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SEMISIMPLE STRATA
FORp-ADIC CLASSICAL GROUPS’

By SHAUN STEVENS

ABSTRACT. — Let Fy be a non-archimedean local field, of residual characteristic differentZr@nd let
G be a unitary, symplectic or orthogonal group defined dwgerin this paper, we prove some fundamental
results towards the classification of the representation& @fa types([8]. In particular, we show that
any positive level supercuspidal representatiodzafontains asemisimple skew stratyrthat is, a special
character of a certain compact open subgrou@ of he intertwining of such a stratum has been calculated
in[19].

O 2002 Editions scientifiques et médicales Elsevier SAS

RESUME. — Soit Fy un corps local non archimédien, de caractéristique résiduelle différereetisoit
G un groupe unitaire, symplectique ou orthogonal défini BurDans cet article, nous démontrons des
résultats fondamentaux pour la classification des représentati@giipdelestypes[8]. En particulier, nous
démontrons gue toute représentation supercuspidalé ke niveau strictement positif contient usiate
gauche semi-simple’est-a-dire un caractére particulier d'un certain sous-groupe ouvert compétt de
L'entrelacement d’une telle strate a été calculé dans [19].

O 2002 Editions scientifiques et médicales Elsevier SAS

1. Introduction

Let ' be a non-archimedean local field of residual characteristic different Zromguipped
with a Galois involution with fixed field, (here, we allow the possibilityy = F). Let V' be
an N-dimensional vector space ovErand leth be a nondegeneratehermitian form onl”. We
putA =Endr V and let be the adjoint involution ol induced byh. PutG = Autr V and let
o be the involution ofG given by g — g*}v, for g € G, o also acts on the Lie algebrévia the
differential,x — —z. Finally, we putG = G7, the fixed points o in GG, a unitary group defined
over Fy (possibly symplectic or orthogonal) and. = A°.

We are seeking a classification of the representatioris wifa the theory otypes[8]. Let =
be an irreducible smooth complex representatio6'ofhe representations of level zero of any
connected reductive group have been classified by Morris [15] and Moy and Prasad [17] so we
will only consider positive level representations here.

A basic result of Moy and Prasad [16] states thabntains amnrefined minimak -type that
is, a certain character of a compact open subgroug.dh this paper we both refine and make
explicit these constructions.

Y The research for this paper was partially funded by the EU network TMR “Arithmetic Algebraic Geometry” and by
the Sonderforschungsbereich 478 “Geometrische Strukturen in der Mathematik”, Minster.
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424 S. STEVENS

Let A be a self-dual lattice sequencelin(see 82.1). Associated tb, we have a parahoric
subgroupP, equipped with a filtration by normal open subgrolss, n > 0. The characters
of P" trivial on P"*! are parametrized bgkew strata]A,n,n — 1,b], for certainb € A_,
and associated to each skew stratum is a characteristic polyngfdigl. We call the stratum
fundamentaif (X)) # XV,

In [18], Pan and Yu show that an unrefined minimdltype is precisely a fundamental skew
stratum (cf. also Morris [13]). In fact we can also deduce thabntains some fundamental skew
stratum from our results here, using the notion of “optimal points” from [16].

We prove the following two results:

() If = contains a skew stratum whose characteristic polynomial has a factor which is not fixed

(upto sign) byo (we call such a straturé’-split) then= is not supercuspidal (cf. [11,7,3,
12)).
(ii) Otherwiser contains a “refined” fundamental stratum, calledemisimpleskew stratum.

The notion of semisimple here was proposed by the author in [19,20] and generalizes that of
a simple stratun(for G) from [6]; it is an orthogonal direct sum of simple or null skew strata
which have coprime characteristic polynomials.

In particular, these results imply that any positive level irreducible supercuspidal representa-
tion of G contains a semisimple skew stratum. Moreover the intertwining of such a stratum is
computable and conforms to the general philosophy of reducing to a smaller reductive group (see
[19]). It makes sense, therefore, to think of this as the first step of an iterative process leading,
eventually, to a full classification of the irreducible representations of classical groups. Further-
more, all of this strictly parallels the constructions f@rin [6], both formally and by explicit
transfer.

