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SINGULAR STRANGE ATTRACTORS ON THE
BOUNDARY OF MORSE-SMALE SYSTEMS

By C. A. MORALES anp E. R. PUJALS

ABSTRACT. — In this paper we introduce bifurcations of Morse-Smale systems that produce strange attractors
with singularities in n-manifolds, n > 3. Some of the attractors are new in the sense that they are not equivalent to
any geometric Lorenz attractor. The creation through such bifurcations of hyperbolic dynamics as well as Henén
and contracting Lorenz attractors is also investigated.

RESUME. — Dans cet article nous introduisons des bifurcations sur des champs de vecteurs Morse-Smale en
dimension n > 3, ces bifurcations faisant apparaitre des attracteurs étranges avec singularités. Certains de ces

attracteurs sont nouveaux au sens qu’ils ne sont équivalents a aucun attracteur de Lorenz géométrique. La
construction de dynamiques hyperboliques ainsi que d’attracteurs de Lorenz contractants et d’attracteurs de type
Hénon grice a de telles bifurcations est également étudiée.

1. Introduction

This paper deals with the bifurcation theory of Morse-Smale dynamical systems strongly
developed during the last decades, as it can be seen in papers [ACL], [AS], [NPT],
[BLMP], [PR], [PT1] or in the gradient case [CP] and [PT2]. We present a bifurcation
which gives rise new dynamical phenomena at the boundary of Morse-Smale systems. Let
us start with a definition based on the main features of the well known geometric Lorenz
attractor studied in [GW]. A singular strange attractor of a vector field X is a transitive
invariant set A with the following properties:

A contains a dense set of periodic orbits of X;

A has at least one singularity of X;

A exhibits a positively dense orbit with positive Lyapunov exponent;

— there is a neighborhood U of A (isolating block) satisfying A = (),~, X [t, U], where
X|[t,.] stands for the flow generated by X. The basin of A is the set of points whose
w-limit set belongs to A.

We say that A is persistent if N;>oY [t, U] is a singular strange attractor for any flow ¥’
close to X. Two singular strange attrators A and B of X and Y respectively are equivalent
when there are isolating blocks U and W of A and B (resp.) and a homeomorphism
h : U — W sending X-orbits into Y -orbits.
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694 C. A. MORALES AND E. R. PUJALS

The geometric Lorenz attractor is the most representative example of a persistent singular
strange attractor (see [DKO] for an axiomatic definition). It motivated in part the study
of strange attractors with singularities for transformations, the generalized hyperbolic
attractors (see [P]), which include a number of well known examples as the Lorenz-type
attractor early studied in [AP]. For vector fields, other examples have been introduced in
[R] [LV], [PRV] and so, it is natural to pursue a classification among the category of singular
strange attractors for flows. The term Lorenz-like attractor has been used frequently by
many authors and here we shall employ it, but under the following point of view: a singular
strange attractor is Lorenz-like if it is equivalent to some geometric Lorenz attractor.

We present a bifurcation giving rise different types of singular strange attractors just
across the boundary of Morse-Smale systems. It will consists of a hyperbolic saddle
singularity and a saddle-node periodic orbit. For diffeomorphisms, the analyze of cycles
involving a saddle-node periodic orbit, the saddle-node cycles, goes back to [NPT] were it
was proved that critical saddle-node cycles displays homoclinic tangencies in their generic
unfoldings. This bifurcation was studied extensively in [DRV] which proved the existence,
in the parameter space, of a large set of parameter values whose corresponding systems
exhibit Henon-like attractors (see [PT]]). For vector fields, it was showed in [ST] how the
unfolding of saddle-node periodic orbits give rise solenoid-type Axiom A attractors across
the boundary of Morse-Smale systems in n-manifolds, n > 4. In presence of singularities,
we can mention [ACL] where it was proved that, under certain conditions, the unfolding
of such cycles yield Lorenz-like attractors accumulating the boundary of Morse-Smale
systems. Our results extend the ones in [DRV] for saddle-node cycles with singularities
and improve those in [ACL].

We give now some background to be used in forthcoming definitions and statements.
Let M be a closed Riemannian 3-manifold and X a vector field defined on M. An
invariant compact set H of X is hyperbolic if there exist a X-invariant continuous splitting
TyM = Ej & E © EY such that Ej is the flow’s direction in H and DX|t,.]
contracts (resp. expands) uniformly vectors in Ej; (resp. Ef;). We say that a vector field
is hyperbolic if its nonwandering set is hyperbolic.

The invariant manifold theory (see [HPS]) asserts the existence of partially defined
smooth invariant foliations W*(H), W*(H) associated to any hyperbolic set H. They are
tangent to the directions £, & E7, Efy @ EY at H and are called the stable and unstable
manifold of H respectively. It is well known that W*(H) (resp. W*(H)) coincides with
the set of points x € M whose w-limit set (resp. a-limit set) belongs to H. In the case
when H reduces to a single singularity o of X whose eigenvalues {\;, —\a, —A3} are
real and satisfy —\s < —A3 < 0 < )Ap, there exists also an (unique) invariant manifold
passing through o and tangent to the eigenvalue direction associated to {—\»}: the strong
stable manifold denoted by W**(o) in what follows.

