
ANNALES SCIENTIFIQUES DE L’É.N.S.

DAVID GOLDBERG

REBECCA HERB
Some results on the admissible representations of non-
connected reductive p-adic groups

Annales scientifiques de l’É.N.S. 4e série, tome 30, no 1 (1997), p. 97-146
<http://www.numdam.org/item?id=ASENS_1997_4_30_1_97_0>

© Gauthier-Villars (Éditions scientifiques et médicales Elsevier), 1997, tous droits réservés.

L’accès aux archives de la revue « Annales scientifiques de l’É.N.S. » (http://www.
elsevier.com/locate/ansens) implique l’accord avec les conditions générales d’utilisation
(http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systé-
matique est constitutive d’une infraction pénale. Toute copie ou impression de ce fi-
chier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ASENS_1997_4_30_1_97_0
http://www.elsevier.com/locate/ansens
http://www.elsevier.com/locate/ansens
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Ann. scient. EC. Norm. Sup.,
^ serie, t. 30, 1997, p. 97 a 146.

SOME RESULTS ON THE
ADMISSIBLE REPRESENTATIONS OF

NON-CONNECTED REDUCTIVE p-ADIC GROUPS

BY DAVID GOLDBERG (*) AND REBECCA HERB (**)

ABSTRACT. - We examine induced representations for non-connected reductive p-adic groups with G/G° abelian.
We describe the structure of the representations Ind^o M? po a parabolic subgroup of G° and a a discrete series
representation of the Levi component of P°. We develop a theory of 7?-groups, extending the theory in the
connected case. We then prove some general representation theoretic results for non-connected p-adic groups with
abelian component group. The notion of cuspidal parabolic for G is denned, giving a context for this discussion.
Intertwining operators for the non-connected case are examined and the notions of supercuspidal and discrete
series are denned. Finally, we examine parabolic induction from cuspidal parabolic subgroups of G. We develop a
theory of J?-groups, and show these groups parameterize the induced representations in a manner consistent with
the connected case and with the first set of results as well.

1. Introduction

The theory of induced representations plays a fundamental role within representation
theory in general. Within the theory of admissible representations of connected reductive
algebraic groups over local fields, parabolic induction is used to complete classification
theories, once certain families of representations are understood [3], [8], [9], [10].
The theory of admissible representations on non-connected reductive groups over
nonarchimedean local fields has been addressed in part in [I], [4], [6], [II], among
other places. We will study certain aspects of parabolic induction for disconnected groups
whose component group is abelian.

Let F be a locally compact, non-discrete, nonarchimedean field of characteristic zero.
Let G be a (not necessarily connected) reductive F-group. Thus G is the set of F-rational
points of a reductive algebraic group defined over F. Let G° be the connected component
of the identity in G. We assume that G/G° is finite and abelian.

Our goal is to address three major points. The first is an extension of the results of [6]
to the case at hand. This entails a study of induction from a parabolic subgroup of G°

(*) Partially supported by National Science Foundation Fellowship DMS9206246 and National Science
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Grant DMS9022140.
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98 D. GOLDBERG AND R. HERB

to G. In particular, suppose that P° = M°N is a parabolic subgroup of G°, and let <7o
be an irreducible discrete series representation of M°. We are interested in the structure
of 71-0 = Ind^o(ao). In [1] Arthur suggests a construction, in terms of the conjectural
local Langlands parameterization, of a finite group whose representation theory should
describe the structure of 71-0, when G/G° is cyclic. In [6] the case where G/G° is of
prime order is studied, and there is a construction, on the group side, of a finite group
J?G'(ao) which (along with an appropriate 2-cocycle) parameterizes the components of 71-0.
It is also shown there that Rc^o) must be isomorphic to Arthur's group R^^Q, if the
latter exists. One cannot confirm the existence of R^^Q without proofs of both the local
Langlands conjecture and Shelstad's conjecture [12] that R-^o,ao is isomorphic to Rc^o-o).
(See [1] for the precise definitions of R^,ao and R^^.) Here, by extending the definition
of the standard intertwining operators (cf. Section 4) we show we can construct a group
Rci^o) in a manner analogous to [6], and show that it has the correct parameterization
properties (cf. Theorems 4.16 and 4.17). An argument, similar to the one given in [6]
shows that if G/G° is cyclic, then Rc^o-o) must be isomorphic to R^^Q-, assuming the
latter exists (cf. Remark 4.18).

The second collection of results is an extension of some standard results in admissible
representation theory to the disconnected group G. In order to develop a theory consistent
with the theory for connected groups, one needs to determine an appropriate definition
of parabolic subgroup. There are several definitions in the literature already, yet they do
not always agree. We use a definition of parabolic subgroup which is well suited to our
purposes. Among the parabolic subgroups of G we single out a collection of parabolic
subgroups which we call cuspidal. They have the property that they support discrete series
and supercuspidal representations and can be described as follows. Let P° be a parabolic
subgroup of G° with Levi decomposition M°N and let A be the split component of M°.
Let M = Cc(A). Then P = MN is a cuspidal parabolic subgroup of G lying over P°.
We also say in this case that M is a cuspidal Levi subgroup of G. Thus cuspidal parabolic
subgroups of G are in one to one correspondence with parabolic subgroups of G°.

Using our definitions we can prove the following. Let M be a Levi subgroup of G
and let M° = M H G°.

LEMMA 1.1. - (i) If M is not cuspidal, then M has no supercuspidal representations, i.e.,
admissible representations with matrix coefficients which are compactly supported modulo
the center ofM and have ^.ero constant term along the nil radical of any proper parabolic
subgroup of M.

(ii) If M is cuspidal and TT is an irreducible admissible representation of M, then TV is
supercuspidal if and only if the restriction of TT to M° is supercuspidal.

(ill) If M is not cuspidal, then M has no discrete series representations, i.e. unitary
representations with matrix coefficients "which are square-integrable modulo the center
of M.

(iv) If M is cuspidal and TT is an irreducible unitary representation of M, then TT is
discrete series if and only if the restriction of TT to M° is discrete series.

Using Lemma 1.1 it is easy to extend the following theorem from the connected case
to our class of disconnected groups.
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SOME RESULTS ON THE ADMISSIBLE REPRESENTATIONS 99

THEOREM 1.2. - Let TT ̂  <^z irreducible admissible (respectively tempered) representation
of G. Then there are a cuspidal parabolic subgroup P = MN of G and an irreducible
supercuspidal (respectively discrete series) representation a of M such that TT is a
subrepresentation of Ind^((r).

Let Pi = Mi A/i and P^ = M^N^ be cuspidal parabolic subgroups and let a, be
irreducible representations of M^i = 1,2, which are either both supercuspidal or both
discrete series. By studying the orbits for the action of Pi x P^ on G, we are able to extend
the proof for the connected case to our situation and obtain the following theorem.

THEOREM 1.3.-L^Pi = Mi7Vi,P2 = M^N^a^a^be as above. Thenif-K^ = Ind^ (ai)
and 7T2 = Indp^(o-2) have a nontrivial intertwining, then there is y G G so that

M^ = yM-iy~1 and 02 ^ ycr-2y~1'

The third question of study is the structure of TT = Ind^(a) when P = MN is a cuspidal
parabolic subgroup of G and a is a discrete series representation of M. We show that,
as in the connected case, the components of TT are naturally parameterized using a finite
group R. As in the connected case we first describe a collection of standard intertwining
operators R(w,a) which are naturally indexed by w G WG^O-) = NG^/M, where

N0(0) = {x G Nc{M) : ̂  ^ a}.

We prove that there is a cocycle T] so that

P(wiW2,cr) = ?7(wi,W2)P(wi,cr)P(w2,a) ,Wi,W2 G WG^Y

Let o-o be an irreducible component of the restriction of a to M°, and P° = M°N =
P n G°. Then a c Ind^o(ao) so that

TT = Ind^(a) C Ind^(Ind^o(ao)) ^ Ind^o(ao).

Using the intertwining operators and P-group theory developed earlier for the representation
Ind^o (o-o), we can prove the following results. First, the collection {R(w, a), w e Wc^cr)}
spans the commuting algebra of TT. Second, let ̂  be the set of positive restricted roots
for which the rank one Plancherel measures of <TO are zero and let TV($i) be the group
generated by the reflections corresponding to the roots in <I>i. Then VF(^i) is naturally
embedded as a normal subgroup of WG^} and WG^} is the semidirect product of
W^i) and the group

Ra = {w C WG'(CT) : wa > 0 for all a G <t^}.

Finally, R(w, a) is scalar if w G lV(<E>i). This proves that the operators R(w, a), w G Ra,
span the intertwining algebra. But we can compute the dimension of the space of
intertwining operators for Ind^(a), again by comparison with that of Ind^o(ao), and
we find that it is equal to [R^]. Thus we have the following theorem.

THEOREM 1.4. - The R{w,a),w G Ra, form a basis for the algebra of intertwining
operators of Ind^(a).

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



100 D. GOLDBERG AND R. HERB

Just as in the connected case, we show that there are a finite central extension

1 —> Zcr —^ Ra —^ Ha —> 1

over which rj splits and a character ̂  of Z^ so that the irreducible constituents of Ind^(a)
are naturally parameterized by the irreducible representations of Ra with Z^ -central
character ^.

Finally, we give a few examples which point out some of the subtleties involved
in working with disconnected groups. For instance, we show that if we do not restrict
ourselves to cuspidal parabolic subgroups, then the standard disjointness theorem for
induced representations fails. Examples such as these show why one must restrict to
induction from cuspidal parabolic subgroups in order to develop a theory which is
consistent with that for connected groups.

Many interesting problems involving disconnected groups remain. For example, the
question of a Langlands classification is still unresolved, and some of the results here on
intertwining operators may help in this direction. One also hopes to remove the condition
that G/G° is abelian, and extend all the results herein to that case. Problems such as these
we leave to further consideration.

The organization of the paper is as follows. In §2 we give the definition of parabolic
subgroup and prove Lemma 1.1 and Theorem 1.2. The proof of Theorem 1.3 is in §3. The
results on induction from a parabolic subgroup of G° to G are in §4, and the results on
induction from a parabolic subgroup of G to G, including Theorem 1.4, are in §5. Finally,
§6 contains examples that show what can go wrong when we induce from parabolic
subgroups of G which are not cuspidal.

The first named author would like to thank the Mathematical Sciences Research Institute
in Berkeley, California, for the pleasant and rich atmosphere in which some of the work
herein was completed.

2. Basic definitions

Let F be a locally compact, non-discrete, nonarchimedean field of characteristic zero.
Let G be a (not necessarily connected) reductive F-group. Thus G is the set of F-rational
points of a reductive algebraic group over F. Let G° be the connected component of the
identity in G. We assume that G/G° is finite and abelian.

The split component of G is defined to be the maximal F-split torus lying in the center
of G. Let A be any F-split torus in G and let M = Gc(A). Then M is a reductive
F-group. Now A is called a special torus of G if A is the split component of M. (Of
course A is an F-split torus lying in the center of M. The only question is whether or
not A is maximal with respect to this property.)

LEMMA 2.1. - Let A be a special torus of GQ. Then A is a special torus of G.

Proof. - Let M = Cc{A) and M° = Gc?o(A) = M H G°. Write Z(M) and Z(M°)
for the centers of M and M° respectively. Now A is the maximal F-split torus lying in
Z(M°) and A C Z(M). Suppose Af is the maximal F-split torus lying in Z{M). Then

^ SERIE - TOME 30 - 1997 - N° 1



SOME RESULTS ON THE ADMISSIBLE REPRESENTATIONS 101

A C A'. But A' is a torus, so it is connected. Hence A' C Z(M) H M° C Z(M°). Thus
A' C A and so A' = A is the split component of M. •

REMARK 2.2. - The converse of Lemma 2.1 is not true. For example, let G = 0(2) =
S0(2) U wSO{2) where 5'0(2) ^ Fx is the group of 2 x 2 matrices

„ . (a 0 \ -x , A) 1 \
^-[o ^-i j^^andw=^ ^

satisfies wri(a)w-1 = ^a-^a G F x . Let A = {d(l)}. Then M = Cc{A) = G and
Z{M) = {±d(l)}. Thus A is a special torus of G. However M° = Cc?o(A) = G° and
Z(M°) = G° is an F-split torus. Hence A is not the maximal F-split torus in Z(M°)
and so is not special in C?°.

If G is connected, then A is a special torus of G by the above definition if and only
if A is the split component of a Levi component M of a parabolic subgroup of G. We
will define parabolic subgroups in the non-connected case so that we have this property
in the non-connected case also.

Let A be a special torus of G and let M = CG«(A). Then M is called a Levi subgroup
of G. The Lie algebra L(G) can be decomposed into root spaces with respect to the
roots ^ of L(A):

L{G) = L(G)o C ̂  L(G)^
Q;e<3>

where L(G)o is the Lie algebra of M. Let ^+ be a choice of positive roots, and let N be the
connected subgroup of G corresponding to ^^<^+ L(G%. Since elements of M centralize
A and £(A), they preserve the root spaces with respect to £(A). Thus M normalizes N.
Now P == MN is called a parabolic subgroup of G and (P, A) is called a p-psiir of G.
The following lemma is an immediate consequence of this definition and Lemma 2.1.

LEMMA 2.3. - Let P° = M°N be a parabolic subgroup of G° and let A be the split
component of M°. Let M = CG^A). Then P = MN is a parabolic subgroup ofG and
P n G° = P°.

LEMMA 2.4. - Let P be a parabolic subgroup of G. Then P° = P D G° is a parabolic
subgroup of C?°.

Proof. - Let P = MN be a parabolic subgroup of G and let A be the split component
of M. Let M° =. CGO (A) = M H G°. Let Ai be the split component of M°. Then A C Ai
so that CGO (Ai) C CGO (A) = M°. But Ai is in the center of M°, so that M° C C^o (Ai).
Thus CGO(AI) = M° so that Ai is a special torus in G° and M° is a Levi subgroup
of G°. Let $ and $1 denote the sets of roots of L{A) and £(Ai) respectively. For each
ai G ^i, the restriction mi of ai to £(A) is non-zero since CGo(Ai) = CG!()(A) = M°.
Let ^+ be the set of positive roots used to define N. Then ̂  = {a^ G $1 : TOI G ^+}
is a set of positive roots for <E>i and

^ £((?)„= ^ £(G^.
ae^>+ aiE<^

Thus P° = M°JV is a parabolic subgroup of G°. •

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



102 D. GOLDBERG AND R. HERB

We say the parabolic subgroup P of G lies over the parabolic subgroup P° of G° if
P° = P D G°. We will also say the Levi subgroup M of G lies over the Levi subgroup
M° of G° if M° = M n G°. Lemma 2.4 and its proof show that every parabolic (resp.
Levi) subgroup of G lies over a parabolic (resp. Levi) subgroup of G°.

REMARK 2.5. - There can be more than one parabolic subgroup P of G lying over
a parabolic subgroup P° of G°. For example, define G = 0(2) and G° = S0(2) as
in Remark 2.2. Then A = {d{l)} and Ao = S0(2} are special vector subgroups of G
corresponding to parabolic subgroups P = 0(2) and Po = S0(2) respectively. Both lie
over the unique parabolic subgroup SO (2) of G°.

LEMMA 2.6. - Let P° = M°N be a parabolic subgroup of G° and let A be the split
component ofMQ. Let M = G^(A) and let P = MN. Then ifP^ is any parabolic subgroup
ofG lying over P° we have P C Pi. Further, M is the unique Levi subgroup lying over
M° such that the split component of M is equal to A.

Proof. - Write Pi = Mi TV where Mi lies over M°. Let Ai be the split component of
Mi. Then Ai C A so that M = Cc{A) C GG(AI) = Mi. Clearly Mi = M if and only
if Ai = A. •

REMARK 2.7. - Lemma 2.6 shows that there is a unique smallest parabolic subgroup
P of G lying over P°. Although it is defined using a Levi decomposition P° = M°N
of P°, it is independent of the Levi decomposition. Recall that if M? and M^ are two
Levi components of P° with split components Ai and A^ respectively, then there is
n G N such that As = nA-^n~1 and M^ = nM^n~1. Now if M, = Gc(A,),z = 1,2,
we have M^ = Co(A'z) = nCo^A^n'1 = nM^n~1, and M^N = nM^n'^N = M^N
since Mi normalizes N .