The first result is proved using the methodoafvers[8], following the techniques of [7] §3
(see also [3] 82). In particular, the idea of using covers here is due to Bushnell. The spirit of the
proof is also the same as the very general result of [12]; however, the language used there is very
different and a comparison of the notions of “split” has not been done.

Part of this work formed a section of my doctoral thesis, although the proofs have changed
considerably since then. | would like to thank my supervisor, Colin Bushnell, for setting me
on this project and for his support and encouragement. Thanks also to Gopal Prasad for some
very useful discussions. Particular thanks are due to Paul Broussous, for many explanations and
conversations; indeed, this paper owes a great debt to [3].

2. Preliminaries and statement of results
2.1. Lattice sequences

Let F' be a non-archimedean local field equipped with a Galois involutieith fixed field
Fy; we allow the possibilityF' = Fy. Let o be the ring of integers of’, pg its maximal ideal
andkr = op/pr the residue field, of characteristic different framWe denote, po, ko the
same obijects ik, and will use similar notation for any non-archimedean local field. We fix a
uniformizerw of F such thator = —wp if F/Fy is ramified,or = wr otherwise. We put
wy = we if F/F, is ramified,wy = wr otherwise; sao, is a uniformizer offy.

Let V' be anN-dimensional vector space over equipped with a nondegenerat@ermitian
form, with e = £1. We putA = Endr V' and denote by the adjoint (anti-)involution on4d
induced byh. Set alsa = Autx V' and leto be the involution given by — g1, for g € G. We
also have an action ef on the Lie algebral given bya — —a, for a € A (this is the differential
of the action on7). We putX = {1, ¢}, wherel acts as the identity on both and A.
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SEMISIMPLE STRATA FORp-ADIC CLASSICAL GROUPS 425

We putG = G® = {g € G: h(gv, gw) = h(v,w) for all v,w € V}, a unitary, symplectic or
orthogonal group oveFy, andA_ = A ~ LieG.

Recall from [7] 82, that am p-lattice sequencén V' is a functionA from Z to the set of
op-lattices inV such that

() A(k) CA(j) for k> j;

(i) there exists a positive integer = e(A|or), called theog-period of A, such that

wrA(k)=A(k+e)forall k € Z.

An o p-lattice sequenca is calledstrict if A(k) # A(k + 1), for all k¥ € Z. Note also that an
o r-lattice sequence is certainly ap-lattice sequence.

We also recall the definition of the direct sum of two lattice sequencés=ifV; © V; and,
fori=1,2, A’ is anop-lattice sequence it; of o m-periode, then the direct sum = A' @ A2
is given by

A(k) =AY (k)& A2(k), forallkeZ.

For L an op-lattice in V, we putL# = {v € V: h(v,L) C pr}. Then we call anop-
lattice sequencd self-dualif there existsd € Z such thatA(k)# = A(d — k) for all k € Z.

If A=A'® A?is adirect sum of self-dualx-lattice sequences such tHat= V7 L V;, then we
write A = A 1 A2,

Given anog-lattice sequencd in V, there are two operations we can apply to it. First, we
have “translation”: fork, € Z we defineA’ by A’(k) = A(k + ko), for k € Z. Second, we have
“normalization”: form € N, we defineA’ by A’(k) = A([£]), for k € Z, where[z] denotes the
greatest integer not greater thanThese two operations do not change the associated objects
which we describe below, except up to a renormalization of the index. In particular, we may
assume, where necessary, that a self-dyalattice sequencd in V' is normalized such that
A(k)* = A(1 — k).

Associated to am p-lattice sequenca in V', we have a decreasing filtratida,,(A): n € Z}
of A by o p-lattices, given by

an =a,(A) ={z € A: aA(k) CA(k+n)forallk € Z}.
Moreover,ag is a hereditary p-order in A anda; is its Jacobson radical. K is self-dual, then
eacha, (A) is fixed by and we puta, = a; (A) = a,(A)* = a,(A) N A_, which gives a

filtration of A_ by op-lattices.
The filtration onA gives rise to a valuation, on A, by

vp(z) = sup{k €l x€ an(A)},

with the understanding that, (0) = +co. If A is self-dual thenv, is fixed byo.
Given ano -lattice sequencé, we also put

U=U(A) =dao(A);
Up,=Un(A)=14a,(A), forn>1.