A vector field whose nonwandering set is finite and its invariant manifolds intersect
transversaly is called Morse-Smale. Clearly a Morse-Smale vector field is hyperbolic and
the one exhibiting a singular strange attractor are not.

The invariant manifolds exist also in some nonhyperbolic cases as, for instance, when
o1 is a saddle-node periodic orbit, i.e. the derivative D7 (o1) of its corresponding Poincaré
map 7 has one eigenvalue with absolute value not equal to one and the second eigenvalue
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MORSE-SMALE SYSTEMS 695

equal to 1 and 7 is nondegenerate nonzero quadratic term in the center direction (see
[T]). We shall be interested in the case where the first eigenvalue belongs to (0,1). Let
W*(o1) be the set of points whose w-limit set is ;. It is well known that, in this case,
W*#(o1) is a 3-manifold with boundary.

DerINITION 1.1. — A saddle-node singular cycle of X is a set I' = {09, 01,7%0,71} with
the following properties,

1. o¢ is a hyperbolic saddle singularity whose eigenvalues {\1, —Xa, —A3} satisfy
A2 < =A3 <0 < Ay;

2. o1 is a saddle-node periodic orbit;

3. 70 = (W*3(09) N W*(a1)) \ W**(00) is a finite set of regular orbits;

4. v = (W*(01) \ 70) UW"(00) and is contained in the interior of W*(o1) (Fig. 1).
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Fig. 1. — Saddle-node singular cycle.

For simplicity, we assume the existence of a neighborhood U of X such that if Y € U,
then the analytic continuation of the singularity admits C?-linearizing coordinates. For
this it is necessary that the eigenvalues of the singularity satisfy certain nonresonance
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696 C. A. MORALES AND E. R. PUJALS

conditions and so A3 # A;. For these assumptions make sence, vector fields in this work
will be at least C3.

Now, it is well known the existence of a strong stable foliation F** for 7. Saturating
F** by X we get the foliation F** in W*(oq).

DEFINITION 1.2. — We say that a saddle-node singular cycle T' is transversal if W*(oq)
is transversal to W*(o1) and ~, is transversal to F**. The cycle is critical if W*(oy) is
transversal to W* (o) and there is a nondegenerate tangency between v \W*(c¢) and F**.

In section 3, we shall associate a circle map fr to any saddle-node singular cycle I’
(see Definition 3.1). This enables us to define transversal saddle-node singular cycles of
k-expansive type as the ones whose corresponding circle map fr has derivative greater than
k' > k in modulus, k € IRT. We shall see (Remark 3.0 (1)) that k-expansivity of fr, k > 0,
implies the well known expansive condition A3 < A; on the singularity’s eigenvalues of I"
(see Definition 1.1.1). We then define Ny = No(fr) € IN by card(f5'(z)) equals Ny or
No+1 (Vo € SY), and D(fr) as the set of points 2 € S* such that card(fg ' (x)) = No+1.
Here card(A) means cardinality of A. The number Ny exists and, indeed, corresponds to
the degree in the case of expanding endomorphisms of the circle.

In our first result we summarize the main dynamical features in presence of a k-expansive
saddle-node singular cycle I', & > 1. It is shown how k-expansivity characterizes the
dynamics in a suitable neighborhood of I'. In its statement, m stands for the Lebesgue
measure in IR and CI(A) denotes the closure of A.

THEOREM A. — Let X, be a generic one-parameter family of vector fields in M such that
X, is Morse-Smale, for i < 0, and X exhibits a transversal saddle-node singular cycle
I of k-expansive type, k € IRT. Then,

a. if k > 1, there exist & > 0 and a neighborhood U of 1" such that Vp € (0,6) X,
exhibits a persistent singular strange attractor A,, C U whose basin contains an open and
dense set of U. In particular, X, is not hyperbolic Vi € (0,6);

b. if k > /2, (a) holds and there exists a disjoint interval sequence [a,,b,] C (0,0),
such that A,, is a non-Lorenz-like attractor Yy € I = Upsolan, by] and

lim inf m(IN(0€)
e—0+ €

> 0;

c. if k > V2, No(fr) = 1 and CI(D(fr)) # S*, (b) holds and there is other disjoint
interval sequence [al,, b)) C (0,0) such that A, is Lorenz-like Vi € I' = U,>0[ar,, )], and

e—0+t €

> 0;

d. if k > 2, (a) holds and A, is a non-Lorenz-like attractor ¥y € (0,6).

To explain why some of the attractors in this theorem are non-Lorenz-like we use
the geometric model at Figure 3 in the appendix. We shall see that the unfolding of
transversal saddle-node singular cycles produces a return map, as in such geometric model,
whose image A’ spirals within the annular cross section A at this figure as parameter
varies. Constructing strong stable foliations for this return map we reduce the dynamics’s
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MORSE-SMALE SYSTEMS 697

description to the rotation of suitable expanding maps in the circle (Theorem 3.3). Then, we
describe the behavior of A" in terms of rotations of a one-dimensional circle map f, close
to fr (see Definition 2.3). Sometimes the rotation of f,, will be transitive in S* and, in this
case, we will obtain a singular strange attractor which is not equivalent to any geometric
Lorenz attractor. We give a precise description of this phenomenon in the appendix.