Let Z be the split component of G. We let G,°°(G, Z) denote the space of all smooth
complex-valued functions on G which are compactly supported modulo Z. We say
/ G G,°°(G, Z) is a cusp form if for every proper parabolic subgroup P = MN of G,

\ f{xn)dn =0, Vrr G G.
JN

Let °A(G) denote the set of cusp forms on G. We say G is cuspidal if °A(G) / {0}.
We know that every connected G is cuspidal.

LEMMA 2.8. - G is cuspidal if and only if the split component ofG is equal to the split
component ofG°. Moreover, if G is cuspidal, then a subgroup N of G is the nilradical of
a proper parabolic subgroup of G if and only if N is the nilradical of a proper parabolic
subgroup of G°. If G is not cuspidal, then G has a proper parabolic subgroup Gi with
nilradical N^ = {1}.

Proof. - First suppose that G and G° have the same split component Z. Let
/ / 0 G °A(G°). Define F : G -^ C by F(x) = f{x\x e G°, and F(x) = 0,x ^ G°.
Then F e G^°(G,Z) and is non-zero. Let P = MN be any proper parabolic subgroup
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SOME RESULTS ON THE ADMISSIBLE REPRESENTATIONS 103

of G. Then N C G°, so for all n G N , x G G, .m € G° if and only if x G G°. Thus
for ^ ^ G°,

\ F{xn)dn = 0
J N

while for a; € G°,

\ F(xn)dn = \ f(xn)dn.
JN JN

Now P0 = P n G° = M°N is a parabolic subgroup of G°. Suppose that P° = G°.
Then P lies over G° so that by Lemma 2.6, G C P. This contradicts the fact that P is
a proper parabolic subgroup of G. Thus P° = M°N is a proper parabolic subgroup of
G°. Since / is a cusp form for G° we have

f f(xn)dn =0, \/x G G°
JN/N

Thus P is a non-zero cusp form for G.
The above argument also showed that if P = MN is a proper parabolic subgroup of

G, then P° = M°N is a proper parabolic subgroup of G°. Conversely, if P° = M°N is
a proper parabolic subgroup of G° and P = M7V is any parabolic subgroup of G lying
over P°, then clearly P / G.

Conversely, suppose that G and G° do not have the same split component. Let Z be the
split component of G° and define Gi = Cc{Z). By Lemma 2.6, Gi is a proper parabolic
subgroup of G. Further since Gi lies over G° its nilradical is TVi = {1}. Now if P is
any cusp form on G and rr G G, we have

P(a;) = / F{xn)dn = 0.
J^i

Thus G has no non-zero cusp forms and so is not cuspidal. •

EXAMPLE 2.9. - Let G = 0(2) as in Remarks 2.2 and 2.5. Then 50(2) is a cuspidal
parabolic subgroup of G and 0(2) is not cuspidal.

We can sum up the proceeding lemmas in the following proposition.

PROPOSITION 2.10. - Let P° = M°N be a parabolic subgroup of G°. Then there is a
unique cuspidal parabolic subgroup P = MN of G lying over P°. It is contained in every
parabolic subgroup of G lying over P°, and is defined by M = GG-(A) where A is the
split component of M°.

Now that we have parabolic subgroups of G, we want to study parabolic induction of
representations. Many of the most basic notions of representation theory are defined in [13],
chapter 1 for any totally disconnected group. In particular, admissible representations of
G are defined and the following is an easy consequence of the definition.

LEMMA 2.11. - Let II be a representation of G. Then II is admissible if and only ifH\Go,
the restriction of 11 to G°, is admissible.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



104 D. GOLDBERG AND R. HERB

Further, the results of Gelbart and Knapp regarding induction and restriction between
a totally disconnected group G and an open normal subgroup H with G / H finite
abelian can be applied to G and G°. If TT is any admissible representation of G°
on V, we will let Ind^o(Tr) denote the representation of G by left translations on
U = {/ : G -^ V : f(ggo) = Tr^o)-1/^),^ G G^o e G0}.

LEMMA 2.12 (Gelbart-Knapp [5]). - Let II ̂  an irreducible admissible representation of
G. Then II 0° ls a finite direct sum of irreducible admissible representations of G°. Let TT
be an irreducible constituent ofH\Go which occurs with multiplicity r. Then

H\GO^T ^ TV9

g^G/G^

where G^ = {g G G : TT^ ^ 7r}.

LEMMA 2.13 (Gelbart-Knapp [5]). - Let TT be an irreducible admissible representation of
G°. Then there is an irreducible admissible representation II ofG such that TT occurs in the
restriction ofH to G° with multiplicity r > 0. Let X denote the group of unitary characters
of G/G° and let X(II) = {x G X : 11 0 ̂  ^ II}. Then

Ind^o(7r)^r ^ 110 x
xex/xm

is the decomposition ofInd^o (7r) into irreducibles and r^X/J^II)] = [G^/G0].
The following result was proved by Gelbart and Knapp in the case where the restriction

is multiplicity one [5]. Tadic [14] refined their result in the connected case. We now prove
the more general result.

LEMMA 2.14. - Suppose that G is a totally disconnected group, and H is a closed normal
subgroup, with G / H a finite abelian group. If IIi and IIa are irreducible admissible
representations of G, which have a common constituent upon restriction to H, then
Il2 ^ IIi 0 \, for some character \ with -)(\H ^ 1.

Proof. - If the multiplicity of the restrictions is one, then this result holds by Gelbart-
Knapp [5]. In particular, if \G/H\ is prime, the statement is true. We proceed by induction.
We know the Lemma holds when \G/H\ = 2. Suppose the statement is true whenever
\G^/H\ < n. Suppose \G/H\ = n. We may assume n is composite, so write n = km,
with 1 < k < n. Let H C Gi C G with |G/Gi = fc. If Ililci and Il^lci have a
common constituent, then, by our inductive hypothesis, there is a \ with ^|ci ^ 1 with
Il2 ^ IIi 0 \. Since (G/Gi) C ( G / H ) , we are done, in this case.

Now suppose that r is an irreducible subrepresentasion of both IIi H and TI^\H'
Then, there are constituents Q^ C 11̂  ̂  so that r C ^i\n- By the inductive hypothesis
Q^ = ̂  (g)^ for some ^ of Gi whose restriction to H is trivial. But, since G^/H C G / H
is abelian we can extend \ to a character T] of G / H . Note that (IIi 077) |Gi has f^i (g)^ ^ ^2
as a constituent, so, as we have seen above, IIi 0 r] 0 uj ^ Il2, for some character a; of G
whose restriction to Gi is trivial. Thus, the statement holds by induction. •

Let (TT, V) be an admissible representation of G and let w4(7r) denote its space of matrix
coefficients. We say TT is supercuspidal if A(^) C °A(G). Of course if G is not cuspidal,

4'̂  SERIE - TOME 30 - 1997 - N° 1



SOME RESULTS ON THE ADMISSIBLE REPRESENTATIONS 105

then °A(G) = {0} so that G has no supercuspidal representations. If P = MN is any
parabolic subgroup of G, define V{P) = V(N) to be the subspace of V spanned by vectors
of the form 7r(n)v — v^ v G V, n G N. Then we say TT is J-supercuspidal if V(P) = V for
every proper parabolic subgroup P of G. If G is not cuspidal, then by Lemma 2.8 there
is a proper parabolic subgroup Gi of G with nilradical JVi == {1}. For any admissible
representation (TT, V) of G, V(Gi) = y(A/\) = {0} / V so that TT is not J-supercuspidal.
Thus G has no J-supercuspidal representation.

Suppose now that G is cuspidal and let (TT, V) be an irreducible admissible representation
of G. Let (TTQ^V) denote the restriction of TT to G°.

LEMMA 2.15. - Assume that G is cuspidal. Then TT is J-supercuspidal if and only ifTVQ is
J-supercuspidal if and only if any irreducible constituent of 71-0 is J-supercuspidal.

Proof. - Since G is cuspidal, by Lemma 2.8 the set of nilradicals of proper parabolic
subgroups is the same for both G and G°. Thus TT is J-supercuspidal if and only if 71-0
is J-supercuspidal. Moreover, since by Lemma 2.12 the irreducible constituents of 71-0 are
all conjugate via elements of G, it is clear that 71-0 is J-supercuspidal if and only if every
irreducible constituent of 71-0 is J-supercuspidal if and only if any irreducible constituent of
TI-O is J-supercuspidal. H

LEMMA 2.16. - Assume that G is cuspidal. Then TT is supercuspidal if and only if 71-0 is
supercuspidal if and only if any irreducible constituent of TTQ is supercuspidal.

Proof. - Let Z denote the split component of G. By Lemma 2.8 it is also the split
component of G°.

Assume that TT is supercuspidal. Thus w4(7r) C °A(G). Let fo be a matrix coefficient
of Ti-o. Then there is a matrix coefficient / of TT so that /o is the restriction of / to G°.
Now / e °A(G). Since / smooth and compactly supported modulo Z, so is /o- Further,
by Lemma 2.8 the nilradicals of proper parabolic subgroups are the same for both G and
G°. Thus /o 1̂1 satisfy the integral condition necessary to be a cusp form on G°. Hence
.4(7i-o) C °A(G°) so that 71-0 is supercuspidal.

Conversely, suppose that TTQ is supercuspidal. Let 71-1 be an irreducible constituent of
Ti-o. Then TT C Ind^o(TTi) so that every matrix coefficient of TT is a matrix coefficient
of the induced representation. But since G° is a normal subgroup of finite index in G,
the restriction of Ind^o(TTi) to G° is equivalent to ^a;^/^o TT?. Thus matrix coefficients
of the induced representation can be described as follows. Let / be a matrix coefficient
of Ind^o(TTi) and fix g e G. Then there are matrix coefficients fx of TV^X C G/G°,
(depending on both / and g) so that for all go G G°,

f(ggo) = ^ fx(go)'
x<^G/G0

Since 71-1 is supercuspidal, so is TT^ for any x G G/G°, and so each fx G °A{G°). Thus
the restriction of / to each connected component of G is smooth and compactly supported
modulo Z. Also, if N is the nilradical of any proper parabolic subgroup of G, then

/ f(gn)dn= V / Un}dn = 0
J N .CG/GO J N

since by Lemma 2.8, N is also the nilradical of a proper parabolic subgroup of G°. •
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PROPOSITION 2.17. - Assume that G is cuspidal and let TT be an irreducible admissible
representation of G. Then TT is supercuspidal if and only if TT is J-supercuspidal.

Proof. - This is an immediate consequence of Lemmas 2.15 and 2.16 and the
corresponding result in the connected case.

We now drop the assumption that G is cuspidal. Let P = MN be a parabolic subgroup
of G and let a be an admissible representation of M. Then we let Ind^(a) denote the
representation of G by left translations on

U = {f G C°°(G^V) : f{gmn) = ̂ (m^m)-1/^)^ G G,m G M,n G N}.

Here 5p denotes the modular function of P.

THEOREM 2.18. - Let TT be an irreducible admissible representation of G. Then there
are a cuspidal parabolic subgroup P = MN of G and an irreducible supercuspidal
representation a of M such that TT is a subrepresentation oflndp^a).

REMARK 2.19. - We will see in Corollary 3.2 that the group M and supercuspidal
representation a in Theorem 2.18 are unique up to conjugacy.

Proof. - Let p be an irreducible constituent of the restriction of TT to G°. Then
TT C Ind^o(p). Since p is admissible, there are a parabolic subgroup P° = M°N of G°
and an irreducible supercuspidal representation r of M° such that p C Ind^o(T). Thus

TT C Ind^o(p) C Ind^o(Ind^o°(T)) ^ Ind^o(r).

Let P = MN be the unique cuspidal parabolic subgroup of G lying over P°. Let a be an
irreducible admissible representation of M such that r is contained in the restriction of a to
M°. By Lemma 2.16, a is supercuspidal. By Lemma 2.13 applied to M and MQ we have

Ind^o(r) ^ s ^ a(g)^
r?ey/r(<r)

where Y is the group of unitary characters of M/M°. Since T is contained in the restriction
of a 0 77 to M° for any 77, all the representations a 0 77 are supercuspidal. Now

TT C Ind^o(r) ^ 5 ^ Ind^(a 0 rj).
ryer/rCcr)

Thus TT C Ind^(cr (g) 77) for some 77. •
Let A(G) = U^A(7r) where TT runs over the set of all admissible representations of G.

Similarly we have A(G°) and because of Lemma 2.11 it is clear that if / G A(G), then
/Ico G A(G°). Define the subspace Ar(G°) C A(G°) as in [13, §4.5]. It is the set of
functions in A(G°) which satisfy the weak inequality. Define

Ar(G) = {f G A(G) : l{x)f\Go G AT(G°) for all x G G}

where l{x)f denotes the left translate of / by x. In other words, Ar(G) is the set of
functions in A(G) which satisfy the weak inequality on every connected component of G.
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If TT is an admissible representation of G, we say TT is tempered if A{rv) C Ar(G). The
following lemma is easy to prove using the properties of matrix coefficients of TV and 71-0
from the proof of Lemma 2.16.

LEMMA 2.20. - Let TT be an irreducible admissible representation ofG. Then TV is tempered
if and only if TVQ is tempered if and only if any irreducible constituent ofrvo is tempered.

Let TV be an irreducible unitary representation of G and let Z be the split component
of G. We say that TV is discrete series if A(rv) C -L^G/Z). Every unitary supercuspidal
representation is discrete series since its matrix coefficients are compactly supported
modulo Z.

LEMMA 2.21. - IfG is not cuspidal, then G has no discrete series representations. IfG
is cuspidal, then TV is discrete series if and only if 71-0 is discrete series if and only if any
irreducible constituent of TVQ is discrete series.

Proof. - Suppose that G is not cuspidal. Then the split component Z of G is a proper
subgroup of the split component Zo of G°. Let TV be any irreducible unitary representation
of G. Then there is an irreducible unitary representation TTI of G° so that TV is contained
in Ind^o(Tri). Thus as in the proof of Lemma 2.16, for any matrix coefficient / of TV and
any g G G, we have matrix coefficients fx of TV^X G G/G°, so that for all go G G°,

f{99o) = ^ fx{go)'
x(^G/G°

Let uj be the Zo-character of 71-1. Then for any z G ZQ^Q € G°, we have

f{ggoz) = ^ fx{goz) = ^ ^{z)/^).
x(EG/G° x^G/G°

Thus z i—^ f(ggoz),z G Zo? is a finite linear combination of unitary characters of Zo,
and cannot be square-integrable on Zo/Z unless it is zero. Now if / is square-integrable
on G/Z, then go i-̂  f{ggo) is square-integrable on G°/Z for all coset representatives
g G G/G°, and z i-̂  f(ggoz) must be square-integrable on Z Q / Z for almost all go, so that
f(ggoz) must be zero for almost all g o ^ z , and / = 0.

Suppose that G is cuspidal. Let TV be a discrete series representation of G. Let /o be a
matrix coefficient of TVQ. Then there is a matrix coefficient / of TV so that Jo is the restriction
of / to G°. Since / is square-integrable on G/Z, certainly /o is square-integrable on G°/Z.

Conversely, suppose that TVQ is discrete series. Let 71-1 be an irreducible constituent of
Ti-o. For any matrix coefficient / of TV we have

/ \f{g)\2d{gZ)= ^ / ^{gg^dW).
JG/Z ^/^o JG^/Z

As above, for fixed g G G, we have matrix coefficients fx of TV^X G G/G°, so that
for all go G G°,

f{99o) = ^ fx{go)'
xeG/G°

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



108 D. GOLDBERG AND R. HERB

Thus

( I l/(^o)) d(g,Z))^ < ^ ( [ l/^po)!2^^))2 <oc
\JG^Z ) ^G/G^JGO/Z )

since every fx is square-integrable on G ° / Z . Thus / is square-integrable on G / Z . •
The following theorem can be proven in the same way as Theorem 2.18 using

Lemmas 2.20 and 2.21.

THEOREM 2.22. - Let TT be an irreducible tempered representation of G. Then there
are a cuspidal parabolic subgroup P = MN of G and an irreducible discrete series
representation a of M such that TT is a subrepresentation o/Ind^(cr).