ThenU is a compact open subgroup@fand{Un: n > 1} is a filtration by normal subgroups.
Moreover, for alln > 1, we have an isomorphism

(21) an/anJrl :’ Un/Un+1
induced byx — 1 + . If A is self-dual, ther/, U,, are fixed byr and we put
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426 S. STEVENS

P=PAN)=UM*=UA)NG,;
P,=P,(A)=U,(A)*=U,(A) NG, forn>1.

As before,P is a compact open subgroup 6f with a filtration by normal subgroup8,, and
the isomorphism (2.1) induces an isomorphism ([14] (2.1.4)(b))

(2.2) 0y /a1 Pa/Pas1.

We define the normalizet(A) to be

A(A) = (| N5(Un(0)),

neZ

where N~ denotes the normalizer i@. An elementz € A is calledA-invertibleif = € &(A);
equivalently, ifxA(k) = A(k + va(z)), for all k € Z. Finally, note that ifA is self-dual, then we
haveR(A) NG = P(A).

Now we turn our attention to the characters of the grolips P,. We fix iy an additive
character ofy with conductotp, and put)r = 1 o trp, i, , Where tr denotes trace. Singg Fy
is at worst tamely ramifiedy has conductop . We also seths = yr otr/p.

For S ano g-lattice in A, we put

S* = {x € A: Ppa(zS)=1}.

Then, forA a lattice sequence, we haug(A)* = a;_,,(A), by [7] (2.10). If S is fixed byo,
then, puttingS_ = SN A_, we have

(2.3) S*NA_={zeA_: Ya(zS_)=1}.
Let™ denote the Pontrjagin dual. Then, foano -lattice sequence il andn > 1, we obtain

afR(A)-equivariantisomorphism
afn/alfn :> (Un/UnJrl)Aa

(24) b+ai_,— (’L/Jbi 1‘!—>1/1A(b($—1)), fOffL‘EUn).

Moreover, ifA is self-dual then (by [16] (4.19)) this restricts tdP4A )-equivariant isomorphism
ﬂ:n/ﬂffn :’ (Pn/Pn-ﬁ-l)Aa

(2.5) b+a_, — (w;:tz/JA(b(:v—l)), for:cePn).

2.2. Strata

DEFINITION 2.6 ([6] (1.5), [7] (3.1)). —
(i) A stratumin A is a 4-tuple[A,n,n — 1,b], whereA is ano p-lattice sequence; > 1 is
an integer and € a_,,(A).
(i) Two strata[A,n,n — 1,b;], ¢ = 1,2, are calledequivalentf by — bs € a;_,,(A).
(iii) A stratum[A,n,n — 1,b] is calledskewif A is self-dualand € A_.

Then, by (2.4), an equivalence class of strata corresponds to a charatigf/of and, by
(2.5), an equivalence class of skew strata corresponds to a charaB{gr\ot

Let [A,n,n — 1,b] be a stratum inA. Puty, = @/ /b/9 € ag(A), wheree = e(A) and
g = (n,e). Let ®(X) € op(X) be the characteristic polynomial @f. Then we define the
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SEMISIMPLE STRATA FORp-ADIC CLASSICAL GROUPS 427

characteristic polynomialp,(X) € kr[X] of the stratum to be the reduction modylg of
®(X). Note that this depends only on the equivalence class of the stratum and is, moreover,
an intertwining invariant.

DEFINITION 2.7 ([6] (2.3)). —
(i) Astratum[A,n,n —1,b]in A is calledfundamentaif o,(X) # XV,
(i) Astratum[A,n,n—1,b]in A is calledsplitif ©,(X) has two coprime factors.

Let f(X) be a polynomial with coefficients i or kp, written f(X) = >""" ,a; X". We
define the polynomiaf (X) by f(X) =Y ,a: X"

Now suppose thdt\, n,n — 1,b] is a skew stratum itd. Then we havey, = ng,, for n =+
a sign (preciselyy = (—)¢/9 if F/F, is unramified,y = (—)™/9(—)¢/9 otherwise), and thus
®(X) =®(nX) andy,(X) = @,(nX). Then, if we have a factorizatioh(X ) = @ (X)®2(X),
we haved(X) = &(nX) = &, (nX)®2(nX) so ®;(nX) is also a factor ofo(X). The same

applies top, (X).
DEFINITION 2.8.—We say that the skew stratit n,n — 1,b] is G-split if ¢,(X) has an

irreducible factor)(X) such tha{y(X), ¥ (nX)) = 1.