The following result deals with critical saddle-node singular cycles. To state it, we make
first some remarks. In [NPT] it is proved that the unfonding of certain critical saddle-node
cycles of diffeomorphisms involves the unfolding of homoclinic tangencies. They derive
this by showing that homoclinic tangencies occur whenever one consider the family of
transformations obtained by composing a given smooth endomorphism of the circle with
the whole interval of rotations. Clearly, generic unfoldings of critical saddle-node singular
cycles can be studied using somewhat similar techniques. However, to perform it, we
require a different approach because circle maps here have not continuous extension in S1.
We define in section 2 critical continuous extension of certain circle maps (see Definition
2.2). Theorem below shows the main properties of critical cycles I' such that fr has a
critical continuous extension.

THEOREM B. — Let X, be a generic one-parameter family of vector fields in M such that
X, is Morse-Smale, for p < 0, and X, exhibits a critical saddle-node singular cycle T’
whose one-dimensional map has critical continuous extension. Then, if He(e) denotes the
set of parameters |1 > 0 such that X, has a Hendn-like attractor close to T',

lim int ")

e—0t €

> 0.

We point out that conclusion of Theorem (B) is not true without the hypothesis of
critical continuous extension.

It remains the question whether different types of dynamics as hyperbolicity, Henén-
like or Lorenz-like attractors can occur simultaneously in the unfolding of a saddle-node
singular cycle. The answer is negative in general (see for instance Theorem (A)). Despite,
we shall prove that such a phenomenon happens in open examples (see Theorem (C)
in the appendix). Similar questions hold for other types of nonhyperbolic behavior as,
for instance, existence of contracting Lorenz-like attractors (see [R]). We also obtain
affirmative answers in this case in open examples (see Theorem (D) the appendix).

In our point of view, the results mentioned before show a complete picture of the
dynamics close to Morse-Smale systems when saddle-node singular cycles take place. New
interesting questions arise and, in particular, if all the phenomena described above occur in
the presence of cycles involving only singularities. In [Pu] the second author pursues this
question and gives positive answers, but when the codimension of the cycle is at least two.

This paper is organized as follows. In section 2, we study one-dimensional maps. The
results in this sections will be essential in our analyze. In section 3, we present some key
definitions and make one-dimensional reductions on the dynamics. In section 4, we prove
theorems (A) and (B) using the results in section 2 together with the one-dimensional
reduction in section 3. Some final remarks will be given in section 5.
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698 C. A. MORALES AND E. R. PUJALS
2. One-dimensional dynamics

In this section we shall study the dynamics of certain maps in S* or a closed real
interval. The results of this section will be used in section 4. We start with a definition.

DEFINITION 2.1. — Let J be S* or a real compact interval. If k > 0 and ¢ € J, Ex(J, c)
is the set of maps f : J\ {¢} — J such that,

1. fis Ct and |f'(z)| > k' > k, for some fixed k' and Vz € J\ {c};

2. f has lateral limits at c, i.e. the limits vy = lim, .~ f(z) and r_ = lim,_,.+ f(z)
exist. :

We define No(f) as the unique positive integer such that card(f~'(z)) is No(f) or
No(f) + 1 (Vz € S), and D(f) as the J’s subset such that card(f~'(z)) = No(f) + 1
(see Figure 2 (a)). If I C J and f € Ex(J,c), we say that f generates the first return
map R in I if for any © € I\ {c} there is a first positive integer m(x) such that
R(z) = fm")(z) € I

Remark 2.0. — Clearly, for k > 1, every f € E(J,c) is expanding, i.e. f'(x) > k' >
k > 1 Vz # c for some constant k’. This fact, in particular, implies that VI C J open
there is a first integer n € IN such that ¢ € f*(I \ {c}). This simple fact will be used
in the proof of results of this section.

The following result will be used in the proof of Theorem (A-a).

THEOREM 2.1. — For every f € Ex(J,c), k > 1, there exists a nontrivial compact interval
I such that f generates a first return map R in I. Moreover, R is topologically transitive
and W*(I) = {z € J : f*(z) € I, for some n € IN} is dense in J.

We note here that there are cases where the interval obtained in Theorem 2.1 is a proper
subinterval of J. This is the case when one considers the classical Lorenz expanding
one-dimensional map and extend it in order to obtain the interval map at Figure 2 (a)
(notice that I = D(f) in this figure).

Proof. — It will be assumed that ¢ = 0 by identifying J with [—1, 1]. We start with

LemMA 2.0. — 36 > 0 such that Y0 < € < 6, In € IN verifying (—6,6) C f"((—¢,¢€)).

Proof. — Consider, for any e, the intervals U, = (—¢,¢), UF = (0,¢€) and UZ = (—¢,0).
Define nt and n~ by

nE(e) = min{k: 0 € fF(UH)}.

They exist because f¥(UZX) must eventually intersect 0 as f is expanding (see
Remark 2.0). It follows that: '

a. f"i(f)(Uei) is open;

b. functions € — n*(e) are decreasing;

c. lime_on*(e) = +oo.

