose dimension we wish to estimate, is isomorpHig(te, 1 — s). This may
be seen by using part 5 of Theorem 5.1, (4.7) and part 1 of Proposition 4.3.
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As recorded in Section 3 of [3], we have a short exact sequence
(64) 0— (I)+‘I)_(’L9T,k) h— ﬂrfk h— \I/+\If_(19r,k) — 0

and, since the tensor product yields an exact functor on the category of vector spaces, we obtain
from this a short exact sequence

0— (W, _p—1) ® (@) (1) @ @T O (V)
—’\Iﬁ_wr—k 1) ® (9 )k(ﬂ)®19r—k
U (W, g1) @ () (1) @ T (9,_y) — 0.

Using this sequence and the definitiorof (r, z) we obtain an exact sequence
(6.5) 0 — Homp, (W5 (k1) @ (27)"(m) @ WU (9,_1),d°)
— Hy(m, 2)
— Homp (TF(Wr—p—1) @ (@7)F (1) @ 2T D™ (9,—1),d7).
Now

(6.6) Homz, (T (Wr—p—1) ® (@7)¥(m) @ UTT™ (9,_4),d)

~Homp, _, (W40, k1)@ (@) (m),d" ' @ U (0,1)))

=Homg . (U (T (9y—p—1) @ (27)¥(m)), d*3/* @ B, _pp—1)

>~ Hom A2 @0, @ 7D dF31 @ 00, y_)

= HomG(T k—1) (197L]€71 R PVyr_p—1® W(kJrl)’ dzf5/4)7

whered®d,._ ;1 denotes a finite direct sum of exceptional representations formed with respect to
various suitable characters. Here we have used (4.7) and Proposition 4.3 from the first line to the
second, Proposition 4.2 and Theorem 5.2 from the second to the third, the definitibns &f"

and the derivative functors from the third to the fourth and (4.7) and Theorem 5.1 from the fourth
to the last. All the exceptional representations in (6.6) transform via a suitable character under
Zo(r — k — 1). The representation(*+1) is of finite length and comparing thé,(r — k — 1)
characters in both entries of (6.6) we see that the space of homomorphigms prsowded

that no non-zero subquotient of**1) has central charactet, satisfyinga? = d2*=5/2, If this

proviso is satisfied then (6.5) shows thét(r, ) may be regarded as a subspace of the space

5(%1@71)(

(6.7) Homz (T (k1) @ (@7)F(m) @ @TD™ (9,—y),d7)

o —

= Homz U, 1) @ (@) (n),d* L @B (d @ &~ (9,—1)))

P(r— k)(

= Homp,,_, ) (@ (UF (0, 41) ® (27)"(n)),d* © (V)

=~ Homp, _, ), (A2 @9, 41 @ @~ (9y—k) @ (@)K (7),d?).

In this sequence of isomorphisms we have used (4.7) and Proposition 4.3 from line one to line
two, Proposition 4.2 from line two to line three, and finally (4.7), the definitio®ofand the
factthatY;* , acts trivially onU* (¢, _;_1) from line three to line four.

Up until now no use has been made of the standing assumption in this section thaf'@gher
not dyadic orr = 2 or 3. It becomes necessary when we seek to analyze (6.7) further. Applying
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the standard short exact sequence of functors given in Section 3 of [3] to the representation
®~(¥,_x) we obtain a short exact sequence

(6.8) 0 — (@) (i) — @ (W) — TT(0Y,) — 0.

Since ﬂi’jk =0 if j > 3, by Theorem 5.4, we see thatl the proper derivatives of the
representation(®~)?(¢J,_;) are zero. But, according to Corollary 5.14 in [2], a non-zero
representation must have at least one non-zero proper derivative and we conclude that
(®7)%(¥,—r) = 0. Hence (6.8) and Theorem 5.3 give

(6.9) O~ (0, ) =W (9P, ) =d 2@ Ut (9, ).
Using this isomorphism we see that (6.7) is isomorphic to

Homg, (T (WOr—p—2) @ (@) (1) @ Iy _p_1,d7),
which is, by definitionH,, 1 (r, z). Thus, if 7(*+1) has no non-zero subquotient with central
character,, satisfying o> = d?*=5/2, then Hy(n,2) may be regarded as a subspace of
Hit1(m, 2).