REMARK 2.23. - We will see in Corollary 3.2 that the group M and discrete series
representation a in Theorem 2.22 are unique up to conjugacy.

3. Intertwining operators

Let G be a reductive F-group with G/G° finite and abelian as in §2. If 71-1 and ̂  are
admissible representations of G, we let J(TTI, ^2) denote the dimension of the space of all
intertwining operators from TV'Z to 71-1. We want to prove the following theorem.

Let (P^, Ai\ i = 1,2, be cuspidal parabolic pairs of G with Pi = MiNi the corresponding
Levi decompositions. Let ai be an irreducible admissible representation of Mi on a vector
space Vi, and let TT^ = Ind^,(o^), where we use normalized induction as in §2. Let
W = W(A-i As) denote the set of mappings s : As —^ Ai such that there exists ys G G
such that 5(03) = ysa^1 for all a^ G A^.

THEOREM 3.1. - Assume that a\ and a^ are either both supercuspidal representations, or
both discrete series representations. If Ai and A 2 are not conjugate, then J(^\^2) = 0-
Assume Ai and A 2 are conjugate. Then

J^2)< Y^J(a^a^).
sew

COROLLARY 3.2. - Let (j\ and a^ be as above. Then J^TT-^^TV^) = 0 unless there is y G G
such that Mi == M^a-i ^ aj.

COROLLARY 3.3. - Let a\ and a-^ be irreducible discrete series representations, and
suppose that 71-1 and TT^ have an irreducible constituent in common. Then 71-1 ^ TT^.

Proof. - In this case J(7ri,7T2) / 0 so by Corollary 3.2 there is y G G such that
Mi = M|,ai ^ 02. Thus

TTi = Ind^(ai) = Ind^^(aj) ^ Ind^^)

where A^ == A^ . Now P^ = M^N^ and P^ = M^N^ are two cuspidal parabolic
subgroups of G with the same Levi component M2. We will see in Corollary 5.9 that there
is an equivalence R(P^ : ?2 '' ^2) between 7T2 = Ind^(o-2) and 71-2 = Ind^/(a2). Thus

TTi r^ 71-2 C^ 7T2. •
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Let W(a^) ={sE W{A^, Ai) : a^ ^ ai}. We say o-i is unramified if W(ai) = {1}.

COROLLARY 3.4. - A^Mm<? rtor ai ^ discrete series. Then J(7Ti,7ri) < [W^(o-i)]. ^
particular, if ai ^ unramified, then 71-1 ^ irreducible.

In order to prove Theorem 3.1 for discrete series representations we will need the
following results about dual exponents. Let (TT^V) be an irreducible representation of G
and let V denote the algebraic dual of V. For x G G, let ^(rr)* : V -^ V denote the
transpose of 7v(x). Let (P, A) be a cuspidal parabolic pair in G. Then a quasi-character ^
of A is called a dual exponent of TT with respect to (P, A) if there is a nonzero (f) € V
such that for all n G TV, a G A,

(*) 7r(n)^ = 0 and 7r(a)^ = ^(a)^(a)^).

We will write V^P, A) for the set of all dual exponents of TT with respect to (P, A).
Let V = ̂ fc Vi be the decomposition of V into G° invariant subspaces and let TT, be

the irreducible representation of G° on l^, 1 < % < fc.

LEMMA 3.5. - L^r (P, A) &6? a cuspidal parabolic pair in G. Then

r,(P,A)=uiiy^(P°,A).

Proof. - Let ^ G V^(P, A) and let 0 G V be a nonzero functional satisfying (*). Then
there is 1 < i < k such that <^, the restriction of (j) to Vi, is nonzero. Now for any
Vi G Vi and ^o € G° we have

< TT^o)^^ >=< TT^o)^^ > •

Now since TV and A are both contained in G° it is easy to check that

(**) < ^(nY^i.Vi >=< (j)i,Vi > and < ^(a)^,^ >= &^o(a)x(a) < ^,^ >

for all Vi G Vi,n G TV, a G A. Thus ^ G y^(P°,A).
Now assume that x ^ Y^(P°,A) for some 1 < % < fc and let (j)i G V/ be a nonzero

functional satisfying (**). Now TT is contained in the induced representation Ind^o(7r^) so
we can realize TT on a subspace V of

U = [f : G -> V, : /(^o) = ^(^o)"1/^)^ ^ G^go G G0}

with the action of TT given by left translation on the functions. Now define (f) G V by

< ^ / > = < ^ j ( i ) > j G y .
Then (^ 7^ 0 and it is easy to check that for all go G G°, / G V, we have

< 7^(go)t^f>=< Tr^o)^J(l) > .

From this it easily follows that since <^ satisfies (**), (f) satisfies (*). Thus \ G
V.(P,A). •
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LEMMA 3.6. - Assume that G is cuspidal and let TT be a discrete series representation of
G. Then Y^{P, A) H A = 0 for every cuspidal parabolic pair (P, A) ^ (G, Z).

Proof. - This follows easily from Lemma 2.21, Lemma 3.5, and the corresponding result
for connected groups. •

Let (Po°,Ao) be a minimal p-pair in G° and let Po be the cuspidal parabolic subgroup
lying over Pp0. We will call (?o,Ao) a minimal parabolic pair in G.

LEMMA 3.7. - Let (P, A) be any parabolic pair in G. Then there is x G G° such that
PO C xPx~^,xAx~^ C Ao.

Proof. - Let M = Cc(A) and let P° = P H G°, M° = M n G°. Let A' be the split
component of M°. Thus A C A'. Now (P°, A') is a p-pair in G° so there is x G G° such
that Po0 C xP°x~1 and xAx-1 C xA'x~1 C Ao. Now MQ = Gc(Ao) C Cc(xAx~1) =
xMx-1 so that Po = MoPo° C (xMx-1)^?^-1) = xPx-1. •

We will say a parabolic pair (P, A) is standard with respect to the minimal parabolic
pair (Po,Ao) if Po C P and A C Ao. We say (P,A) is semi-standard with respect to
(Po,Ao) if A C Ao.

Fix a minimal parabolic pair (Po, Ao) of G. Let A^(PO, Ao) denote the set of all elements
of G which normalize both Po and Ao. Write WG^PQ.AQ) = Nc(Po, Ao)/M§. If (P,A)
is any parabolic pair of G which is standard with respect to (?o,Ao) and M = GG-(A),
write NM^AQ) = MHA^(Po,Ao) and ^(Po^Ao) = NM{P^A^/M^

LEMMA 3.8. - We can "write P as a disjoint union

P = U^WM(PO,AO)WP°.

Proof. - We first prove the result when P = G. Let y G G. Then {yP^y'^-.yAoy'1)
is a minimal parabolic pair in G° and hence is conjugate to (Po°,Ao) via an element of
G°. Thus there is g G G° such that gy normalizes both Ao and Po°. But then gy also
normalizes MQ = Gc(Ao) and Po = MoP§. Thus gy G A^(Po,Ao).

Thus the coset yG° has a representative n G Nc{Po, Ao) which depends only on the coset
w of n in WG^PQ.AQ). Since ^(Po^Ao) H G° = M^ n^n^ G A^Po^Ao) determine
the same coset of G° in G just in case they are in the same coset in WG(PQ,AQ). Thus
we have the disjoint union

G = U^WG{Po,Ao)WG°.

Now let (P,A) be arbitrary. There is a subset 0 of the simple roots A of (Po°,Ao)
corresponding to P° so that P° = P^. Note that Wc^Po^Ao) acts on A and
that w^P^w = P^. Let w G WG^PO, Ao) and suppose that P H wG° ^ 0. Let
wgo G P n wG°,go G G°. Then wgo normalizes P° so that w^P^w = goP°go1 is
conjugate to P° in G°. But w~lPow = P^ is a standard parabolic subgroup of G° and so
p^ = 9oP°9o1 = P0' Hence go G A^o(P°) = P°,w0 = 6>, and w has a representative
in P. Hence w normalizes A = {a G Ao : a{a) = 1 for all a G 6}. But Nc(A) n P = M.
ThuswGWM(Po ,Ao) . •

In order to prove Theorem 3.1 we extend the proof of Silberger in [13, §2.5] to the
disconnected case. Fortunately many of the technical results on intertwining forms needed
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are proven in [13, §1] for any totally disconnected group and so can be directly used in
our case. We follow Silberger's notation. Let (Pi,Ai) and (P?^) be cuspidal parabolic
pairs in G. We may as well assume that they are standard with respect to a fixed minimal
parabolic pair (Po,Ao).

We need to study the orbits for the action of Pi x ?2 on G given by y • (pi, p^) = P^VPi-
Recall that G° = U^P^vP^ where v runs over W{G°,Ao) = A^o(Ao)/Mo°. Thus,
G = U^wG° = U^wPo^Po0 = U^Po°m;Po° where w G TV^Po^Ao)^ G W(G°,Ao).
Now since P^ C Pi,i = 1,2, each double coset Pi^/P2 can be represented by
y = wv,w G WG(PO,AQ),V G W(G°,Ao). Write W, - ̂ M,(Po,Ao)^ = 1,2.

LEMMA 3.9. - Let 0 = P^wovP'2 be an orbit ofPi x P^ in G where WQ G WG(PO, Ao),
v G W(G°,Ao). Then for w G Wc(Po,Ao), 0 H wG° ^ empty unless w G V^wo^.
// w G WiWoH^, ^^n 0 H wG° = w0^ where 0^ is a finite union of orbits of
(w"1?^) x P§ in G°, all of which have fixed dimension do equal to the dimension
of the orbit OQ = (w^P^w^vP^.

Proof. - Using Lemma 3.8 we can write

P^WQVP'2 = U^^WiP^Wom^P?

where w, G W, = W^(PO, A o ) , % = 1,2. But

W^P^WQVW^ = W(W-1P{)W)W2'1^W2P20

where w == W^WQW^ G WG(PO.AO). Thus w^P^wovw^P^ C w^wow^G0 and for fixed
W G WiW()W2,

PlWo^P2 H WG° = W U^, (W"1?!0'̂ )^1?^??

where ^2 runs over elements of W-z such that ww^w'^1 G Wi. Finally,

(W-1P10W)W2-1^W2P20 = W2-l(Wo-lPloWo)^P20W2

so that

dim(w-lPlow)w2•lvw2P20 = dim(wo"lPlo^o)^P20 = ^o-

Because of Lemma 3.9 each orbit 0 has a well-defined dimension do' For each integer
z^ > 0, let 0{y} denote the union of all orbits of dimension less than or equal to v.
Set 0(-1) = 0.

LEMMA 3.10. - For each v > 0, 0(y} is a closed set in the p-adic topology. Further, if
0 is an orbit of dimension d, then 0 U 0{d - 1) is also closed in the p-adic topology.

Proof. - Using Lemma 3.9 we see that O(^) H wG° = wC^O) where 0^0) is
the union of all orbits of (w^P^w} x P^ in G° having dimension less than or
equal to v. This set is closed in the p-adic topology by [13, pg. 93]. Thus 0(y) is
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a finite union of closed sets, hence is closed. Similarly, if 0 has dimension d, then
[0 U 0(d - 1)] H wG° = w(0^ U 0^{d - 1)) where 0^ U C^(d - 1) is a finite union
of sets of the form 0' U 0^(d - 1) where 0' is an orbit of (w-1?^) x P§ in G° of
dimension d. These are also closed by [13, page 94]. •

Let E = Vi 0 V^ where Vi is the space on which o-i acts, i = 1, 2. Let T be the space
of all E'-distributions T0 on G such that

T°{\{pi)p{p2)a) = T°(^)42(^)^i(pi)-1 0 a2(p2)-^)

for all (pi,p2) ^ -PI x ?2^ ^ C^{G : E). Here A and p denote left and right translations
respectively and §i is the modular function of P,,% = 1,2. The first step in the proof of
Theorem 3.1 is the inequality [13, 1.9.4]

(3.1) I{^i^2) < dimT.

Here I {^1^2) is the dimension of the space of "intertwining forms" defined in [13, §1.6]. It
is related to the dimension of the space of intertwining operators by J(TTI, ^2) = ̂ (^i, ^2)
where 71-1 is the contragredient of 71-1 [13, 1.6.2].

If 0 is an orbit of dimension d, write T(0) for the vector space of r° G T with support
in 0 U 0(d — 1) and 7^ for the space of those with support in 0(y\ We have

T=^T(0)
o

and

(3.2) dimT < ^dim(T(0)/7^))_i).
o

LEMMA 3.11. - Suppose that (Pi, Ai) ana? (?2, A2) ar^ semi-standard cuspidal parabolic
pairs in G. 77^ Mi D ?2 = (A^i H M2)(Mi n ̂ 2) == *P^ is a cuspidal parabolic subgroup
of Mi mr/z 5'p/;r component *Ai = AiA2.

Pwo/ - We know from the connected case [13, p. 94] that *Pi° = M^ H P̂ 0 is a
parabolic subgroup of M^ with split component *Ai = AiA2 and Levi decomposition
*PI° = (Mi0 nM2°)(Mi0 0^2). Thus there is a cuspidal parabolic subgroup *?i of Mi with
split component *Ai and Levi decomposition *Pi = *Mi *A/i. Here *Mi = C^i (*Ai) =
CM, (AiA2) = Mi H Cc(A2) = Mi H M2 and *A^i = M? H A^2 = Mi H A^2. Clearly
*PI = (Mi H M2)(Mi n N^) C Mi n ?2. Thus we need only show that Mi H P^ c *Pi.

Let a; G Mi D P2. Using the Levi decomposition of ?2 we can write x = m^n^ where
m2 G M2,n2 ^ ^2. Since 772-2^2 G Mi = CG(AI) we have m^n^n^m'^1 == ai for
any ai G Ai. This implies that a^n^n^1 = a^lm^la-^_m^. But since (Pi,Ai) and
(?2,A2) are semi-standard, we have Ai C Ao C CG^A^} = M^. Thus a^n^n^1 G N^
and a~^'lm^la-^_m^ G M2. Hence a^n^a^n^1 = a^m^a^m^ G N^ H M2 = {1}. Thus
U2 and / / / / 2 both commute with ai so that 712 ^ Mi D N^ and 7712 G Mi H M2. •

Return to the assumption that (Pi, Ai) and (?2, A2) are standard with respect to (Po, Ao)
and that y G W(Ao) so that (Pj^A^) is semi-standard. Using Lemma 3.11 we know that
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*PI == Mi D P^ and *?2 = M2 H P^ are cuspidal parabolic subgroups of Mi and
M2 respectively.

Let E\y} denote the space of linear functionals (j) on E = Vi <g) l^ such that

^10)^20^ 1 )^ < <^(7i(p)^i (g)^^ ')^2 >= Sp.nP^P) < <^1 0^2 >

for all j? G Pi H Pl^ G Vi,i = 1,2.

LEMMA 3.12. - Let m G *Mi = Mi H MJ. TT^n

8p,np^(rn) = 6^(m)^6^(my~l)^ 8^m)^ S^m^1)^

where 6^ denotes the modular function for *P^ and 61 the modular function for P^, i -= 1,2.

Proof. - Define the homomorphism 6 : *Mi —^ R^ by

8(m) = 6^(m)^8^{my~l)h^m)h^my~1^8p^(m)~\m G *Mi.

By [13, §2.5.2], the restriction of 8 to *Mi D G° is trivial. Now since the quotient of *Mi
by *Mi H G° is a finite group, 8 = 1 on all of *Mi. •

The proof of the following lemma is the same as that of Lemma 2.5.1 in [13].

LEMMA 3.13. - Ifcj) G E\y), then (f) vanishes on Vi( *?i) 0 V^ + Vi 0 V2( *PO. Let
m C *Mi,'yi ^ v'2 ^ E, and (j) G f^^/). Then

< (^ai(m)'yi 0 o'2(my )v2 >= ^l(m)^^2(^'y )^ < <i^^i 0 ̂ 2 > •

COROLLARY 3.14. - If AI = Aj, r/î n

< <^, o-i(m)^i (g) (j^mY )v^ >=< <^ z'i 0 ̂ 2 >

/(9r a» m G *Mi,'L'i (g) ^2 ^ E, and (j) G ^'(^).