In fact, (a) and (b) are quite obvious and (c) holds because f*(UZX) is open for all
kE < nt(e).

Now we state
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MORSE-SMALE SYSTEMS 699

(b)

Fig. 2.

CLam 2.1. — Fix b > 2 and €, such that min{(k')"*©)} > b (see Definition 2.1). Then,
for all v < €, the two followings assertions holds

+ nt - nt .
. U%7 c frONUF) or Uy, € frONU);
o Uy, C " OU;) or UL C fO(UT),
This claim follows because of 0 € f’Li(V)(U$) and ]f"i("’)(UEf)l > (k’)”i(V)lU;tl >
LU, | = |U, 5|, where |.| denotes interval’s diameter.

Let I = (—6,6) be the interval such that I C f* )(UZ) N f* () (U). It will be
proved that for each 0 < € < § In € IN such that

(1) (=6,6) C f"((—¢€€))

Indeed, by Claim 2.1, we can find & € IN such that either UZE C f*((—¢,€)) or
U%_E C f*((—¢,¢€)). Repeating this argument while i satisfies () 23 €p, it follows that
there is n such that either U} C f"((—¢,¢€)) or U, C f*((—¢,¢€)) and, hence
(%) either (—6,8) C f™"" (@) ((—¢,€)) or (—=6,8) C frnT @) (—e, ).

This proves (1). The proof of Lemma 2.0 is complete.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



700 C. A. MORALES AND E. R. PUJALS

Now we prove Theorem 2.1. We show the existence of an interval I with a well defined
transitive return map. To do this choose ¢ as in Lemma 2.0. Let H = Uogk@ofk((—é, 8))
and Cy(H) be the connected component of H containing zero. Thus it follows that:

e A first return map (on Cy(H)) is defined, because if x € Cy(H) then there exist
k such that z € U C f*((=6,6)), for some some open U. A similar argument implies
the existence of an integer m such that f™(U) is open and contains 0 (see Remark 2.0).
So f™(U) € Co(H) and it follows that there exist a positive integer »r = m + k such
that f"(z) € Co(H).

e The return map with domain Co(H) \ {0} obtained above is transitive because (*).

We choose I = CI(Cy(H)) and so f generates a transitive first return map in
I. Now if f € Ex(J,c) generates a first return map in some interval [ containing
¢, k > 1, then W*(I) is dense in J by Remark 2.0. Recall that by definition
Ws(I) = {z € J: f*(z) € I, forsomen € IN} (see statement of Theorem 2.1).
This finishes the proof of Theorem 2.1.

If f € E/(S'c)and 6 € [0,2n), fs is Rgo f, where Ry is the rotation on S*
with angle 6.

THEOREM 2.2. — Let f € E(S',¢), k > /2. Then, there exist an interval I C [0,27)
such that fq is transitive in S' V0 € I.

Remark 2.1.

1. Observe that f'(z) > 0 orelse f'(z) < 0, Vz € S*\{c}, f € Ex(S*,c) and k > 0. As
usual, the first case is called orientation preserving and the remainer orientation reversing.

2. Suppose that f € FEr(S*,c) and No(f) = 1 with k > 1. If f is orientation preserving
(resp. reversing), f has at most one fixed point (resp. two fixed points).

Proof of Theorem 2.2. — We start with a lemma whose proof follows as in [W].

LEmMmA 2.3. — Let f € Eu(S*,c), k > /2. Then, for each nontrivial interval I C S,
there exists a positive integer n such that f™(I) contains either an interval with end points
{r_,c} or {ry,c}.

For now on we fix k > v/2. Given f € E,(S',c), we say that a fixed point p of f
is a good if for each connected component J of S*\ {r_, ¢} or S*\ {r,,c}, there exist
z € int(J) such that f*(z) = p for some n € IN (see Figure 2 (b)). Here int means
interior. By Lemma 2.3, it follows that f € E(S',c) is transitive if it has good fixed
points. The strategy will be to prove that fy has a good fixed point for suitable 6 € [0, 27]
as it is an open property. We can assume that f has a fixed point p € S* \ {c}.

Consider Ng = No(f), D = D(f), r+ = r+(f) and the “discontinuity point” ¢ = ¢(f)
as in Definition 2.1. It follows that f € Ey(S',c) implies fo € Ex(St,¢), No(fo) = No
and Dy = D(fs) = Re(D) V8 € [0,27). There is a continuation of the fixed point p of
f for fq. This is a smooth map p : § — p(f#) such that p(0) = p and fa(p(0)) = p(f). In
the orientation preserving case (see Remark 2.1 (1)) we have

1

PO = T 70y

<0,
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MORSE-SMALE SYSTEMS 701

and so Dy and p(f) are moving in opposite directions when 6 does. Then there exists
fo € [0,27) such that 7, (6y) (say) equals p(fy) where r4.(6) = r1.(fs) (see Figure 2 (c)).
This is because the end points of Dy are ro(6). In the orientation reversing case we do not
have p’(#) < 0, but now Dy is moving more quickly than p(6) so we have p(fy) equals
T4 (6o) (or r_(6y)) for some 6, even in this case.

