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LOCAL HOMOLOGY AND COHOMOLOGY ON SCHEMES

BY LEOVIGILDO ALONSO TARRIO, ANA JEREMIAS LOPEZ AND JOSEPH LIPMAN

ABSTRACT. - We present a sheafified derived-category generalization of Greenlees-May duality (a far-reaching
generalization of Grothendieck's local duality theorem): for a quasi-compact separated scheme X and a "proregular"
subscheme Z-for example, any separated noetherian scheme and any closed subscheme-there is a sort of adjointness
between local cohomology supported in Z and left-derived completion along Z. In particular, left-derived completion
can be identified with local homology, i.e., the homology of IWw^CRrzOx , —) .

Generalizations of a number of duality theorems scattered about the literature result: the Peskine-Szpiro duality
sequence (generalizing local duality), the Warwick Duality theorem of Greenlees, the Affine Duality theorem of
Hartshorne. Using Grothendieck Duality, we also get a generalization of a Formal Duality theorem of Hartshorne,
and of a related local-global duality theorem.

In a sequel we will develop the latter results further, to study Grothendieck duality and residues on formal
schemes.

Introduction

We redevelop here some basic facts about local homology and cohomology on quasi-
compact separated schemes, in the context of derived categories. While our results are not
fundamentally new, they do, we believe, add value and meaning to what is already known,
through a more general and in some ways more transparent approach-leading for example
to a unification of several duality theorems scattered about the literature. Furthermore, the
derived category formulation provides an essential link between Grothendieck Duality on
ordinary and on formal schemes, the latter to be treated in a subsequent paper.

The main result is the Duality Theorem (0.3) on a quasi-compact separated scheme X
around a proregularly embedded closed subscheme Z. This asserts a sort of sheafified
adjointness between local cohomology supported in Z and left-derived completion functors
along Z. (For complexes with quasi-coherent homology, the precise derived-category
adjoint of local cohomology is described in (0.4)(a).) A special case-and also a basic
point in the proof-is that:
(*) these left-derived completion functors can be identified with local homology,

i.e., the homology of RT-C^iRFzOx, -).

(1) 1991 Mathematics Subjects Classification. 14B15, 14B20, 14Fxx
(2) First two authors partially supported by a Xunta de Galicia (D.O.G 19/11/92) travel grant. Third author

partially supported by the National Security Agency.
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2 L. ALONSO TARRIO, A. JEREMIAS LOPEZ AND J. LIPMAN

The technical condition "Z proregularly embedded," treated at length in §3, is just
what is needed to make cohomology supported in Z enjoy some good properties which
are standard when X is noetherian. Indeed, it might be said that these properties hold
in the noetherian context because (as follows immediately from the definition) every
closed subscheme of a noetherian scheme is proregularly embedded. The assertion (*)
is a sheafified derived-category version of Theorem 2.5 in [GM]. (The particular case
where Z is regularly embedded in X had been studied, over commutative rings, by Strebel
[St, pp. 94-95, 5.9] and, in great detail, by Matlis [M2, p. 89, Thm. 20]. Also, a special case
of Theorem (0.3) appeared in [Me, p. 96] at the beginning of the proof of 2.2.1.3.) More
specifically, our Proposition (4.1) provides another approach to the Greenlees-May duality
isomorphism-call it ^-from local homology to left-derived completion functors. Though
this ^ is a priori local and depends on choices, it is in fact canonical: Corollary (4.2) states
that a certain natural global map from left-derived completion functors to local homology
restricts locally to an inverse of ^.

We exhibit in §5 how Theorem (0.3) provides a unifying principle for a substantial
collection of other duality results from the literature. For example, as noted by Greenlees
and May [GM, p. 450, Prop. 3.8], their theorem contains the standard Local Duality
theorem of Grothendieck. (See Remark (0.4) (c) below for more in this vein).

To describe things more precisely, we need some notation. Let X be a quasi-compact
separated scheme, let A(X) be the category of all Ox -modules, and let Aqc(^) C A(X)
be the full (abelian) subcategory of quasi-coherent Ox -modules. The derived category
D(X) of A(X) contains full subcategories Dqc(X) D Dc(X) whose objects are the
Ox -complexes with quasi-coherent, respectively coherent, homology sheaves.

Let Z C X be a closed subset. If X\Z is quasi-compact then by induction on mm{n | X
can be covered by n affine open subsets}, and [GrD, p. 318, (6.9.7)], one shows that Z is
the support Supp((9x/Z) for some finite-type quasi-coherent C^c-ideal T (and conversely).
We assume throughout that Z satisfies this condition.

The left-exact functor Fz : A(X) -» A{X) associates to each Ox -module T its subsheaf
of sections with support in Z. We define the subfunctor 7^ c Fz by

r^:= iim H^oAOxl^, ̂ ) (^ e A(X))^(o.i) r,
n>0

which depends only on Z (not Z). If T is quasi-coherent, then Y'^T = T z ^ F '
The functor Fz (resp. .7^) has a right-derived functor RF^ : D(X) —> D(X) (resp.
R7^ : D(X) —^ D(X)), as does any functor from A(X) to an abelian category, via
K-injective resolutions [Sp, p. 138, Thm. 4.5] (1).

By the universal property of derived functors, there is a unique functorial map

7 : RF^ -. £

(') See also [ibid., p. 133, Prop. 3.11] or [BN, §2] for the existence of such resolutions in module categories.
(Actually, as recently observed by Weibel, Cartan-Eilenberg resolutions, totalized via products, will do in this
case.) Moreover, Neeman has a strikingly simple proof that hence such resolutions exist in any abelian quotient
category of a module category, i.e., by a theorem of Gabriel-Popescu, in any abelian category-for instance
A(X)-w'ith a generator and with exact filtered Iim. (Private communication.)

4e SERIE - TOME 30 - 1997 - N° 1



LOCAL HOMOLOGY AND COHOMOLOGY ON SCHEMES 3

whose composition with F^£ —^ RJ^f is the inclusion map F^S c-^ £.
For proregularly embedded Z C X, the derived-category map RJ^f —^ RF^f

induced by the inclusion J^ c-^ Fz is an isomorphism for any complex £ G Dqc(X)
(Corollary (3.2.4)). This isomorphism underlies the well-known homology isomorphisms
(of sheaves) (2)

(O.I.I) lim^^OxA71, ̂ ) ̂  HW (z > 0, T G .AqcW).
n>0

We also consider the completion functor Az : Aqc(X) —^ A(X) given by

(0.2) Az^:= Hm ((Ox/^n) ̂ ) (^ AcW).
n>0

This depends only on Z. We will show in §1 that Az has a left-derived functor
LAz '. Dqc(X) ^^ D(X), describable via flat quasi-coherent resolutions. By the universal
property of derived functors, there is a unique functorial map

A : F -^ LAz^

whose composition with LAz^ —^ Az^ is the completion map T —^ Az^F.

THEOREM (0.3). - For any quasi-compact separated scheme X and any proregularly
embedded closed subscheme Z (Definition (3.0.1)), there is a functorial isomorphism

RT^^R^.^) -^ RH^(£,LAz^)

( fGD(X)^GDqcW)

whose composition with the map RT^w* (<?, .77) -^ m-i^.9 (R-G^, ^} induced by 7 is
the map RH^^S^) -^ W-i^(£,LAz^) induced by \.

The proof occupies §§1-4; an outline is given in §2. Miscellaneous corollaries and
applications appear in §5.

From Theorem (0.3) we get a commutative diagram

RT^^Rr^ 7} -^ RH^(£, LAz^)

RT^^R^RJ]^ F) -^ RT^^RI^ LAz^)
with horizontal isomorphisms as in (0.3), A' induced by A, and 7' induced by 7.
It follows readily from Lemma (3.1.1)(2) that the natural map RJ^RJ^f -^ R/^f is an
isomorphism; hence both A' and 7' are isomorphisms, and a has the explicit description
a = 7'"1 o A'. Conversely, if we knew beforehand that A' and 7' are isomorphisms, then we
could define a := 7'~1 o A' and recover Theorem (0.3). Thus we can restate the Theorem as:

(2) See [H, p. 273], where, however, the proof seems incomplete-"way-out" needs to begin with [Gr, p. 22,
Thm. 6]. Alternatively, one could use quasi-coherent injective resolutions...

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



4 L. ALONSO TARRIO, A. JEREMIAS LOPEZ AND J. LIPMAN

THEOREM (0.3) (bis). - For any quasi-compact separated scheme X and proregularly
embedded closed subscheme Z, the maps \ and 7 induce functorial isomorphisms

RT^^RJ]^, ̂ ) ̂  RT^^Rr^ LAz^) ̂ - R?Y^(^ LAz^)
A y

( f eD(X) , ^cDqc(X)).

As explained in Remark (5.1.2), that \' is an isomorphism amounts to the following
Corollary. Recall that proregularity of a finite sequence t := (^1^2,. . . ,^) in a
commutative ring A is defined in (3.0.1) (where X can be taken to be Spec(A)); and that
every sequence in a noetherian ring is proregular.

COROLLARY (0.3.1). - Let t be a proregular sequence in a commutative ring A, and let
F be aflat A-module, with i-adic completion F. Then the natural local homology maps
^A^) -> H^(F) (^ > 0) are all isomorphisms.

In other words, the natural Koszul-complex map !C^(i) 0 F -^ ^(t) 0 F is a
quasi-isomorphism (see (3.1.1)(2)).

Suppose now that X is affine, say X = Spec(A), let t := (^2,..., ̂ ) be a proregular
sequence in A, and set Z := Spec(A/tA). With t71 := (^, . . . , ̂ ), consider the A-module
functors

Ft(G) := lim HomA(A/tnA, G),
n>0

Af(G) := lim ((A/rA) 0 G) (t-adic completion).
n>0

This is the situation in [GM], and when the sequence t is A-regular, in [M2]. The
arguments used here to prove Theorem (0.3) apply as well in the simpler ring-theoretic
context, yielding an isomorphism in the derived A-module category D(A):

(0.3)aff RHom^RFtE, F ) -^ RHom^, LAfF) (^ F e D(A)).

In fact (0.3)aff (with the isomorphism explicated as in (0.3) or (0.3)bis) is essentially
equivalent to (0.3) for £ e Dqc, see Remark (0.4)(d).

Suppose, for example, that t is A-regular, so that there is an isomorphism

RWM -^ H^(A)=:K.

Then for any A-complex F, there is a natural isomorphism K [ - p ] ^ F -^ RFt(F)
(cf. Corollary (3.2.5)), and so we have a composed isomorphism

ff°LAt(F) -^ ff°RHom^(RrtA,F)
-^ fi^oRHom^(R^tA,R^tF) -^ HomD(A)(^, K 0 F)

corresponding to the First Representation Theorem of [M2, p. 91] (3).

(3) Matlis states the theorem for A-modules F which are "K-torsion-free" i.e. ([ibid., p. 86]), the canonical
map K ^F -^ K 0F is an isomorphism; and he shows for such F that the natural map H°LAt (F) —> At (F)
is an isomorphism [ibid., p. 89, Thm. 21, (2)].

4e SERIE - TOME 30 - 1997 - N° 1



LOCAL HOMOLOGY AND COHOMOLOGY ON SCHEMES 5

Remarks (0.4). - (a) Fix a quasi-compact separated scheme X, and write ^4, Aqc,
D, Dqc, for ^(X), Aqc(X), D(Z), Dqc(X), respectively. Let Z C X be a proregularly
embedded closed subscheme. Corollary (3.2.5)(iii) gives us the functor RJ^ : Dqc —^ Dqc.
Theorem (0.3) yields a right adjoint for this functor, as follows.

The inclusion functor Aqc c—^ A has a right adjoint Q, the "quasi-coherator" [I, p. 187,
Lemme 3.2]. The functor Q, having an exact left adjoint, preserves K-injectivity, and
it follows then that RQ is right-adjoint to the natural functor j : D (Aqc) —> D, see
[Sp, p. 129, Prop. 1.5(b)]. Since j induces an equivalence of categories D(.4qc) ^ Dqc
(see §1), therefore the inclusion functor Dqc c-^ D has a right adjoint, which-mildly
abusing notation-we continue to denote by RQ. Thus there is a functorial isomorphism

Honing LAz^) ̂  Honing RQLA^) (^ G Dqc).

Recalling that R7^ coincides with R-Tz on Dqc, and applying the functor H°KT to the
isomorphism in (0.3) (4), we deduce an adjunction isomorphism

HomD,,(Rr^ ̂ ) -̂  Honing RQLAz^) (f^e Dqc).

(In this form the isomorphism doesn't sheafify, since for open immersions i : U —> X the
canonical functorial map i*Qx -^ Qu^ is usually not an isomorphism.)

For example, if X is affine, say X = Spec(A), then for any C G -A(X), Q(C) is the quasi-coherent 0\ -module
r(X,C}^ associated to the A-module r(X,C); and hence

RQ(^) ^ (Rr(X, G)Y (G C D).

Any complex in Dqc is isomorphic to a K-flat quasi-coherent T (Prop. (1.1)). For such an JF, with F i^ the
completion of T along Z [GrD, p. 418, (10.8.2)], Remark (d) below, with E = A, implies

RQLAzJ- ̂  QAz^ = (r(Z, ^-/z))~.

If furthermore A is noetherian, Z = Spec(A/J), and T G Dc(A'), then one finds, as in (0.4.1) below, that with A
the J-adic completion of A,

r(z, ^)^r(x, ^ )®AA.

In more detail. Theorem (0.3)-at least for £ G Dqc(X)-can be expressed via category-
theoretic properties of the endofunctors S := RF^ and T:= RQLA^ of Dqc(X). (In the
commutative-ring context, use S := RI^ and T := LAf instead.)