Note that aG-split stratum is necessarily fundamental, since we he() # X. Further, a
G-split stratum is split, since, by the argument abavg; X ) is also a factor ofp, (X).

DEFINITION 2.9 ([6] (1.5.5), [7] (5.1)). — A stratur\, n,n — 1, 0] in A is calledsimpleif
(i) the algebrall = F'[b] is a field;

(i) Aisanog-lattice chain;

(i) va(b) = -3

(iv) bisminimal thatis, writinge = e(E|F') for the ramification index and = v (b) for the
normalized valuation of in E, we have
(@) gedv,e) =1;
(b) @wr"b® + pE generates the residue field extenstoy kr.

Simple strata play an important role in the construction and classification of the representations
of G because the associated characters have a “nice” intertwining formula.

DEFINITION 2.10 f.[19] (3.8)). — A skew straturfA, n,n— 1, b] in A is calledsemisimpléf
either it is simple or we have a non-trivial splitting= 1, L --- L V,. such that all the following
hold:

(i) A=A% L ... L A", whereA*(k) = A(k)NV;, fori=0,...,r;

(i) b=bg+---+ b, whereb; =bl|y,, fori =0,...,r;

(iii) the polynomialsys, (X) are pairwise coprime;

(iv) the strata[A?,n,n — 1,b;] in Endr(V;) are simple, with the possible exception that

by = 0.

2.3. Thetheorems

Let 7 be a smooth representation@f We say thatr containsa skew stratunA, n,n — 1, b]
if it contains the associated characigr of P, (A).

THEOREM 2.11. — Let 7 be a smooth representation 6f of positive level, that isy has
no fixed vector undeP; (A), for A any self-dual lattice sequence ¥n. Thens contains some
fundamental skew stratufd, n,n — 1,b]. Moreover, putting: = e(Alor), g = (n,e), we have
e/g<N.
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428 S. STEVENS

Proof. —The first assertion is given by [16] (5.2), where they call a fundamental stratum
an “unrefined minimal{-type” (see [18], especially 85, for a translation into lattice-theoretic
language). We remark that we could also deduce this from the results of 84 (see (4.3)).

For the second assertion, we put

S={(A',n): Nisstrictandb+ a;_,,) Na’_,, #0},

wherea’, = a(A’)_,,. This is clearly non-empty and, fofA’,n’) € S, A’ is strict so
e/ = e(N|op) < N. Moreover, as in [9] (5.4) (or, more generally, [16] (6.4)), we have
n'/e' =n/eforall (A',n') e S.

We choosdA’,n') € S with n’ /e’ minimal andb’ € (b+a1_,)Na’_,. If [A',n/,n' —1,b]is
not fundamental then, by [5] Theorem 1, there exiat$, n”) with A” strict,t’ +a}_,, Ca” .,
andn”/e” < n'/e’. But then (A”,n”) € S, contradicting the minimality ofz’/e’. Hence
[A;n/;n" —1,V'] is fundamental so, again as in [9] (5.4), we havée’ = n/e and the result
follows. O

THEOREM 2.12. — Let m be a smooth representation 6f which contains aG-split skew
stratum. Thenr is not supercuspidal.

We will prove this in 83, where we construct a non-trivial Jacquet module for

THEOREM 2.13. — Let 7 be a smooth representation 6f which contains a nortz-split
fundamental skew stratum. Thercontains a semisimple skew stratum.

This is an easy consequence of the following proposition, which we prove in §4:

PROPOSITION 2.14. — Let [A,n,n — 1,b] be a non&-split fundamental skew stratum i.
Then there exists a semisimple skew stratihw’,n’ — 1, 5] in A such that

b+a_,(A)CB+a,,(A)

andn/e(Alop) =n'/e(Aop).

In particular, these three theorems imply that any positive level supercuspidal representation
of G contains a semisimple skew stratn n,n — 1, 5] such that/e(Ajor) has denominator
at mostN (when written in its lowest terms). We also remark that these strata have a “nice”
intertwining formula (see [19] (3.17)).