On the other hand, by expansivity of f, it follows that Jeg > O such that
V0 € (6p — €000 + €0) and for each connected component J(f) of S'\ {r.(6),c}
or S1\ {r_(6),c} there is a first n(J(8)) € IN such that ¢ € int(f;'®)(J(8))). Define

J*(0) = Neyint(f3 7 (1(0))),

and choose § > 0 so small such that (¢ — 26, ¢+ 28) C J*(6p). Then, 30 < €; < €g such
that (C —b,c+ 5) C J*(0), Vo € (90 — €1,09 + 61).

Now choose 6; € (6 — €1,80 + €1) close to 6y such that p(6;) € int(fo,(c — 6,c+ 0))
(p(61) € D(fe,) works). Then p(#1) € int(fo,(c — 6,c + 6)) and so p(f1) €
int( §T<J<"l>)+1)(J(91))) V.J(61). This implies that p(6;) is a good fixed point of f(6;).
The proof is complete. ;

Notice that in Theorem 2.2 we do not make any assumption on No(f) and D(f).

PROPOSITION 2.4. — Let f be a map as the one in Theorem 2.2 with No(f) = 1 and
CIU(D(f)) # S'. Then there exist nontrivial disjoint intervals I; and I, in [0, 27] such that,

1. If 0 € I, fo is a transitive in S*;

2. If 0 € I, and f is orientation preserving, then fq is transitive in an invariant proper
closed subinterval of S' containing c;

3.If6 € I, and f is orientation reserving, then f? is transitive in an invariant proper
closed subinterval of S containing c.

Proof. — The existence of I; follows from Theorem 2.2. Suppose that f is orientation
preserving (recall Remark 2.1 (2)) and consider 6, as in the proof of Theorem 2.2.
Choose 6; close to 6y such that p(61) ¢ D(fs,). We claim that ¢ € D(fy,) and
F(CUD(fe,)) \ {c}) € CU(D(fg,)). This claim follows by considering f as an interval
map cutting S* at p(f;) (here we use No(f) = 1 and CI(D(f)) # S*). Choose a small
interval I so that f(CIU(D(fs))\{c}) C CU(D(fy)) and fo/CI(D(fq) € Ex(CU(D(fs),c)
V6 € I,. Then fo/Cl(D(fe) is transitive by Lemma 2.3 and the proof is complete. Now
suppose that f is orientation reversing. Then f has just two fixed points and so does fj,
V6 (recall Remark 2.1 (2)). Choose 6; such that ¢ ¢ D(fg,). Consider the fixed points
p1,p2 of fo,. Then one of the connected component of S\ {p1,pa} (J; say) satisfies
c € int(Jy). Then f2/J; € Ey2(Jy,c), it is orientation preserving and the end points of
Jy are fixed points of f2/.J;. The proof follows as in the orientation preserving case, but
now in an interval instead of S*.

Proposition below shows that functions in Ex(S!,c) are transitive in S, k > 2.

PROPOSITION 2.5 — Every f € Ey(S',c), k > 2, is transitive in S'.

A classical Willians’s result implies that every f € Ej(.J, c) is transitive when k > /2,
J is a compact real interval and the the end points of J are {r,,r_} (see [W]). We note
that this is not longer true in general. A simple example is the map depicted at Figure 2 (a).

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



702 C. A. MORALES AND E. R. PUJALS

Proof. — Let I an open interval in S!\ {c} and consider the first n(I) € IN such
that ¢ € f*(I) (of course n(I) > 1). Then, it follows that the largest component
of f*D(I)\ {c} has diameter greater than (£)*(D|I| (where k' is the infimum of the
derivative of f which is bigger than 2 by hypothesis). Repeating an argument in [W], we
reach n such that f*(I) = S*\ {c}. The proof is completed.

Next we study a special class of circle maps. They will come from critical saddle-node
singular cycles (see section 1). Let us give its definition.

DEFINITION 2.2. — Let f : ST\ {c1,¢2,...,c.} — St satisfying

1. f is C* and has a criticality in S*, i.e. Ip € S* such that f'(p) = 0;

2. the lateral limits of f at ¢; exist Vi = 1,...,r;

3. f admits a degree one lifting (see [Mi] for definition).

Under such conditions, we say that f has a critical continuous extension F' (related
to p) if

o F : S — St s continuous and onto S*;

e there exist a finite interval’s collection {I;} such that F/I; is constant (Vi),
F/(S*\UL) = f and p € int(S* \ UL,).

Remark 2.2. _'

1. Any onto map f : S'\ {c1,¢c2,...,c,} — S* with r = 1-and satisfying (1), (2) and
(3) of Definition 2.2 has critical continuous extension.

2. Besides degree one liftings for circle maps, it was introduced in [Mi] the concept of
old heavy maps. It can be shown that the class of old heavy maps equals to the class of
maps f : S'\ {c1,¢2,...,c,} — ST with r = 1 and having critical continuous extension.
It is not true in general when r > 1.

The following result extends one given in [NPT] to circle maps with critical continuous
extension. It will be used in section 5 for the proof of Theorem (B).

TueoREM 2.6. — If f : S1\ {c1,¢2,...,c, } — S has critical continuous extension, then
there exists 0y € [0,2n] such that the one-parameter family Rq o f unfolds a homoclinic
tangency at 6.

Proof. — Let F be a critical continuous extension of f (it is not necessary unique). It
is immediatly from the definition that Ry o F' is a continuous critical extension of Ry o f.
It is well known (see [NPT]) that for Fy = Ry o F, there exists 6 € [0,27] such that it
exhibits a tangency, i.e. there exists a critical point ¢ and a periodic point p, such that
Fy(q) = p and W*¥(Fp,q) = S*. This last means that, for all open set U such that q € U,
UnsoFy (U) = S*. From this it follows that ¢ ¢ UI; and Fj(U) ¢ UI;. Hence:

— g is a periodic point for fy;

— Upsofs(U) = S for all open set U such that ¢ € U;

- f 0(17) = q, ’

completing the proof.

A topology for discomtinuous maps.
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To finish this section, we introduce a topology in E(J,c¢) (k € IR™) to be used later on.
We shall use a notion of closeness adapted to our specific situation. In what follows, dist;
will be the usual metric in .J (recall that J = S! or a compact real interval) and dist;
denotes the C? and C'* metric for ¢ = 0, 1 respectively. If f € E(J) = Ueejrer+ Ex(J, ),
then k(f) = infyep\qey |f/'(z)]. Clearly k(f) is well defined and satisfies k(f) > k if
f S Ek(J, C).

DEFINITION 2.3. — We say that f,g are é-close (6 > 0) if dist;j(c(f),c(g)) < 6,
|k(f)—k(g)| < 0, disto(f,g) < 6 and dist1(f,g) < 6 outside a compact 26-neighborhood
of {c(f),c(g)}. If I is a compact real interval and {fo}ecr,{ge}tocr C E(J) are
parametrized families, we say that {fa}eocr and {go}ocr are 6-close if fo and go does
Vo € I

We state a proposition in which are summarized the main properties of the notion of
closeness introduced in Definition 2.3. It will be used in the proof of Theorem (A) at
section 4.

ProposITION 2.7. — Let I = [0,2n] (say) and {fo}ocr, {96 }oer C E(S*) parametrized
families. Define k({hg}ecr) = infoer k(ho) for h = f,g. Then,

1. Ve > 0, 36 > 0 such that Ik({fg}gej) — k({ga}ge[)l < € if{fg}gej and {99}061
are 6-close;

2. suppose fg = Ry o f for some f as in Theorem 2.2 and let I the interval obtained in
that theorem. Then 36 > 0 such that if { fo }ecr and {ge }oc1 are 6-close, there is an interval
1, (close to I) such that conclusion of Theorem 2.2 holds changing f, I by g, I, (resp.);

3. suppose fo = Ry o f for some f as in Proposition 2.4 and let I, and I5; the intervals
obtained in that proposition. Then 36 > 0 such that if { fo}ecs and {gs}ecr are 6-close,
there are intervals Iy, Iog (close to I1¢, Io5 resp.) such that conclusion of Proposition 2.4.1
holds changing f, I,y by g, I,y (resp.) and go or g3 is transitive in some proper closed
subinterval of S V§ € Iy,

Proof. — Note that in the proof of theorems 2.1, 2.2 and Proposition 2.4 all construction
involved are open with respect to the notion of closeness in Definition 2.3. Now use
compactness of I.

Remark 2.3. — We will be interested in study the particular case when the parametrized
families {gs }ocr and {fos}oer satisfy fo = Rgo f and go = Rg o g for fixed f,g € E(S).
It is easy to see that if f and g are 6-close, then {gs}oecs and {fs}ecr are 6-close. This
will be used in the proof of Claim 3.5 at section 3.

3. One-dimensional reductions

In this section we prove some preliminary results concerning the dynamics after unfold
saddle-node singular cycles. The main result of this section is Theorem 3.3 which tells
about existence of stable foliations in the case when the cycle is transversal. This will permit
one-dimensional reductions to be used in section 4 for the proof of Theorem (A). Since
criticalities are clearly an obstruction for existence of stable foliations, Theorem (B) will
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require a different approach. In this case, instead, we shall use renormalization techniques
as in [DRV]. Such techniques will be use as well in the proof of theorems (C) and (D)
in the appendix.

To start, we associate a circle map fr to any saddle-node singular cycle I'. This idea
was introduced in [NPT] for the analyse of saddle-node cycles in absence of singularities
(see also [DRV]). To construct fr we require some background (see [NPT] pp 13 for
details). Suppose that I' = {09, 01,70,71} is a saddle-node singular cycle of a vector field
X. Then we have the following facts.

Fact 1. There exist a transversal section 3 of X and a first return map 7 on ¥ such that
o1 is a saddle-node fixed point of 7. The following structures are well defined,

e A centre-unstable manifold We* passing through oy.

e A strong stable manifold W*°, containig o;, whose tangent space (at o;) is the one
corresponding to the hyperbolic eigenvalue of D7 (o). Also, W** is tranversal to W< at
o1 and divides W** in two branches denoted by We** and W~ in the sequel.

o A strong stable foliation F*° defined in X. This foliation induces a coordinate system
(z,y) in T such that 7 takes the form 7(z,y) = (¢o(x),%o(z,y)). Here ¥(z,y) satisfies
Po(z,0) = 0 and |9,¢o(z,y)] < X < 1 for some fixed constant A. The right and left
boundaries of ¥ as well as W?° are leaves of F°°.

Fact 2. Identifying points in the same orbit of = when restricted to W**, both Wew+
and W%~ are circles, i.e. they are copies of S'. We shall use this identification without
explicit mention. There is a tangent vector field Z associated to w, ie. o = w/W
is just the time-one map of Z (see [DRV]). If a € W+t we define a coordinate
system ¢, : Wt — S by o,(z) = *™%(®) where t,(z) solves Z[t,z] = a. Similar
constructions can be done for any b € W,

Fact 3. There is a return map Hy : ([pg'(a),o(a)] x [=A,A]) \ Do — [b, o(b)] x
[-A,A], induced by the flow of X, where A is just the diameter of ¥ and
Dy = W*(00) N [y ' (a), po(a)] x [-A, A]. It turns out that Dy is a finite set of almost
vertical curves and it reduces to a single one when I is transversal (see Definition 1.1).
In that case, D can be chosen to be the vertical line {co} X [-A, A]. The restriction of
Hy to [pg'(a), wo(a)] x {0} will be denoted by h.

It is well known that structures (3, W a,b) satisfying facts (1), (2) and (3) are
not unique. However, we shall see in Proposition 3.1 below they satisfy some sort of
uniqueness. Now we are ready to define fr.

DEFINITION 3.1. — Let T be a saddle-node singular circle of X. Then fr : S*\ D — S!
is defined by the formula

fr=ppom*ohop?,
where 7°° denotes projection along F*°. When I is transversal, we say that it is k-expansive
(k > 0)if fr = fr(5, W, a,b) € Ex(SY, co) for some structure (X, W<, a,b).
We note that if Dy is a single point {co} and fr = fr(X, W, a,b) € Ex(S?,co) for
some structure (X, W a,b) and k > 0, then it is not true that I' is transversal. The

notion of expansivity in Definition 3.1 is based on the following result whose proof will
be given in the appendix.
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PROPOSITION 3.1. — Suppose that I is a saddle-node singular cycle of a vector field and
consider structures (X, W, a, b) and (Z W“‘,d b) according (1), (2) and (3) above. Then
fr = fr(S,We a,b) and fr = fr(S, W<, a,b) differ by rotation in S*, i.e. 39 € [0, 2r)
such that fr = Ry o fr‘

Thus, expansivity actually does not depent on structures. On the other hand, it is a
natural to ask which circle maps are fr for some cycle I'. We give conditions to guarantee
it. Consider 7 € IN and let E7(S, &) be the set of function fr : '\ {¢} — S such that,

e f is C" and the lateral limits of f at ¢ exist;

e The derivatives f()(z) for 1 < i < r satisfy

fO (=)

(=) i e =

for some fixed constant k; and o € (0,1).

PROPOSITION 3.2. — For any v € IN and f € E"(SY,&) there is a C"-vector field X in
M with a saddle-node singular T such that f = fr.

This proposition is not used in the proof of results in section 1. Instead, it will be used
to prove Theorems (C) and (D) in the appendix. Its proof is straighforward.

Remark 3.0

1. Observe that for any cycle T', property (xx) holds with f = fr, i = 0,1 and ¢ € D.
Here a = i—? (recall Definition 1.1). One has o < 1 when I' is k-expansive for some
k > 0. This is because the singularity in I' must satisfies some nonresonance conditions to
guarantee existence of C2-linearizing coordinates and so A3 # \; (see section 1). In what
follows we use the notation 3 = :\\—f so 3 — a > 0 (recall Definition 1.1 (1)).

'2. We can make some reductions on Hy when I' is transversal (see Fact (3)). Choosing
b < 0 < a sufficiently close to 0, Hy takes the form Hy(z,y) = (Hio(z,y), Hao(z,y))
with respect to the coordinate system (z,y) in ¥ with

Bszo(x,y)

——————==| and
amHIO(:ra y)

ay-H’IO(xa y) {
amHIO(xv y)

uniformly small for (z,%) € ([pg*(a), po(a)] x [—€*,€*]) \ {co} and ¢* > 0 small. In the
particular case when I" is k-expansive for some k£ > 0, such reductions can be made and
by Proposition 3.1 they do not affect the expansivity of I'.

Next we recall well known facts. If X is a vector field and I' = {09, 01,70,71} is a
saddle-node singular cycle of X, then vector fields close to X, and having a saddle-node
periodic orbit nearby o7 belong to a codimension-one submanifold S in the space of all
vector fields. Now, S separates a small neighborhood U/ of X in two open regions. One of
them (U~ say) consists of vector fields whose nonwandering set close to o3 is formed by
two hyperbolic periodic orbits. We say that a one-parameter family X, p € IR, unfolds I’
positively whenever X is transversal to S at 4 =0 and X, € U~ if 1 < 0. An annulus A
will be a 2-manifold diffeomorphic to {z €@ : |z| € [r, R]}, R > r > 0. A smooth curve
I C A is radial if it is transversal to any circle {z € @ : |z| = ¢} (¢ € [r, R]). Following
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[PT1], analytical continuation of hyperbolic critical elements in I' will be indicated as
oo(p), for instance, when one-parameter families are considered. The remainer of this
section will be devoted to prove the following key result.

THEOREM 3.3. — Let X, be a one-parameter family of vector fields such that X exhibits
a transversal saddle-node singular cycle I' = {09, 01,%0,71}. Suppose that X, unfolds T’
positively. Then 36 > 0 such that for 0 < u < 6 the following hold,

a. there exist an annular cross section A,, of X,, and a radial curve l,, C A, "W ?*(oo(p))
such thatNp € A \l, there is a first time t(p) > 0 such that F,,(p) = X, [t(p),p] € int(A,);

b. F, : Ay \l, — A, is C*-conjugate to a map E, : S* x [-1,1]\ [, — S x [-1,1]
satisfying the properties below,

b.1 1, is a radial curve in A = S* x [-1,1);

b.2 Fu admits an invariant strong stable C*-foliation Ly in A, consisting of radial
curves, such that 1, is a leaf of Eff;

c. let f, be the F,-induced map on S* = A/L3 (so f, € E(S"), recall Definition
2.3). Then, there are decreasing sequences 6, i, > 0 (converging to 0) and an orientation
reversing onto difeomorphisms sequence ., : [0,21] — [pk, ur ] (with inverse 8,,) such
that,

c.l. {fu.0)toclo,2x] and {Ro o fr}ocpo,2x) are 6,-close (recall Definition 2.3);

c.2. distorsion property holds for sequence 0, ie. given ¢ > 0 and every Borel set
A C [0,27] we have

m(0n(4))

(W =amld) < e D

< (14 €e)m(A).

Proof. — The proof goes through the following steps.

Step 1: Discontinuous dynamical systems on annular cross sections.

In this step we present the main ingredients for the proof of Theorem 3.3. For the
analyze return maps, we shall introduce the coordinate systems <I>;r and CIJ{I which permit
to transport the dynamic on the cross section to a discontinuous map in S* x [—1,1]. The
induced dynamic will resemble the one exhibit by the geometric Lorenz attractor, but now
in the annulus S* x [—1,1] instead of the square [—1,1]> C IR? (see Figure 3). We follow
closely [NPT] (pp 13) and [DRV] in this step.

To start, let us consider the cycle I' and its corresponding circle map fr depending on
structure (X, We*, a,b) according Definition 3.1. Using analytic continuation of F** (see
Fact (3)) we obtain a u-dependend coordinate system (z,y) in %, such that continuation
7, of m (see (1)) has the following form,

7";4(‘7773/) = (<Pu($),1/1u(3773/))a

where ¢, is a saddle-node arc and 1, satisfies 9, (z,0) = 0, |9,¢,(z,y)] < A < 1 for
some fixed constant A. Such a coordinate system can be chosen in a way that W?* (oo (p))N%
is the vertical {(c,,y) : y € [ — A, A]}. Recall A is almost the diameter of X..

Let Z, be the tangent vector field associated to the saddle-node arc ¢,. Recall it is
a p-dependent vector field such that ¢, is the time one map of Z,. The following sets
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will be considered in the sequel. Take A} as the Y’s subset with vertical boundaries
{(¢; (a),y) :y € [—A,A]} and 7, ({ (@, ' (a),y) : y € [— A, A]}). We also consider the
set A, with vertical boundaries {(b,y) : y € [— A, Al} and 7,({(b,y) : y € [— A, A]}).

Now we shall introduce two coordinate systems @} : Af Um,(A4)) — St x [~1,1]
and @, : A, — S 1 x [~1,1] which will play an important role. To simplify notation, we
write C,, = At Um,(A}). Consider the solutions ¢} (z) and . (x) of the time equations
Zylt,x] = a and Z,[t,z] = b for z in ¢, (a),pu(a)] and [b, ¢, (b)] respectively. Such
solutions will be angular coordinates in the contruction below. We define now <I>:[ and
¢, by the formulae

7t (z)i
O (z,y) = (2™ 0 (z,y))

and o
@, (z,y) = (2™, 0, (x,y)),

for (x,y) in C), and A, respectively. Here © : C,, — S' x [-1,1] and ©,, : A, —
S' x [—~1,1] are smooth and satisfy,

- O (mu(z,y)) = O;(z,y);

— There exist positive constants c¢;, ¢ such that ¢; < ||D®If(a:,y)|| < ¢y and
©F(x,0) = 0, where D denotes derivation in (z,y).

Once defined ‘132' and <I>;, we observe that there is a return map

H;L : Cu \ {("'uay) 1T € {(p;l(cu),c”} and y € [_ AvA]} - A;

induced by the X,’s flow such that H, is the one in Fact (3). Here c, is such that
{(cusy) 1y € [-A,A]} = Cun W2 (00(p)).

‘We define the transition map T), as follows. 