THEOREM (0.3)*. - The canonical maps S —^1-^T where 1 ̂  ̂  identity functor
of Dqc(X)) induce functorial isomorphisms

Hom(S£, S^) ̂  Hom(S£, ̂  ^ Hom(S£, TF} ̂  Hom(<f, T^) ^ Hom(T^, r.F).

(4) Note that ^RrRU^9 = H°RHom9 = Homn, see e.g., [Sp, 5.14, 5.12, 5.17]. (In order to combine
left-and right-derived functors, we must deal with unbounded complexes.)

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



6 L. ALONSO TARRIO, A. JEREMIAS LOPEZ AND J. LIPMAN

Proof. - (See also (5.1.1).) The first isomorphism is given by Lemma (0.4.2) below. The
next two follow from Theorem (0.3)(bis), giving the adjointness of S and T, as well as
the isomorphism S —^ ST in the following Corollary. Hence:

Hom(<f, TT} ̂  Hom(S£, J") ^ Hom(ST£, 7') ̂  Hom(T£, TT}. D

Conversely, Theorem (0.3)*, applied to arbitrary affine open subsets of X, yields
Theorem (0.3)(bis).

COROLLARY. - The maps 7 and y induce functorial isomorphisms
(i) S2 -^ S.

(ii) T -^ T2.
(iii) TS -^ T.
(iv) s -^ 5T.
Proof. - (i) can be deduced, for example, from the functorial isomorphism (see above)

Hom(S£, S2^) -^ Hom(S£, SF), applied when £ = T and when £ = SF.
(ii): equivalent to (i) by adjunction.

(iii): use Hom(<?, TSf) ̂  Hom(S£, S^) ̂  Hom(S£, f) ̂  Hom(f, TT}.
(iv): use Hom(S£, S^) ̂  Hom(S£, ̂ ) ̂  Hom(S£, T^) ̂  Hom(S£, ST^). D
The fact that v induces isomorphisms T —^ T2 and Hom(T^, TT) -^ Hom(E, TJ=') implies that the derived

completion functor T, together with v : 1 —^ T, is a Bousfield localization of Dqc(A') with respect to the triangulated
subcategory whose objects are the complexes E- such that T^ = 0, or equivalently, by (iii) and (iv), such that S8 = 0,
i.e., 8 = Ru^^ where i : X \ Z f—^ X is the inclusion {see (0.4.2.1)).

(b) With notation as (a), suppose that the separated scheme X is noetherian, so that any
closed subscheme Z is proregularly embedded. On coherent Ox -modules the functor Kz
is exact. This suggests (but doesn't prove) the following concrete interpretation for the
restriction of the derived functor LAz to Dc C Dqc (i.e., to 0^-complexes whose
homology sheaves are coherent). Let /^ = i^z be the canonical ringed-space map from the
formal completion X/z to X, so that A^ and ^* are exact functors [GrD, p. 422, (10.8.9)].
For F G Aic, following [GrD, p. 418, (10.8.2)] we denote by Tfz the restriction of Az^
to Z. From the map ̂ f —> J ^ / z which is adjoint to the natural map T —^ Az^ = ̂ J ^ / z
we get a functorial map ^^T —> i ^ ^ J ^ / z == AZ.F; and since K ^ K * is exact, there results
a functorial map

A: : ̂ T -^ LAz^ (^ G Dqc).

PROPOSITION (0.4.1). - The map \^ is an isomorphism for all T G Dc.

Proof. - The question being local, we may assume X affine. As indicated at the end of
§2, the functor LAz is bounded above (i.e., "way-out left") and also bounded below (i.e.,
"way-out right"); and the same is clearly true of /^^*. So by [H, p. 68, Prop. 7.1] (dualized)
we reduce to where T is a single finitely-generated free Ox -module, in which case the
assertion is obvious since by §1, LAzP = AzP for any quasi-coherent flat complex P. D

4'̂  S6RIE - TOME 30 - 1997 - N° 1



LOCAL HOMOLOGY AND COHOMOLOGY ON SCHEMES 7

Via the natural isomorphism ^RH^/n^\ z(^*^ ^*^7) —^ R/7^w^(£, ^^^*^7) [Sp,
p. 147, Prop. 6.7], ̂  isomorphism in (0.3) now becomes, for £ G D, .F G Dc :

(0.3)c R^^(R^<f, J^) -^ /^R?^^^(^*<f,/^),

or-by Lemma (0.4.2) below, and since as before RF^F ^ RI^.77:

(0.3)', R7<^^(RJ]^ R .̂7") -^ ^R7^^(/^*<?^*.F).

Explicitly, all these isomorphisms fit into a natural commutative diagram:

R7i^(Rr^ ^) ^ R^^(Rr^ RF^)

/" ^ | (0.3)
^

R^^(<f, JF) —, R7l:^w^(<f, LAz^)
\ T\ ^ via \^

R7^w^(<?, ̂ ^*J^) ^- ^R^^^ (^*£, ̂ ^P)

LEMMA (0.4.2). - L^^ X be a scheme, let Z C X be a closed subset, and let
i : (X \ Z) ̂  X be the inclusion. Let Q <E D(Z) be exact off Z, i.e., VQ = 0.
Then for any T G D(X) ̂  natural map RH^(G, RFz^F) -^ RH^{Q, T} is an
isomorphism. In particular, for any £ G D(X) there are natural isomorphisms

RTY^^RF^RFz^) -^ R^^^RFz^, J^*),
R^^^Rr^^RFz^) -^ RTY^^^RJ^^,^).

Proof. - If ^7 is an injective K-injective resolution of T [Sp, p. 138, Thm. 4.5] then
VJ is K-injective and the natural sequence 0 —> FzJ —» J —t i^J —^ 0 is exact;
hence there is a natural triangle

(0.4.2.1) RF^ -.T-^ Ri^y -^ RFz^ll].

Apply the functor RT^w*^ —) to this triangle, and conclude via the isomorphism
RU^{Q, Ri^f) ̂  Ri^RH^^Q, %*^) = 0 [Sp, p. 147, Prop. 6.7]. D

(c) (Local Duality). Let A be a noetherian commutative ring (so that any finite sequence
in A is proregular), let J be an A-ideal, let A be the J-adic completion, and let Yj be
the functor of A-modules described by

Fj(M) := { x G M [ Fx = 0 for some n > 0}.

The derived A-module category D(A) has the full subcategory Dc(A) consisting of those
complexes whose homology modules are finitely generated. Arguing as in Remark (b), one
deduces from (0.3)aff the duality isomorphism

(0.3)'̂  RHom^(RrjE, RTjF) ̂  RHom^(E, F0AA)
(E e D(A), F e Dc(A)).

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUP^RIEURE



8 L. ALONSO TARRIO, A. JEREMIAS LOPEZ AND J. LIPMAN

(This is of course closely related to (0.3)^ see Remark (d). For example, when J is a
maximal ideal and Z := {J} C X := Spec(A), just check out the germ of (0.3)^ at the
closed point J e X.)

Now suppose that E and F are both in Dc(A), and one of the following holds:
(1) E G D,-(A) and F G D^(A) (5); or
(2) F has finite injective dimension (i.e., F is D-isomorphic to a bounded injective

complex); or
(3) E has finite projective dimension.
Then the natural map

RHom^(F,F) 0A A -> RHom^(F,F 0^ A)

is an isomorphism. To see this, reduce via "way-out" reasoning [H, p. 68] to where E
is a bounded-above complex of finitely generated projectives and F is a single finitely
generated A-module. Similarly, Ext^(F, F) := ff^RHom^F^)) is finitely generated.
Hence (0.3)^ ^ yields homology isomorphisms

Ext^RFjF, RFjF) -^ Ext^(F,F) ' (n C Z).

In particular, if m is a maximal ideal and D G Dc(A) is a dualizing complex (which
has, by definition finite injective dimension), normalized so that UTmD is an injective
hull Im of the A-module A/m [H, p. 284, Prop. 7.3], then there are hyperhomology duality
isomorphisms, generalizing [H, p. 280, Cor. 6.5]:

Hom^H^F,^) ̂  Ext^F^f (n G Z, F G Dc(A)).

And since Ext^F,!^ is a noetherian A-module therefore H^F is artinian, and
Maths dualization yields the Eocal Duality theorem of [H, p. 278]. (One checks that the
isomorphisms derived here agree with those in [H].)

More generally, if J is any A-ideal and denotes J-adic completion then with
^ : Spf(A) = X -^ X := Spec(A) the canonical map, U := X \ {m}, and £ := F,
P:= D the quasi-coherent Ox -complexes generated by F and D, there is a triangle

Hom^RFjF^) -> RHom^(F,.D) 0A A -> RHom^*<?^*P) ̂

whose exact homology sequence looks like

(0.4.3) . . . ̂  Hom,(H7F^) ̂  Ext^(F^)'^ Ext^(/^ /,*?) -. . . .

The particular case when A is Gorenstein of dimension d-so that D ^ A[d]-and F = A,
is [PS, p. 107, Prop. (2.2)]. See §5.4 for details.

(5) For any derived category D^, DJ~ (resp. D^) is the full subcategory whose objects are the complexes C G
D* having bounded-below (resp. bounded-above) homology, i.e., Hn(C) = 0 for n < 0 (resp. n > 0). D^
(resp. D^T) is isomorphic to the derived category of the homotopy category of such C. This notation differs
from that in [H], where C itself is assumed bounded.

4e SERIE - TOME 30 - 1997 - N° 1



LOCAL HOMOLOGY AND COHOMOLOGY ON SCHEMES 9

Incidentally, we have here a characterization of .D 0A A (A:== m-adic completion):

D 0A A ^ RHom^(Rr^A,Rr^P) = RHom^RF^A, J^) ^ ^ LA^J^.
(0.3)^ (0.3)aff

Thus if E* is an injective resolution of A, so that Hom^F^J^n) is a flat resolution
of Im [M, p. 95, Lemma 1.4], then D 0A A ^ HoniA(F^J^)\

(d) Not surprisingly, but also not trivially, (0.3)aff can be derived from (0.3)-and vice-
versa when £ G Dqc(X)-in brief as follows. The general case of (0.3) reduces to the
case where £ = Ox, see §2; thus once one knows the existence of LAz (§1), (0.3) is
essentially equivalent to (0.3)aff.

The functor 1̂  := F(X,-) (X := Spec(A)) has an exact^left adjoint, taking an
A-module M to its associated quasi-coherent Ox -module M. Hence 1̂  preserves
K-injectivity, and there is a functorial isomorphism

RHoi<(F, RI^) —> RHom^(F, Q) (F e D(A), Q C D(X)).

Next, if Q is any Ox-complex of r^-acyclics (i.e., F^G" -^ Wx^ is an isomorphism
for all n), then Y^G ~^ Rry^ is an isomorphism. (This is well-known when Q is
bounded below; and in the general case can be deduced from [BN, §5] or found
explicitly in [L, (3.9.3.5)].) So for any A-complex F there are natural isomorphisms
F -^ r^F ^^ RI^F, and hence

(0.4.4) RHom\{E,F) -^ RHom^(E,F) (£ ,FGD(A)) .

There are also natural isomorphisms

(0.4.5) RFzE -^ W^E, LAtF ̂  Ri^LAzF.

The first obtains via Koszul complexes, see (3.2.3). For the second, we may assume F
flat and K-flat, in which case we are saying that AfF = Y^KzF —^ RI^A^F is an
isomorphism, which as above reduces to where F is a single flat A-module, and then
follows from [EGA, p. 68, (13.3.1)].

Thus there are natural isomorphisms

(#) RHom^(F, LAfF) -^ RHom^(F, RI^LAzF) -^ RHom^(F,LAzF),
RHom^(RitF,F) ̂  HRom\(m^E, F) -^ RHom^(RFzF,F).

Hence (0.3) implies (0.3)aff.
Conversely, (0.3)(bis) (with £ G Dqc(^)) follows from (0.3)aff. Indeed, it suffices to

see that the maps \' and 7' are made into isomorphisms by the functor RI^ for any affine
open U C X. Moreover, we may assume that the complexes £ and F are quasi-coherent
(see §1). Then (#) provides what we need.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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1. Left-derivability of the completion functor

Let X be a quasi-compact separated scheme and let Z C X be a closed subscheme. We
show in this section that the completion functor Az : A^c(X) -> A(X) of (0.2) has a
left-derived functor LAz : Dqc(X) -> D(X).

PROPOSITION (1.1). - On a quasi-compact separated scheme X, every £ e Dqc(X) is
isomorphic to a quasi-coherent K-flat complex Ps.

The proof will be given below, in (1.2).
If P G D(X) is a K-flat exact quasi-coherent complex, then AzP is exact. Indeed,

all the complexes Pn '•= (Ox/I71) 0 P (n > 0) are exact [Sp, p. 140, Prop. 5.7], and
hence the same is true after taking global sections over any affine open subset U of X.
Also, the natural map of complexes T(U,Pn+i) —> T(U,Pn) is surjective for every n. So
by [EGA, p. 66, (13.2.3)], the complex

r(^AzP)=iimr(^p,)
is exact, whence the assertion.

Consequently (see [H, p. 53], where condition 1 for the triangulated subcategory L
whose objects are all the quasi-coherent K-flat complexes can be replaced by the weaker
condition in our Proposition (1.1)), after choosing one Ps for each £ we have a left-derived
functor LAz with LAz£ := Az(Pe). For simplicity we take P£ = £ whenever £ itself is
quasi-coherent and K-flat, so then LAz£ = Az£.