3. G-split strata

3.1. Intertwining

Let [A,n,n — 1,b] be aG-split skew stratum ind and puty, = @'/ ?b¢/9 € ao(A), where
e=-¢(A) andg = (n,e). Let &(X) € op(X) be the characteristic polynomial af, and
vp(X) its reduction modulg . Let (X) be a monic irreducible factor @, (X) such that
P(X) # +p(nX) and writep, (X) = ¥(X)*y(nX)*0(X), with (X) coprime toy(X) and
¥(nX), 8(X) =+0(nX). (Note that we may have(X ) = 1 here.) By Hensel's Lemma, there
exist coprime polynomial® (X), ©(X) € op[X], whose reductions module, are ¢ (X)?,
9(X) respectively, such tha(X) = ¥(X)¥(nX)O(X).

We putV; = ker U(y;), V_; = ker ¥(ny,) andV, = ker ©(y,). These spaces are preserved
by b and we have

VZVE)J_(VlEBV_l)
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SEMISIMPLE STRATA FORp-ADIC CLASSICAL GROUPS 429
andV;, V_; are totally isotropic and in duality with respect/o (Note that, ifd(X) =1 then
Vo =0.) Fori = —1,0, 1, we define lattice sequencasin V; by A‘(k) = A(k) N V;, for k € Z.
Then, as in [11] (3.5), (3.6), we have

Ak)=A'(k) @ A°(k) @ A~ (k), forallkeZ,
and, puttingb; = b|y;, for —1 <4 < 1, we have that, fori = 1,—1, b; is A‘-invertible and

vpi(b;) = —n. Indeed, in this situatiodA?, n,n — 1,b;] is non-split fundamental, far= 1, —1.
Writing A% = Hom(V7,V'?), by [6] (2.9) we have

w(N)= P a(d)nAaY, forallkez,

—1<i,5<1

ar(A) N A" = ag (A7), for —1<i<1, keZ
We will abbreviater!’ = a;,(A) N A%, and in the block description
Afl.,fl Afl,O Afl.,l
A= | A0-1 400 o1
Al,—l Al,O Al,l ’

we will usually omit the superscrip}.
We defineo q-lattices inA by

an l:qurl anrl An+1 l:qurl l:qurl
qbl = an an Ag+1 ) qh2 = an Apt+1 Gg41 )
apn apn ay, an Qn An41

for0<g<n. WeputsH; =1+ 4b;, for j=1,2, 0< ¢ < n; we abbreviate H; = H; and
oh; =b;, for j =1,2. The sets H; are compact open subgroups@ffor j =1,2, 0 < g < n,
and the map: — 1 4+ x induces isomorphisms of groups

ah1/qh2 — qu/qH2'

Foreachy =0,...,n, we define a charactel, of ,H., trivial on ,Ha, by ¢, (1 + x) = ¢4 (bz),
for x € 4.

We write M = (A=171)% x (A%0)% x (AL1)%; this is a Levi subgroup ofr. We also put
Ay =A@ A M gAY A =A%t AV o AV andN, =1+ A, Ni=1+ A;.
_Let K be a compact open subgroup 6f and lety be a character of. Then the
G-intertwining of is defined to be

IZ(|K) = {g e G: y(gkg™") =¥ (k), forall ke K N g~ Kg}.

PrRoOPOSITION 3.1 (cf. [7] Theorem (3.7), [3] (2.3.2)). Jhe@—intertwining of the character
Y| H; satisfies

15(1/15|H1) CH{-M-H,.
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430 S. STEVENS

Proof. —This follows by iterating [7] (3.7), having observed (see [3] (2.3.2)), that we may
indeed apply it in this, slightly more general, situation. Explicitly, we put

14a, o a AL 0 0\~
H| = an 1+a, a, , and M’ = 0 A0 40,1 )

an a, 1+a, 0 ALO gLl

By [7](3.7), we havel 5 (¢ys| H1) C I5(¢s|Hi) C H{M'Hj. SinceH] C Hy normalizes)y|Hs,
we in fact havela(wb|H1) C HiIyy (¢Yu|Hy N M')H;. But, again by [7] (3.7), we have
Ing(Yp|HLNM') C (Hy N M")M(Hy; N M') and the result follows. O

We observe now that all the groupéi; are fixed byo. We put H; = (H; N G and
by =ghiNA_ forj=120<g<n,andM~ =MNG, N, =N, NG, N, =N, NG.
Note thatP,” = M~ N, is a maximal parabolic subgroup 6f, with Levi componenf\/ — and
unipotent radicalV, , andP,” = M~ N, is the opposite parabolic.