Proof. - As in [13, §2.5.4], Ai = Aj implies that *M = *A^2 = {1} so that *?i and
*?2 are reductive and 6^ = 6^ == 1. •

COROLLARY 3.15. - Assume that a\ and a^ are either both supercuspidal or both discrete
series. Then E\y) / {0} implies that Ai = A^.

Proof. - This follows as in [13, §§2.5.3, 2.5.5] using Proposition 2.17 and Lemma 3.6. •
The following Lemma is now proven as in [13, §2.5.7].

LEMMA 3.16. - Assume that CF\ and a^ are either both supercuspidal or both discrete
series. Let 0 be an orbit in G of dimension d. Then dimT(0)/7^_i = 0 unless there exists
y G 0 such that Ai = Aj. If A\ = Aj for some y € 0, then

dim(T(0)/T,_i)<J(ai,aj).

Proof of Theorem 3.1. - Combine equations (3.1) and (3.2) to obtain

^1^2) < dimT < ̂ dim(T(0)/T^)-i).
o
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Now using Lemma 3.16, if Ai and A^ are not conjugate, dim(T(0)/T^o)-i) = 0 for
every orbit 0 so that ^(71-1,^2) = 0. If Ai and As are conjugate we have, again using
Lemma 3.16,

ATTI^) < dirnT < ̂  dim(T(a)/T^)-i) ^ ̂  ̂ i,aj5).
sew sew

To complete the proof note that ^(^1,^2) == ^(^1,^2), J(ai,aj5) = J(ai,aj5) and
TTi = Ind^(5-i). Thus the statement with dimensions of spaces of intertwining operators
rather than intertwining forms follows by substituting TTI for 71-1. •

4. P-groups for Ind^o(ao)

In this section we will study representations of G which are induced from a parabolic
subgroup P° = M°N of G°. Because in this section we will only work with parabolic
subgroups of G°, we will simplify notation by dropping the superscripts on P° and M°.

Let P = MN be a parabolic subgroup of G° and fix an irreducible discrete series
representation (a, V) of M. Define

7^p(cr) = {/ G C°°(G,V) : f(xmn) = 6p12(m)a(m)-1 f{x)

for all x G G, m G M, n G N}

where 8p is the modular function on P. Then G acts by left translation on Hp^a) and we
call this induced representation Jp(a). We will also need to consider

H°p(a) = {(j) G C°°{G\V) : (t)(xmn) = ̂ (m)a(m)-1^)

for all x G G°, m G M, n G A^}.

G° acts by left translation on T~C°p((r) and we call this induced representation ^(cr).
It is well known that the equivalence class of I^p^o') = Ind^ (a) is independent of P. But

Jp(a) = Ind^(cr) ^ Indgolnd^°(a),

so that the equivalence class of Ip(o-) is also independent of P. We denote the equivalence
classes ofJp(a) and I^p^o-) by ZG.M^} and ^G^M^) respectively. I f p r i s a representation
of G° we will also write IG,G°(^) for the equivalence class of the induced representation
Ind^o(Tr).

We first want to compare the dimensions of the intertwining algebras of %G,A^(^) and
^G°,M(^) • For this we need the results of Gelbart and Knapp summarized in §2 and
the following facts.

LEMMA 4.1. - Suppose 71-1 and TT-^ are irreducible representations of G°. Then iG,G°(^i)
and ^G0^) have an irreducible constituent in common if and only if'TT^ ^ Ti-f for some
g G G. In this case they are equivalent.
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Proof. - For % = 1,2, write

^ G , G o ( 7 T z ) = ^ ^ n,(g)^
xex/x(no

as in Lemma 2.13. Suppose that iG,G°{^i) and iG,GO(7^2) have an irreducible constituent
in common. Then IIi 0 ̂ i ^ IIs 0 ^2 fo1* some Xi^X2 ^ ^- Now

7T2 C n2 0 X2 GO ^ HI 0 ^i|GO C ZG,G" (^l) IG" ^ ^ TI-f.

gCG/G0

Thus 7r2 ^ Ti-f for some g G G. Conversely, if 7r2 ^ Ti-f for some g G G, then clearly

^G,G°(7r2) ^ ^G,G°(7rf) ^ ^G,G°(7ri)- •

LEMMA 4.2. - Suppose that for some g G G, both TT (2nJ TT^ are irreducible constituents
of'iG°,M(cr)' Then there is XQ G G° such that gxo G Nc^cr) = {x G Nc(M) : cr" 2^ a}.
Conversely, if TV is an irreducible constituent of^G°,M(^) ^^ (f^ ^ Nc^G0, then Tr9 is
also an irreducible constituent O/^G°,M(^) ^d7r an^ 7rg occur with the same multiplicities.

Proof. - Suppose that TT^TT^ C ^G°,M(^)- Then since TT^ C ^G^M^^), we see that
^G^M^) Bi^d ^GO ,M9(a5) have an irreducible constituent in common. Thus there is
XQ G G° such that AP2'0 = M and a5310 c^ cr, i.e. gxQ G A^G(^). Conversely, if
^ ^ NG(O')G°, then the multiplicity of TT in ?G°,M(^) is equal to the multiplicity of 7r9 in
^G^M^Y ^ ^GO,M9(^5) ^ ^GO,M(^)- •

LEMMA 4.3. - L^ TT be an irreducible constituent of^G^M^) ^n^ ^r G^ == {rr G G :
Tr2' ^ 7r}. T/z^n

[G,/G°]=[7V^(a)/^o(a)]

w^r^ TVGo(a) = A^c(^) n G0 and A^(cr) = ̂ (cr) H G^-.

Proof. - Consider the mapping from NG^(CT) to G^/G0 given by ^ i-̂  ^G°. Its kernel
is NG^((T) H G° = A^Go(cr). Further, given ^ G G^, TT^ ^ TT occurs in ZG°,M(^). so
by Lemma 4.1 there is XQ G G° such that gxo G A^cr). But Tr5310 ^ Tr9 ^ TT so that
gxo G G^ D No^cr) = N0^(0-) and gxoG° == pG°. Thus the mapping is surjective. •

Let G(a) denote the algebra of G-intertwining operators for IG,M^) and let G°(a)
denote the algebra of G°-intertwining operators for %G°,M(^)-

LEMMA 4.4. - dimG(a) = dimG°(a)[A^(^)/^Go(^)].

Proof. - Let

^G°,M(^) ^ ^ ^TrTT

7re5(a)

be the decomposition of ZG^M^) h^to irreducible constituents. For TTI, ^2 G S(a), we will
say that 71-1 ~ ^2 if there is g G G such that ^2 ^ Trf. Then using Lemma 4.2, we have
TTi ~ 7T2 if and only if ^2 ^ Trf for some g G NG^O-). We can write

%G°,M(^) = ^ m^ ^ 7T^.

7rG5(a)/~ 5eNG(<r)/NG,(<r)
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Now
^G,M(^) ^ ^G^^G^M^)) ̂  ^ m^ ^ ?G,Go(^)

7rC5(a)/- ^NG(<T)/NG, (<r)

= ^ m,[A^(a)/A^(a)]r, ^ 11,0 x
7r(E5(<r)/- xex/x(n,)

where 11̂  is an irreducible representation of G such that TT Cll^ G°- Because of Lemma 4.1,
the representations 117;- 0 \ are pairwise inequivalent as TT ranges over S(a)/ ~ and ^
ranges over X / X ( J I ^ ) . Thus

dimC7(a)= ^ m^^^)/^.^)]2^^/^^)].
7rC5((r)/^

But by Lemmas 2.13 and 4.3,

^[X/X(n,)] = [G^/G0] = [NG^a)/NGo(a)}.

Thus

dimC(a) = ^ m^^^/Tv^^)]2^,^)/^^^)]
7reS((r)/~

= [^(<r)/^o(a)] ^ m^[^(a)/7V^(^)]
7re5(a)/~

= [A^(<T)/A^o(a)]dimC7°(a). •

We now want to find a basis for C7(cr). We proceed as in the connected case. Let A
be the split component of the center of M and write a^ for the dual of its complex Lie
algebra. Each v G a^ determines a one-dimensional character ̂  of M which is defined by

^(m)=q<HP^>,meM.

We write (2p((T : ^), Hp^o-: i^)) and (J^>(a : ̂ ), "H^p^o-: i^)) for the induced representations
of G and G° as above corresponding to (jy = a (g) ^^. Let ̂  be a good maximal compact
subgroup of G° with respect to a minimal parabolic pair (Po^Ao) of G° such that
PO c P, A C Ao. Then G° = J^P and we also have the usual compact realization of
J^(a) on

^(<7) = [fK e G°°(^y) : Mkmn) = a-l(m)^(fc)

for all k G AT, m G M H ̂ , n G TV H AT}.

The intertwining operators between 7^(cr,^) and 7-^(<r) are given by

F^(^) : ̂ (<T : i.) ̂  7^((7),

F^(v)(f>{k) = (f>(k),(t> G ^((T : i/),fc e A'.
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For all JK G U^{(j\x € G°,

F^^Mx) = 8pn^x))a^\^x))fKW).

Here for any x e C?°, K(x) G K^ p,(x) G M are chosen so that x G i^(x)fi(x)N.
Since we don't know whether there is a "good" maximal compact subgroup for G, we

don't have a single compact realization for Ip((r). However we can proceed one coset
at a time as follows. Write G as a disjoint union of cosets, G = U^XiG0. For any
/ G ?^p(a,^),l < i < k, we can define

.^^IA^ if^c^c?0 ;
' ) \0, otherwise.

^fc
^i=lThen /, G ^p(cr : ^) for each % and / = Y,^ fi. For each 1 < i < k, define

Fp(^) : 7^p(a : v) -> ̂ (a)

by

Define

by

FWf(k) = f{x,k\ f G Hp(a : v\ k € ^.

Fp(z^)-1 : ̂ (a) -. Hp(a : v)

F ' d ^ ^ f ^ C x ) = J^p^(^(a;o))^ l(^(a;o))/J<'(^(^o)), ifx=XiXo,xo e G0;
P \ / J - f v \ / j .L 0, otherwise.

Then Fp^Fp^)-1^ = fie for all /K € ^(a) and Fp^^Fp^f = f, for all
/ G ^p(a : ^).

If P = MN and P' = MN' are two parabolic subgroups of G° with Levi component
M, then we have the formal intertwining operators

J^P' : P : a : v} : U^a : v) -> H°p^o-: ̂

given by the standard integral formula

J^P' : P : a : ^<p(x) = /_ (/)(xn)dn, x G G°.
JNDN'

Here MN is the opposite parabolic to P and dn is normalized Haar measure on N D Nf.
We can define

J^P' : P : a : v) : Hp(a : v) -> Up\a : ̂

by the same formula

J { P ' : P : a : jy)f(x) = I f{xn)dn, x G G.
J N ( - } N '
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In order to talk rigorously about holomorphicity and analytic continuation of these operators
we transfer them to the compact realizations. Thus we have

J^[P' : P : a : ̂  : ̂ (a) -^ 7^(a)

denned for JK G T-C^(a),k G K, by

W : P : a : z.)^(fc) = F^}J\P' : P : a : ̂ F^^fKW

= _ 6p^^(kn))a^l(|l(kn))fK^(kn))dn.
JNHN'

THEOREM 4.5 (Harish-Chandra [7, 13]). - Suppose a is an irreducible discrete series
representation of M. There is a chamber (^(P' : P) in a^ such that for v G ^(P7 : P)
the formal intertwining operator J°(P' : P : a : v} converges and defines a bounded
operator. For a fixed JK € T~C1^ (a), the mapping

v ̂  W : P : a : V}JK

from Q^(P1 : P) to T~i^(a) is holomorphic. Further, it extends to a meromorphic function
on all of a^.

Because of Harish-Chandra's theorem we can define <7°(P' : P : a : v) for all v e a^ by

J\P' : P : a : v} = F^-V^P' : P : a : v)F^{

COROLLARY 4.6. - Suppose (j is an irreducible discrete series representation of M. Then
the formal intertwining operator J { P ' : P : a : v} converges and defines a bounded
operator for v G Q^{P' : P). Further, for all v G Q^{P' : P), we have

k

J{P1 : P : a : ̂  = ̂ Pp/M-V^P' : P : o : v)FW.
i=l

Proof. - It is clear from the definitions that for v G o^{P' : ? ) , / € T~Cp{o- : ^),
x G G, XQ G G°,

J(P/ : P : a : i^)f(xxo) = J°(P' : P : a : ̂ (xo)

where (f) = l^x'1)/^ is the restnction to G° of the left translate of / by x~1. Thus the
integral converges. Fix 1 < i < k. An elementary calculation shows that

Fp/(^)J(P' : P : a : ^)Fp(^)-1 = J^{P' : P : a : ;/).

Thus for any / G ^p(a), since clearly J ( P / : P : a : v)(fi) = (./(P' : P : a : v)f),
we have

Fp^^J^'.P'.a-.^Fp^f
= FW'FWJ^P' : P : a : ̂ FW'FpW = { J { P ' : P : cj : ̂ /),. •
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Because of Corollary 4.6 we can define J { P ' : P : a : i/) for all ^ G a^ by the formula

fc
J(P' : P : a : v) =^Fp,^rlJOK(P' : P •• o : v}Fp{v}.

i=l

COROLLARY 4.7. - Let v € Q^c^f e ^p(a : ̂ ^ e G^o ^ G°. TT^n

^(P' : P : a : J^)f{xxo) = J°(P' : P : a : ̂ (0:0)

w/^r^ (̂  = l^x'1)/^-

Pwo/. - Suppose that 1 < j < k. Because J°(P' : P : a : v} commutes with the left
action of G°, it is enough to prove the result for x == xj. For any

^GacJ<E^p(or:^o GG°,J(P' : P : a : ^ ) f ( x j X o )
k

= Y.Fp^W : P : a : v)Fp^)f(x,xo)
i=l

= FW'W ' ' P ̂  '' ^)F^)f(x^)
= F^-'W •'P ^'' ^p^M^-^o)

where (f)j = L^^/lco. •
Fix scalar normalizing factors r(P' : P : a : y} as in [2] used to define the normalized

intertwining operators

P^P' : P : a) = r^P' : P : a : O)-^^?7 : P : (T : 0).

Using Corollary 4.7, the fact that r(P' : P : a : ̂ "^(P' : P : a : ^) is holomorphic and
non-zero at v = 0 will imply that r(P' : P : a : ̂ "^(P' : P : a : v} is also holomorphic
and non-zero at v = 0. Thus we can use the same normalizing factors to define

R{P' : P : a) = r(P' : P : a : O)-1^?7 : P : a : 0).

For the normalized intertwining operators we will also have the formula

R{P' : P : a)f{xxo) = R^P' : P : a)^(xo)

where notation is as in Corollary 4.7.

LEMMA 4.8. - Suppose Pi,?2, and P^ are parabolic subgroups of G° with Levi
component M. Then P(?i : PS : a) = P(Pi : ?2 : (r)R(P2 : ?3 : cr).

Proof. - This follows easily using Corollary 4.7 from the corresponding formula for the
connected case. •

LEMMA 4.9. - Suppose Pi and P^ are parabolic subgroups ofG° with Levi component M.
Then R{P^ : Pi : cr) is an equivalence from T-Lp^o-) onto Hp^(a).
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Proof. - It follows from Lemma 4.8 that

R(P, : ?2 : a)R(P^ : Pi : a) = R(P, : P, : a).

But it follows from the integral formula that J(Pi : Pi : a : v} is the identity operator for
v in the region of convergence, and hence for all v. Thus R(P\ : Pi : a) is a non-zero
constant times the identity operator and so R(P^ : P\ : a) is invertible. •

Let x G Nc(M). Then if Pi = MA/i is a parabolic subgroup of G° with Levi
component M, so is ?2 = xPx~1 = xMx~lxN^x~l = MN'z. Let dni and dn2 denote
normalized Haar measure on TVi and A^ respectively. (Thus drii assigns measure one to
K H N i . i = 1,2.) Define ap,(x) G R4" by

/ (f)(n'z)dn2 = ap,(x) \ ^(xn^x'^dn^^ G C^°(N^.
J N ^ J N i

For all m G M,

ap^(m) = Sp^m).

Further, if a; G NG^K) H Nc(M), then ap^(rc) = 1. The following lemma is an easy
consequence of the definition.

LEMMA 4.10. - Let x,y G No(M). Then

ap(yx) = a^p^-i(y)ap{x).