(1.2) Here is the proof of Proposition (1.1). It uses a simple-minded version of some simplicial techniques found
e.g., in [Ki, §2]. We will recall as much as is needed.

Let U = (Ua)i^a<n be an affine open cover of the quasi-compact separated scheme (X, Ox)- Denote the set
of subsets of {l ,2, . . . ,n} by Vn. For i G Vn, set

^:=H^ Oz--=0u,=0x\u^
a^i

(In particular, U^ = X.) For i D j in ̂ n, let A^: Ui c—^ Uj be the inclusion map. A ^-module is, by definition, a
family T = (^i)i^n ^ere T{ is an 0^-module, together with a family of Oj-homomorphisms

^3k : ̂ k^k -^ ^3 0 3 k)

such that ^pjj is the identity map of .Fj, and whenever i D J ' 3 k we have yik = ̂ pij o (^jk\U-\ i-e., ^pik factors as

^•(^jfc) ^ i j
^ z j ^ j k ^ k——————^^ij^J'\k^k — ^j^k^k——————^^j^j——^i-

We say the ^/-module T is quasi-coherent (resp. flat, resp. . . . ) if each one of the Oi -modules T{ is such.

The ^-modules together with their morphisms (defined in the obvious manner) form an abelian category with lim
and lim. For example, given a direct system (.FP)p^R of ^/-modules, set ̂  := lim^ (i e ^n), define (^
(i D j) to be the adjoint of the natural composed map

viaz/?^.

^ = lim^ ——^ Im^A^^f ——. Xzj^z

4e SERIE - TOME 30 - 1997 - N° 1
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where ̂  : ̂  -^ A^^f is adjoint to ̂  : \^^ -^ T[\ and check that 7 := (^, ^-) = Hm^ in

the category of ^/-modules.

LEMMA (1.2.1). - Any quasi-coherent Li-module T is a homomorphic image of a flat quasi-coherent U-module.

Proof. - For each i we can find an epimorphism of quasi-coherent Oi -modules Qi -» Ti with Qi flat. Set
Pi := (BOJ^-^J- Map Pz surjectively to Ti via the family of composed maps

A?,Q, -^A^^^.\j^J ——' ^zj^J •

Let

y'kz •• ̂ z = ®OJ^-Q, -^ Co,A^Q, = Vk

be the natural map. Then V := (Pi, ^ ) is a flat ^/-module, and the maps 7^ -^ ̂  constitute an epimorphism
of ^/-modules. D

The tensor product of two ^/-modules is defined in the obvious way. A complex of ^-modules is K-flat if its
tensor product with any exact complex is again exact.

COROLLARY (1.2.2). - (Cf. [Ki, p. 303, Satz 2.2.]) Any complex of quasi-coherent U-modules is the target of a
quasi-isomorphism from a K-flat complex of quasi-coherent U-modules.

Proof. - (Sketch.) Any bounded-above complex of flat ^/-modules is K-flat, so the assertion for bounded-above
complexes follows from Lemma (1.2.1) {see [H, p. 42, 4.6, 1) (dualized)]). In the general case, express an arbitrary
complex as the lim of its truncations, and then use the lim of a suitable direct system of K-flat resolutions of these
truncations. (Clearly, lim preserves K-flatness. For more details, see [Sp, p. 132, Lemma 3.3] or [L, (2.5.5)]. D

The Cech functor C9 from ^/-complexes (i.e., complexes of ^/-modules) to Ox -complexes is defined as follows:

Let \i\ be the cardinality of i € ^Pn, and let \i := A^ be the inclusion map Ui ̂  X. For any ^/-module F, set

0^(7):= (]) \z^z 0^m<n
\i\=m+l

:= 0 otherwise.

Whenever j is obtained from k = {ko < A-i < . . . < km} e Vn by removing a single element, say ka, we set
e^ := (-1)°. The boundary map ^m : C^^) -^ C^^) is specified by the family of maps

%• : xj*:Fj —^ ^-^fc

with 6^1- the natural composition

^ k f ^ k j V k j )

Aj*^J' ——^ ^J^^kj^^kj^J = ^k^^kj^J —————————> ^k^^k

if j C k, and 6^- = 0 otherwise. Then ^m+l o ^m = 0 for all m, and so we have a functor C* from ^/-modules
to Ox -complexes. For any ^-complex ^e, C * ( y * ) is defined to be the total complex associated to the double
complex CP(^).

Remarks. - (a) If Q is an Ox -module and Q' is the ^/-module such that Q\ :== \^Q and ^pij is the identity map
of Q[ = X^Qj for all i D j, then C9^) is the usual Cech resolution of Q [Go, p. 206, Thm. 5.2.1].

(b) Since all the maps \i are affine (X being separated) and flat, therefore C9 takes flat quasi-coherent ̂ -complexes
to flat quasi-coherent Ox -complexes. Moreover, C* commutes with lim. (We need this only for quasi-coherent
complexes, for which the proof is straightforward; but it also holds for arbitrary complexes, [Ke, §2].)

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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LEMMA (1.2.3). - The functor C* takes quasi-isomorphisms between quasi-coherent complexes to quasi-
isomorphisms.

Proof. - One checks that C* commutes with degree-shifting: C'*(.F"[1]) = C* (^'•)[1]; and that C* preserves
mapping cones. Since quasi-isomorphisms are just those maps whose cones are exact, it suffices to show that C*
takes exact quasi-coherent ^-complexes JF* to exact Ox -complexes. But since the maps A, are affine, each row
C P ( J ^ * ) of the double complex C P { J ^ q ) is exact, and all but finitely many rows vanish, whence the conclusion. D

Now by [BN, p. 230, Corollary 5.5], any £ G Dqc(X) is isomorphic to a quasi-coherent complex; so to prove
(1.1) we may as well assume that S itself is quasi-coherent. Define the ^-complex E . ' as in remark (a) and let
'P —> ^ ' be a quasi-isomorphism of quasi-coherent ^-complexes with P a lim of bounded-above flat complexes,
see proof of Corollary (1.2.2). Lemma (1.2.3) provides a quasi-isomorphism V^ := €•('?) —^ C * ( S ' } ; and there
is a natural quasi-isomorphism £ -^ C * ( £ ' ) (remark (a)), so that €- is isomorphic in D(X) to P£. Moreover, P^
is a lim of bounded-above quasi-coherent flat Ox -complexes (remark (b)), and hence is quasi-coherent and K-flat.
This proves Proposition (1.1). D

For completeness, and for later use, we present a slightly more elaborate version of the just-quoted Corollary 5.5
in [BN, p. 230]. Recall from Remark (0.4)(a) the definition of quasi-coherator.

PROPOSITION (1.3). - Let X be a quasi-compact separated scheme. Then the natural functor

is an equivalence of categories, having as quasi-inverse the derived quasi-coherator R,QA'-

COROLLARY (1.3.1). - In the category Cqc(X) of quasi-coherent Ox-complexes, every object has a K-injective
resolution.

Proof. - The Proposition asserts that the natural maps 8 —^ t^-QxJ'x^ (^ e D(<4qc(A'))) and J\1^Q x 7 -^ 7
[F G Dqc(A')) are isomorphisms. The Corollary results: since Qx has an exact left adjoint therefore Qx takes
K-injective Ox -complexes to complexes which are K-injective in Cqc(X), so if £ —> f^QxJx^ and if € —^ IE
is a quasi-isomorphism with Ie a K-injective Ox -complex [Sp, p. 134, 3.13], then the resulting map 8 —»• Qxle
is still a quasi-isomorphism, and thus 8 has a K-injective resolution in Cqc(X).

We will show that the functor RQ^'ID cW ls bounded-above, i.e., there is an integer d >_ 0 such that for
any F € Dqc(X) and q € J-, if HP^) = 0 for all p > q then HP(HQx^) = 0 for all p > q + d. Then
by the way-out Lemma [H, p. 68] it suffices to prove the above isomorphism assertions when E- and 7 are single
quasi-coherent sheaves, and this case is dealt with in [I, p. 189, Prop. 3.5]. (It follows then fromJ^TtQx^ —^ F
that we can take d = 0.)

We proceed by induction on n(X), the least among all natural numbers n such that X can be covered by n
affine open subschemes. If n(X) = 1, i.e., X is affine, then for any T G Dqc(X), KQx(^) is the sheafification
of the complex RI^^) := Rr(X, .F); so to show boundedness we can replace B.Qx by RFy. For a K-injective
resolution I of T e Dqc(A'), use a "special" inverse limit of injective resolutions Iq of the truncations r^_g(F),
as in [Sp, p. 134, 3.13]. If Cq is the kernel of the split surjection Iq -^ Iq-i, then Cq[-q] is an injective resolution
of the quasi-coherent Ox -module H~q{.F), and hence HPr^(Cq) = 0 for p > -q. Applying [Sp, p.126, Lemma],
one finds then that for p > -q the natural map HPF^ ( I ) —^ H13^ ( I q ) is an isomorphism; and so if r>_g(^) =0,
then ^1^(7') = 0. Thus RI^ID^^^) is indeed bounded above (with d = 0).

Now suppose that n := n(X) > 1, and let X = A'i U . . . U Xn be an affine open cover. Set U := Xi,
V := X2 U . . . U Xn, W := U n V, and let u : U (-^ X, v : V ̂  X, w : W ̂  X be the inclusions. Note that
n(U) = 1, n(V) = n - 1, and n(W) < n - 1 (X separated => Xi n X, affine).
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By the inductive hypothesis, C -^ ^Qvjve for ^Y s ^ Cqc(V). Hence, as above, C has a K-injective
resolution in Cqc(V), so the functor vT : Aqc(V) -^ Aqc(X) ( := restriction of ^) has a right-derived
functor Rv?0, and there is a functorial isomorphism R^^Ov) —^ Rv^RQy. Since the left adjoint v*
of v* is exact, therefore v^ preserves K-injectivity of complexes, and so there is a functorial isomorphism
R(QY^) —^ KQxfiv*; and furthermore it is easily seen, via adjointness of v* and v^, that Qxv* = vTQv-

Thus we have a functorial isomorphism

RQ^R^ —^ R^xi^R^Qy) -^ R^RQv.

Similar remarks apply to u and w.

Now we can apply RQx to the Mayer-Vietoris triangle

F -^ Ru^*^ © R^v*.F -^ Rw^w*^" -. T\\\

to get the triangle

RQ^ ̂  R^RQL^*^ C R^RQyt^ -^ Rw^RQvyw*^ ̂  RQx^[l].

So it's enough to show: ifV is any quasi-compact open subset ofX with n(V) < n(X), and v : V ^-r X is the
inclusion, then the functor Rv^ is bounded above. (This derived functor exists, as before, by the induction hypothesis.)

We induct on n(V), the case n(V) = 1 being trivial, since then the map v is affine and the functor
v?° : Aqc(V) —^ A^c(X) is exact. Suppose then that n := n(V) > 1. V has an open cover V = Vi U V^ with

n(V-i) = l,n(V'2) = n-l,2indn(V^r\V2) < n-l.Letir. Vi c-^ V\h: V-z ̂  y,and?'i2: ^12 = V i H V ^ ̂  V
be the inclusions. Since n{V.s) < n(X) {s = 1, 2, or 12), we may assume that jy^ : D(Aqc(Vs)) -^ Dqc(Vs) is
an equivalence of categories with quasi-inverse RQvs, so that we have isomorphisms

RQyR^.CA^ ^ ̂ T^QvJyfs^ ^ R^C^ (^ ^ D(^qc(l/r)).

Similarly, HQvJyE ^ £. Hence application of RQy to the Mayer-Vietoris triangle

j y C -^ Hh^Jv^ 0 R^^./v^ ̂  R^2*^27vf -^JvW

gives rise to a triangle

e -. Kqy,e © Rif^e -. R^*^ - W-

Since i^ has an exact left adjoint ^.therefore ̂  preserves K-injectivity, and consequently Rt^Ri^ = R(l?^s)2c.
So we can apply Rv2° to the preceding triangle and use the induction hypothesis to see that Rv?^ is one vertex of a
triangle whose other two vertices are obtained by applying bounded-above functors to S, whence the conclusion. D

2. Proof of Theorem (0.3)-outline

We first define bifunctorial maps

^ : £ 0 RJz^ -̂  RJz (<? 0 ̂
(2.1) = = ( f^GD(X))^/ :f0Rr^-^Rj^(f0^)

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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(where (g) denotes derived tensor product). To do so, we may assume that £ is K-flat and
T is K-injective, and choose a quasi-isomorphism £ (g) T —> J with J K-injective. The
obvious composed map of complexes £ 0 Fz^F —^ £ (g) T —^ J has image in F z J , and
so we can define ^ to be the resulting composition in D(X):

<? ̂  RF^ ̂  <? 0 JZ.F -^ FzJ ^ RFz(£ ^ J^).

The map ^ ' is defined similarly, mutatis mutandis.
Under the hypotheses of Theorem (0.3), assertion (i) in Cor. (3.2.5) (resp. (3.1.4)) gives

that ^ is an isomorphism if £ and T are both in Dqc(X) (resp. ^ is an isomorphism
for all £,^) (6).

In view of the canonical isomorphism RT^Ox -^ RZ^Ox (Cor. (3.2.4)) and
of [Sp, p. 147, Prop. 6.6], we have then natural isomorphisms

Rn^(Rrz£^) -^ RH^(£(S)RrzOx^)

-=-> RH^{£,RT-i^(RrzOx^)).

It remains to find a natural isomorphism

Rn^(RrzOx^) -^ LAz^ [T e Dqc(^)).