We write, for the restrictiory |, H .
PROPOSITION 3.2. — We havel¢ (¢, |H, ) CH; -M~ - Hy .
Proof. —By [20] (2.5), we have

Io (¥, [Hy ) = 15| H1) NG

and, by [19] (2.3) (see also ibid. (4.15)), we halleM H, NG = H{ M~ H; so the result
follows from (3.1). O

3.2. Covers

We continue in the situation of §3.1. Ferl <i < 1, we putG; = (A*)* and suppose that
we are given:
(i) a subgroupk; of U(A') containingH; N G, and an irreducible representatipn of
K, whose restriction tdd; N G is a multiple ofyy, ;
(ii) a subgroupK, of P(A°) containingH; N G, and an irreducible representatipf of
K, whose restriction tdf; N Gy is a multiple ofy),, .
We think of K; embedded irG as

[ Jeer

COROLLARY 3.3 (cf. [7](3.9)).—
(i) Thesetk~ = (K7 x K ).H| isagroup.
(i) There is a unique irreducible representatipn of K~ which is trivial onK~ N N,
K~ N N; and whose restriction td{; x K is p1 ® pg .
(iif) The pair(K—,p-) is aG-cover of (K x K ,p1 ® py )-

Proof. —This is identical to [7] (3.9), except we take the elememt be
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3.3. Jacquet modules

We again continue with the notation of §3.1.

LEmMA 3.4 (cf.[3](2.3.9)).—Letl < ¢<nand PUtN, =N, N P,_4(A). Then the group
N, normalizes, H;" and acts transitively by conjugation on the set of characters ff;”
agreeing withy,” on the subgrougH; .

Proof. —By [7] (3.7) Lemma 4, the map — yb — by, y € A, induces an isomorphism
an—qNA — a_gsNA;. Moreover, this map preservels. and hence restricts to an isomorphism,
a,_,NA —a”,NA;, andthe result follows. O

PrRoOPOSITION 3.5 (cf. [3] (2.4.4)). —Let (7, V) be a smooth representation 6f containing
the G-split skew stratunfA, n, n — 1,b]. Then it contains the character, |H; also.

Proof. —Given the previous lemma, this is identical to [3] (2.4.4)1

THEOREM 3.6 (cf. [3] (2.4.2)). —Let (7, V) be a smooth representation 6f containing the
G-split skew stratuniA, n,n — 1,b]. Thenr is not supercuspidal.

Proof. —By the previous proposition(z,)) contains the charactep, |H; and, by the
corollary above(H; ,v, ) is a G-cover of the pair(H, N M, |H; N M). Then, by [8]
(7.9), we have an isomorphism 6fspaces

Vo g M

whereV), is the Jacquet module df attached taP;” andV¥+ is theq), -isotypic component. In
particular,V,, # 0 sor is not supercuspidal. O

Remarks3.7. —

(i) To obtain this, we could have appealed to the very general result of [12]. However, the
language used there is very different and a translation into the lattice-theoretic language
used here has not yet been done.

(i) Thanksto [8] (8.3), Corollary 3.3 above gives a method for constructing types for certain
(non-supercuspidal) components of the Bernstein spectrum, assuming we have all the
supercuspidal types (cf. [1,2]).

4. Semisimple strata

We now turn to the proof of Proposition 2.14. We adapt the notation of [10] to our situation.
Let A be a self-duab --lattice chain, normalized so that{k)* = A(1 — k) for k € Z, and we
putey = e(Aog). We consider the quotients

Ak) = A(k)/A(k+1), ke

Multiplication by = allows us to identifyA (k) with A(k + o), for k € Z. Givenk € Z, letk
denote its image i /eqZ. We put
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A= > Ak)

kez/eoZ

a vector space ovéty, hence ovet:. We consider Eng. (A); we have

End.,. ( Z End(A where
7€Z/EOZ

EndA Z HomkF )A(k—i—j))
kez/eol

Further, we have Er(ak) Enc(A) C End(A)HJ,
structure of & /e¢Z-graded algebra on Epd(A). B B
_ Given an element € a_,,(A), we obtain, by reduction, maps: A(i) — A(i — 7), for each
1 € Z/eoZ, and hence a map

for i, j € Z/eoZ. Altogether, we have the

> b €EndA)~

IE€L)eo

We now describe the duality ok and Eng,.(A) induced byh. We have, fork € Z, a well-
defined pairing

i A(k) x A(—=k) — kg,
(v+Ak+1),0" + A1 —k)) — h(v,0') + pp.