Moreover if m G M,^/ G No{M), then

ap(ym) = ap(y)6p(m).

Now let N0(0) = [g G ^(M) : ^ ^ a} and let ^(cr) = NG^/M. Let
H^o(cr) = (NG((T) H G°)/M. If w G WG(CT), cr can be extended to a representation
of the group Mu, generated by M and any representative n^ for w in A^cr). Fix such an
extension and denote it by 0'w Now we can define an intertwining operator

Ap(w) : ̂ -ip^(cr) -^ ^p(a)

by
(Ap(w)/)(.r) = a^(n^)a^-ip^(n^f(,•w^w;2 J^^w

The a^-ip^ term is not used in the connected case because coset representatives n^ can
be chosen in K where a^-ip^ = 1. In the general case we don't know if there is a
natural choice of coset representatives with a^-ipw == 1. Thus we add the a^-ip^ term
so that Ap(w) is independent of the coset representative n^ for w. Ap(w) does however
depend on the choice of the extension cr^.
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LEMMA 4.11. - The intertwining operator Ap(w) is independent of the choice of coset
representative riyj for w G Wc^a). For wi ,W2 G Wo^a) there is a non-zero complex
constant cp{w\^w^) so that

Ap(wiW2) = cp(wi,W2)Ap(wi)A^-ip^(w2).

Proof. - Using Lemma 4.10 we have for any m G M, / G 'Hw-^pw^0'}^

o-w(^w^)Q /w- lpw(^w^')^ f{xn^m)

= ^w(^w)^(^)^w- lPw(^w)^w- lPw(^)^(^')- l^w- lPw(^)- i/(^^w)

= o•w(nw)^w-lpw{nw)^ f{xn^).

Thus the intertwining operator is independent of the choice of coset representative.
Let wi ,W2 G WG(O') and fix coset representatives ^1,^2 for wi ,W2 respectively. Then

we can use n\n^ as a coset representative for wiW2. We will also write Pi = w~[ Pwi
and Pi2 = W2- lWl~ lPwlW2. For any w G Wc(cr) and representative n^ for w we have

(T^{n^(T(rn)<j^(n^)~^ = a(n^mn^1)

for all m G M. Thus

C»WiW2 (^1^-2)^W2 (^2)-l^Wl (^l)"1

is a non-zero self-intertwining operator for a and hence there is a non-zero constant c so that

^wit^77'!77^) = C(7^(ni)(7^(n2).

Further, from Lemma 4.10 we have

ap^(mn2) = ^Pi^i)^?^7^).

By definition, for any x € G, / G T~ip^(°')^

Ap(wiW2)/(rc) = ̂ ^(ni^^p^m^^/^m^)
= cc^^(nl)Q /p,(nl)^a^(^2)Q /Pl2(^2)^/^l^2)
= cAp(wi)A^-ip^(w2)/(rr). •

If w G WGO (a) and n^ is chosen to be in K, then we also have

A°(w) : T^-.pja)-^°p(<7)

given by

(A°(w)^)(rc) = (Tw(ny,)(f){xn^).
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The compositions

R°(w^a) = A^W^R^W^PWQ : P : a), wo G WG"(^),

J?(w,a) = Ap^J^w^Pw : P : cr),w G W^G^),

give self-intertwining operators for ^(cr) and Jp(cr) respectively.

LEMMA 4.12. - There is a cocycle T] so that

J?(wiW2,<r) = f](w\^ W2)P(wi, a)J?(w2, cr)

for all Wi,W2 G Wc^cr).

Proof. - Using Lemmas 4.8 and 4.11, we have

R(w^w^^a) = Ap(w^w^)R(w^lw~[lPwtWsz '. P : a)

= cp(wi,W2)Ap(wi)A^-ip^(w2)

X J?(w2-lwj~lPwlW2 : w^lPw2 : ̂ •^(w^Pu^ : P : cr).

We will show that there is a non-zero constant Cp(wi,W2) so that

A^Pw^^)?^1^1^!^ : W^Pl^ : Cr)Ap(w2)~1

= Cp(wi, u^-fi^w^Pwi : P : a).

When this is established we will have

I?(wiW2,a) = cp(wi,W2)cp(wi,W2)Ap(wi)
x R(w^Pw^ : P : cQAp^)?^1?'^ : P : a)

= cp(wi, W2)cp(wi, w^)R(w-t^ a)R(w^y a).

Thus ^ can be defined by 77(^1,^2) = cp(wi,W2)cp(wi,W2). It is immediate from the
formulas for the composition of the operators JZ(w^o-) that 77 is a 2-cocycle.

In order to prove the above identity we need to go back to the original definition of the
standard intertwining operators. WG-((T) acts on a^ and Xy^n'^'mn^) = \wv(^) if ^w
is any representative of w G WG^O-). Now for any v G a^ , / G /Hw-lpw{<J',l/\ x ^ G,
m G M, n G A^, if Ap(w) is defined exactly as above, we have

Ap(w)f(xmn)

=c^w(^w)Q /w-lpw(^w)^ f{xmnn^)

=a^(n^)a^-lp^(n^)^^-lp^(n^lm-ln^)-^a(n^lm-ln^)^(n^lm-ln^)/^

=6p(m)~^a(m)~l^^(m)~la^{n^)a^-lp^{n^f(xn^)

=8p(m)~^a(m)~lXw^.(rn)~lAp(w)f(x).

Thus Ap(w) maps /7Yw-lpw(c^^) to ^p(^w^). Now write Pi = w^Pw-^, P^ =
W2-lPw2, Pi2 == w^w^Pwiu^ and consider the composition

Ap,(w2)J(Pl2 : PI : CT : W^^Ap^)"1

4e SERIE - TOME 30 - 1997 - N° 1



SOME RESULTS ON THE ADMISSIBLE REPRESENTATIONS 123

It maps

np(a^) -. Hp^w^^) -. Hp^w^^ -^ ̂ p,(^).
If v is in the region of convergence for the integral formula for J(Pi2 : PI : o-: w^1^)

and dn^ denotes normalized Haar measure on N-2 H 7Vi2, then we have

Ap,(w2)J(Pl2 : ?2 : 0- : W2- l^/)Ap(w2)- l/(^)

= ^w^ri^)ap^(n^J(P^ : P^ : a : w^^Ap^w^f^xn^)

= ^(^wJ^Pia^ws)^ /_ Ap(w2)~VCrn^n2)^2
JN2^N-L2

= (T^(n^)ap^(n^ _ ap^(n^)~^a^(n^)~1 f{xn^n^n^)dn^
JA^2^lA7'l2

= ap^{n^ap^{n^}~^ _ f{xn^n^n~^)dn^.
J N ^ N ^

But N^ n 7Vi2 = W2-1(7V n N^w-z so if dn denotes normalized Haar measure on N H TVi,
there is a positive real number r so that

/_ (t){n^n^n^)dn'2 =r _ (f)(n)dn
JN2nNi2 JNnNi

for all (/) G ^(TV n M). Thus

Ap,(w2)J(Pl2 : ?2 : <T : W2-l^)Ap(w2)-l/(r^)

= ap^(n^ap^{n^)~^r _ f(xn)dn
JNnNi

= ap^(n^ap^n^)~^rJ(P^ : P : a : i^)f(x).

Setting
c/p(wl,W2) = ap^n^ap^n^Y^r

we have

Apl(w2)Jr(Pl2 : ?2 : CT : W2' l^/)Ap(w2)~ l == C /p(Wl,W2)Jr(Pl : P : 0- : u)

for all v in the region of convergence for the integral formula for J(Pi2 : ?2 : cr : w^"1^).
By analytic continuation, the identity is valid for all v. Now divide both sides of the
equation by r(Pi2 : ?2 : o- : w^1^) and evaluate at v = 0. We obtain

Ap,(w2)P(Pl2 : ?2 : <7)Ap(w2)-1 = Cp(wi,W2)P(Pl : P : a)

where
Cp(wi,W2) = ̂ (wî HPi : P : a : 0)r(Pi2 : ?2 : a : O)-1. •

For (f) G ^^(cr) define / = ^((/)) G ^p(a) such that f(x) = 0 if x ^ G° and
f(xo) = (t){xo) if a;o e C;°.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



124 D. GOLDBERG AND R. HERB

LEMMA 4.13. - Let f = ̂ ((f)) as above. Then for all w,wi G WG^),XQ € G0,

R(w^a)f(xon^)=0

unless w = w-^Wo^Wo G WGo(cr). Ifw^ W^WQ^WQ G Woo^a), then

-R^^)/^^1)
= ^(wl,wo)c^^(n^)a^-lp^(n^)^JRO(wi- lPwl : P : a)R°(wo : cr)^(a;o).

Proof. - For any x ^ G^w E WG^O-), using Corollary 4.7,

R^w^Pw : P : a)f(x) = RQ{w~lPw : P : a)^(l)

where (^/ is the restriction to G° of Z(a:~1)/. Now since / = <1>(^) is supported on G°, ^' = 0
unless rceG0. I f-roCG0 , then R^w^Pw : P : a)f(xo)=RO(w-lPw : P : a)^(^o).

Now by definition,

R{w,a)f(xon^) = a^(n^)a^-ip^{n^ R^w^Pw : P : a)f(xon^n^).

By the above this is zero unless n~^n^ e G°, that is unless w == W-^WQ^WQ e lVGO(c^)•
In this case, using Lemma 4.12,

R{w^wo,a)f(xon^)
= yy(wi,wo)P(wi : a)R(wQ : a)f(xon^)
= ^(wi,wo)cr^(n^)a^-ip^(n^)^a(wiPwf1 : P : o-)R(wo : a)f(xo)

= 77(wi,Wo)<7^(n^)a^-lp^(n^)^o(wlPW]~l : P : a)R°(wo : a)^(a;o). •

Recall that if we write W^o (a) for the subgroup of elements w C Woo (cr) such that
R°{w,a) is scalar, then W^o(a) = TV($i) is generated by reflections in a set $1 of
reduced roots of (C?,A). Let ^+ be the positive system of reduced roots of (G,A)
determined by P and let <1>^ = $1 Ft ^+. If we define

R^ = {w G Wco(o-) : w/3 G ^+ for all /? G $1^},

then IVG°(^) is the semidirect product of R°, and W(^>^). R0, is called the JR-group for
1^(0-) and the operators

{P°(r,a),re^}

form a basis for the algebra of intertwining operators of I^(cr). We will define

Ra = {w (E WG^) : wf3 G ^+ for all /? € <^}.

Clearly ̂  n G° = R^.
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LEMMA 4.14. - R(w^a) is scalar ifw G VF($i), and Wc(cr) is the semidirect product
of W(^i) and R^

Proof. - Fix w G VF($i),nu; G AT a representative for w, and / G <Kp(a). Then for
all ^ G G,

R{w,a)f(x) = a^n^R^w^Pw : P : a)f(xn^) = a^n^R^w^Pw : P : a)^(n^)
= where ^(.ro) = f{xxo) for all a;o ^ G°.

Thus
J?(w,aV(rc)=a°(w,a)0(l).

But since w € VF($i) there is a constant c^ such that JZ°(w,a)^ == c^<^ for all
(j) G ^(cr). Thus

R{w,a)f(x) = c^(l) = c^f(x)

so R{w^a) is scalar.
We must show that for any w G WG(cr),w<l>i = ^i so that

Ra = {w G WG^) : w$^ = $^}.

Then as in the connected case it will be clear that Wc{cr) is the semidirect product of
R^ and W^i). Let w G Wo^.a G <l>i, and let 5^ G IV(^i) denote the reflection
corresponding to a. Then w^w~1 == s^a ^ ^G°(^)- But J?(5a : cr) is scalar so that using
Lemma 4.12, so is R{s^a^a) = R(wsa'w~1 : a). This implies as above that R°(swa^o~)
is scalar. Hence s^a ^ H^(^i) and wa e $1. •

LEMMA 4.15. - The dimension of C{o~) is equal to [Ra}'

Proof. - By Lemma 4.4,

dimG(a) = [Nc^/Nc^a)} dimC7°(a) = [WG^IWG^W}
= [WG(a)/WG^a)][WGo(a)/W(^)} = [WG^)/W^)} = [R^. •

THEOREM 4.16. - The operators {jR(r,a),r G i?^} ybrm a basis for the algebra of
intertwining operators of Jp(a).

Proof. - By Lemma 4.15 it suffices to show that the operators are linearly independent.
Suppose that c^,w e Ra, are constants so that

^ c^R(w,a)f(x)=0
w(^Ra

for all / G Up^^x € G. Fix wi G fi^. Then for all / = ^(^) with (^ (E 'H^(a) and
all rro G G"0, we have

^ c^I?(w,a)/(rron^1) = 0.
wCRa
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Now by Lemma 4.13, R(w,a)f(xon^) = 0 unless w = wiWo where WQ G Woo^a) D
Rcr = R0,. Now again using Lemma 4.13,

0= ̂  c^^R(w^wo,a)f{xon^)
woeR°,

= ̂  Cw,wMw^wo)a^(n^)a^lp^(n^RO(w^lPw^ : P : a)R°(wo : a)^o)
woc^

= ^wi^wi)^-!?^^)^0^]-1?^! : P : a) ̂  ̂ ^(^i^o)^0^ : cr)^(rco).
wo€l%

Thus
^ Cwiwo^('^i^o)-R°('^o : cr)(/)(xo) = 0

wo<E^

for all ( / ) G ^^(cr) and all XQ G G0. Now since we know that the operators R°(wo : a) are
linearly independent on T-^(a), we can conclude that the c^^rj(w-^,wo) and hence the
Cwiwo are all zero. •

As in Arthur [2] we now have to deal with the cocycle rj of Lemma 4.12. Fix a finite
central extension

1 ——^ Z(j ——^ Ra ——^ Rff ——> 1

over which T] splits. Also define the functions ̂  : R^ -^ C* and the character ̂  of Z^
as in Arthur [2]. Then we obtain a homomorphism

R(r^)=^l(r)R^a)^^R^

of ̂  into the group of unitary intertwining operators for Jp(cr) which transforms by

R(zr,a) = ̂ (^R^r.a^z G Z^,r C ̂ .

Now we can define a representation % of Rcr x G on T-ip(a} given by

TZ(r^) = R(r,a)Ip(a,x),r E R^x ^ G.

Let II(^, ̂ o.) denote the set of irreducible representations of R^ with Za central character
\f, and let 11̂  (C?) denote the set of irreducible constituents of lp(cr).

THEOREM 4.17. - There is a bijection p ̂  TTp ofIl(R^, ̂ ) onto Ha(G) such that

n=^p^R.^ ^v^)-

Proof. - Write the decomposition of % into irreducibles as

n = ̂ mp^ (^v (g)7r)
P,7T
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where p runs over Tl{Ra,Xa)^ runs over IL(G), and each rrip^ ^ 0. This corresponds
to a decomposition

Hp(a) ̂  ̂ (Vp. ̂  W,)771-
P,7T

where Vpv and W^ denote the representation spaces for the irreducible representations p^
and TT. For each p, we also write

Hp^Vp.^W^-
7T

for the p-isotypic component of ^p(cr). Each subspace Tip is invariant under the action
of %, in particular by all of the intertwining operators R(r,a),r G Ra- Since these
intertwining operators span the space G(a) of G-intertwining operators for 'Hp(a), each
T G G(a) must satisfy T(Up) C Up for every p.

We will first show that given TT, there is at most one p such that mp^ > 0. So fix TT
and suppose that there are pi and p2 such that m?,^ > 0 , % = 1,2. Then W^ occurs as a
G-summand of both Upv and 7<p2. Thus there is T^ / 0 in HomG(/Hpl,/Hp2)• We can
extend Ti2 to an element T of C(a) by setting T = T^ on 7^ and T = 0 on 7^, p ^ pi.
Thus there is T in (7(a) such that T(T-ip^) C T-ip^. But by the remark in the previous
paragraph, T(Hp^) C Up,. Now since T(^) / 0, we must have pi ^ p2.