With the analysis ofH(r, z) complete, it is time to return to the space @fr)-invariant
linear functionals whose dimension we are seeking to estimate. In the first part of the proof we
saw that this space is isomorphic to (6.3), which is, in turn, isomorpHityiar, 1 — s). Since we
are assuming that is general with respect tg no intermediate derivative af has a non-zero
subquotient with central character, satisfyinga® = d=2°~1/2, The second part of the proof
shows that, under this conditioH,, (7, 1 — s) may be regarded as a subspaceipf ; (7,1 —s).
HenceH,y(m, 1 — s) may be regarded as a subspace of

(6.10) Hp—1(m,1—s) =Homg |, (¥ (do) ® (@7)" (7)) @ ¥1,d"*).

1
Bothd; and¥+ (1) are one-dimensional arié~ )"~ () is realized on the same spaceds.
Hence (6.10) has the same dimension as the space of Whittaker functiomals on

COROLLARY 6.1.— Let 7 be a homogeneous admissible representatiod@f) of finite
length which is general with respect 1g'4. Then the dimension of (w,v; ) is at most the
dimension of the space of Whittaker functionalsmon

Proof. —Combining part$ and6 of Theorem 5.1, we see thd} ,, is isomorphic to a quotient

of

. 1/4

i1, (Biy (v 1.1) @ 9 r—1,1) )
and hence there is an injective map fratw, v; ) into the space of:(r)-invariant functionals
on

. 1/4
Urw @ i(r—1,1),00) (), (r—1,1) © D r—1,1),0) BT

The result now follows directly from Theorem 6.10

Note that if 7 is a cuspidal representation 6f(r) then, by Theorem 4.4 of [3], all the
intermediate derivatives of are zero and sa is automatically general with respect to any
s eC. If 7 is also irreducible them(") = 1 and it follows from Corollary 6.1 that the dimension
of £(w,v; ) is at most one.
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The hypothesis of generality with respectittl in Corollary 6.1 is necessary. To see this, let us
taker to be the trivial representation 6f(r) with r > 2. Thenr carries no Whittaker functionals
but £(w,w™!;7) is exactly one-dimensional becaugg,, is irreducible and its contragredient
is isomorphic tad,. ,,-1. The first derivative ofr is the characted—'/2 on G(r — 1) and all the
higher derivatives are zero. Thads not general with respect ty/4.

The following result allows us to study the spag¥w,v;w) inductively when = is
parabolically induced from a smaller group.

THEOREM 6.2. — Let p be a homogeneous admissible representatiodz0f — 1) of finite
length. Ifr is odd then define a characterof F* by

(6.11) a(z) =wy(zl—1) " (w-v)(2],),

wherew,, is the central character of. If r is even, then define by (6.11)for z € (F*)? and
extend it in any way to a character @f*. Letm =i(,_1 ), (p ® «). If r is odd, then there is
an exact sequence

{0} — L(n;p) — Lw,v;m) — L(w',v/;pW),

wherer is the unique suitable character &f(G(r — 1)) andw’ andy/ are suitable characters
of Z(G(r — 2)) related tow andv by the equations

(6.12) w= (' ®X0)w)l Gy and v=("® o))l ,Gm

If r is even, thew = v and there is a spac® which completes the diagram

L(w;m)
v

with the row exact. Here/’ is the unique suitable character ¢f(G (r — 2)) and the direct sum
is over all pairs of suitable characterg andrn, of Z(é(r —1)). The spacé’ is independent of
the extension of from (F*)? to F* and if V is non-zero, therf (w; 7) is non-zero for at least
one choice of this extension.

{0} ——=D,, ., LOn,7m25p) L(; p0)

Proof. —The space’(w, v; ) is isomorphic to
(6.13) Homg ) (970 © Uy, @ ,1)
= Homg () (Vr0 @ Orsigr-1,1), 0 (F® 7))
~ Homg((r—1,1)) (Urw @ Urp, ¥ (@ ™).

We note explicitly that the symbg@lin (6.13) refers to the contragredientoés a representation

of G(r — 1). The characters of the representations in the first and second places in (6.13)
underp,(Z(G(r))) have been arranged to be equalrIfs odd then, sinc&((r — 1,1)) =
pr(Z(G(r))) - P(r), it follows that (6.13) is isomorphic to

(614) Homp(r) (197%‘, X ﬂr’y, \I/+(//)\))
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If r is even then (6.14) will be the space denotedibyin the statement. It evidently does
not depend on the extension @fwhich was chosen and since tf¥r)-intertwining property
required of elements of (6.14) is less restrictive than @{ér — 1, 1))-intertwining property
required of elements of (6.13)(w; ) is always a subspace of (6.14). Singér)/Z>(r) is a
finite abelian group, any element of (6.14) may be expressed as a sum of linear maps between
the underlying spaces each of whichfiér)-intertwining and transforms undef(r) by one of
the square-trivial characters. These summands are elements of the v&rigug wherer is
formed with the various possible extensionsxab F'*. If the original map is non-zero, then at
least one of its summands must be non-zero and this shows gt if0} thenL(w; ) # {0}
for at least one choice of extension.