This pairing ise-hermitian (ore-bilinear if kr = ko) and is, moreover, nondegenerate: for
v € A(k), hi(v + A(k + 1), A(—k)) = 0 impliesv € A(—k)# = A(k + 1). Multiplication by
wy transformshy, into hy.,, for all k& € Z, and hence we obtain nondegeneratgermitian
pairings

hi: A(k) x A(=k) — kp.
Putting these all together, we have a nondegenerate pairing
hihxA— kp.

The pairing@ induces an adjoint involution on Epg(A), which we denote. Then, for
b e A we haveb = b. In particular, if we put Engl. (A) = {o € End,, (A): 0+ 7 =0}, then
the reduction mapsendsA4_ onto Eng._ (A).

DEFINITION 4.1.—LetA be a self-duab g-lattice sequence. We call a self-dugi-lattice
sequencd’ arefinemendf A if there existan € N oddsuch that\ (k) = A’(mk) forall k € Z.

Note that akp-subspace) of K(N) corresponds to a uniquep-lattice L such that
A(k) > L > A(k + 1) (more precisely, to the set of latticésoo’L: i € Z}). Moreover, if we
put V- = {# € A(—k): h(V,) =0}, thenVL corresponds to the latticE#. In particular, a
refinement\’ of A corresponds to flags @f--subspaces

AR)y=W2oWl5...owm=0, forkeZ/e,
with (Wi)= = W™ " andwpWj = Wi, fork € Z/eZ, 0 <i < m, wheree = e(Alor).
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PROPOSITION 4.2, —With notation as above, léte aZ,,(A) \ a;_,,(A). Then there exists a
refinement\’ of A andn’ € Z such that
(i) n'/e(Aor) =n/e(Alor);
(i) a1-n(A) Car—n(A);
(i) bea” (A')and the reduced malp € End,,. (A’) is semisimple.

n

Proof. —Consider the reduced mape End,, (A) and letb = b,, + b,, be its Jordan

decomposition. We havéxp =0, for somem € Z, which we may (and do) assume odd,
m = 2s — 1. Then, following [18] (5.5), we put

Vi = (bnp) Ak +1i0) C A(k) fork € Z/eoZ, 0 <i<m;
i 1 ~ .
Wi = ﬂ (V1€+(V%E) ) forke€Z/eoZ, 0<i<s—1;
q—p=2(k—1—1)
W}C — (W%*i)J- forlfceZ/eoZ, s<i<2s—1.

Thus we have flags okp—subspaces’NX(lE) = Wg D DWW =0, which give rise to a
refinement\’ of A, with

N(km+i)/A(k+1) =W, forkeZ, 0<i<m—1.

We putn’ = nm and (i) is clear since(A’|or) = me(Alor).

Fora € a;_,(A), we haveaA'(km + i) C aA(k) C A(k —n + 1) = A'(km + (m — mn));
butm —i—mn >1—n' soa € a;_,(A’) as required. Also, sindﬁ/\/}C - Wi_ﬁ, we have that
bA'(km +14) C A'((k —n)m +1i), thatisb € a_,,/ ().

Finally, we haveA/(k'm’ + i) ~ Wi /Wit (wherek’ denotes the image df in Z/egm?Z)
so we may think ob’ as a further reduction df. Now b,,,, reduces td) sob’ is semisimple as
required. O

Remark4.3. — If, in the situation of (4.2), is nilpotent, we have
b+ [s S, (A) Cay—p (A/)

and(n’ —1)/e(A’) < n/e(A). However, we cannot use this directly to deduce, as in [5,10,13],
that a smooth representatianof G contains a fundamental skew stratum, sim¢&’) is not
bounded. For this, we must use the notion of an “optimal point” from [16] §6.