Now fix p and look at Hp ^ V?v 0 W where W = ^^ WC'''. We will show that
VF is irreducible as a G-module. Thus suppose that W = "IVi C "̂ 2 where ^1^2 are
G-submodules of W. Then we can define T G G(a) by T{v (g) (wi + w^)) = v (g) wi if
^ ^ y^v, wi G Wi, W2 G W2, and T = 0 on Up' if p7 96 p. Now since T G G(a), we can
write T = ̂  CrH{r, a) where r runs over R^. Thus for all v G Vpv ̂ 10^1^201^2,
we have

y 0 Wl = T(^ 0 (Wi + ^2)) = (^ C^p'7^)^;) (g) Wi + (^ C^pv(r)'^;) 0 W2.

r r

Suppose VF2 / 0. This implies that ̂  Crp^{r)v = 0 for all v so that v 0 Wi = 0 for all
wi. Thus VFi = {0} and hence W^ is irreducible. But this implies that rrip^ < 1 for all TT
and that there is at most one TT such that m?^ = 1.

Define
IIi = {p G H{Ra,Xa) : rnp^ = 1 for some TI-}.

For each p G IIi we have shown that the representation TT such that m?^ = 1 is unique.
Thus we will call it TT?. Further, we have shown that TT^ ^ TT^ just in case pi ^ p2.
Further, by definition of IL(G), each TT G IL(G) occurs in ^p(a) and so must be of
the form TTp for some p G IIi. Thus to complete the proof of the theorem we need only
show that IIi = H{Ra,Xa)'

Since
Hp(a)^ Y,(Vp.^W^\

/oGlIi
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we must have dimC(a) = Z^ni^eg p)2. But since the R(r,a),r G Ra, form a basis
for C7(a), we know that

dimC7(a)=[^]= ^ (deg p)2.
p^n{R^,xa)

Thus iii =n(^,^). •
REMARK 4.18. - Suppose now that G/G° is cyclic. Then in [I], Arthur predicts a

dual group construction of a group R^^cr, in terms of the conjectural parameter ^ for
the L-packet of a, which should also describe the components of Ind^(a). In particular,
R^,a = ^0,o7W^cr? where these groups are denned in terms of centralizers of the
image of ^. Furthermore, Arthur has conjecturally identified W^ ^ with W(^^) and W^^
with WG(O'). Thus, if the conjectural parameterization exists in the connected case, and
Shelstad's Theorem [12] extends to the ̂ -adic case, then it must be the case that Ra ^ R^,a'
That is, we have shown that there is a group side construction of Arthur's Ji-group, if such
an object exists. (For more details see [1] and [6], particularly Sections 1 and 4.)

5. -R-groups for Ind^(a)

In this section we will study representations of G which are induced from discrete
series representations of a parabolic subgroup P of G. Thus we revert to the notation
that parabolic subgroups of G° are denoted by P°. Let P = MN be a cuspidal parabolic
subgroup of G.

Let a be an irreducible discrete series representation of M and let (TQ be an irreducible
constituent of the restriction of a to M°. We want to find a basis for the intertwining
algebra C(a) of the induced representation Ind^(a). Since a is contained in Ind^o(cro)
we know Ind^(a) is contained in Ind^(Ind^o(ao)) ^ Ind^o(ao). In §4 we found a basis
for the intertwining algebra C7(ao) of Ind^o(ao). We will see how to obtain a basis for
C(a) by restricting the intertwining operators defined in §4.

We first need to embed a in a family ( j y ^ v G a^, where a is the real Lie algebra of
the split component A of M. Write X(M),X(A) for the groups of rational characters
of M,A respectively. Let

r : X(M) (g)z R -^ X(A) 0z R

be the map given by restriction. That is r(^ 0 t) = \\A 01 for % G X(M), t G R.

LEMMA 5.1. - The homomorphism r : X(M) 0z R —^ X(A) (g)z R is surjective.

Proof. - Since G is a linear group we have an embedding of G in L = GL(V)^ where
V is a finite dimensional P-vector space. Since A is a split torus, the action of A on V
can be diagonalized. For any ^ C X(A) let V(^) = [v e V : av = %(a)v for all a e A}.
Let \i, 1 < i < k, denote the distinct elements of X(A) such that V, = ^(Xz) 7^ {0}- We
can identify a G A with the block diagonal matrix with diagonal entries ^(a)J^ where
d^ = dimV^ and 1^ denotes the identity matrix of size c^, 1 < z < fc.
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Since M = C^(A), we have M C CL(A) ^ GL{V^) x GL(V^) x ... x GL(Vk).
For each 1 < % < k we can define det^ G X(M) by det^(mi, . . . ,mfc) = detm^. Now
det, (g)<~1 G X(M) (g)z R and for a G A, det, (^^(a) = Xz(^ ^ d^-l = XiW ^ 1-
Thus r(det, 0d,~1) = Xi ^ L The Xi^ < i < k^ are generators of X(A), although they
need not be independent. Thus r is surjective. •

Let Xo(M) = {x C X(M) : ^IM" = 1}.

LEMMA 5.2. - The kernel ofr is Xo(M) 0z R

Pwo/. - Suppose ^ (g) t i s in the kernel of r where \ C X(M) and t G R. If t = 0 then
^ 0 Hs the identity element. Assume t / 0. Then l^)!^ = 1 for all a G A implies that
|^(a)|^ = 1 for all a C A. Since )C\A is a rational character of a split torus this implies
that \\A = 1. But restriction from X{M°) to X(A) is injective [13, Lemma 0.4.1], so
that ^IM" = 1- Thus ^ G Xo(M). •

Recall the homomorphism HM^ : M° -^ Hom(X(M°), Z) defined by

< ffMo(m)^ >- ̂ |x(^)l^^ ^ Af°,x ^ ^(M°).

Define an analogous homomorphism HM '' M —^ Hom(X(M),Z) by

< HM(m\x >= ̂ |^(m)|F,m G M^ G X(M).

LEMMA 5.3. - Suppose that % G Xo(M). Then < HM{rn), \ >= 0 for all m e M.

Pr6><9/. - Let ^ G Xo(M). Thus x(^o) = 1 for all mo G M°. Let d be the index of M° in
M. Thus m^ G M° for all m G M so that ^(W) = 1 for all m G M. Thus ^(m) is a d^
root of unity and \x(^)\F = 1 for all m G M. Thus < HM{rn},\ >= logq\\(m}\F = 0
for all m G M. •

Recall that Hom(X{M°), Z) 0z R ^ I:fom(X(A), Z) 0z R = a is the real Lie algebra
of A, a* == X(A) 0z R is its real dual, and a^ = a* (g)p C is its complex dual. For each
v G ac we have a character ̂  of M° defined by ^(m) = g<^Mo(m)^>^^ ^ ^f0 gy
Lemmas 5.1 and 5.2 the mapping r above induces an isomomorphism

X(M)(g)zC ^.^^ „
r* : yrA/^ r ^ X(A) ̂ z c ̂  ac-XQ{M) 0z ̂

By Lemma 5.3, for each m G M, HM^rn) is an element of the complex dual of ^^^^c •
Thus for each ^ € a^, we can define a character ̂  of M by

^(m) = g<^(m)^-l(z.)>^ ^ ̂

LEMMA 5.4. - For all v G a^, the restriction of\^ to M° is ^.

Proof. - For mo G M0,^ G X(M) we have

< HM(rno),x >= logq\x(mo)\F = logq\^o(mo)\F =< ^Mo(^o),Xo >

where ^o denotes the restriction of \ to M°. Since the isomorphism r* comes from the
restriction map it is easy to see that < ^M^o)?^"^) >=< ^7^0(^0)5^ > for all
mo G M0,^ G a^. •
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As above, let a be an irreducible discrete series representation of M and let (TO be an
irreducible constituent of the restriction of a to M°. Let VQ be the representation space
for O-Q and let

W = {f : M -^ Vo : /(mmo) = (TQ{mo)~1 f(m) for all m G M,mo G M°}.

Then M acts on iy by left translation and we will call this induced representation
(IM^W). Let V denote the representation space for a and fix a non-zero intertwining
operator S : V -^ W so that Sa(m} = lM(m}S for all m C M. Since JM is unitary,
we can also define a projection operator P : W —^ V so that PIM^) = o~(m)P for all
m e M and PS"?; = v for all v E V. We also define representation spaces

^p(a) = {(f) G G°°(G,y) : 0(^mn)

= 6p'2(m)a(m)~l(f)(x) for all rr G G,m G M,n G N};

^po(ao) = {^ G C°°{G,Vo) : ^(xmon)

= SpS(mo)(To(mo)~l^(x) for all x G C?,mo C M°,n G A"};

^p(JM) = {^ 0 G^G,^) : ̂ (.rmn)

= 8p'2(m)IM(rn)~l^(x) for all .r G G,m G M,n G A^}.

In each case G acts on the representation space by left translations and we call the induced
representations Jp(a),Jpo(ao), and IP^IM) respectively. They are the representations
Ind^(cr),Ind^o(ao), and Ind^(Ind^o(o-o)) respectively.

The intertwining operators S \V —> W and P : W —^ V induce intertwining operators
5* from (Jp(a),^p(a)) to (WM^^-WM)) and P* from {IP^IM^WIM^ to
( I p (a), Tip (a)) given by

(5^)(rr) = 5^) for all (f) G 1-Lp{(r),x e G;

(P*^)(rr) = P^(rr) for all ^ C UP{IM\X G G.

There is also an equivalence T between (IP(IM)^P(IM)) and (^po(ao),^po(ao)) given
by

(T^)(rr) = ^(rr)(l) for all ^ G HP^IM^X C G.

Its inverse is given by

(T-V)(a;)(m) = 6J.(m)^(xm) for all ̂ / e ^po(ao),^ G G,m G M.

Recall for each v E a^ we have defined characters ̂  of M° and ̂  of M such that \^ is
the restriction of ̂  to M°. We use these characters to define representations cr(^) = a0^
and JM(^) = JM (^ X^ of ̂  and ao(^) = (TQ 0 ^o(^) of M°. As above we use these
to form induced representation spaces ^p(a,^) = ^(^(^^^(TM^) = "HP^IM^}}.
and T-Cpo(a^) = ̂ po(ao(^)). The intertwining operators S :V —>W and P : W -^ V
also intertwine a{y) and IM^) and so as above define induced intertwining operators
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S^ : ^p(a^) -^ HP(IM^) and P; : HP(IM^) -^ ^p(^). There are also
equivalences Ty : HP^IM^) —> T~Cpo((To^) given by

(T^)(^) = ̂ )(1) for all ^ G HP^IM^YX G G.

The inverses are given by

(?7V)(^)(m) = S^m^^rn^^xm) for all ^/ G ^po(ao^)^ G C?,m G M.

Suppose Pi == MA^i and ?2 = MA^ are two cuspidal parabolic subgroups of G with
Levi component M. In §4 we denned a meromorphic family of intertwining operators

J{P^ : Pi° : ao : ̂ ) : ̂ o(ao^) ̂  ̂ o(ao^).

We can transfer these intertwining operators to the equivalent spaces Up, (IM, i^), % = 1,2,
by means of the equivalences T^. Thus we define

J(P2:Pi :JM:^):^P,(^M^)^^P^M^)

by
<7(P2 : Pi : IM : ̂  = T^J{P^ : Pi° : ao : v)T^.

We can also define

J(?2 : Pi : a : z^) : Hp^a^) -^ Up^o-.y}

by
J(P2 : Pi : a : u) = P:,p,J(P2 : Pi : -TM : ̂ -5:,p,.

LEMMA 5.5. - Suppose that v G ac(P2° : PI°) so that J{P^ : P^ : (TO : ^) ^ given by
the convergent integral

J(P2° : Pi° : (TO : ̂ \x) = [_ ^(xn)dn,x G G^1 G ^o(ao,^).
JNinN2

TT^n J(P2 : PI : IM : v} ls given by the convergent integral

J(?2 : Pi : IM : z^^) = /_ ^(xn)dn,x G G,^ G T-CP,{IM^)
JNinN2

and J(?2 : PI : o- : ^) ^ aZ^o ^^n ̂  ^/i^ convergent integral

J(?2 : Pi : a : ̂ )^(^) = /_ (f)(xn)dn, x^G^^Up^ (a, i/).
JNinN2
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Proof. - Using the definitions of the operators and the transformation property of the
representation space 1-Lp^ (JM,^), we have for all x e G, m e M, ̂  e Kp^ (IM^),

J(P2 : Pi : JM : ̂ (rr)(m) = T^J{P^ : P^ : ao : ̂ T^(x)(m)

= xMS^(m)(J(P^ : Pi0 : ao : i^)T^)(xm)

=^(m)8^(m) _ (T^p^){xmn)dn
J N ^ N ^

= ^y(m}6p^(m) _ ^(xmn)(l)dn
JjfinN^

= 6p^(m) _ 6p^ (m)^(xmnm~l)(m)dn.
J'NiHN2

Now there is a homomorphism ( 3 : M —> R"^ so that for all m C M, / G C^°(N]_ n A^),

j[_ f(mnm~l)dn = l3(m) f f(n)dn.
JNinNa J~NiDN2

For m G M° we know that

/3(m)=4,(^)^M-
— i i

Since ^ S p ^ S p ^ is a homomorphism from the finite group M/M° into R"*", it must be
identically one. Hence for all m G M we have

j[_ ^(xmnm~l)(m)dn = 8p (m)6p2 (m) / ^(xn)(m)dn.
JjfinN^ 1 2 Jl^^N^

Thus
J(P2 : PI '' IM '• f)il}{x){m) == i[_ ^{xn){m)dn.

J~N^r\N2

Now for rr G G'^m G M,^ G 7^p^(a,^), we have

J(?2 : Pi : a : ̂ (rr) = [P;,p,J(P2 : PI : ̂ M : ̂ )^p^](rr)

=P.[J(P2:Pi:JM:^)^p^](.r)

=p' /L [^p^](^)dn
JNinN2

= P S ' _ (j){xn}dn
J N ^ N - 2

= _ (j){xn)dn. •
J~N^N-2

Let ^(P^ : P]0 : o-o : ^) be the scalar normalizing factors used in §4 to define the
normalized intertwining operators

P(P2° : P̂ 0 : <7o) = r(P2° : Pi0 : Oo : O)-1^0 : Pi0 : Oo : 0).
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The fact that

^P^P^ao:^-1^0:?!0:^^)

is holomorphic and non-zero at v = 0 and that T^p^% =1 ,2 , are equivalences, will
imply that

r(P^ P^ ao : ̂ -'TO : Pi :^M :^)

is also holomorphic and non-zero at v = 0. Thus we can define

P(?2 : Pi : IM) = r(P2° : Pi0 : ao : O)-1^ : Pi : IM : 0).

We also define

Ji(P2 : Pi : a) = r(P2° : Pi0 : ao : O)-1^ : PI : a : 0) = P*P(P2 : PI : JAf)5*.

LEMMA 5.6. - Let ^ G ^p, (a). 77^ P(?2 : PI : JM)^*^) C S(V) for all x G G.

Proof. - For every v we have an intertwining operator J(?2 : PI : IM '' ^)5^ :

7<p,(a, v) -^ UP^IM : ^). In order to carry out arguments using the integral formula and
meromorphic extension of the intertwining operator we want a compact realization of the
representation. Since we do not know if there is a maximal compact subgroup of G which
meets every connected component, we proceed one coset at a time. Let GM = G°M and
write G = U^^GM. Then P C GM for any parabolic subgroup P of G with Levi
component M. Let K° be a good maximal compact subgroup of G° so that G° = K°P°.
Thus GM = K°P. Let

7^0 (a) = {/K G C°°{K^V) : fK^kmn) = a-^)/^)

for all m G ̂ ° H M, n G ̂ ° H TV, fc € ^°}.

For any (f) € ^p(cr : ^) and 1 ̂  % < k we can define

m = (^(a;), i f r r E XiGM\
0, otherwise.

Then <^ G ^(cr : ^) for each z and (f) = ^^^ (^z. Thus every element of Up((J : v} is
a sum of elements supported on a single coset of GM in G and so it is enough to prove
the lemma for (f) G T~ip^{(r) supported on a single coset of GM in G.

Fix 1 < i < k and define

P^):^p^:^)^^o(a)

by Fi{v}(f)(k) = (j){x,k) for all fc G K°. Define

^- V)^0^)^^?!^^)

by

F^^)fK{x)

= [ ̂  Wa-^m^WfKW, if x = x.kmn, k E K°, m G M, n C TV;
\ 0, otherwise.
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Then F^)^-^)/^ = /^ for all JK e ^o(a) and F^\^F^)(f) = ^ for all
0 G ^p,(a : i^).

Fix 1 < % < k and (^ G T~ip^((r) = 1-ip^a : 0) such that ^ = ^ is supported on
;T,GM. Let Jj^ = Pz(0)0 G ^xo(^) and for each z/ define (f)^) C ^pi(cr : z^) by
^(y : ^) = F^\v)fK{x^x G G. We have <^(0) = ̂ (O)?^ = 0, = ̂

Fix w* G S(V)1- and define $(^ : x) =< J{P^ : Pi : IM : ̂ S^,(y : rr),w* >. Then
^ ^-^ $(^ : rr) is a meromorphic function of v G a^ for each x G G. If ^ G 0^{P^ : PI°),
by Lemma 5.5 we have

J(?2 : Pi : JM : ̂ S^(y : ̂ ) = /_ 5^(^ : ̂ )dn G 5(Y).
JNinN2

Thus $(a- : ^) = 0 for all v G ̂ (^ : p!0) an^ hence for all ^. Thus

J(?2 : Pi : IM : ̂ :(̂  : ̂ ) ^ ^(^)

for all z^ and so

r(P2° : Pi° : ao : ̂ )-1J(P2 : Pi : IM : ̂ )5;^(^ : x) G 5(V)

for all v G a^,^ G G. In particular for ^ = 0 we have J?(?2 : Pi : IM^S*^) e 5'(V)
for all x G G. •

COROLLARY 5.7. - Let (f) (E Hp^a). Then R(P^ : Pi : IM^S"^ = S*R{P^ : Pi : a)^).

Proof. - This follows from Lemma 5.6 since 5'P is the identity on S(V). •

LEMMA 5.8. - Suppose Pi,?2, and Ps are cuspidal parabolic subgroups ofG with Levi
component M. Then

P(Pl : P3 : IM) = P{Pl : ?2 : IM)P(P2 : P3 : IM)

and
P(PI : Pa : a) = P(Pi : ?2 : a)P(P2 : Pa : a).

Proof. - The statement for IM follows easily from Lemma 4.8 since the intertwining
operators T^ are equivalences. Now using Corollary 5.7 we have

P(Pl : ?3 : a) = P*P(PI : PS : IM)S" = P*P(PI : ?2 : IM)P(P2 : ?3 : IM)S"

P*J?(PI : ?2 : J^M)5*J^(P2 : PS : a) = P(Pi : ?2 : a)R(P^ : Pa : <r). •

LEMMA 5.9. - Suppose Pi and P^ are parabolic subgroups ofG with Levi component M.
Then R{P'z : Pi : a) is an equivalence from ^pi(cr) onto Tip^^a).

Proof. - The proof is the same as that of Lemma 4.9. •
Now as above we define Nc^o) = [g G.A^'(A) : cr^ ^ ao}. If w C Wc^o) =

NG{ao)/M°, ao can be extended to a representation ao,w of the group M^ generated by
M° and any representative n^ for w. Define T(n^) : W —^ W by

T(n^)f(m) = ao^^n^f^n^mn^.m G M.
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It is easy to check that

T(n^lM{rn} = lM(n^mn^}T{n^,m G M.

Next we define intertwining operators Bp(w) : l-iw-^w^M) -^ ^P^IM) by

Bp(w)^{g) = a^-ip^(n^T{n^(gn^),g G G.

Finally we define self-intertwining operators R(W,IM) '• ^P^IM) —> ^p(^M) by

R(W,IM) = Bp^R^Pw : P : JM).

Recall that in §4 we defined intertwining operators

Ap(w) : ̂ w-^w^o) -^ ^po(^o) and R(w,ao) : /Kpo(c^o) ̂  ^po(ao).

It is easy to check that

Bp(w) = ̂ plAp(w)^^-lp^ and R(w, JM) = T^R^w, ao)Tp

where Tp : 'HP(IM) -> T~tp°(^o) is the equivalence defined above. In particular this
implies that Bp(w) and R(W,IM) are independent of the coset representatives chosen.

Define A^(cQ = [g ^ NG<,M) : a9 ^ a}. If w G WG^) = NG^)IM, a can be
extended to a representation of the group M^ generated by M and any representative n^
for w. Denote such an extension by a^ and define Ap(w) : ̂ w^pwM —^ ^p(^) by

(Ap(w)<^)(rr) = au;(nu;)Q/^^;-lpu;(nu;)^</)(r^nu;).

LEMMA 5.10. - The intertwining operator Ap(w) is independent of the choice of coset
representative n^ for w G WG^}' For Wi ,W2 G WG^} there is a nonzero constant
cp(wi,W2) so that

Ap(wi,W2) = cp(wi,W2)Ap(wi)A^-ip^(w2).

Pw<9/. - The proof is exactly the same as that of Lemma 4.11. •
Finally, for w G Wc^cr), we define R{w,a) : 7ip{a) -^ ^p(cr) by

R(w,a) = Ap^R^Pw : P : a).

Note that for u G ^^(cro) we could also have defined an intertwining operator

P'(^a):^p(a)-^p(a)

by
R\u,a)=P"R(u,lM)S\

We want to relate these two definitions. Let

Wc^a) = [NG{<TO) n^(a)]/M° C WG^).
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Suppose that x G Nc^o) D N0(0'). Then x represents an element xM° G WG^Q.O-)
and an element xM G WG(O-). Let

^:^(<ro,<7)^^(a)

be given by p(xM°) == rrM,a; G A^(cro) n N0(0-).

LEMMA 5.11 . - The mapping p is surjective. Its kernel is WM(o'o) = NM(o'o)/M°.

Proof. - Let w G WG(O-) and let x G N0(0') be a representative for w. Then erg" is
contained in the restriction of o•x ^ a to M° so that there is m G M such that a^ ^ a^.
Hence w has a representative xm~1 G N0(0') n N0(0-0). Thus j? is surjective. Clearly
p(rrM°) = M just in case x G A^(^o) H A^(cr) H M = NM^). •

LEMMA 5.12. - Suppose that u G Wc^o) ^ m tn^ complement ofWG(o'o^o-). Then

R'(u,a-) =0.

If u G ^(^(ao, cr), ^n ̂ r^ ^ a complex constant c so that

R'(u,(r} =cR(p(u),a).

Proof. - Using Corollary 5.7, for any u G WG(O'Q),

R\U,(T) = P'R(U,IM)S' = P'Bp(u)R(u~lPu : P : IM)S"
= P'Bp(u)S'R(u~lPu : P : a).

But for any g G G, (j) G /Hu-lpu(a)^ if ^ e A^^o) is a representative for H,

P*Bp(^)5*^(^) = a,-ip,(.r)^PT(rr)5)^(^).

Since T(rr) intertwines JM and J^, we see that PT(x)S intertwines a and a'2' ^ a^. Thus
PT(x)S = 0 and hence R(u,o-) = 0 unless a^ ^ a.

Suppose u G WG(^O^). Write u = u^.w = w^ = p(u),x G ^(o-o) H N0(0-). Then
PT(x)S and <7^(a;) both intertwine a and a*1', and (T^(rr) 7^ 0. Thus there is a complex
constant c' so that PT(x)S = c/a^(x). Thus for any g G G,

P^a)^) = a.-ip.^^PT^^^^-^n : P : a)(^)

= c/Q/^-lp^(^)^(T^(r^)[P(^A-lP^ : P : a)^)](^)

= cfAp(w)R(w~lPw : P : a)(l)(g) = c'R(w, ̂ (g). •

LEMMA 5.13. - The R(w^a),w G WG(O-), span the algebra C(a) of self-intertwining
operators on 'Hp(a).

Proof. - Let P be a self-intertwining operator for /Hp(a). Then 5*PP* is a self-
intertwining operator for l-ip^M), hence in the span of the R(U,IM),U G Wc^o). But
then R = P*5*PP*5'* is in the span of the P"R(U,IM)S" = R'(u,(7\u G Wc^o).

4° SERIE - TOME 30 - 1997 - N° 1



SOME RESULTS ON THE ADMISSIBLE REPRESENTATIONS 137

But by Lemma 5.12, each R'{u,o-) is either zero or a multiple of one of the operators
R(w,a),w G Wc(a). •

LEMMA 5.14. - Let u G Wc^o] and suppose that R^U^IM) is scalar. Then u G
WG^O-Q^O-) and R(p(u)^a) is scalar.

Proof. - Suppose that there is a constant s G C such R(U,IM)^ = s^ f01' a11

^ € ^p(J"M). Since R(U,IM} / 0,s / 0. Now for all ^ G ^p(a),

R\u,a)(t> = P^R^IM^S^ = sP'S^ = s(f).

Thus R\u,a) is scalar and non-zero. Thus by Lemma 5.12 we have u G Wc^o.o).
Further, by Lemma 5.12, there is a constant c so that R'^u.a) = cR{p(u),a). Since
R\u, a) / 0, c / 0. Thus R{p(u), a) = c~^R'(u, a) is scalar. •

LEMMA 5.15. - There is a cocycle T] so that

I?(wiW2,a) = r)(w^,w^)R(w]_,a)R(w^,a)

for all Wi,W2 C WG^O-).

Proof. - The proof is similar to Lemma 4.12. •
As in §4, if W^o(ao) is the subgroup of elements u G W^o^o) such that R°(u,ao) is

scalar, then W^o(ao) = W(^>^_) is generated by reflections in a set <&i of reduced roots
of (G,A). Let ̂ ^ be defined as in §4. Since M centralizes A, Wc(cr) C No{A)/M
acts on roots of A and we can define

Ra = {w G WG((T) : w(3 G ^+ for all /? e $^}.

We want to prove the following.

TEOREM 5.16. - The R(w,a),w € Ra, form a basis for the algebra of intertwining
operators of Ip(a).

In order to prove Theorem 5.16, we will first compute the dimension of C(a) using
our knowledge of the dimension of C{ao). We denote the equivalence classes of Ind^(a)
and Ind^o(o-o) by %G,M(^) and %c,Mo(^o) respectively. Let X and Y denote the groups
of unitary characters of G/G° and M/M° respectively. For \ G X, let ^M € ^ denote
the restriction of ^ to M. Define

X{a) = {x G X : \M 0 ̂  ̂  cr};

-^l^) = {X ^ ̂  ^ X ̂  ̂ ,M(<r) ^ %G,M(cr)};

y(o-) = {77 € Y : a (g) T/ ̂  a}.

Let 5 denote the multiplicity of (TQ in the restriction of a to M°.

LEMMA 5.17

dimC(ao) = dimC^s^X/X^X^/X^)}.
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Proof. - Using Lemma 2.13,

%M,Mo(^o)=5 ^ C r ^ T J .

r?ey/y(<T)

This implies that

^G,M(%M,Mo(^o)) = S ^ iG^M(cr^ri).

r?eY/y(<r)

Since both G/G° and M/M° are finite abelian, it is clear that the map \ ^-^ \M induces
an isomorphism between X/X(a) and Y/Y(a). Thus we can rewrite

^M^A^MO^o)) = 5 ^ ^G,M(^^XM).

XCX/X(a)

But by Corollary 3.3 the induced representations IG.M^ ^ XM) are either disjoint or
equal. Further,

?G,M(^ ̂  XM) = ̂ G,M(^) ^> X = ̂ G,M(^)

just in case ^ G ^i(cr). Thus we have

^G,M(^M,Mo(^o)) = 5[Xi(cr)/X(a)] ^ ZC^M^) ̂  X
XGX/Xi(a)

where the representations ZG,M(^) (^ X are disjoint for ^ G X/J^i(a). Thus

dimC7(cro) = dlmC(a)s2[X^a)/X(a)}2[X/X^a)}

= dimC^s^X/X^X^/X^a)}. •

LEMMA 5.18

s^X/X^X^/X^)} = [WG^)}/[WG(a)}.

Proof. - First, using Lemma 2.13 we have

s^X/X^a)] = ̂ [y/y^)] = [NM(ao)/M°] = [WM^}.

We claim that

[Xi(<7)/X(a)} = [WG((TO)/WG((TO^)}.

This would establish the lemma since by Lemma 5.11 we have

[Wa((T)} = [WG{(TQ^)IWM{<TO)}.
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We will define a bijection between Xi(a)/X(cr) and

(A^(ao) nA^))VVG(ao) ̂  WG^O^)W(O-O).

Let ^ G Xi(cr). The equivalence class of a (g) ^M depends only on the coset \ of ^ in
Xi((7)/X(cr). Further, by definition of Xi(cr), we have

ZG^M^^XM) = ^,M(^).

By Corollary 3.2 there is x G A^(A) such that a 0 ̂ M ^ o-^. Thus O-IMO ^ ^IM". Thus
erg" occurs in a|Mo and so there is m G M such that erg ^ a^. Then ?/ = rcm"1 G Nc^o).
Although ^/ € A^^o) is not uniquely determined by ^,

a (g) ^M ̂  cr^1 ^ ̂ 2

if and only if yiy^1 G Nc^o) H Nc^cr). Thus for each ^ G Xi(a)/X(a) there is a unique
coset ^0<) = (A^G(o-o)nA^G(^))^in (A^G(cro)nA^G'(<7))\A^G((To) such that ^M ^cr ^ a^.
Finally, given x C Nc^o), ̂  is a constituent of %M,M°(^) ^ ^M,M°(^o) so that there is
yy € V such that a" ^ a 0rj. Now let ^ G X such that ^M = f]' Then a 0 ^M ^ ^rtc so
that ^ = ^C\7). ^

Recall from §4 that Wc^o) is the semidirect product of subgroups R^ and W{<S>^)
where I?(w, ao) is scalar for w G W^i) and the J?(r, cro)^ ^ ^<ro. gi^ a ^asis for C{ao).

LEMMA 5.19

dimC(a)=[WG(c7)]/[W(^)}.

Proof. - Combining Lemmas 5.17 and 5.18 we have

.i- r^( \ A' r^( \ [^(^o)]dimG(ao) = dimG(a) . ̂ ^j .

But from Lemma 4.15, dmiC(cro) = [^o] = [WG(o-o)]/[W($i)]. •
Since W(^i) C A^Go(A)/M°, it can be naturally embedded in Wc(A) = Nc{A)/M.

LEMMA 5.20. - WG^) is the semidirect product ofW(^>^ and Ra. For w G WG^),
-R(w,cr) is scalar if and only if w G T^($i).

Pwo/. - If rr G TVG'o(cro) represents an element of VF($i), then by Lemma 4.14
R^UX^IM) is scalar. Thus by Lemma 5.14, w^ e Wc(cr) and J?(wa.,a) is scalar. Let
W^(a) denote the set of all w G Wc^cr) such that R{w,a) is scalar. By the above
TV($i) C W^(cr). Using Lemmas 5.13 and 5.19 we see that

[WG(a)}/[WW} = dimG(a) < [WG^)]/[^)].

Thus W(^i) = ^(o-).
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Now as in the proof Lemma 4.14, TV($i) is a normal subgroup of WG^O-) and so
w<&i = $1 for all w G Wc^cr). This implies that

R^ = {w G WG((T) : w^ = <^}

which yields the semidirect product decomposition. •

Proof of Theorem 5.16. - It follows from Lemmas 5.13, 5.15, and 5.20 that the R(w^ a),
w G Ra, span the algebra G(cr). Further, by Lemmas 5.19 and 5.20,

dimG(a) = [WG^}IW[^} = [R^].

Let T] be the cocycle of Lemma 5.15. Exactly as in §4 we can fix a finite central extension

1 —^ Z(y —> Per —>• Ra —>• 1

over which T] splits, a character ̂  of 2^, and a representation Ti of Ra x G on 7^p(cr).
Let II(Pcr, ^cr) denote the set of irreducible representations of Ry with Zy central character
^cr, and let II^(G) denote the set of irreducible constituents of Ip(cr).

THEOREM 5.21. - There is a bijection p \—> TTp ofIl{Rcr^cr) onto IIo-(G) such that

n=^pe^{R^x.) (^^p)-

Proof. - The proof is exactly the same as that of Theorem 4.17. •

6. Examples

For applications involving comparisons of representations between groups and twisted
trace formulas it is customary to use the following definition of parabolic subgroup. Let
P° be a parabolic subgroup of G°. Then P = NG(P°) is a parabolic subgroup of G. Thus,
using this definition, parabolic subgroups of G are in one to one correspondence with
parabolic subgroups of G°. We will show that the parabolic subgroups obtained using this
definition are also parabolic subgroups using the definition of §2. However they are not
cuspidal in general. Indeed, recall from Proposition 2.10 that if P° is a parabolic subgroup
of G, then the corresponding cuspidal parabolic subgroup is the smallest parabolic subgroup
of G lying over P°. On the other hand, if P is any subgroup of G with P D G° == P°,
then P C 7VG(P°). Thus A^P0) will be the largest parabolic subgroup of G lying over
P°. We will give examples to show that this class of parabolic subgroups, which we
call N-parabolic subgroups (N for normalizer), do not yield a nice theory of parabolically
induced representations of G.

LEMMA 6.1. - Let P° be a parabolic subgroup ofG°. Then P = NG(P°) is a parabolic
subgroup ofG. It is the largest parabolic subgroup lying over P°. IfM° is a Levi component
for P°, then M = Nc(M°) D P is a Levi component for P.
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Proof. - Let P° = M°N be a Levi decomposition of P° and define M = A^(M°) H P.
Then M D G° = M° and MN C P. Let x <E P = A^(P°). Then ^M°rz;-1 is a
Levi subgroup of P° and so there is n G N such that rcM0^"1 = nM°n~1. Now
n-1^ G NG(M°) H ̂ (P0) = M and so x e 7VM = MN. Thus P = MN.

Let A be the split component of M°. Then M normalizes A and we define a
Weyl group W == M/CM^A) where CM (A) denotes the centralizer of A in M. Since
M° C CM (A), we know that W is a finite abelian group. The split component of M
is A' = {a G A : xax~1 = a for all x G M} = {a € A : wa = a for all a € M7}.
Let M' == Gc(A'). If we can show that A' is the split component of M', then A' is a
special vector subgroup.

Let ^+ = <1>(P°,A) denote the set of roots of A in P°, a the real Lie algebra of
A, and a^ the positive chamber of a with respect to ^+. Fix w G W and define
a^ == [H G a : wff = ff}. Since M normalizes P°, we have w^ = ^+ and
zca"^ == a"^. Let k be the order of w. Then since a"1" is convex, for any H G g^~ we have
Hw = H + wH + w2!! + ... + w^^H G a4' with wff^ == ff^. Thus a^ = a^ H a+ 7^ 0
and so for any a (E ^+, the restriction of a to a^ is non-zero. Since W is a finite abelian
group, an easy induction argument shows in fact that the restriction of a to a', the real Lie
algebra of A', is non-zero for every a <E ^+. Thus M' H G° = C^o (A') = CQO (A) = M°.

Let A" be the split component of M'. Thus A7 C A". But since M' n G° = M° and
M C M', we have A11 = {a C A : xax~1 == a for all a; € M'} C A' . Thus A' = A"
is the split component of M ' ' . This implies that A is a special vector subgroup and that
M' = CG^A) is a Levi subgroup of G. But since the restriction of a to a', is non-zero for
every a G ^+, we can choose a set of positive roots f^')'^ of L(G) with respect to -L(A')
by restricting the roots in ^+. With this choice of positive roots, we obtain a parabolic
subgroup P' = M ' N ' of G with TV' = N. Thus M' normalizes TV. It also normalizes
M° since M' H G° = M°. Thus M' C TVc?(M°) H A^P0) = M. Now M' = M so
P' = MN = P. •

Let (P^,Ao) be a minimal p-pair in G° and let A denote the set of simple
roots of Ao in P^. Then as usual the standard parabolic subgroups of G° are
indexed by subsets 0 of A. Write (P^,Ae) for the standard parabolic pair of G°
corresponding to © C A and write PQ = Nc(P^), the N-parabolic subgroup of G
lying over P^. Let Nc^P^Ao) be the set of elements in G that normalize both
Ao and Po°. Clearly A^Po^Ao) n G° = Po° H TVGo(Ao) = Gco(Ao) = Mo°. Write
WG(P^AQ) = 7VG(Po°,Ao)/Mo°. Then Wc^P^Ao) acts on A and for each 6 C A
we write

W(Q) = {w € Wc(P^ Ao) : wQ = Q}.

LEMMA 6.2. - For all 6 C A,

Pe = U^^V^(Q)WPQ.

Proof. - This follows from Lemma 3.8. •
Now that we have a simple method of computing the groups Pe, we will give examples

to show the following unpleasant facts.
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FACT 6.3. - Let Pi° and P? be parabolic subgroups of G° and let P, = A^(P°), i = 1,2.
Then Pi° C P? does not imply that Pi C ?2.

EXAMPLE 6.4. - Let G = 0(2n),n > 2. Then G° = S0(2n) and the minimal parabolic
subgroup B° of G° is the group of upper triangular matrices in SO (2n) with Ao the
subgroup of diagonal matrices. The simple roots are

A = {ei - 62, 62 - 63,.... 6y,_i - 6^, e^-i + e^}.

The Weyl group WG{B°,AQ) has order two and is generated by the sign change
Cn '' en ^ -en that interchanges en-i - en and e^-i + en. Thus a subset © of A
is stable under Cn just in case neither or both of en-i ± en belong to ©. So for example if
© = {en-i - en}, then B° C P^ but B = B° U c^B° is not contained in PQ = Pg.

We call Po a minimal N-parabolic subgroup of G if given any N-parabolic subgroup P
of G there is x G G such that Po C xPx~1.

FACT 6.5. - G need not have a minimal N-parabolic subgroup.
Suppose Po is a minimal N-parabolic subgroup of G. Then it is easy to see that

PO° = Po D G° is a minimal parabolic subgroup of G°. Now by Lemma 6.2, Po meets every
connected component of G. But as Example 6.4 shows, there are N-parabolic subgroups of
0(2n) which are contained in the identity component S0(2n}. Thus no conjugate could
contain the minimal N-parabolic subgroup.

If P° = M°N is a Levi decomposition for P°, then we obtained a Levi decomposition
P = MN for P = NG(P°) by defining M = TV^M0) n P. Thus M depends on both
M° and P.

FACT 6.6. - Suppose that Pi = MiTVi and ?2 = M^N^ are N-parabolic subgroups of G
such that Mi0 = MJ?, L(?. Pi° and P^ have the same Levi subgroup. Then it need not be true
that Mi = Ms, or even that Mi and M^ have the same number of connected components.

EXAMPLE 6.7. - Let G = 0(8) as in Example 6.4. Let Pi = PQ, where ©i = {63 - 64}
and let P^ = PQ^ where ©2 = {61 -62} . Then Pi == P̂ 0 is connected and
^ = (P2)OUC4(-P2)0 "^ets both components of G. Let w = (13)(24) e A^(Ao)/Ao be the
Weyl group element that permutes the pairs (61, 63) and (62, 64) and define ?2 = wP^w~1.
Then wA^w~1 = AQ, and so P̂ 0 = w(P^)°w~1 and Pi° both have Levi component
Mi0 = GGo(AeJ. However Mi = M? is connected and M2 = MJ? U 62 M^ meets both
components of G.

In addition to structural problems, the class of N-parabolic subgroups does not yield a
nice theory of parabolic induction. One of the basic cornerstones of representation theory
in the connected case is that every irreducible admissible representation is contained in a
representation which is parabolically induced from a supercuspidal representation and every
tempered representation is a subrepresentation of a representation which is parabolically
induced from a discrete series representation. But if supercuspidal and discrete series
representations are defined as in the connected case and in §2, then the Levi component M
of a parabolic subgroup P has no supercuspidal or discrete series representations unless
P is cuspidal. Thus we will not in general be able to obtain all irreducible admissible
or tempered representations of G via induction from supercuspidal or discrete series
representations of N-parabolic subgroups.
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EXAMPLE 6.8. - Define G = 0(2) = S0(2) U wSO(2) as in Remark 2.2. The only
parabolic subgroup of G° = SO (2} ̂  Fx is itself. Thus the only N-parabolic subgroup of
G is NG(G°) = G itself which has split component Z = {1}. But G has no representations
with compactly supported matrix coefficients, hence no supercuspidal representations. It
also has no representations with square-integrable matrix coefficients, hence no discrete
series representations.

As can be seen in Example 6.8, the problem with using the standard definitions for
supercuspidal and discrete series representations with N-parabolic subgroups P = MN is
that the split component of M may be smaller than the split component of M°. In order
to guarantee the existence of enough supercuspidal and discrete series representations we
could define a representation of M to be supercuspidal (respectively discrete series) just in
case its restriction to M° is supercuspidal (respectively discrete series). Then it would be
easy to prove as in Theorem 2.18 that every irreducible admissible (respectively tempered)
representation of G is contained in a representation which is induced from a supercuspidal
(respectively discrete series) representation of an N-parabolic subgroup.

Another basic property of parabolic induction in the connected case is the following.
Suppose that Pi = MiM and ?2 = M^ are parabolic subgroups and a,,% = 1,2, are
irreducible representations of Mi which are both either supercuspidal or discrete series.
Then if the induced representations Ind^(c^) are not disjoint, then the pairs (Mi, o-i) and
(M2,o-2) are conjugate. Further, in the discrete series case, the induced representations
are equivalent. These properties fail in the disconnected case when the Pi are N-parabolic
subgroups of G and supercuspidal and discrete series representations are defined as above.

EXAMPLE 6.9. - Let G = 0(8) and define Pi and ?2 as in Example 6.7. Recall in this
case that Mi = Mf ^ G£(2) x GL(1)2 while M^ = M^L^M^0 ^ GL(2) x G£(l) x 0(2)
with M^ = GL(2) x G£(l) x 50(2) = M[. Let ao = p^Xi ^>X2 be an irreducible unitary
supercuspidal representation of M^0 = M^ where p is an irreducible unitary supercuspidal
representation of G£(2), ̂ iis a unitary character of G£(l), and ̂  is a non-trivial unitary
character of GL(1) with xl = 1- Then °"o2 = P ̂  Xi ̂  X21 = ̂ o so there is an irreducible
representation 02 of M2 which extends <7o. Further,

Ind^ac^^e^^)

where T] is the non-trivial character of M^/M^. The representations 0-2 and 02 0 T] of M2
would both be supercuspidal (and discrete series) since they both restrict to ao on MJ?. Now

Ind^o(ao) ^ Ind^Ind^o(ao) = Ind^^) C Ind^(<72 0 r]).

Since Pi° and P2° are parabolic subgroups of G° with the same Levi component
M? = M^ we have

Ind^o(ao) ^ Ind^o(ao).

But oi = (TQ is an irreducible supercuspidal (and discrete series) representation of Mi = M^0

and
Ind^(ai) = Ind^o(ao) ^ Indgolnd^(ao)j ~^ v - j - / ——-^-v-u^ —

^ Ind^olnd^o(ao) ^ Indpo(an) ^^ Indgolnd^(ao) ^ Ind^o(ao) ^ Ind^^) C Ind^(a2 0 ̂ ).
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Thus we have irreducible supercuspidal (and discrete series) representations o-i of Mi
and 0-2 of M^ so that

Ind^(ai) ^ Ind^(<72) C Ind^(a2 0 T]).

Clearly Mi and M2 cannot be conjugate in G since Mi is connected while M2 is not.
Further, the representations Ind^ (cr^) have a nontrivial intertwining, but are not equivalent.

A final nice property of parabolic induction in the connected case is the theory of
jR-groups. If P = MN is a parabolic subgroup and a- is an irreducible discrete series
representation of M, then R is a subgroup of WG{(T\ the group of Weyl group elements
fixing a, which determines the reducibility of Ind^(a). Its most basic property is that the
dimension of the algebra of self-intertwining operators of Ind^(a) is equal to the number
of elements in R. The following example shows that there could not be such a simple
J?-group theory in the disconnected case for N-parabolic subgroups.

EXAMPLE 6.10. - Let G° = SL^F) x SL^F) = {(x,y) : x,y G SL^(F)}. Let
G = G° U ^G° where ^(x,y)^~1 = (y,x). Let Bi = AiA/i denote the usual Borel
subgroup of C?i = SL^(F) where Ai is the subgroup of diagonal elements and TVi is the
subgroup of upper triangular matrices with ones on the diagonal. Then B° = Bi x Bi is a
Borel subgroup of G° and B = Nc(B°) = B°U^B°. B° and B have Levi decompositions
B° = M°N and B = MN where M° = A° = Ai x Ai,M = M° U 7M°, and
N = M x TVi. We have Weyl groups W(G°, A°) = W(G^ Ai) x W{G^ Ai) ^ ^2 x ^2
and IV(G, A°) = W(G°, A°) U 7^(0;°, A°) ^ ̂ , the dihedral group of order 8.

Let ^i be a non-trivial character of Ai ^ Fx of order two so that Ind^^i) =
TTi e TTg is a reducible principal series representation. Note that the IP-group here is
RI = V^(Gi,Ai) c^ Z^ and we denote the irreducible constituents of the induced
representation by 71-1,71-3 to indicate that they are parameterized by the trivial and sign
characters p\ and ps of R^ respectively. Now let ^ = ^i 0 ̂ i. Then

Ind^o(x) ^ (71-1 6 TTs) ^ (TTl 9 TT^) = TTn 9 TTi^ C ̂  sl ® 7T^

where for ij e {1, ^}, we write TT^ = TT, 0 TT^. Note that TT^ ^ TT^, so that TT^ ^ TT^ if
and only if i = j. Let 11̂  be an irreducible representation of G such that TT^ is contained
in the restriction of 11̂  to C?°. Then if i = j we have

Indgo(TT^) =n^e( I I^0y/ )

where 77 is the non-trivial character of G/G° and il^ (g) 97 ^ 11̂ . If i ̂  j we have

Ind^o(7r^) = n^- ^ n^ = Ind^o(Tr^).

In this case we also have 11̂  0 T] ^ 11̂ . Thus we have

Ind^o(^) = Ind§o(7rn C ̂ is C ̂ i C TT^)
= nn e (nn 0 rj) © n,, e (n,, 07?)® 2iii,.

Note that the above decompositions are reflected in the .R-groups as follows. First, the
J%-group for IndJ^) is given by R° = R^ x R^ = W{G°,A°) ^ Z^ x Z^ It has
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4 characters p0^ = pi 0 p j ^ i ^ j € {1,^} corresponding to the irreducible representations
TTij. The IP-group for Ind^o(x) is ^ = lV(G,Ao) = ^° U 7^°. By abuse of notation
we will denote the non-trivial character of R/R° by the same letter 77 as used above for
the non-trivial character of G/G° and below for the non-trivial character of M/M°. The
irreducible representations of R are the characters pa and pa 0 T] where

Ind^o(p°,)= ^0(^077)

and the two-dimensional irreducible representation

Ind^(^)=pi^Ind^o(^i).

Thus we have the irreducible constituents of Ind^o(^) parameterized by the irreducible
representations of R and occurring with multiplicities given by the degrees of the
corresponding representations.

Now we consider Ind^o(^). Since M = M° U 7M° and ^7 = \, we have

Ind^o(x)=^C(a077)

where a, 0-077 are distinct one-dimensional unitary representations of M which restrict to \
on M°. Now, using transitivity of induction and properties of tensor products, we can write

Ind^(x)^Ind^Ind^o(x)
^ Ind^(a) C Ind^(a (g) y?).

Now since Ind^(a 0 77) ^ Ind^(cr) (g) ?7, we see that

IndJ(a)e(IndJ(a)^)^
nn e (nn 0^)0 n^ e (n^ 0 ̂ ) e 2ni,.

Thus we can assume that IIii,IIss were chosen so that

IndJ(a) ^IInCn^elli ,

and
ind^(a 0^)^ (nn 0 T?) e (ii,, 0 7^) e iii,.

This example exhibits a number of unpleasant features. First, we have irreducible discrete
series representations ai = a and 0-2 = o- 0 77 of 5 such that Ind^(o-i) and Ind^(a2)
have a non-trivial intertwining, but are not equivalent. Second, Ind^(a) has 3 inequivalent
irreducible subrepresentations, each occuring with multiplicity one, so that the dimension
of its space of intertwining operators is 3. There are no subgroups of any possible Weyl
groups here with order 3.
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