After these observations it remains to analyze (6.14). We shall begin with the short exact
sequence

0— ‘b+q)_(19r,w) ®19r,1/ — ﬂr,w ®19r,1/ — \Ij+\p_(19r,w) ®19r,1/ — 0

which yields an exact sequence

(615) {0} — Homp(r) (\If+\I/7 (ﬁr,w) & ﬂr’y, \If+(ﬁ))
I HomP(r) (197“,0.1 & 791‘,1/7 \Ij+(ﬁ))
— Homp(r) ((I)J'_(I)_(ﬁnw) ® 19T7,,, \I/J'_(ﬁ)) .

The firstHom-space in (6.15) is easy to analyze. Indeed, by Proposition 4.2, statement 1, it is
isomorphic to

HomG(rfl) (d1/2 ®@W™ (197",0.)) QU™ (197“,1/)7 b\) = HomG(rfl) (d1/2 ® 197(“,12; ® 197(“,11/ X p, 1)

and, by Theorem 5.2, this is isomorphic&¢n; p) if r is odd and to®, . L(n1,m2;p) if ris
even.
We now turn to analyze the thiddom-space in (6.15). First, we have

Hom p ) (010 (0,.0,) @ 0., U (7))
= Homp(T) (®+q)7(19r,w) X ﬂr,m d ® \Ij/(\p))
= Hom;(r) (d_l ® \I/+(p) ® Vru, q""?(\ﬁr,w))

by Proposition 4.3 and (4.7). This, in turn, is isomorphic to

(6.16) Homp (7' @ ¥ (p) @y, d ™' @ PT(d®d~(9,.)))
=Homg (A2 @p2d (¥,,),d® @@w))

= HOIIlp(,,,,l) (dil/z XDp® (I)i(qgr,w) QP (197“,1/)7 1)7

where we have used Proposition 4.3 to reach the first line, Proposition 4.2 from the first to the
second and then (4.7) to reach the last line. From (6.9) and Theorem 5.3, we know that

B (0,0 = U (02) 24720 WD, o),

wherew’ is as described in the statement, and similarly witheplaced byv. Hence (6.16) is
isomorphic to
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Homp(,_1) (%2 @ p @ UH (9 5.01) @ UH (9 5,),1)
= HomP('r’fl) (d_3/2 ® \IJ+(79T—2,UJ’) ® \Ij+(79r—2,1/’)7 /p\)
= HomP(r—l) (dil ® vt (197“72,‘4;' ® 197“72#’)’ ﬁ)a

where the symbab now denotes the contragredientgf,._1). Finally, this is isomorphic to

Homg(,—2)(d™' @ Uy 2,0 @ Ur_2,, ‘Tf_(ﬁ))
= Homg(,—2) (d_1 Q-2 @Vp_g,,d ' ® \I’/_(\P))
=~ Homg(y—2) (V-2 @ Vr—2,r @ ¥~ (p), 1)
= L(w',v;pM),

where we have used Proposition 4.2 to reach the first line, Proposition 4.3 from the first line to
the second and (4.7) from the second to the third.

Our first use for Theorem 6.2 will be as an aid in understandifg, v; 7) when~ is a
representation of the principal series. For notational simplicity, we shall4ety, ..., x,) be a
character of7(vo) and writel(x) = i.,,(»)(x1 ® - -- ® x.-) for the principal series representation
of G(r) arising by normalized parabolic induction from

DEFINITION 6.2.— A charactex = (x1,.-.,x) of G(7) will be calledbalancedf there is
an involutionj — j* of the set{1,...,r} such that, for alll < j <r, xx7. = 1if j # j* and
2 1if j =4 '
X ifj=7"
THEOREM 6.3. — If L(w,v;1(x)) # {0} for some choice ofs andv, theny is balanced.

Proof. —We note that, ifr = 1 or 2, theny is balanced if and only if(x) has square-trivial
central character. Sinag., © 9,.,, transforms undey,.(Z(G(r))) by w- v, a necessary condition
for £(w, v;m) # {0} is thatw, =w - v onp,.(Z(G(r))). In particularw, must be square-trivial.
It follows that the claim is true when< 2.