We adopt the notation of [16], noting that the lattice sequeria®rresponds to a rational point
x s in the building ofG (see [4]) which is fixed by. Thena,,, (A’) correspondstg;A/Vm/e(A,),
when we have identified the Lie algebfa= g with its dual. ~

We choose a self-dual basis faf as in [14] (1.7); this gives rise to a maximal torusGh
fixed by ¥ and a simplexS in the apartment determined by this torus which contaigsand
is also fixed by (and maximal for this property — it is of codimension at most 2). Cdte a
chamber containing in its closure and leb be the set of affine roots which take values (strictly)
betweerh and1 onC. Then® N ?® is the set of affine roots which take values betwéamd1
ons.

For= C N2 ® fixed by, the optimal pointc=z (which may, and will, be taken as a barycentre
of a face ofC' — that is, a point corresponding to a strict lattice sequence, period ati¥)adst
in the closure ofS and, moreover, xz is also an optimal point foE in the closure ofS. Hence
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Y= = (:v + %zz) is also an optimal point, fixed by, and the corresponding lattice sequence
A= is self dual and of period at mo2tv.

Now let = C ® N “® be the set of affine rootg$ such thatd < i (xa/)
This is fixed by and, by the definition of optimal point, there exi
a1—n (A) Ca_,o(Ag) andnz/e(Az) < (n' —1)/e(A).

We now complete the proof of Proposition 2.14.

< ) 7
9t§ Z uch that

THEOREM 4.4.— Let[A,n,n — 1,b] be a non&-split fundamental skew stratum i. Then
there exists a semisimple skew stratithn’,n’ — 1, 3] in A, with A’ a refinement of\, such
that

(i) n'/e(A'or) =n/e(Alor);

(i) a1-n(A) Cag_n(A);

(i) beB+a_, (A).

Proof. —From (4.2) we obtain\’, n’ such that (i) and (ii) are satisfied and, since the stratum is
fundamental, the reductidn e Enobc (A) is non-zero semisimple.

Puty = b'/9’ ;/9 , Wheree’ = e(A'|or) andg’ = (¢/,n’); soy = ny, for n = + a sign. Let
®(X) € op[X] be the characteristic polynomial gfand letyp, (X)) € kr[X] be the characteristic
polynomial of the stratumA’, n/,n’ — 1, b]. Since the stratum is no@-split, we have

X)=T]s:ix)™ - xM,
=1

where the ¢;(X) are monic, irreducible, pairwise coprimep;(X) = ¢;(nX) and
>i_,s; +M = N. (Note that we may hava/ = 0 here.) By Hensel's Lemma, we may lift
this to

X)ZH‘I%‘(X) 0(X)

where the®;(X) are monic, pairwise coprimep;(X) = ®;(nX) and reduce modulpr to
#:(X)*%, andO(X) reduces modulp - to X M.
Put

Vi=ker®;(y), fori=1,...,r
Vo =kerO(y).

Then, as in [11] (3.4), (3.5), we hawé= 1, L --- L V,, this decomposition is fixed byand,
putting A’ (k) = A(k)NV; fori=0,...,r, we have

=@PAi(k), forkeZ

Hence we obtain skew strata’, n’, n’ — 1,b;] in A*=End V', whereb; = b+, and the stratum
[A',n',n’ — 1,b] is the sum of these strata. Moreover, fot 1,...,r, the stratum is non-split
fundamental, while foi = 0 it is non-fundamental. .

We treat first the casé = 0. The reduction ofty in Endg,. (A°) is semisimple but also
nilpotent, since the stratum is non-fundamental. Hencelitsied we puts, = 0.

Now let 1 < i < r. The skew stratumA?, n’,n’ — 1,b;] is non-split fundamental and the

reduction ofb; in Endy, (7&7) is semisimple; hence, by [6] (2.5.8), the stratum is equivalent
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to a simple stratun\?, n/,n’ — 1, o;]. Now o; + &; € a;_,,/(A?) so, by [20] (1.10), the stratum
is equivalent to a simple skew stratdff, n’,n’ — 1, 3;].

We now putg = >, 3; then[A’,n/,n' — 1,] is semisimple skew and is equivalent to
[A,n/;n —1,b], as required. O
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