To get this we define below a natural map $ : LA^ -^ RT^w^Rr^Ojc,.?7), and after
reducing to where X is affine and T is a single flat quasi-coherent Ox -module, prove
in §4 that <E> is an isomorphism by constructing <1>~1 via the representability of RFzOx
as a limit of Koszul complexes (7).

Assuming X to be quasi-compact and separated, so that LAz exists, let us then
define $. Let I be a finite-type quasi-coherent Ox-ideal such that Z = Supp(Ox/Z)
(see Introduction). For any Ox-complexes P, <3, Ti, the natural map

(P 0 Q) (g) (U^{Q, TV)) ̂  P (g) (Q 0 ̂ ^^•(Q, 7Z)) -^ P 0 7Z

induces (via 0-7-^w adjunction) a functorial map

P 0 Q -> U^\U^\Q, 7Z), P 0 7Z).

Letting Q run through the inverse system O x / I ' ' 1 (n > 0) one gets a natural map

AzP= lim(P(8)Ox/;T1) ̂  lim^^^^^^^^Ox/Z'1,^),? 0 7Z)

^^^^•(lim^^^^Ox/^^^^^TZ)

^^^^•(^7Z,P(g)7Z).

(6) The ring-theoretic avatar of this result is closely related to results ofMatlis [M, p. 114, Thm. 3.7], [M2, p. 83,
Thm. 10], and Strebel [St, p. 94, 5.8].

(7) (A short proof for the case f = Ox over smooth algebraic C-varieties is given in [Me, p. 97]. Cf. also
[H2, §4].) The ring-theoretic avatar of the isomorphism ^» underlies the duality theorem of Strebel [St, p. 94, 5.9]
and Matlis [M2, p. 89, Thm. 20], and the more general results of Greenlees and May [GM, p. 449, Prop. 3.1
and p. 447, Thm. 2.5].
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For T G DqcW, G e D(X), taking P to be Pjr (Proposition (1.1)) and U to be a
K-injective resolution of <? one gets a composed derived-category map

(2.2) <W G) : LAz^ ̂  AzP -^ U^\r^i,V 0 7Z)
-^RT-^^T^P^TZ)
^R^^^Rr^.T7^),

which one checks to be independent of the choice of P and 7Z.
As indicated above we want to show that $(JF,Ox) is an isomorphism. The question

is readily seen to be local on X (8), so we may assume X to be affine. The idea is
then to apply way-out reasoning [H, p. 69, (iii)] to reduce to where T is a single flat
quasi-coherent Ox -module, which case is disposed of in Corollary (4.2).

But to use loc. cit, we need the functors 1-iz ''= R^^w^Rr^Ojc, -) and LAz from
Dqc(X) to D(X) to be bounded above (= "way-out left") and also bounded below (= "way-
out right"). Boundedness of Hz is shown in Lemma (4.3). That LA^(-) is bounded above
is clear, since X is now affine and so if £ € Dqc(X) is such that H^E) = 0 for all
i > io then there is a flat Ve as in (1.1) vanishing in all degrees > %o. Now by [H, p. 69,
(ii), (iv)] (dualized), the case where T is a flat quasi-coherent Ox-module (Cor. (4.2))
implies that ^{F, Ox) : UzT -^ LAz^ is an isomorphism for all T G D^(X). That,
and T-LZ being bounded below, lets us conclude, via [H, p. 68, Example 1] (dualized,
with P the class of quasi-coherent flat Ox -modules), that LA^ is bounded below. (See
also [GM, p. 445, Thm. 1.9, (iv)].)

For the last assertion of Theorem (0.3), it suffices to verify the commutativity of the
following diagram, where £ may be taken to be K-flat, and as above, V = Pj-. This
verification is straightforward (though not entirely effortless) and so will be left to the
reader.

RH^^S.P) -r!aA^ RH^^S.AzP)

via $(P,Ox)

RT^'^RT^^OX^)) ———— RT^^RT^^RF^OX^))

RH^(£ 0 Ox,P) ——> ^U^\£ 0 RT^Ox,^)

^ | (2.1) ^4. ^

R'H^*(£,y) ——> R'Hww*('Rrz£,y)
via -7

This completes the outline of the proof of Theorem (0.3).

(8) Using the exact functor "extension by zero," one shows that restriction to an open U C X takes any
K-injective (resp. K-flat) Ox -complex to a K-injective (resp. K-flat) Ojj -complex.
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3. Proregular embeddings

In this section we explore the basic condition of proregularity, as defined in (3.0.1). This
definition, taken from [GM, p. 445], seems unmotivated at first sight; but as mentioned
in the Introduction, it is precisely what is needed to make local cohomology on quite
general schemes behave as it does on noetherian schemes (where every closed subscheme is
proregularly embedded), for example with respect to Koszul complexes. What this amounts
to basically is an elaboration of [Gr, Expose II] in the language of derived categories of
sheaves (9). We work throughout with unbounded complexes, which sometimes introduces
technical complications, but which will ultimately be quite beneficial in situations involving
combinations of right- and left-derived functors.

Rather than explain further, we simply suggest a perusal of the salient results-Lemma
(3.1.1) (especially (1) Q (2)), (3.1.3)-(3.1.7), (3.2.3)-(3.2.7). For completeness we have
included several results which are not used elsewhere in this paper. Some readers may
prefer going directly to §4, referring back to §3 as needed.

DEFINITION (3.0.1). - Let X be a topological space and 0 a sheaf of commutative rings
on X. A sequence t := (ti, t - z , . . . , t^) in F(X, 0) is proregular if for each i = 1 ,2 , . . . , fi
and each r > 0 there exists an s > r such that in 0,

(^,..., t^)o: tic (^..., ̂ o:tr^
A closed subspace Z C X is proregularly embedded in X if there exists an open

covering (Xa)aeA of X and for each a a proregular sequence ia in F(Xa,Oa) (where
Oa '= 0|xJ such that Z D Xa is the support of Oa/ta^a.

Examples. - (a) Suppose that X is quasi-compact (not necessarily Hausdorff, but
every open cover has a finite subcover), and that the (9-module 0 is coherent. Then t is
proregular if (and clearly only if) for each z , r as above and each x C X, there exists an
s = s(x) > r such that in the stalk Oa.,

(3.0.2) %,... ̂ _,)0, : t8, C (^ ... ̂ -i)0. : C'-

Indeed, the ideal sheaves appearing in (3.0.1) are all coherent, and so we can take
s(y) = s(x) for all points y in some neighborhood Wy, of x. If (3.0.2) holds for s then
it holds for all s ' > s; and since X can be covered by finitely many of the W^, the
condition in (3.0.1) is satisfied.

Note that (3.0.2) holds whenever the ring 0^ '^noetherian, since then

(^ ... ,tl_i)a : t^ = (t^... ̂ _i)0, : tj for s > r.

Thus if X is quasi-compact, 0 is coherent, and all the stalks Ox are noetherian, then
every sequence t is proregular.

(9) More generally, to do the same for [ibid.. Expose VI], replace 0 in what follows by an 0-module
M, P by M (g) P (P flat), J by 'H^(M.J) {J injective), and the functor ^ (-) by H^^(M, -) :=
limT-^^.M/t" M, -) ...
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(b) If (3.0.2) holds, then it also holds when 0^ is replaced by my flat 0^-algebra. It
follows, for example, that if R is a ring of fractions of a polynomial ring (with any number of
indeterminates) over a noetherian ring, then every sequence t in R = r(Spec(J?), Ospec^))
is proregular; and every closed subscheme Z C Spec{R) such that Spec(J?) \ Z is
quasi-compact is proregularly embedded.

(c) For an example by Verdier of a non-proregular sequence, and the resulting
homological pathologies, see [I, pp. 195-198].

3.1. Let (X, 0) be as in Definition (3.0.1). Denote the category of 0-modules by A and
let D be the derived category of A. Fix a sequence t = ( t i , . . . , t^} in T{X, 0), and set

t^^,...^) ( n > 0 ) .

Define the functor U : A —> A by

r^Q:= Hm U^o{01^0,0} (Q G A\
n>0

The stalk of HQ at any point x G X is

(r/0), = Hm Homoja./ra^) (.r G x).
n>0

The (homological) derived functors of J^ are

H^r^Q = Hm ^^(O/t'O^) (z ^ 0, Q G A).
n>0

If s is another finite sequence in F(X, 0) such thaty/sO =ViO then 7:' = ^/- If (x. °)
is a scheme and Z := Svipp(0/t0) then U = 7^, ^^ (0.1).

For t <E F(X, 0), let /C^t) be the complex . . . ^ 0 - ^ 0 - ^ 0 ^ 0 ^ • • • which in
degrees 0 and 1 is multiplication by t from 0 =: JC°(t) to 0 =: /C1^), and which vanishes
elsewhere. For 0 < r < 5, there is a map of complexes JC9^) -^ fC*{t8) which is the
identity in degree 0 and multiplication by ^-r in degree 1; and so we get a direct system
of complexes, whose Iim we denote by 1C^(t). The stalk of K'*o(t) at x G X looks in
degrees 0 and 1 like the localization map Ox —> (Ox)t = Ox[^IA-
With 0 = (g)o, set

^•(t):^^!)^...^^),

^(t) := Iim ^(t") = /C^(^) 0 . . . 0 /C^(^);
n>0

and for any complex T of 0-modules set

^•(t, ̂ ) := ̂ (t) 0 ̂  ^•o(t^) := ̂ (t) 0 ̂ .

Since the complex /C^(t) is flat and bounded, the functor of complexes ̂ (t, -) takes
quasi-isomorphisms to quasi-isomorphisms [H, p. 93, Lemma 4.1, b2], and so may be
regarded as a functor from D to D.
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After choosing a quasi-isomorphism (p from T to a K-injective 0-complex C* [Sp, p. 138,
Thm. 4.5], we can use the natural identifications

r/^ = Umker^t^') - ̂ (t^-)) = ker(/C^(t^') -. /C^(t^)) 0 G Z)

to get a D-morphism

^ = 6'(^ : RF/^ ̂  m^ ̂  JC; (!,£•) ̂  /C^(t^),

easily checked to be functorial in T (and in particular, independent of (/?).
In proving the next Lemma, we will see that proregularity of t implies that S^^F) is

always an isomorphism. And the converse holds if cohomology on X commutes with
filtered direct limits, for example if X is compact (i.e., quasi-compact and Hausdorff) [Go,
p. 194, Thm. 4.12.1], or if X is quasi-noetherian [Ke, p. 641, Thm. 8]. Kempf defines
X to be quasi-noetherian if its topology has a base of quasi-compact open sets, if the
intersection of any two quasi-compact open subsets of X is again quasi-compact, and if
X itself is quasi-compact. We prefer to use the term concentrated. For example, if X is
noetherian (i.e., every open subset is quasi-compact) then X is concentrated. A scheme is
concentrated iff it is quasi-compact and quasi-separated [GrD, p. 296, Prop. (6.1.12)] (10).

LEMMA (3.1.1). - Let t = (^i,...,^) (ti G r(X,0)) and 6' be as above, and
suppose that X is compact or concentrated. Then the following are equivalent:

(1) The sequence t is proregular (Definition (3.0.1)).
(2) For any F G D, the map 6'(^F) '. RĴ .77 — JC*^(t^) is an isomorphism.
(1)' For any injective 0-module J and every i / 0, H'lC^t, J) = 0.
(3) For any flat 0-module V and every i / 0, the inverse system

(H,(€, P)),>o := (H-'H^o^^^ P))r>o

is essentially null, i.e., for each r there is an s > r such that the natural map
H^t^P) -^ H^t^P) is the z.ero map.

(3/ For every i / 0 the inverse system (fl^t^ 0))r>o Is essentially null.
(3)" The inverse system (^(t^ 0))r>o is essentially null.

Proof. - We proceed as follows.
(A): (1) => (3V ^ (3) ^ (3)" ^ (1).
(B): (3)' ^ (2)' o (2) ^ (3).

The hypothesis "X compact or concentrated" will be needed only for (2)=^(3).
(A). Assuming (1), we prove (3)' by induction on IJL. For ^ = 1, the assertion amounts

to the vanishing (in 0) of ^^(O : ̂ ) when s ^> r, which we get by taking i = 1 in
Definition (3.0.1). For [i > 1, there is an obvious direct system of split exact sequences
of complexes

(3.1.1.1) 0 -^ O'^-l} -. /C*(^) ̂ 0^0 (r > 0)

(10) Where, for the implication d) => a), the family (Ua) should be a base of the topology.
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where 0^ := 0 =: Or for all r, where the map 0', -^ 0^ {s > r) is multiplication
by t^, and Os —^ Or is the identity. From this system we derive an inverse system
of exact sequences

o ̂  n^o(^\^... ,^-i)) 0 a,o) ̂  T^o^a^... ,^_Q) 0 ̂ (^),o)
^ U^o^\(i\.... ,^-i)) ̂  <^0)[1] ̂  0

whence an inverse system of exact homology sequences, with Z^ := (t\^ . . . , ^_i)0,

•..^ff,((^,...,^_l),0)^ff,(%,...,^_l),0)-^^(tr,0)

-.ff,_i((^,...,^_i),0)-^ff,-i(%,...,^_i),0)^...
...^ffl(%,...,^_,),0)^ffl(tr,0)^(ZM:^)/ZM^O.

Now the inductive hypothesis quickly reduces the problem to showing that the inverse
system Tr := (Z^ : t^)/I^\ with maps T, -^ Tr (s > r) given by multiplication by ^-r,
is essentially null; and that results from Definition (3.0.1) with i = IJL.