We shall proceed by induction on Suppose that > 3 and thatC(w, v;I(x)) # {0}. By the
transitivity of induction we have

~ . 1G(r
I(x) = 1ndQE(27171)) (H(le e Xr—1) ® Xr)-

Ifwe setp =I(x1,...,Xr—1), thenw,(zI,_1) = H’;i X, (z) and it follows from the remarks in

the first paragraph that, (21, 1) - x»(2) = (w-v)(z1,) for zI, € pr(Z(G(r))). Thus, regardless

of the parity ofr, a = x,- is one appropriate choice to use in applying Theorem 6.2. We conclude
from that theorem that eithé¥(n;, 72; p) # {0} for some choice of suitable characteisandr,

or that £(w',v'; p(V)) # {0}. If the first possibility obtains then we conclude inductively that
(X1,---,Xr—1) is balanced. In particulaﬂ,_[;;i x; =1 and hencey} = 1. If we extend the
involutionj — j* of {1,...,r — 1} to {1,...,r} by settingr* = r then we obtain an involution
which shows thaj is balanced. This completes the induction step in this case.

Suppose now that the second of the above possibilities obtains. Using Corollary 4.6 of [3] (the
so-called Leibniz rule for derivatives) we see thét is glued from the representatiops =
I(x1,---,X¢,- -, Xr—1), Where the hat denotes omission. Side/’, v/; p(1)) # {0}, it follows
that we must have(w’,v'; pg) # {0} for somel. Then, by induction(x1,...,Xz,- -, Xr—1) iS
balanced for that value df In particular,]_[;;},j# X? =1 and, sinceH;:l X? =1, it follows
thatx?x2 = 1. Thus, if we take the involutiop— j* of {1,...,r} \ {¢,7} corresponding to the
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induction datum ofy, being balanced and extend itfa, ..., r} by setting¢* = r then we have
an involution showing thay is balanced. This completes the induction step in this case.

Itis not too hard to show that, i1, . . ., x, are square-trivial characters satisfyﬂﬁg:1 Xj =
w- v, thenL(w,v;1(x)) # {0}. Thus, in the definition of balanceg; cannot be replaced by;
if Theorem 6.3 is to be true.

The next result gives information on the dimension of the sgdce v; I(x)). It overlaps with
Theorem 6.1, but does not have exactly the same range of applicability, and the technique is
different. As usual, we caly regularif it is not fixed by any non-identity element of the Weyl
group; here this simply means that the characters. ., x,. are distinct.

THEOREM 6.4. — Suppose that = (1, . . ., x») is balanced and that? is regular. Then, for
anyw andv,

(6.17) dime (L(w,v;1(x))) < 1.

Proof. —We shall use induction on, beginning with the cases where=1 andr = 2. If
r =1 thenI(x) = x1 is a square-trivial character and so the dimensiorC@$, v;I(x)) is
one if y; = w - v and zero otherwise. Thus (6.17) holds in this case.=#2 then we have an
induction datumy = (x1, x2) which satisfies¢?x3 = 1 andx? # x3; in particular,x? # 1. Thus
L(n1,m2;x1) = {0} for all suitable characterg, andn.. Using Theorem 6.2 with = x; and
a = x2 We obtain an injectiorf (w; I(x)) — L('; Xgl)). Butxgl) is the trivial representation of
G(0) and hencel (w'; Xgl)) = C. Thus (6.17) holds in this case also.

Now suppose that > 3. We shall apply Theorem 6.2 with=1(x1, ..., x,—1) anda = x,.
First, assume thak? # 1. Thenw? = x; % # 1 and soL(n,n2; p) = {0} for all suitable
characters; andns. Theorem 6.2 then implies that there is an injection

(6.18) L(w,v;1(x)) — E(w’,l/’;p(l)).

As in the proof of Theorem 6.3V is glued from the representatiops = I(x1, ..., Xz - -
xr—1) foré=1,...,(r—1).If £ £ ¢ but the central characters pf andp, have equal squares,
then we would conclude thaf = x?,, contradicting the regularity assumption. Thus the squares
of the central characters of the are all distinct. It follows thap(!) = @2;11 pe and that at most
one of thep, has square-trivial central character.

Suppose thap, does have square-trivial central character; we claim that its induction datum
is balanced and that the square of its induction datum is regular. The regularity is clear. On the
other hand, we havE[;_; ,.., x? =1 and hencex? = 1. Let j — j* be an involution which
corresponds tey being balanced. Sincg? # 1 andx? # 1, k* # k andr* # r. Thus we may
define a new involutior — j' by j' = j*if j ¢ {k,k*,r,r*}, k' =r and(k*) =r* andj — j’
will be a second involution showing thgtis balanced (of coursg,— j* andj — j' might be
equal). Restricting — j’ to the set{1,...,7} ~ {k, r} gives an involution which shows that the
charactefx1,...,Xx,---, Xr—1) is balanced. Our claim follows.

From the argument of the previous two paragraphs we conclude that

r—1
(6.19) LW, v5pW) =@ LW,V pe),

{=1

that all but one of the summands on the right of (6.19) are zero (on central character grounds)
and that if one of the summands is non-zero then the induction datum of the correspanding
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is balanced and its square is regular. Thus if one of the summands is non-zero it is at most
one-dimensional by the induction hypothesis. Hence the left-hand side of (6.19) is at most
one-dimensional and it follows from (6.18) théfw, v;I(x)) is at most one-dimensional. This
completes the induction in this case.

Now, assume that? = 1. Theny? # 1 forall j =1,..., (r — 1) and so the involutiop — j*
of {1,...,r} which corresponds tq being balanced must satisfy = r. If » were even then
the restriction ofj — j* to {1,...,r — 1} would necessarily have a fixed point and this would
give us somg betweenl and(r — 1) such thaix? = 1. This is impossible and somust be odd.
Hence we have an exact sequence

(6.20) {0} — L(n,p) — L(w,;1(x)) — L(,V;p")

from Theorem 6.2. The central charactermofs square-trivial and thus if,, as above, had
square-trivial central character for sorthen we would conclude thaf = 1, thus contradicting
regularity. Therefore np, has square-trivial central charactéf.’, v'; p,) = {0} for all £ and
henceL(w’,v; p(V) = {0}. From this and (6.20) we obtain an isomorphigifw, v;1(x)) =
L(n; p). Since we have seen that = r, the induction datum op is balanced and its square

is clearly regular. Thu<(n; p) is at most one-dimensional, by the induction hypothesis, and
consequently(w, v;I(x)) is at most one-dimensional. This completes the inductive step in this
case and hence the prooft

THEOREM 6.5. —If wisanirreducible admissible representation@f2), thendim¢ £(w; )
< 1. If 7 is anirreducible admissible representation®f3), thendim¢ £L(w,v;7) < 1.

Proof. —If 7 is a cuspidal representation 612), then, as we have remarked previousglys
general with respect tb/4 and so Corollary 6.1 gives the claim, since cuspidal representations
have a unique Whittaker model. Otherwise,is a constituent of some principal series
representatiofi(x). Replacingy = (x1, x2) by (x2,x1), if necessary, we may assume that
occurs as a quotient @fy). ThenL(w; ) is a subspace af (w;I(x)) and so it suffices to show
that this last space is at most one-dimensional fox all

If £(w;I(x)) # {0} theny?x3 = 1. The required result follows from Theorem 6.4 unlgsss
irregular; that is, unlesg? = x3. Let us suppose that this is so. The only intermediate derivative
of I(x) is I(x)*), which is glued fromy; andx.. We cannot havg? = | - |~* for j =1 or 2
sinceX;* =1 and sol(y) is general with respect tb/4. By Corollary 6.1, the dimension of
L(w;I(x)) is at most the dimension of the space of Whittaker model&(qn and it is well
known that this is one.

We now consider the situation @#(3). First, observe that it suffices to demonstrate the claim
whenv = w™! since twisting bothr and the second exceptional representation by a square-
trivial character reduces the general case to this. i§ cuspidal then the claim follows from
Corollary 6.1 as before. Next suppose thaits a constituent of 5 1) (3)(p ® «), wherep is a
cuspidal representation 6f(2). According to Theorem 4.2 of [3], this induced representation is
irreducible and hence equal to By Theorem 6.2 we have an exact sequence

{0} — L(pip) — L(w,w h71) — L(W, (W) pW)
and sincep(”) = 0 it follows that £(w,w™;7) is isomorphic toL(; p). From the first part of
the proof, this space is at most one-dimensional and we obtain the required result for.these

Finally, 7 might be a constituent of some principal series representétjon In this case our
claim is the main result of [15]. This completes the proofl
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