Thus (1) implies (3/. Since V is flat, H^t^F) = ̂ (t^O) 0 P, so (3)' ^ (3); and
obviously (3) => (3)' => (3)7'. Conversely, assuming (3)" we get (1) from the surjections
(as above):

H^...^)^0)^^..^t^)0:t^/{t[^.^t^)0 (Kz</ . ) .

(B). If J is an injective 0-module, then

H'JC^t.J) = iriim/C^t7^) ̂  VimH'H^^n^^^^O^J)
r>0 r>0

= limT^aff^t^O))^)
r>0

and consequently (3)' => (2)'.
(2)7 implies, for any 0-complex T, that if T —^ C9 is a quasi-isomorphism with

C9 both K-injective and injective [Sp, p. 138, 4.5], then the j-th column K^(t,/^) of
the double complex (/C^(t) 0 ^)o<i<^, jez ls a miite resolution of r^C3, so that the
inclusion I^* c—> /C^, (!,£*) is a quasi-isomorphism; and (2) follows. Conversely, since
Rr^J ^ F/J, (2)' follows from (2).

To deduce (3) from (2)' we imitate [Gr, p. 24]. There exists a monomorphism of the
0-module H^'H^w9(}C9{tr)^P) into an injective 0-module J 1 , giving rise naturally to
an element of

(3.1.1.2) limHom^^^^^/C^t8),?),^);
s>r

and it will suffice to show that this element is zero. Noting that homology commutes
with the exact functor Hon^—,^) and with lim, noting that ^(t8) is a finite-rank
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free 0-complex, setting r(-) := F(X,--), and setting J := 1-L^^{V,J') (which is an
injective 0-module since V is flat), we can rewrite (3.1.1.2) as

H^imm^^n^^jc^i8),?)^^
=ff^lim^^^e(^^e(/C•(ts),0)0P^/)

=ff^lim^^^•(^^•(K:•(ts),0),J)

^limr^t8)^^

or again, since F commutes with lim (X being compact or concentrated), as ffT/C^t,,^).
But by (2)7, 1C*^(i^J) is a resolution of F ^ J , and as a lim of injective complexes, is a
complex of F-acyclic sheaves (since H^X^ —) commutes with lim); also F ^ J , the lim
of the flabby sheaves I-L^/^^O j^O^J), is r-acyclic; and so

ffT/C^(t,J) = H\X^zJ) = 0 (z ^ 0).

This completes the proof of Lemma (3.1.1). D
With no assumption on the topological space X we define as in (2.1) mutatis mutandis

a functorial map

W, J^^Rr/^ ̂  Pr/O?^) ( f^GD).

COROLLARY (3.1.2). - Iff is proregular then ^(S^ ^F) is an isomorphism for all <f, ^F.

Proof. - Assume, as one may, that <f is K-flat, and check that the following
diagram-whose bottom row is the natural isomorphism-commutes:

V^, ^)
£ 0 RF/^ ———. RF/ (£ 0 ̂ )

via 6'{J=~) 6 ' { £ ^ )
~t- ~i-

^/C^(t^) ——^ ^(t^0^)

By the implication (1) =^ (2) in Lemma (3.1.1) (whose proof did not need X to be
compact or concentrated), the maps 6 ' ^ ) and 6\£ 0 .77) are also isomorphisms, and the
assertion follows. D

COROLLARY (3.1.3). - If t and t* in F(X, 0) are such that t* and (t,t*) are both
proregular, then the natural map RJ7^ ̂  —^ RT^oRJ^ is an isomorphism.

Proof. - Proregularity of (t, t*) trivially implies that of t (and also, when X is compact
or concentrated, of t*, see remark preceding (3.1.5) below). By (3.1.1)(2), the assertion
results from the equality /C^((t,t*), -) = ̂ (t, ̂ (t*, -)). D

COROLLARY (3.1.4). - Let (X,0) be a scheme and Z C X a proregularly embedded
subscheme.
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(i) The map ^ : £(g)RJ^.F -̂> R7^(^(g)^) of (2.1) ^ ^n isomorphism for all

£^ € D(X).
(ii) If Z * C X is a closed subscheme such that Z* and Z D Z* ar^ to^/i proregularly

embedded, then the natural functorial map RJ^^ —^ RJ^oRJ^ ^ ^n isomorphism.
(iii)Rr^(Dqc(X)) C DqcW.

Proof. - The assertions are essentially local on X, so the first two follow from (3.1.2)
and (3.1.3) respectively, and the third from (3.1.1)(2), see [H, p. 98, Prop. 4.3]. D

Assume now that X is compact or concentrated. If t* is a permutation of t then there is an
obvious functorial isomorphism /C^(t*, -) -^ /C*o(t, -), and so by Lemma (3.1.1)(2),
t* is proregular ^ so is t. More generally:

COROLLARY (3.1.5). - Let t == ( ^ i , . . . , t^) be, as before, a sequence in F(X, 0\ -with X
compact or concentrated, and let t* := (t^... , t^) be a sequence in T{X^VtO). Then
the sequence (t*, t) := ( t ^ , . . . , t^ , ^ i , . . . , t^) is proregular ^ so is t. In particular,
if^/t^O = Vi0 then t* is proregular <=> so is t.

Proof. - It suffices to treat the case v = 1. Since (clearly) E^ ^ =- H, and in view
of (3.1.1)(2), we need only show, with t := t^, that for any 0-complex T the natural
functorial map

^((^^,...,^)^)=/C^(t)0/C-,(t^)-00/C^(t^)-/C-,(t^)

induces homology isomorphisms. The kernel of this degreewise split surjective map is
Ot[-l} 0 ̂ (t, ̂ ), where Of is the direct limit of the system (C^nX) with On := 0 for
all n and with Or —> Os (r < s) multiplication by t5"7'; and it will suffice to show that
this kernel is exact, i.e., that/or j G Z and r > 0, any section of H3 (^^(^, 7')) over
an open U C X is locally annihilated by a power of t. Since t € ViO we can replace t
by ti (1 < i < p) in this last statement, whereupon it becomes well-known-and easily
proved by induction on /^, via (3.1.1.1). D

COROLLARY (3.1.6). - Let (X, 0) be a quasi-separated scheme and Z C X a proregularly
embedded subscheme. If XQ C X is a quasi-compact open subset, OQ := 0\Xo^ a^d
to is a finite sequence in r(Xo,Oo) such that Z D XQ is the support of Oo/ioOo^ then
to is proregular.

Proof. - XQ is covered by finitely many of the open sets XQ D Xa with Xa as in
Definition (3.0.1), and we may assume that each Xo, is quasi-compact, whence so is
XQ n Xa (since X is quasi-separated). So it suffices to apply (3.1.5) to XQ D Xa, with
t := to and t* := tc,. D

Let (X^O) be a scheme, let j : A^c == Aqc(X) ^-> Abe the inclusion of the
category of quasi-coherent 0-modules into the category of all 0-modules, and let
j : D(^lqc) —^ D(^4) ==: D be the corresponding derived-category functor.
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PROPOSITION (3.1.7). - If (X, Ox} is a quasi-compact separated scheme and Z C X is
proregularly embedded, then the functor

r^:=rzoj=r,oj:A^^A^
has a derived functor

RF^ : D(A,c) - D(Aqc);

and the natural functorial map joRJT^0 —> RJ^o/ is an isomorphism.

Remark. - For quasi-compact separated X,j induces an equivalence of categories from
D(Aqc) to Dqc(X) [BN, p. 230, Cor. 5.5] (or see (1.3) above). Therefore any T e Dqc(X)
is isomorphic to a quasi-coherent complex. In this case, then, (3.1.7) embellishes assertion
(iii) in (3.1.4). (The following proof does not, however, depend on [BN] or (1.3).)

Proposition (3.1.7) is a consequence of:

LEMMA (3.1.7.1). - For any inclusion i :U t—^ X with U affine open, and any J which
is injective in Aqc{U)^ the natural map F^i^J —^ RJ^^J' is a D -isomorphism.

Indeed, if Q C Aqc, if (Ua)i<a<n is an affine open cover of X, with inclusion maps
^a '- Ua <-^ X, and if for each a, i^Q —> Jo, is a monomorphism with Jo, injective
in Aqc{Ua), then ia*Ja is ^4qc-injective (since i^ : Aqc{Ua) —^ Aqc has an exact left
adjoint), and there are obvious monomorphisms Q —>• ^=^a^^G —^ 0^=i%a*^7a- Thus
the category Aqc has enough injectives; and since, by (3.1.7.1),

r-iqc/^n - q \ ̂  ^n p pi • rr
^-Z ^^oi^^Oi^^foi) — WQ^I £xflZVOt^<JOi•)

and the functor RJ^ is bounded above and below (by Lemma (3.1.1)(2) and quasi-
compactness of X\ it follows from [H, p. 57, 7b] and its proof that RF^0 exists and
is bounded above and below. And then the isomorphism assertion in (3.1.7) follows
from [H, p. 69, (iii) and (iv)].

It remains then to prove Lemma (3.1.7.1).
Since X is concentrated, there is a finite-type Ojc-ideal Z such that Z = Supp(C^:/Z).

With Ou := f0x, Iu ''= ^*Z, we have for any C^-module <?,

r^s = lim^^e^/z^^)
= limz^^^(0[7/Z^,f)

= z.lim^^w(Ot7/Z^,£) = ̂ r^£

where the interchange of lim and %„ is justified by [Ke, p. 641, Prop. 6]. Since the map i
is affine, and ^ takes Ou -injectives to Ox -injectives, and since for any O^-injective £,
r^uC is a lim of flabby sheaves and hence ^-acyclic [Ke, p. 641, Cors. 5 and 7], therefore

Rr^i.j) ̂  Rr^(R^) ̂  R(r^)(j) = R{i^u){J) = R^Rr^(^).
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Referring again to the ring-theoretic analogue of (3.1.1)(2y [Gr, p. 24, Lemme 9, b)l, we
see that RJ]^^ ^ r^^J', and since % is affine and F^^jJ is quasi-coherent, therefore

R^RJ^-^^ ̂  R^J^^^ ^ ^^zni/^ ^ I z Z ^ J ' ,

whence the desired conclusion. D

(3.2) The map

8f = <W : RF/^ -^ /C^(t,^) (^ G D)

remains as in §3.1. Let Z be the support of 0/t0, a closed subset of X. In the following
steps a)-d), we construct a functorial map

S = 6(^) : /C^(t^) ̂  RFz^ (^ e D)

^MC/Z that 606' : T^r^y —> RJ^.77 coincides with the map induced by the obvious inclusionu — rz.
a) As in the definition of 6 ' we may assume that F is K-injective, and injective as

well (i.e., each of its component 0-modules ^7n {n G Z) is injective) [Sp, p. 138, 4.5].
If U := (X\Z)^X is the inclusion map, then the canonical sequence of complexes
0 —^ Fz^F t—^ T^i^T —> 0 is exact, there results a natural quasi-isomorphism
Fz^F —>- GJ—1] where C^ is the cone of rj.

b) Let /C^ be the complex

^o(t) - ̂ (t) - ... (^° :- ^o(t), ̂  := ̂ (t), . . .)

There is an obvious map of complexes 0 := /C^(t) —> /C^, inducing for any complex T
a map ^ = ̂ ) : T = 0 0 T -^ IC^ ^, whose cone (^ is /C^(t, ̂ )[1].

c) Since t0u = ^u {Ou := 0\u\ the complex %*/C^(t) is homotopically trivial at
each point of U, and hence for any T the complex %*/C^(t,JF) is exact. In other words,
z*^(^7) : %*.F —^ %*/Cfc, 0 %*^7 is a quasi-isomorphism for all ^7.

Let a : %*/Cb 0 %*^7 -^ C be a quasi-isomorphism with C K-injective. Then
crcn*^ : VT —r C is a quasi-isomorphism between K-injective complexes, therefore
so is ^:= ^(croz*^), as is the induced map of cones e : C^ —^ C^.

From the commutative diagram of complexes

jr _L^ z,z*(^) ——^ z,/;

(3.2.1) ^ | |z . r^ ||
N^ ^ II

^b^^' ——^ %*%*(/Cb0^) ——^ %*£
Z>K<7

we deduce a map of cones

(3.2.2) ^ ̂  C^o^
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and hence a composed D-map

6(^) : /C^(t,^) ^ ̂ [-1] -^ Cco^-1] -^^[-l] ̂  r^ ̂  RF^

easily checked to be functorial in T.
d) To check that 6 0 6 ' is as asserted above, "factor" the first square in (3.2.1) as

F —^ F / r ^ -^ i^^)<'i i
/Cb0.F ——^ ^^(^(g)^),

derive the commutative diagram
via 77

C,[-l] —— C,[-l]

via ^ ' e[-l]
4^ ^

^[-i] —. Ceo,[-i],
(3.2.2)

and using a) and b), identify the D-map labeled "via ^/" (resp. "via T/") with 6 ' (resp. the
inclusion map F^T (—^ Fz^).

The next Lemma is a derived-category version of [Gr, p. 20, Prop. 5] and [H, p. 98,
Prop. 4.3, b)] (from which it follows easily if the complex f is bounded-below or if the
functor FZ has finite homological dimension).

LEMMA (3.2.3). - Let {X,0) be a scheme, let t be a finite sequence in T(X,0),
and let Z := Supp(0/t0). Then 6{^} : fC^i^) -^ RFzJ* is an isomorphism/or
all T e DqcW.

Proof. - The question is local, so we may assume X to be affine, say X = Spec(R). Let
i : U := {X \ Z) ̂  X be the inclusion, a quasi-compact map (since U is quasi-compact).
Let /C^ be as in the definition of 8, so that /C^ == z*%*/Ct,. Also, the Cech resolution
%*^(0) : Ou -> ̂ b (see c) above) is i^-acyclic, i.e., ^^(^/C^) = 0 for all p > 0 and
q > 0: indeed, %*/C^ is a direct sum of sheaves of the form j^Oy, where V C U is an
open set of the form Spec(jRi) (t a product of some members of t) and j : V <—^ U is
the inclusion map; and since V is affine, therefore

i.(j.Ov) = (ij).Oy = R(^)*0y - R^(R^Ov) = R%,(^0y),

whence %*(%*/C^) = R^(z*/q7). It follows that /Cb = i^JC^) ̂  R^(O[/).
Since the bounded complex /C[, is y?a?, we conclude that the bottom row of (3.2.1) is

isomorphic in D to the canonical composition

Tii,Ou(S)^-^Ri^('Ri.Ou0y) -^ R%,(%*R^Oc/ 0i^) -^ R%*(O£/ 0%*^)

which composition is an isomorphism for any 7 C Dqc(X). This instance of the
"projection isomorphism" of [H, p. 106] (where the hypotheses are too restrictive) is shown
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in [L, Prop. (3.9.4)] to hold in the necessary generality. It follows that the map C^ —^ C^
in (3.2.2) is a D-isomorphism, whence the assertion. D

From the implication (1) =^ (2) of Lemma (3.1.1)-whose proof does not need X to
be concentrated-we now obtain:

COROLLARY (3.2.4). - IfZ is a proregularly embedded subscheme of the scheme X then
for all T G Dqc(X), the natural map RJ^JF —> RJz.F is an isomorphism.

COROLLARY (3.2.5). - Let (X, 0) be a scheme and Z C X a closed subscheme such that
the inclusion (X \ Z) c-^ X is quasi-compact.

(i) The map ^ : f^RJz.^ -^ Rrz(£(g)^') of (2.1) is an isomorphism/or all
£^ G DqePO.

(ii) If Z* C X is a closed subscheme such that {X \ Z*) c-^ X is quasi-compact,
then the the natural functorial map RF^nz*^ -^ RIzRJ^f is an isomorphism for all
£ e DqcW.

(iii)Rrz(DqeW) C DqeW.

Proof. - Since ^ is compatible with restriction to open subsets, we may assume that X
is affine, so that Z == Supp(0/t0) for some finite sequence t in T{X, 0). We may also
assume that £ is K-flat, and then check that the following diagram-whose top row is the
natural isomorphism-commutes:

f0/C^(t,^) ——^ /C^(t,f0^)

via 6(JT) 6{C^}
\- 4-

£ (g) RF^ ——> RFz {£ 0 ̂ )

Since both E and T are in Dqc(X), so is ^ 0 J^: express ^ and ^ as lim's of bounded-
above truncations to reduce to where i.T e Dqc, a case treated in [H, p. 98, Prop. 4.3].
By Lemma (3.2.3) the maps 6{F) and 6{£^F} are isomorphisms, and assertion (i) of
the Corollary follows.

Assertion (iii) follows at once from (3.2.3), see [H, p. 98, Prop. 4.3]. And then (ii)
follows from (3.2.3), since /C^((t,t*),-) = /C^(t) 0 /C^(t*,-). D

Remark. - Actually, (i) results more directly from the triangle map {see (0.4.2.1))

^(g)Rrz^~ ———> ^^7 ———^ ^0Ru?*^ ———> ^0Rrz:F[l]

(2.1) ^ projection (2.1)
4' 4^ 4'

Rrz(^0^-) ——. e^y ——> Ki^e^i^) ——> ^rz(e^)[i\

with the projection isomorphism as in the proof of (3.2.3). Part (iii) also follows from (0.4.2.1), since R^i* preserves
quasi-coherence of homology {see [L, (3.9.2)] for unbounded complexes.)

As might be expected, assertion (ii) in (3.2.5) holds for all S € D(X). This is because RF^ can be computed via
"K-flabby" resolutions, and because for any injective K-injective complex ,7, F Z * J is K-flabby {see e.g., [Sp, p. 146,
Prop. 6.4 and p. 142, Prop. 5.15(b)], and use the natural triangle FZ-J -^ J -^ J * J * J ^ wherej : {X\Z*) ̂  X
is the inclusion).
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PROPOSITION (3.2.6). - Let (X, 0) be a quasi-compact separated scheme, and Z C X
a closed subscheme such that X\Z is quasi-compact. The following are equivalent:

(1) Z is proregularly embedded in X.
(2) The natural functorial map ./oRF^ -^ RI^oy (see Proposition (3.1.7)) is an

isomorphism.
(3) The natural functorial mapsjoTtr^ -^ R^0./ —^ RJzoy are both isomorphisms.

Proof. - (!)=> (3). If Z is proregularly embedded in X then Proposition (3.1.7) says
that joRF^0 -^ RJ^ 07 is an isomorphism; and (3.1.1)(2) and (3.2.3) give that the natural
map RJ^/F —» RF^/?" is an isomorphism for all T G Dqc(^).

(3) ^ (2). Trivial (n).
(2) =^ (1). Let i : Y ^ X be the inclusion of an affine open subset, so that Y \ Z is

quasi-compact, whence Y n Z = Supp(0y/t0y) for some finite sequence t in F(Y, Oy)
(Oy := 0|y); and let us show for any C injective in Aqc(V) that the canonical map
rynz^ -^ RFynz^ is an isomorphism, i.e., by (3.2.3), that a^/C^t, £) = 0 for all
n > 0. Then (1) will follow, by the ring-theoretic analogue of the implication (2)' => (1)
in Lemma (3.1.1), cf. [Gr, p. 24, Lemme 9].

There is a quasi-coherent Ox -module C' with %*£' = £, and an Aqc-injective J D £'.
Then C C VJ is a direct summand, and so for any n > 0, .yRFyn^ is a
direct summand of fi^RFynzzV ^ ^^RJzJ; which vanishes if (2) holds. Thus
^ynz^ -^ RTynz^, as desired. D

COROLLARY (3.2.7). - (cf. [Gr, p. 24, Cor. 10]). For a concentrated scheme X, the following are equivalent:

(1) Every closed subscheme Z with X \ Z quasi-compact is proregularly embedded.

(2) For every open immersion i : U ̂  X with U quasi-compact, and every Aqc -injective J, the canonical

map J —» i^i*^ is surjective.

Proof. - Assuming (1), to prove (2) we may assume that X is affine. Then by [Gr, p. 16, Cor. 2.11] we have
an exact sequence

0 ̂  FzJ -^ J -^ i^J -^ H^FzJ -^ 0,

and so Proposition (3.2.6) yields the conclusion.

Now assume (2) holds, so that for any Aqc -injective J , any open immersion j : Y —^ X with Y affine, and any
quasi-compact open U C Y, the restriction r(V, J ) -^ T(U,J) is surjective-in other words, j* J is quasi-flabby
[Ke, p. 640]. To prove (1) it suffices, as in proving the implication (2) => (1) in (3.2.6), to show that for any
Aqc -injective J and n > 0, Hn~R.^z^ = 0; and since the question is local it will be enough to show the same
for any quasi-flabby J . For n = 1 this results from the above exact sequence, and for n > 1 it results from
the isomorphism Hn'R,^zJ —^ ^-^^i^J [Gr, p. 16, Cor. 2.11], whose target vanishes because i*J is
quasi-flabby, hence ^-acyclic [Ke, p. 641, Cor. 5]. D

(u) One could also prove (1) => (2) without invoking 7^, by imitating the proof of (3.1.7).
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4. Local isomorphisms

This section provides the proofs which are still missing from the discussion in §2.
Proposition (4.1) is a D(X)-variant of Theorem 2.5 in [GM, p. 447], giving a local
isomorphism of the homology of T^H^9 (RJzOx, -) (called in [GM] the local homology
of X at Z) to the left-derived functors of completion along Z. (At least this is done for
quasi-coherent flat Ox-modules, but as indicated after (2.2), Lemma (4.3) guarantees that's
enough.) Corollary (4.2) allows us to conclude that on an arbitrary quasi-compact separated
scheme X, these isomorphisms-defined via local Koszul complexes-patch together to a
global inverse for the map ^{^,0x) of (2.2).

PROPOSITION (4.1). - Let {X, Ox) be a scheme, let t = (ti, ̂  • • • , ̂ ) be a proregular
sequence in T{X,Ox) (Definition (3.0.1)), and set Z := Supp(0x/t0x). Then for any
quasi-coherent yto Ox-module P there is a D(X) -isomorphism

Wi^{RrzOx,P) -^ lim P / C P .
r>0

Proof. - Let P —^ J be an injective resolution. By (3.2.3),

RH^dtrzOx.P) ̂  H^^^t^J) ̂  nm^^^^/C^t7')^);

and there are natural maps

(4.1.1) 7n : H^imn^^y)^) -^ Hmir^^/C^t^J)

^ limirT^^/C^t^P),

the last isomorphism holding because /C^f) is a bounded complex of free finite-rank
Ox -modules.

It follows easily from the definition of JC9^) that

H^n^^a^, P) ̂  WP;
and for i ̂  0, the implication (1) => (3) in Lemma (3.1.1) gives

\lmHi/H^{JC9(tr),P)=0.

It suffices then that each one of the maps TT^ be an isomorphism; and for that it's enough
that for each affine open U C X, the natural composition

(4.1.2) H^U, limT^^OO^)) ^ irUmHom^/C^r)!^^)

^ limJTHom^OOI^Ic/)

^ lim^(i^/,i:f^^^^•(/C•(tr),^))
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be an isomorphism. (As U varies, these composed maps form a presheaf map whose
sheafification is TT^.)

To see that v is an isomorphism we can (for notational simplicity) replace U by X-
assumed then to be affine, say X = Spec(jR), write T£ for F(X,f), and note that since
FP —^ TJ is a quasi-isomorphism (because P is quasi-coherent), and since HC^t7') is
a finite-rank free Ji-complex, therefore

(4.1.3) ^Hom^^r),^) ^ irHom^nC^t^rJ)
^J^Hom^rX^t^rP)
^TH^^^ (€),?)
^rjr^^/c^t^j).

It remains to be shown that IJL is an isomorphism; and for that we can apply [EGA, p. 66,
(13.2.3)]. As above we may as well assume X affine and U = X,

For surjectivity of /^, it is enough, by he. cit., that for each %, the inverse system

^^Hom^/CW,^ J] Hom^r),^) (r > 0)
o<p<p.

satisfy the Mittag-Leffler condition (ML): for each r there is an s > r such that the images
of all the maps Eg-^-n — ^ E r { n > _ 0) are the same.

But we have

Hom^W,^)^]^^,
a

where a ranges over all ^-element subsets of { 1 , 2 , . . . ,/4» an(! ^o- ''= J^ for all r
and a; and for s > r, the corresponding map n<r ^s,a —^ IIa ^a is the direct product
of the maps Js,a -^ Jr^ given by multiplication by ^-r where ta := T[j^ tj. Thus we
need only show there is an N such that t^^J^a = t^Jr^ for all r, cr, and n > 0.
But X being affine we have the equivalence (1)^(2) in Lemma (3.1.1), which implies
that any permutation of t is proregular. Taking r = 1 and i = 1 in Definition (3.0.1), and
applying the following Lemma (4.1.4) with I = I ' = (0), we find then that for each r,
a, and j = 1,2, . . . ,^, there is an Nj such that for all n > 0, t^^J^a = t ^ J r ^ ' The
desired conclusion follows, with N = sup(TV^).

For bijectivity of /^, it is enough, by loc. cit., that for each i, the inverse system

jrHom^/c^r)^) ^ rirT^^/c^t^P) (r > o)
(^ (4.1.3)) satisfy (ML). For i = 0, this is just the system r^/t'TCP), with all maps
surjective; and for i -^ 0, the system is, by Lemma (3.1.1)(3), essentially null. D

LEMMA (4.1.4). - Let I , T be 0-ideals, let t G F(X, 0\ and let r < s be integers such
that t8^^! : t8) C 1'. Then for any injective 0-module J and any open U C X we have,
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setting Gu ''= Q\u for any 0-module Q:

t^Hom^Ou/Iu. Ju) C t^om^Ou/Iu. Ju)-

Proof. - For any map p : Ou/Iu -" ^u. the kernel of Ou -t--> Ou/Iu annihilates t^p
(because (I : t8)!8^ C JQ, and so there is an 0^-homomorphism

^ = ̂  : t^Ou/Iu) -^ H^^Ou/I^ ^u) C Ju

with ^(t8 +Z[/) = t^p. Since Ju is an injective 0^-module, ^ extends to a
map ^° : Ou/Iu -^ Ju. and then

t^p = ̂ (t^Iu) = ̂ °(1 +^) e rHom(0^/Z^, Ju) C r((7, J^). D

COROLLARY (4.2). - WrA X, t, Z and P as in Proposition (4.1), let

9 = ^(P) : R7^^*(RrzOx, P) -^ UmP/t7'? = A^P = LAz?
r>0

be the isomorphism constructed in proving that Proposition {easily seen to be independent
of the injective resolution V —> J used there) and let

$ = W Ox) : LAzP — RH^CRrzOx.P)

be as in (2.2). Then <& = ^"^ and so <& ^ (2n isomorphism.

Proof. - We need only show that H°^)oH°{^) is the identity map of limP/fP.
Let x : ̂ x —^ ̂  and 0 :P <^U —^ J be quasi-isomorphisms with % and ,7 injective

complexes vanishing in all negative degrees. The composition

p^p^o^^p^n^j

is then an injective resolution of P, which can be used to define ^.
We have, by Lemmas (3.1.1)(2) and (3.2.3), D(X)-isomorphisms

^fn=\m^H^{Ox/trOx^) -^ lim/C^T^/C^TZ) -^ RIzOx,

whose composition "is" the natural isomorphism RJ^Ox -^ RFzOx of (3.2.4).
The obvious commutative diagram

H^^^imn^^Ox/^Ox^)^) ^—— H^^^mJC^t^n)^)

^ -i ^
ffoUm^^•(^^•(Ox/trC)x,7^),J) —— ^Um^^^/C^t^TZ),^)
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shows that a is an isomorphism; and it is straightforward to check that H°{^) can be
identified with the natural composition

H^^H^^H^^Ox/^Ox^^J^^H^imH^^^n)^)

-^limH^^^^n)^)

^lim^TY^^/C^), J )

^limff^^/C^r),?) = limP/t'P.

The map & is an isomorphism, since H°{^/) is. From the natural commutative diagram, in
which we have abbreviated T~iww9 to T~C, and whose top row is ff°($),

Um'P/rP —. HQ^H{U{Ox|trOx,n)^®n) —> HQ\mU(H(Ox|trOx^),J)

•I I -1-
^um^/c^t^^) -^ HQ\^u(1c•(tr)®n,v®n) —. ^iimn^^t^n)^)•i " i ~-i1
limH0^9^),?) —. limH^fC^t^^n^^n) —. lim^o^(^•(tr ,7^),jr)

" . " 1 '1
Um^T^/C^t7'),?) ^ Hm^^/C^t^^^TZ) —. lim^^/C^t7'),^)

we find that Jf°($)oc = ^(Y&^OC; and since c has t-adically dense image
in limP/t^-at least after application of any functor of the form r((7, -) with U C X
affine open-(because the complex limT^/C^t^'P) is just V in degree 0), we conclude
that H°{<S>) = H°W-1. D '

And finally:

LEMMA (4.3). - If X is a quasi-compact scheme and Z C X is a proregularly embedded
closed subset then the functor R^^w^RF^Ox,-) : Dqc(^) -> D(X) is bounded
above and below.

Proof. - Since X is quasi-compact the question is local, so we may assume that X
is affine and that Z = Snpp^Ox/tOx) for some proregular sequence t = (^ i , . . . , ^ )
in r(X,Ox).

Lemma (3.2.3) gives a functorial isomorphism

RH^(RrzOx,-) -^ RT^^/C^t),-).

For any complex £ e D(X) such that H^S) = 0 whenever i < %o, there is a quasi-
isomorphic injective complex J vanishing in all degrees below io, and then since the

4° S6RIE - TOME 30 - 1997 - N° 1



LOCAL HOMOLOGY AND COHOMOLOGY ON SCHEMES 31

complex /C^(t) vanishes in all degrees outside the interval [O,/^],

ITRT^^RJzOx^) ̂  H'H^^JC^t), J ) = 0 for all i < %o - ̂

Thus the functor RT^^RIzOx, -) is bounded below.
To establish boundedness above, suppose T G Dqc(X) is such that H ' { ^ F ) = 0 for all

i > %o, and let us prove that JPRT-^^ (^o(t) ̂ ) = 0 for all z > %o.
By [BN, p. 225, Thm. 5.1], we may assume that T is actually a quasi-coherent complex,

which after truncation may also be assumed to vanish in degrees > %o • Let

fn^r^^-.Jn (n>0)

be the inverse system of quasi-isomorphisms of [Sp, p. 133, Lemma 3.7], where r is the
truncation functor and Jn is an injective complex vanishing in degrees < -n. Writing
r(-) for r(X, -), we have natural isomorphisms

H-^^) -^ ff-m:^(T>-r\r) -^ H-^r^n) (m C Z, n > max(m,0)),

the second isomorphism holding since both r^'^T and Jn are F-acyclic complexes.
Further, as in the proof of [Sp, p. 134, Prop. (3.13)] we have, with ,7:= \imJn,

H-my^ _^ ff——r(J,).

Hence the natural map H'^T^) -> H ' ^ T ^ J ) is an isomorphism for every m.
Knowing that, we can argue just as in the proof of Proposition (4.1) to deduce that

the maps TT^ in (4.1.1)-with T in place of P-are isomorphisms for all i > io, whence
the conclusion. D

5. Various dualities reincarnated

Theorem (0.3) leads to sheafified generalizations ((5.1.3), respectively (5.2.3)) of the
Warwick Duality theorem of Greenlees and the Affine Duality theorem of Hartshome. In
(5.3) we see how together with Grothendieck Duality, Affine Duality gives a Formal
Duality theorem of Hartshome. A similar argument yields the related duality theorem
of [L2, p. 188], which combines local and global duality. In (5.4), using (0.3) and
an [EGA] theorem on homology and completion, we establish a long exact sequence of
Ext functors, which gives in particular the Peskine-STpiro duality sequence (0.4.3).

COROLLARY (5.1.1). - Let X be a quasi-compact separated scheme and Z C X a
proregularly embedded closed subscheme. Let T G Dqc(X), let 7 : RJ^.F —> T be the
natural map, and let v : T —> RQLA^.77 correspond to the natural map X : T —^ LA^^7

(see (0.4)(a)). Then 7 and v induce isomorphisms

(i) LAzRFz^ -^ LAz^

(ii) RFz^ -^ RFzRQLAz^.
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Proof. - Recall from (3.2.5) that RFz^ e Dqc(X). Theorem (0.3) transforms the
map (i) into the map

RH^(RrzOx^ RJz.F) vla^ RT^^RFzOx^)

which is, by (0.4.2), an isomorphism.
We could also proceed without recourse to Theorem (0.3), as follows. We may assume, by (1.1), that T is flat and

quasi-coherent. The question is local, so we can replace RFz^F by a complex of the form /C^(t,:F) {see (3.2.3)),
and then via (3.2)(c), 7 : RJ^^" —> F becomes the natural map C^[—l] —» T where C^ is the cone of the map
^ : T -> A^(g).7"of(3.2)(b). Since K,^T = t(A:i,0^), therefore At (JC^^):= Um^A^^Vt^A:^^)) = 0,
and so LAz('j) is an isomorphism.

As for (ii): with Hom:= HomD(x) and £ E Dqc(X), the composition

Hom(Rrzf^)—>Hom(RF^,RQLA^) -^ Hom(Rrz^,LAz^)
viai/ (0.4)(a)

is an isomorphism: it is the map obtained by applying the functor jEf°Rr(X,—) to
the isomorphism A' of Theorem (0.3)(bis.) (Recall that RJ^f ^ RFz^, (3.2.4).) Hence
"via v" is an isomorphism, and so by (0.4.2) the map

Hom(Rrz£,RrzJ') -^ Hon^RJz^RrzRQLAz.F)

induced by v is also an isomorphism. Taking £ = RQLA^.77, we see then that the map (ii)
has an inverse, so it is an isomorphism. D

Remark (5.1.2). — We just saw that V an isomorphism implies that so is (5.1.1)(ii). Conversely, to show that A'
is an isomorphism, one can reduce via (0.4.2) and (5.1.1)(i) to where F = Rr^.F, then use (5.1.1)(ii) to get
for each open U C X that the maps

HomD(L7)(Rrzn^|(7, y\u[z\) -^ Hom^u)(^rznuS\u, LAznu^\u[z\) (i € Z)

induced by A are all isomorphisms, so that A/ induces homology isomorphisms.

With the notation and relations given in Remark (0.4)(d), we find that the map (5.1.1)(ii) is an isomorphism iff
the corresponding map RI^ F —> RI^LAt^ is an isomorphism for any complex of A-modules; in other words,
iff Corollary (0.3.1) holds.

The next result extends Greenlees's "Warwick Duality" [Gl, p. 66, Thm. 4.1] (where
G = 0£/, so that Ext^(^*ROLAz.F) = lrr(X,R^*RQLAz.F) is the "local Tate
cohomology" of J:). As before, Q is the quasi-coherator.

PROPOSITION (5.1.3). - Let X be a quasi-compact separated scheme, let Z C X be
a proregularly embedded closed subscheme, and let i : U = (X \Z) ^—^Xbe the inclusion.
Then for Q G Dqc(?7) and T G Dqc(X) there are natural isomorphisms

Ext^rRQLA^) ̂  Ext^CR^, RJz.F) (n e Z).
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Proof. - Since Q = %*R%^, there is a natural isomorphism [Sp, p. 147, Prop. 6.7, (1)]

(*) RHom^(^,%*RQLAz^) -^ RHom^(R^ R%,z*RQLA^).

The canonical triangle RFzRi^G -^ Rz^ -> R^%*R^C?-^ (^ (0.4.2.1)) implies
RjTzR^ = 0; and R%^ e Dqc(X) (^ [L, (3.9.2)] for the unbounded case); hence

RHom^(R%,0,RQLAzJF) ^ RHom^(Rr^R%^, .F) = 0

(see (0.4)(a)), and the triangle RFzRQLAz^ -^ RQLAzJF -^ R^%*RQLAz^-±>
yields a natural isomorphism

(**) RHom^(R%^Rz,%*RQLAz.F) -^ RHom^(R%^, RrzRQLAz^[l]).

By (5.1.1)(ii) there is a natural isomorphism

(***) RHom^(R^RrzROLAzJ'[l]) -^ RHom^(R%,^, Rr^[l]).

Compose the isomorphisms (*), (**), (* * *), and take homology to conclude. D
Remark. - The complex Tz^:= R?iw^(RuOc7[-l], RFz^), whose hyperhomology

Tl(X^):=H'(X,rz^):=^Rr(X,7zJF) ^ H'(^z*RQLAz^)
(5.1.3)

is the local Tate cohomology of J', is the summit of a triangle based on the canonical map
RH^^(Ox, RF^J") -^ R^^Rr^Ox, RFzJ'), a map isomorphic via (0.3) and (5.1.1)(i) to the natural
composition RFz^ -^ T -^ LAz^. So there is a long exact sequence

•- -^ Hg(X,J-) -^ H'^LAz^) ̂  T^(X,^-) -^ H^+^X,^) ̂  .. .

and thus, as Greenlees points out, local Tate cohomology pastes together the right-derived functors of Fz and
the left-derived functors of Az.

(5.2). Next, we derive a generalized form of Affine Duality [H2, p. 152, Thm. 4.1],
see Corollary (5.2.3): "double dual = completion".

PROPOSITION (5.2.1). - Let X be a scheme and Z C X a closed subscheme. Then for any
£, T C D(X) there is a natural isomorphism

RrzRH^{£, T} -^ RH^^S.RFz^).

If in addition X is quasi-compact and separated, Z is proregularly embedded,
T € Dqc(X), and RT^w^f, F) c Dqc(X), then there is a natural isomorphism

LAzR^^^JT) -^ RT^^^LA^F).

Proof. - Let i : {X \ Z) c—^ X be the inclusion. Since %* has an exact left adjoint
(extension by zero), therefore %* preserves K-injectivity, and consequently there is a
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natural isomorphism ̂ RT^^f, .77) -^ R7 .̂w •(%*<?, %*^). The first assertion results
then from the commutative diagram, whose rows are triangles (see (0.4.2.1)):

RrzRT^^^.F) ——> TiH^(£^) ——> Ri^RU^9^,^) —^

^ [Sp, p. 147, 6.7]

RT^^^RJV) ——. RH^(£^) ——> R^^(<f,R%,%*.F) —^

The second assertion is given by the sequence of natural isomorphisms

LA^RTY^^.T7) —> Rn^CRFzOx, R^^f,^))
(0.3)

-^ R^^^•((R^^Ox) 0 <?, ̂ ) [Sp, p. 147, 6.6]

—— RT^^R^^) -^RT^^LAz.^). D(3.1.5) v z ^ / ^ ̂  V ^ z/ ;

Suppose further that X is noetherian. Let 'R G Dqc(X) hstve finite infective dimension
[H, p. 83, p. 134]. Then for any T G Dc(X) the complex

P(J^):=R^^^•(^7^)

is in Dqc(X) [H, p. 91, Lemma 3.2 and p. 73, Prop. 7.3], whence-by (3.2.5)-so is the
"Z-duaF complex

Pz(^):=RrzD(^) ^ R^^^^^RFzTZ).
(5.2.1)

For example, if % is a dualizing complex [H, p. 258], if x e X is a closed point, and
J{x} is the injective Ojc -module vanishing except at x, where its stalk is the injective hull
of the residue field of the local ring Ox,x, then by [H, p. 285],

P (̂.F) = U^\T,J{x}}[-d{x}\

where d{x) is the integer defined in [H, p. 282].
As in the proof of the second assertion in (5.2.1), there is a natural isomorphism

LA^P(J-) = LAzR^^^, U) -^ RT^^Rr^ 7Z) = PRF^);

and so if T e Dc(X), whence V^) e Dc(X), then there is a natural isomorphism

LAzPP(^) -^ 2)RFzP(^) = PPz(^) = ^z^z(^).

Thus:

COROLLARY (5.2.2). - Let X be a noetherian separated scheme, let Z C X be closed,
and let Ti G Dc(X) have finite injective dimension. Then for any T C Dc(X) w^ have,
with preceding notation, canonical isomorphisms

PRJz(^) ̂  LAzP(^),
VzVzW -^ LAzPP(^).
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COROLLARY (5.2.3). - Let X be a noetherian separated scheme having a dualizing
complex %. Let Z C X be closed, and let K : X/z —> X be the completion map. Then
for T G Dc(X), and with Vz as above, the natural map {3 : T —^ Vz^z^ factors via
an isomorphism

^T ^ VzVzF.

Proof. - Since % is a dualizing complex, therefore Ti e Dc(X), % has finite injective
dimension, and the natural map T —^ WT is an isomorphism [H, p. 258]. One checks
then that f3 factors naturally as:

T -^ ^^T ^ LAz^ -^ LAzVV^ -^ Pz^z^. n
(0.4.1) (5.2.2)

(5.3). Here are some applications of Theorem (0.3) involving Grothendieck Duality
(abbreviated GD) and basic relations between homology and completion.

Let A be a noetherian local ring, with maximal ideal m, and let I be an injective
hull of the A-module A/m. Assume that Y := Spec (A) has a dualizing complex %y,
which we may assume to be normalized [H, p. 276]; and let / : X —> Y be a proper
scheme-map, so that Tix '-= f'T^Y is a dualizing complex on X [V, p. 396, Cor. 3].
For any T G Dc(X), set

^:= P(JT) = RT^^TZx) e Dc(X).

Let Z be a closed subset of /^{m}, define I>z(^) as in (5.2) to be RJz.77', and let
^ : X —> X be the canonical map to X from its formal completion along Z.

Hartshome's Formal Duality theorem [H3, p. 48, Prop. (5.2)] is a quite special instance
of the following composed isomorphism, for ^~ € Dc(X): (12)

Rr(X,/^) = RT(X,/^*.^) -^ Rr^'Dz'Dz.T7) (5.2.3)
-^4 Rr(X,PPz^) (5.2.1), (0.4.2)
= RHom^Rrz^TZx)
-̂ 4 RHom^(R/,Rrz^',7Zy) (GD)
^4 RHom^(R/,Rrz^',Rr^}7Zy) (0.4.2)
-̂  HomA(R^^^/,J) [H, p. 285]

where I^(-) := r(X,Fz(-)). The last isomorphism follows from (0.4.4) because
1^ RF^TZy [H, p. 285], and R^RFz^' ^ Rr^' (13).

(12) Hartshome requires Z, but not necessarily X, to be proper over A. Assuming / separated and finite-type,
we can reduce that situation to the present one by compactifying / [Lii].

(13) Some technical points here need attention, especially when T is unbounded. First, GD holds for
unbounded T, see [N]. Next, since RJz.F' e Dqc(X) (3.2.5), therefore Rf^RFz^ e Dqc(y) [L, (3.9.2)];
and so by (1.3), R/^RJz.T7' ^ (Rr(y,R^Rrz^))~. Finally, using [Sp, 6.4 and 6.7] and the
fact that /* and FZ preserve K-flabbiness {see Remark following (3.2.5) above), one checks that
Rr(y,R/.Rrz^') ^ Rr(x,RFz^) ^ Rr^^.
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Taking homology, we get isomorphisms

(5.3.1) H^X^ ^^) -^ HomA(Ext^(.F, %x), I) (^ C Dc(X), q G Z).

(The functor Ext^ is reviewed in §5.4 below).
For example, if A is Gorenstein and / is a Cohen-Macaulay map of relative dimension n,

then 'RY ^ Oy^ T^-x ^ ^M for some coherent Ox -module uj (the relative dualizing
sheaf), and (5.3.1) becomes

H^X.^y) -^ Hon^Ext^.F^J).

Assume now that Z = /"^{m}. For T e Dc(X) the following Lemma (with J = m),
and the preceding composition yield isomorphisms

RHom^J^TZx) 0A A ^ RT(X, J^') 0A A ^ Rr(X, ^*^') ^ HomA(Rr^^", J).

Thus (since T ' 1 = 7} there is a natural isomorphism

RHom^(^TZx) 0A A -^ HomA(R^^J) (^ G De(X)).

Since RHom^(^', T^jc) has noetherian homology modules therefore KTz^F has artinian
homology modules, and Matlis dualization produces a natural isomorphism

(5.3.2) RI^ -^ HomA(RHom^(^7Zx)^) (^ ^ Dc(X)).

For bounded .F, this isomorphism is [L2, p. 188, Theorem], deduced there directly from
GD and Local Duality (which is the case X = Y, f = identity map).

LEMMA (5.3.3). - Let A be a noetherian ring, J an A-ideal, A the J-completion,
f : X —> Spec(A) a finite-type map, Z :== /-lSpec(A/J), and K : X = X / z —> X the
canonical flat map.

(a) If £ G Dqc(X) has proper support (i.e., £ is exact outside a subscheme Y of X
which is proper over Spec(A)), then there is a natural isomorphism

Rr(x,f)0AA -^ Rr(x,^*f).
(b) Let £ G Dc(X), T G D^ (X), and suppose either that £ G D^(X) or that T

has finite injective dimension. Suppose further that R7^w^(<f, 7') has proper support.
Then there is a natural isomorphism

RHom^(<?^)0AA -^ RHomj^*^*^)

Hence, by (0.3)c, if moreover T C D^"(X) then there is a natural isomorphism

RHom^(<f^)0AA -^ RHom^(Rr^^).

Proof. - (a) For bounded-below <f, way-out reasoning [H, p. 68, Prop. 7.1] brings us to
where £ = Q, a single quasi-coherent Ox -module supported in Y. Since Q is the lim of its
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coherent submodules, and since homology on the noetherian spaces X and X commutes
with lim, as does /^*, we can conclude via [EGA, p. 129, 4.1.10].

There is an integer d such that ^{X.Q) = 0 for all n > d and all such Q\ so
the same holds for ^{X.^G), and hence the method (denying from [Sp]) used to
prove [L, Prop. (3.9.2)] gets us from the bounded to the unbounded case.

(b) By (a), and since IU-C^^(£^) G D^ (X), [H, p. 92, 3.3], it suffices to show
that the natural map ^*R7^w^(<?, .77) -^ R7^^(^*<£', ^*.F) is an isomorphism. The
question is local, so we can assume X affine and, ^ being flat, we can use [H, p. 68,
Prop. 7.1] to reduce to the trivial case £ = 0^. D

(5.4). The exact sequence (0.4.3) is a special case of the last sequence in the following
Proposition (5.4.1) (which also generalizes the last assertion in (5.3.3)(b)).

When W is a locally closed subset of a ringed space X, and £,T G D(X), then
following [Gr, Expose VI] one sets

Ext^D :- H^RTw^^x^^)) = H^R^w^^x)^^)) (n € Z)

where r^(-) := F(X, r^(-)) is the functor of global sections supported in W, and the
second equality is justified by [Sp, p. 146, 6.1(iii) and 6.4] (which uses the preparatory
results 4.5, 5.6, 5.12, and 5.22). It also holds, via (5.2.1), that

Ext^(^) = ^(RHom^^RJw.F)).

With U := X \ W there is a canonical triangle (cf. (0.4.2.1))

RTwRH^W^} -^ RTxRH^W^} -^ RTuRH^\(£^) ̂

whence a long exact cohomology sequence

.. . -. Ext^, ̂ ) -^ Ext^f, ̂ ) -^ Ext^f, J-) -^ Ext^^ T} -. . • •

PROPOSITION (5.4.1). - Let X be a noetherian separated scheme, let Z C X be a closed
subscheme, and let K : X = X/z —> X be the canonical map. Let £ € D(X) and
T G Dc(X). Let W C X be closed, so that W H Z is closed in X. Then there are
natural isomorphisms

Ext^z(^*^ ̂ ) -^ Ex^(RF^, RF^nz^) {n G Z),

and so -with U := X \ W and U := U/znu there is a long exact sequence

• . . ̂  Ext$(Rr^, RF^nz^) ̂  Ext^(^*<f, ̂ ^) -^ Ext^(/^*f, ^*.F) ̂  • • •
-A. L-'

Hence under the assumptions of Lemma (5.3.3)(b) there is an exact sequence

. . . -> Ext^(Rr^, RFwnzf) -^ Hxt^(f, j^) 0A A -^ Ext^(^*^, K*^) -^ . • •
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Proof. — There are natural isomorphisms

/^Rr^nzR^^(^ ^*^) -^ Rr^^R^^^^(^*f, /^*^)
^ > RjT^RT^^wjYA^^z^? .77)
-^ RT^^(Rr^Rr^)
—^ R?^%w^(RjT^<?, RJ^yn^.?7).

The first isomorphism results from the equality ^Fwnz = ^(v^*, since ^ preserves
K-flabbiness [Sp, p. 142, 5.15(b) and p. 146, 6.4]. The second comes from (0.3)c. The
third comes from (5.2.1). The last comes from (0.4.2) and (3.2.5)(ii).

To conclude, apply the functor RFjc and take homology. D

REFERENCES

[BN] M. BOKSTEDT and A. NEEMAN, Homotopy limits in triangulated categories {Compositio Math., Vol. 86,
1993, pp. 209-234).

[Gl] J. P. C. GREENLEES, Tate cohomology in commutative algebra ( J . Pure and Applied Algebra, Vol. 94, 1994,
pp. 59-83).

[GM] J. P. C. GREENLEES and J. P. MAY, Derived functors of I-adic completion and local homology (J. Algebra,
Vol. 149, 1992, pp. 438-453).

[Go] R. GODEMENT, Theorie des faisceaux (Act. Sci. et Industrielles, no. 1252, Hermann Paris, 1964).
[Gr] A. GROTHENDIECK, Cohomologie locale des faisceaux coherents et theoremes de Lefschetz locaux et globaux

(SGA 2) (North-Holland Amsterdam, 1962).
[EGA] A. GROTHENDIECK and J. DIEUDONNE, Elements de Geometric Algebrique HI {Publications Math. IHES, 11,

1961).
[GrD] A. GROTHENDIECK and J. DIEUDONNE, Elements de Geometric Algebrique I (Springer Verlag, New York,

1971).
[H] R. HARTSHORNE, Residues and Duality (Lecture Notes in Math., no. 20, Springer-Verlag, New York, 1966).
[H2] R. HARTSHORNE, Affine duality and cofiniteness {Inventiones Math., Vol. 9, 1970, pp. 145-164).
[H3] R. HARTSHORNE, On the de Rham cohomology of algebraic varieties {Publications Math. IHES, Vol. 45,

1976, pp. 5-99).
[HK] R. HUBL and E. KUNZ, Integration of differential forms on schemes {J. reine angew. Math., Vol. 410, 1990,

pp. 53-83).
[HS] R. HUBL and P. SASTRY, Regular differential forms and relative duality (American J. Math., Vol. 115, 1993,

pp. 749-787).
[I] L. ILLUSIE, Existence de Resolutions Globales, Theorie des Intersections et Theoreme de Riemann-Roch

(SGA 6) {Lecture Notes in Math., no. 225 Springer-Verlag, New York, 1971, pp. 160-221).
[Ke] G. R. KEMPF, Some elementary proofs of basic theorems in the cohomology of quasi-coherent sheaves,

Rocky Mountain {J. Math, Vol. 10, 1980, pp. 637-645).
[Ki] R. KIEHL, Ein "Descente"-Lemma und Grothendiecks Projektionssatz far nichtnoethersche Schemata

{Math. Annalen, Vol. 198, 1972, pp. 287-316).
[L] J. LIPMAN, Notes on Derived Categories and Derived Functors, preprint.
[L2] J. LIPMAN, Desingularization of two-dimensional schemes {Annals of Math., Vol. 107, 1978, pp. 151-207).
[L3] J. LIPMAN, Dualizing Sheaves, Differentials, and Residues on Algebraic Varieties (Asterisque, vol. 117, Soc.

Math. de France, 1984).
[Lu] W. LUTKEBOHMERT, On compactification of schemes {Manuscripta Math., Vol. 80, 1993, pp. 95-111).
[M] E. MATLIS, The Koszul complex and duality {Communications in Algebra, Vol. 1, 1974, pp. 87-144).

4'̂  SERIE - TOME 30 - 1997 - N° 1



LOCAL HOMOLOGY AND COHOMOLOGY ON SCHEMES 39

[M2] E. MATLIS, The higher properties of R-sequences (J. Algebra, Vol. 50, 1978, pp. 77-112).
[Me] Z. MEBKHOUT Le theoreme de positivite de I'irregularite pour les T>x -modules (The Grothendieck

Festschrift, Volume III, Birkhauser Boston, 1990, pp. 83-132).
[N] A. NEEMAN, The Grothendieck duality theorem via Bousfield's techniques and Brown representability (Jour.

Amer. Math. Soc., Vol. 9, 1996, pp. 205-236).
[PS] C. PESKINE and L. SZPIRO, Dimension projective finie et cohomologie locale (Publications Math. IHES,

Vol.42, 1973, pp. 47-119).
[Sp] N. SPALTENSTEIN, Resolutions of unbounded complexes {Compositio Mathematica, Vol. 65, 1988, pp. 121-

154).
[St] R. STREBEL, On homological duality (J. Pure and Applied Algebra, Vol. 8, 1976, pp. 75-96).
[V] J.-L VERDIER, Base change for twisted inverse image of coherent sheaves {Algebraic Geometry, Bombay

Colloquium, 1968, Oxford University Press, London, 1969, pp. 393-408).

(Manuscript received September 4, 1995;
accepted March 19, 1996.)

L. ALONSO TARRfo
Universidade de Santiago de Compostela,

Facultade de Matematicas,
E-15771 Santiago de Compostela, Spain.

email lalonso@zmat.usc.es.

A. JEREMIAS L6PEZ
Universidade de Santiago de Compostela,

Facultade de Matematicas,
E-15771 Santiago de Compostela, Spain.

email jeremias@zmat.usc.es.

J. LIPMAN
Dept of Mathematics, Purdue University, W.

Lafayette IN 47907, USA.
email lipman@math.purdue.edu

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE


