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SELF-EMBEDDINGS OF KLEINIAN GROUPS

BY KEN'ICHI OHSHIKA AND LEONID POTYAGAILO

ABSTRACT. - We give sufficient conditions for a geometrically finite Kleinian group G acting in the hyperbolic
space H" to have co-Hopf property, i.e., not to contain non-trivial proper subgroups isomorphic to itself. We
provide examples of freely indecomposable geometrically finite non-elementary Kleinian groups which are not
co-Hopf if our sufficient condition does not hold. We prove that any topologically tame non-elementary Kleinian
group in dimension 3 can not be conjugate by an isometry to its proper subgroup. © Elsevier, Paris

RESUME. - Nous donnons des conditions suffisantes pour qu'un groupe kleinien G geometriquement fini agissant
sur Fespace hyperbolique H" possede la propriete co-Hopf, c'est-a-dire que G ne contienne aucun sous-groupe
propre isomorphe a G. Nous fournissons des exemples de groupes geometriquement finis, non-elementaires, qui
ne sont pas produits libres non-triviaux et qui ne sont pas co-Hopf si notre condition suffisante n'est pas verifiee.
Nous prouvons que tout groupe kleinien geometriquement sage non-elementaire en dimension 2 ne peut pas etre
conjugue par une isometrie a son sous-groupe propre. © Elsevier, Paris

1. Introduction

The aim of this paper is to study proper monomorphisms (p : G -^ G where the group
G belongs to the class of geometrically finite Kleinian groups acting on n-dimensional
sphere S" (n ^ 2).

Let us recall that an abstract group G is called cohopfian (or a co-Hopf group) if any
monomorphism ^ : G -^ G to itself is in fact an isomorphism. There is a dual definition
which says that a group G is hopfian if any epimorphism of it to itself is an isomorphism.
These two properties are quite different, in particular all finitely generated subgroups of
the linear group G£^(R) are hopfian as being residually finite but there are many of
them which are not co-Hopf.

The study of the co-Hopf property was started by Baer [B] in the 40's for surface
groups. Such a question was first considered for 3-manifold groups by F. Gonzales-Acuna
and W. Whitten [GW] where they completely described the class of cohopfian fundamental
groups of Haken manifolds with boundary which is a union of tori. Different criteria of
cohopficity were given: for a closed geometric 3-manifolds by S. Wang and Y.-Q. Wu
[WW] and for geometric 3-manifolds with boundary by L. Potyagailo and S. Wang [PW].
The problem to describe the class of 3-manifolds having co-Hopf fundamental groups is
quite far from being solved.
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330 K. OHSHIKA AND L. POTYAGAILO

The same question remains meaningful in more geometric context. For instance, the
question became quite popular since M. Gromov's study of word-hyperbolic groups. He
showed that 7Ti(y) is co-Hopf for any compact aspherical pseudomanifold V with a
non-elementary hyperbolic 71-1 [Gro, 5.4.B]. He also conjectured there that this should
be true for any word-hyperbolic group connected at infinity. Z. Sela [Se] proved that a
non-elementary, torsion-free, word-hyperbolic group is co-Hopf if and only if it is not a
non-trivial free product.

Before stating our results, we recall that a parabolic subgroup H of a discrete (Kleinian)
group G of the isometry group J^o+EP of the hyperbolic space H" is said to be maximal
if there is no any other parabolic subgroup of G containing it and not maximal otherwise.
A maximal parabolic subgroup K C G is said to have virtual rank r if it contains an
abelian subgroup of finite index of rank r. It turns out that co-Hopf property is related to
splittings of G over virtually abelian subgroups.

One of our main results is;

THEOREM 1.1. - Let G be a geometrically finite, non-elementary, torsion-free, discrete
(Kleinian) subgroup of the orientation preserving isometry group Iso^.fS71 of the hyperbolic
space I-P (n > 3). Then G is co-Hopf if G does not split as H N N-extension or
amalgamated free product over a virtually abelian subgroup H C G of virtual rank k
(0 < k < n - 1).

Furthermore for any n and k G { l , . . . ,n — 2} there are freely indecomposable non-
elementary, geometrically finite, torsion-free Kleinian groups "which split over non-maximal
parabolic subgroups of rank k and which are not co-Hopf.

We remark that it has been previously shown in dimension n = 3 that a finitely generated,
non-elementary, torsion-free Kleinian group G C PSL^C is co-Hopf if G does not split
over trivial or cyclic subgroups [PW]. The condition not to be non-trivial free product is
that what one obviously needs to impose. In fact if the group G = G^ ̂ G^ is such a product
then it contains a proper subgroup G =< G[2, G^ >^ G[2 * G^ where t, e Gi (% = 1, 2).
On the other hand, the condition not to split over a cyclic subgroup was hoped for some
time to be superfluous and more or less related in [PW] to the method of proving the
result. In this paper we provide, however, an unexpectedly quite simple example of a
non-elementary, torsion-free, geometrically finite, freely indecomposable Kleinian group
acting on C which is not co-Hopf and splits over Z.

The proof of the sufficient condition of 1.1 occupies the section 3 of the paper. In
the section 4 we give examples of non-elementary, torsion-free, geometrically finite,
freely indecomposable Kleinian groups in all dimensions which split as the central HNN
extension over non maximal abelian parabolic subgroups of rank f c ( f c e { l , . . . , n — 2}).
For these examples, we shall prove that they are not co-Hopf.

The following is an intriguing question which is from one side a particular case of the
co-Hopf property and from the other will be involved in the proof of 1.1.

QUESTION 1.2. - Let G be a discrete finitely generated non-elementary subgroup in
the group Iso^'H11. Then does the inclusion ^G^~1 C G imply ^G^~1 = G, where
7 G Iso^?

The above question which we call the "proper conjugation property" for a Fuchsian
group G in dimension n = 2 was firstly raised by H. Hopf (see [H]). A positive answer is
given for a finitely generated group by G. Huber (see [H]), and an example of infinitely
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SELF-EMBEDDINGS OF KLEINIAN GROUPS 331

generated Fuchsian group of the first kind without this property is given in the paper of
T. Jorgensen, A. Marden and C. Pommerenke [JMP].

In [PW] it was proved that the answer to the question is "yes" for any freely
indecomposable discrete subgroup of PSL^C and afterwards the same answer was given
for any geometrically finite subgroup of Iso^'H.1^ [WZ].

We now state a theorem whose first part is proved in the section 3 (Lemma 3.4 below)
and the second one dealing with topologically tame Kleinian subgroups in dimension 3 is
proved in the section 5. A famous still unsolved conjecture of A. Marden [Mar] says that
all finitely generated Kleinian groups in PSL'zC would be topologically tame.

THEOREM 1.3. - Suppose that G C J-so+H^ is a non-elementary, torsion-free finitely
generated Kleinian group. Then aGa~1 C G implies aGa~1 = G for a G Iso^.'H.71 in
one of the following cases ( a ) (b):

a) either n > 3 and G is isomorphic to a geometrically finite Kleinian group F C J-so+H"
which does not split over virtually abelian subgroups (including the trivial one);

b) or n = 3 and G C PSL^C is a topologically tame Kleinian group.

2. Preliminaries

Let us start with the group 5'0+(n, 1) which is the connected component of the identity in
the special Lorentz group S0{n^ 1). The group 5'0+(n, 1) is isomorphic to the orientation
preserving part of the isometry group Iso^V^ of the hyperbolic space Hn. This group
will be also denoted throughout the paper by M{n) meaning that this group is the group
of conformal transformations of the sphere at infinity S^1 = 9H71. We use the notation
d^ for the hyperbolic distance in VLn.

Any discrete subgroup G of M(n) is called Kleinian group. The set of accumulation
points of any orbit G{z) (where z G H7') is called the limit set and is denoted A(G).
It is well-known that either Gard(A(G)) G {0,1,2} or A(G) is a perfect closed subset
of S^1 [Ma]. In the first three cases we call our group G elementary and in the latter
non-elementary. The complementary set ^(G) == S^~1 \ A(G) is called the domain of
discontinuity of the group G.

The convex hull NG G H^ of the limit set A(G) is called Nielsen hull. It is a minimal
convex subset of H72 invariant under the G-action. We say that a finitely generated Kleinian
group G is geometrically finite if Vol^^Mo = NG/G) < +00.

By Margulis9 lemma, it is known that there is a positive constant 60 such that for any
Kleinian group G C M{n) and e < eo, the part of W /G, where the injectivity radius is
less than e is a disjoint union of tubular neighbourhoods of closed geodesies whose lengths
are less than 2e and cusp neighbourhoods. We denote by ('H.n/G)o the complement of
cusp neighbourhoods corresponding to some e less than the Margulis constant eo above. If
G is geometrically finite, then (H^/G^ is compact.

A sequence of discrete faithful representations pm '- F —> M(n} of an abstract finitely
generated group F converges algebraically to a representation poo if Pm{fi) converges
to poo(fi) in the compact-open topology of S^~1 for a fixed finite generator system
{fi-, - " ^ f i } of F. Denote Def{F^M(n)) the space of discrete faithful representations of
F into M(n) modulo conjugacy which we endow respectively with the quotient topology.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



332 K. OHSHIKA AND L. POTYAGAILO

In dimension n = 3, we call a Kleinian group G C PSL^C topologically tame if the
manifold M(G) = H^/G is homeomorphic to the interior of a compact 3-manifold. By
Scott's core theorem ([Sc]), it is known that in general for any 3-dimensional Kleinian group
G, the quotient H3/^ has a compact 3-submanifold which is homotopy equivalent to H^/G
by the inclusion. Such a submanifold is called a core of H3/^. By the relative core theorem
due to McCullough ([Me]), we can choose a core C so that C is contained in (H^/G^
and (C,C ^}^{'H3/G)o) is relatively homotopy equivalent to {(H.3/G)o,9('H.3/G)o) as
pairs by the inclusion. We call such a core a relative core of (H^/G^o.

An end of (H^/G^o is said to be geometrically finite if it has a neighbourhood which
intersects no closed geodesies, and otherwise geometrically infinite. The components of
the frontier of a relative core correspond one-to-one to the ends of (H^/G^ by taking a
frontier component to an end such that a component of the complement of the core whose
closure contains the frontier component is its neighbourhood. We call the corresponding
end "the end facing the frontier component". Conversely we also say that the frontier
component is facing the end.

When G is topologically tame, for an end e facing a frontier component S of a relative
core, the end e has a neighbourhood homeomorphic to E x R.

Convention. - We will be mostly concerned with torsion-free case and suppose, unless
mentioned otherwise, that all Kleinian groups are torsion free. Recall that the famous
Selberg lemma says that one can always find a torsion-free subgroup of finite index in any
finitely generated subgroup of the linear group GL^(R).

3. Sufficient conditions

In this section we shall prove the following.

PROPOSITION 3.1. - Let G C M(n) be a geometrically finite, non-elementary, torsion-free
Kleinian group. Suppose that G does not split over a virtually abelian subgroup of virtual
rank k such that 0 < k < n — 1. Then G is co-Hop f.

Let F be a non-virtually abelian finitely generated group and {/i,. . . , fs} a finite generator
system of F. We shall first study some pre-compact sequences in the deformation space
Def{F,M{n)\

LEMMA 3.2. - Suppose that p,m '' F —> M{n) (m G N) is a sequence of discrete faithful
representations of the group F representing a converging sequence in Def[F^M(n)\
Suppose also that for any m G N, the group pm(F) is a subgroup of the same geometrically
finite Kleinian group G C M(n\ Then there exist a point XQ G EP and a sequence of
elements (a/e) C G such that

max dur^xo.akpm^fi)^1^^) <^ R < +00
Kz<s

for some subsequence {prrik} °f {prn} ^nd a constant R.

Proof of the Lemma. - The fact that the sequence {pro} represents a sequence converging
algebraically in Def{F, M(n}) implies that there exists a sequence (7^) C M(n) such that:
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SELF-EMBEDDINGS OF KLEINIAN GROUPS 333

^m^^rnPrnUi^rn1 = p{fi\ ^ere ? : F ^ M{n) is a discrete faithful representation
f% eT{l,...,5}) [Ot]. It follows that

^ma^dH-(0,7mPm(/^)7ml(0)) < Ri < +00, (1)

where 0 is some point in H". Let D(G) c H72 be a convex fundamental polyhedron for
the action of G in H71. We can pick a^n G G such that Q-rr^m^O)) = Xm G ^(G) G IP
and rewrite (1) :

^ma^dH7^(^m,Q /mPm(J^)Q /^ l(^m)) < -RI < +oo (2)

By passing to a subsequence and keeping the notations we may assume that
Xm -^ XQ G EF = H" U S^-1. We need to show the following:

Claim. - XQ G H".

Proof of the Claim. - Suppose to the contrary that XQ G S^~1. By denoting the closure
of D(G) in H71 by -D(G), we see that XQ is contained in D(G) H S^~1. Since the group
G is geometrically finite there are two possibilities for XQ:

either 1) XQ G P(G)n^(G) or 2) XQ is a cusped parabolic fixed point of G ([Ma, p.l 18]).

Case 1. - XQ G D(G) n 0(G).
Put (3m,i = ampm{fi)^m1 and ̂  == f3m,i{xm} (m e N^ G {!,..., 5}). By the

hypothesis, we have that pm(fi) ^ G, and since a^n € G, it follows that ftrn.i ^ G. We
have by (2) that max dH-^m^^m) < -RI so lim ymz = lim rr^ = XQ.

Ki^s m—^oo m—>oo

Since a;o G ^(GQ, there exists mo such that Vm > mo ym,i = '/3m,z(^m) = ^m
(1 ^ % < 5). This means that the group ampm(F)a^1 is an elementary elliptic group
fixing the point Xm G H^, hence so is pm(F). This is a contradiction.

Case 2. - rro G A(G) D -D(G) is a cusped parabolic fixed point.
Consider the upper-half space model for H72 and assume that XQ = oo. Then there is

t G R+ such that the horoball V = V(t) = {(x\..., a;n-l^n) G H" : x^ > t} is precisely
invariant in G under its stabiliser subgroup H = Stab(V^ G) = {h G G : h(V) = V},
which means that \/g G G \ H g(V) H V = 0.

Let us show that for all but finitely many m G N one has {xm,ym,i} C V(t)
(% G {!,..., s}). In fact obviously Xm G V(t) since Xm G 2^(G) n y(tj. If to the
contrary we get a subsequence of {ym,i} (for which we retain the same notation) such
that ym,i ^ V(t) then by using the expression for the distance d^r. for the upper-half
space model we obtain:

7 / \ ^ -i | \^y'm,i) i
^H- (^/(m,z) ̂ m) > log | - / — — — . - \ -> 00,

Y^mJ

where (?/)" is the n-th coordinate of y G H71. This is impossible by (2).
By using the same notation (3rn,i as in the Case 1 we have ym,i = /?m,z(^m) G V(t} and

also Xm G V(^) (m > mo,i G {1, ...,5}). Then since V{t) is precisely invariant under H
we obtain f3rn,i G ^f. This implies that ampm{F)a~^ is an elementary parabolic subgroup
of G which is prohibited by the hypothesis. Thus the Claim is proved.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



334 K. OHSHIKA AND L. POTYAGAILO

We obtain therefore XQ G H7' and so that d^{xo,Xm) < ^2 < +00 for all m G N,
hence:

^H- (^0, ̂ ^(^Q^^o)) < 2 • dp- (^m^o)+dH- (^m, /3m,i(^m)) < 2^2+^1 = -K < -+00.

Thus Lemma 3.2 is proved. D

LEMMA 3.3. - Let G C M(n) be a geometrically finite non-elementary Kleinian group.
Then the following assertions are valid:

a) Let F C G be a finitely presented subgroup which does not split over its virtually
abelian subgroups (including the trivial one). Then there are only finitely many conjugacy
classes of subgroups of G isomorphic to F.

b) If in addition, G itself does not split over a virtually abelian subgroup of virtual rank
k(0 < k < n — 1) then the group of outer automorphisms Out(G) is finite.

Remark. - A statement analogous to a) was first proved by W. Thurston in the case
when G = 71-1 (M3) where M3 is an acylindrical hyperbolic 3-manifold and F = Tr^(Sg)
is surface group (g > 2) [Thi, Corollary 8.8.6].

Both statements are also well-known in the theory of word-hyperbolic groups. The
statement a) in this context is first proved by M. Gromov [Gro, Thm 5.3.C] and in a
more general form by T. Delzant [De]. The statement b) for word-hyperbolic groups is
due to F. Paulin.

We shall prove the statements in the above form. Whereas the proof of F. Paulin for
the statement b) works for relative hyperbolic groups (see for the definition [Gro]), and
consequently for geometrically finite Kleinian groups in general; as for the statement a) one
should take some care for groups with accidental parabolics (see [Thi, Remark after 8.8.6]
or our example 2 in the next section) for which a similar statement does not hold.

Proof. - Our approach is inspired essentially by the methods of [Be] and [Se].
a) Suppose that we have an infinite sequence of non-conjugate embeddings (j)m ''

F —> G C M{n}. Take any finite generating system /i,...,/s of F and consider the
displacement function:

dm = min max d^{x,(f)m{fi){x}). (1)
xe'H.n l<i<s

Note that it is proved that the minimum as above is attained by a point in H^
in [Be]. Let us first consider the case when dm does not converge to oo. Then the
standard argument shows that there is a subsequence (denoted by the same symbol)
(f)m '- F —^ M(n} converging to a discrete faithful representation (f) : F —> M(n} in
Def{F^M(n)), (see e.g. [Be]). We also know that (f)rn{F) C G, so that we can apply
Lemma 3.2 to obtain a point XQ G H^, and a sequence a^n C G such that

dm = max d^r.{xo, am^mU^Oi'^^o)) < R< +00
l<i<s

after taking a further subsequence, still denoted by <^. Since am^m{fi)oim1 G G (m €
N , % G {!,..., s}) and the group G is discrete, we may conclude that arno^-r^mo^-rdrr^o-^-r =

(^mo^mo^m^ ^or some ̂  and r, contradicting to our assumption that all (^yn(^) are
non-conjugate subgroups in G.
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We are left with the case when dm —^ oo. Let Zm G H" be a point which realizes
the minimum in (1) whose existence is proved in [Be]. Pick ^m G M(n) such that
7m(^m) = 0 G H71. Therefore, we have cL == max dH-(0, 7m<M.A)7ml(0)) -^ ̂

We may now apply Bestvina's construction for representations (7m^m7ml)m, rescale
the metric by dm and get an R-tree (Z,zo) together with a small, non-trivial, isometric
Fraction.

This implies by Rips' theory [Be-F] that F would split over a virtually abelian subgroup
which is impossible by the hypothesis. QED.

Remark. - The above compactification of the space Def{G,M(n)) of discrete faithful
representations by R-trees was first found in dimensions 2 and 3 by J. Morgan and
P. Shalen [MS] and in arbitrary dimension n by J. Morgan [Mo2] (see also the discussion
in the book [Ot]).

b) Let us suppose to the contrary that there is an infinite sequence of automorphisms (pm
of G representing distinct elements of the outer-automorphism group Out(G). We will
repeat the above argument for the sequence of discrete representations:

(f)m '- G —> G C M(n) {m G N). Let us put again dm = min max d^(x^ <^m(^)(^)),
a'GH71 KK^

where G is generated by {^i,...,^}.
Similarly to a), if dm —^ oo we get a small, isometric, non-trivial G-action on an R-tree.

Then again by Rips' theory this is impossible since our group G does not split over a
virtually abelian subgroup. Hence, <f)m has a converging subsequence which we denote
by the same letter. By applying once more Lemma 3.2, we have a point XQ G H^ and
a sequence (am) C G such that

dH-^O^m^m^)^1^)) < R < +00.

This means that after passing to a further subsequence the sequence Omk ^m^ aml converges
to a discrete faithful representation (f) : G —^ M(n}.
All elements Q'mfc^mfcto)0^ are m G, whose discreteness allows one to conclude that

3fcoVfc > ko Om^mk^ = ̂ ^o ̂ o ̂ L ? for a11 i G { l^••^}•

Consequently, <^ (^) = ())m^ (^m, • Q i ' ̂ ), where ̂  = a^ • a^ G G (k <E N),
which implies that (^m^ a^ ^mk represent the same element of Out(G)(k > ko)
contradicting to our choice. The Lemma is proved. QED. D

LEMMA 3.4. - Let G C M(n) be a non-elementary Kleinian group, and (p : G —> T
an isomorphism onto a geometrically finite Kleinian group F C M{n) -which splits over
none of its virtually abelian subgroup (including the trivial one). Then aGa~1 C G implies
aGa~1 = G for any a G M(n).

Proof. - Suppose not. Then we have aGa~1 < G, where the symbol < denotes proper
embedding.

Put Gn = o^Ga-71 (n e Z). Then we obtain

G,DG,+i, o^^G (neZ). (2)
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336 K. OHSHIKA AND L. POTYAGAILO

Since Gn does not split over a virtually abelian subgroup by Lemma 3.3 (a), it follows
that all but finitely many Gn are conjugate by elements of M(n). Therefore for some
sequence (m^) C Z one has
Gm, = 7m, Gm,, 7^ 7^ e G, or else a^Ga-^ = 7m^mfcoGa-mfeo7^ (fc e N).

Therefore G = /3G/3-1, where /3 = a-^^o^o e M(n) for each fc e N. (3)
Since the assertion of Lemma 3.3.b is purely algebraic, it remains valid for groups
isomorphic to geometrically finite ones, so we may apply it to the group G.

Thus,
3 ^ G G , 3peN 0P^(3-P=^-1 for all 7 G G.

We have that for any 7 G G : /3i7/3]~1 = 7, where /?i = ^-1/3P. Hence either /3i = id
and ^ == /?', or the group G leaves invariant the fixed point set of /?i e M(n).

Since G is non-elementary, the latter case may happen only if /?i is elliptic and G
keeps some hyperbolic subspace H^ C H" (r < n) invariant. Therefore, we can repeat
the previous argument for the action of G on HT. This process will end for some r > 2
since, otherwise, for r = 2, we would get a Fuchsian group G C PSL(2^ R) splitting over
Z which is impossible by the hypothesis.

Thus, without loss of generality we may assume that G is not leaving any geodesic
subspace invariant and ^ = fP G G.

By using the above expression (3) for /3, we get Il^^(a~rnk^mkarnko) = 7 € G.
Since 7^ € G and 0^7^ a"* G G^ Vt € Z we obtain after straightforward calculations
that
^•(m^-m^ ^ ̂  ̂ ^ [ ^ ^^ ̂  _ ̂ ^ _ 5^^ for any fixed k e N.

Ks<p

Hence, o^'^o-^) = a^Qa~1 for some 70 <E G and, so o^^o-^) = 70 e G which
is impossible by (2).
Thus the Lemma is proved. QED. D

Proof of Proposition 3.1. - Suppose that we a have a monomorphism ^ : G —> G such
that Gi = ^(G) C G. By iterating this map we get Gm = ̂ (G) C Gm-i (rn <E N). Then
by applying Lemma 3.3.a to groups Gm (which do not split over virtually abelian subgroups
either) we get an infinite sequence r^ e N of indices such that Gm+rk = 9kGm9k1 ^ere
gk G G and m C N. Since Gy^-^ C Gm we must have Gm+rk = ^m by Lemma 3.4.

It follows that ^(G) = G which implies that '0(G) = G. Thus the Proposition is
proved. QED. D

4. Examples

We provide below different types of examples to show that all conditions of Theorem 1.1
are essential.

PROPOSITION. - For any natural numbers n and k such that n > 3 and 0 < k < n -1, there
exists a non-elementary, torsion-free, geometrically finite, freely indecomposable Kleinian
group r C Iso^y ^ M{n) which splits as H N N-extension over an abelian parabolic
subgroup of rank k and which is not co-Hopf.

Remark, - Such examples are impossible for word-hyperbolic groups by the result of [Se].
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Proof. - We will construct a group F acting on EP which splits over an abelian
subgroup H of rank k = n - 2 {n > 3) contained with infinite index in some bigger
parabolic subgroup of T. To get all other values of n— k, it is enough to extend the action
of r in the hyperbolic space H^ where m > n.

We start with a non-uniform lattice F ' C J.so+H71"1 having at least one maximal
parabolic subgroup H C F ' of rank k = n — 2 (in particular F' can be taken as an
arithmetic lattice).

Consider the ball model of the hyperbolic space B = B""1 = [x E TU1'1 : \x\ < 1}
and the action of F ' on B, and on its exterior ext(B) = R \ B as well using the
reflection with respect to QB. Let p = Fix(H) be the fixed point of the group H and
S C ext(B) a precisely invariant horosphere under H in F ' . Denote by r G M(n) the
reflection with respect to S and put F ==< F ^ F " > where F" = rF'r"1. The group H
acts cocompactly on E. We also have Vp e F' \ H gE n S = 0 (% = 1,2) and the same
for F " . Therefore we can apply Maskit Combination I theorem [Ma] to conclude that the
group F C M(n) is Kleinian and is isomorphic to F ' ^ n F " .

Take now a small horoball D\ C B which is precisely invariant under H in F". Then
r(Di) = D^ is also precisely invariant under H in F'/. Consider the parabolic element
7 = T o n where TI is the reflection with respect to OD^. The element 7 belongs to
the centre Z(.ff) of Jf in M(n). To see this, we just send the point p to the infinity so
that the sphere 9B = S^~2 coincides with the hyperplane R/1 C R71 . We have that
^(x) = x 4- e^-i where e^-i is a vector orthogonal to R71"2. The group ff is generated
by elements < fai , . . . , hn-2 > so that hi{x) = ri(x) + bi where ri G 0(n — 2). Thus, we
conclude that all r^ commute with 7, and so do hi (i G {1, ...,n — 2}).

Let us now show that each closed ball Di(i = 1,2) is precisely invariant under H in
F. We shall check this, say, for Di.

Let g € F \ H so that g = g^ ' gn-i ' ... • ^i, where either gi e F ' \ H, g^ e F " \ H
or ^ € F" \ H, ^+1 6 F' \ ff.

If ^i € F " \ H, then ^i(Pi) C ext(B), and it thus follows easily that ^(2^i) C ext(B).
This implies that if g(D^) n'Di / 0 then ^(I?i) n^Di = {p}, so that g(p) = p and g G ff.

If ^i e F ' \H then ^ (^Di) C B\~D^ and ^2 • gi(Di) C ext(B). We repeat now the
previous argument to show that ^(J^i)njDi = 0 .

We can now apply Maskit Combination II theorem to affirm that the group
r =< F,7|7/i7~1 = fa, h € H > is Kleinian and is isomorphic to the HNN-exiension
F^H [Ma].

Indeed, 7 maps the open ball Pi to the exterior of the closed ball D^. Therefore; the pair
(2?i, D^) is precisely invariant under (H, H) in the group G, hence D^ and Ds are jointly
7-blocked closed topological discs in the terminology of [Ma], and our assertion follows.

Let us define a map (f) : F —^ r by putting (f)\p = id and (^(7) = 72. It is now
straightforward to see that (f) is an isomorphism onto Fi =< F,72 > due to the relation
7^7-2 = h(h € H).

Let us prove that 7 ^ Fi, which follows from the consideration of normal forms in the
H N N-extension. Indeed, if 7 G Fi, then it can be written under the following normal form:
7211 • 9k, ' 7212 • ^2 • • • • • 721' • 9k^ where if ij, < 0 and ̂  G ̂  then %fc+i < 0; (*)
if if, > 0 and g^ C H, then i^i > 0.
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It is well-known (see e.g. [Ma]) that such a normal form cannot be the identity unless
it is trivial. By multiplying the above normal form (*) by 7~1 we obtain now a normal
form in F, not equal to the identity either, meaning that 7 ^ i\.

The group i\ is a proper subgroup of F isomorphic to itself. The Proposition is proved.
QED. D

Remark. - In dimension 3 one can construct such examples by using the hyperbolization
theorem.

PROPOSITION 4.2 (Example 2). - There exists a geometrically finite, torsion-free, non-
elementary, freely indecomposable Kleinian group G C M(n} which contains infinitely
many conjugacy classes of subgroups isomorphic to a fixed non-elementary, freely
indecomposable subgroup F C G. In particular, if n = 3 then we can take F to be
isomorphic to 71-1 (5^), where Sg is closed surface of genus g > 2.

Proof. - The idea of this example in dimension n = 3 is essentially due to W.Thurston
(see 8.8.6 in [Thi]) we will clarify and generalize it to arbitrary dimension.

We start from the following lemma.

LEMMA 4.3. - Suppose B = A^n = {A, b : bHb~1 = H} is a HNN extension of the
group A over the subgroup H. IfF C A is a subgroup which splits over the same subgroup
H as amalgamated free product F = F ' *^ F " such that F ' / H and F " -^ H then the
groups Fn = F ' ^n bnF"b~n (n = 1 ,2 ,3 , . . . ) are mutually non-conjugate in B.

Proof. ({) - Let B act on the Bass-Serre tree Q corresponding to the splitting B = A^n-
We can write each element / <E Fn as / = ao^a^b^a^a^b^... a^p. Since both
splittings of B and Fn are over the same subgroup H we can affirm that a^s € F ' \ H
and a2s+i C F " \ H. We note that each term like 671^s+i^"^ gives a contribution of 2n
to the translation length of the element /. Therefore the set of all translation lengths of
the elements of Fn is 2n • N. On the other hand this set is invariant under conjugation
in B so we conclude that all subgroups Fn are mutually non-conjugate. Thus the Lemma
is proved. QED.

To finish the proof of the Proposition we shall apply lemma 4.3 to the group F = F^n
obtained in Proposition 4.1 (by putting F = A). Since F = F ' *^ F " , we obtain again
that all the groups Fn = F ' ^n (7nF//7-r^) are not conjugate in the whole group F (in
the notations of Proposition 4.1).

The Proposition is proved. QED. D

5. Proper conjugation of topologically tame Kleinian groups

In this section, we shall prove the latter half of Theorem 1.3.
Let G c PSL^C be a finitely generated, torsion-free, non-elementary, topologically

tame Kleinian group. Seeking a contradiction, we suppose that there is an a G PSL'zC
such that aGa~1 is contained in G as a proper subgroup.

(!) This elegant "arboreal" proof was suggested to us by the referee.
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Since H^aGa"'1) is isometric to H^/G, the group aGa~1 is also topologically
tame. Let L : aGa~1 —^ G be the inclusion. Associated with L, there is a covering
p : Vi^ !{aGa~1} —> H3/^. Since i takes parabolics in o^Ga"1 to those of G, the covering
map p induces one between the non-cuspidal parts p : (H^/aGa'^o —)> (H^/G^o. (Note
that we abuse the notation slightly and use the same symbol p as the original covering.)
By proving that p is a homeomorphism, we shall prove that aGa~1 is equal to G, and
get a contradiction. Let (G,9oG) be a relative core of (H^/G^, and (Gi,<9Gi) that of
(H^aGa-^o.

Let e be a geometrically infinite end of (H^/aGa"1^. Let So be a frontier component
of GI facing e. Since aGa~1 is topologically tame, the end e has a neighbourhood
homeomorphic to 5o x R. By Canary's covering theorem ([Ca]), if we take a sufficiently
small neighbourhood E of e, which we can assume to be homeomorphic to So x R, the
restriction p\E is a finite-sheeted covering to its image, and the image is a neighbourhood
of a geometrically infinite end of (fi3/G)o-

Before considering the general case, let us consider a special case when all the ends
of {'H.3/G)o (hence also all the ends of (H^aGa-^o) are geometrically infinite. In this
case, since each end has a neighbourhood in which p is a finite-sheeted, the covering p
itself is also finite-sheeted. Since the number of ends of (Vi^/aGa'^o is equal to that of
(tl3/G)o, this implies that p is a homeomorphism unless there is a compact surface S such
that the pair (G,<9oG) is homeomorphic as a pair to (S x J,<9S x J), or (SxJ,<9S x I )
if E is non-orientable. In these exceptional cases, by considering the genus of S, we can
see that p must be a homeomorphism. Thus we have completed the proof of the theorem
in this special case.

Now allow {'H.3/G)o to have also a geometrically finite end. As we assumed aGa~1

is a proper subgroup of G, we have a proper descending sequence G > aGa~1 >
o^Ga-2 > • • •. Let Gn denote o^Ga-71, and pn : H^G^+i -> H^/Gn be the covering
projection associated with the inclusion. (Again we use the same symbol pn also to
denote the induced covering from (H^G^+^o to (H^/GJo.) Associated with the
isomorphism from Gn to Gn+i which the conjugation by a induces, there is an isometry
kn : fl^/Gn -> H^G^+i. Let Pn-i denote poo. • 'opn-i and Kn-i denote f c ^ _ i o . . .ofco.
Let (Cn,9oCn) be a relative core of (H^/GJo, which we take to be Kn-i(C,9oC).

Let e be a geometrically finite end of (tl3/G)o' Let S be the frontier component of the
convex core of H^/G whose restriction to (E^/G^ is So facing e. Let fn : S -^ H^/G be
a pleated surface defined by fn = Pn-ioKn-i\S (= po°Pi°' • ^pn-i°kn-i°- • .ofciofco|5) :
S —^ H^G. We shall prove {fn} converges uniformly on every compact set of S after
taking a subsequence.

Since fn maps cusps of S to those of H^/G, we have only to prove that the images
of the non-cuspidal part of S remain to be contained in a fixed compact subset of H^/G.
(Refer to Canary-Epstein-Green [CEG].) As the isometry type of fn(S), with respect to
the path metrics induced from the hyperbolic metric on H^/G, is independent of n, we
can assume that fn{S) intersects the cuspidal part of H^/G only at its own cuspidal part.
Furthermore by the same reason, it is sufficient to prove that fn(So) does not tend to an
end (after taking a subsequence).

Suppose, on the contrary, that {fn(So)} tends to an end e' of (H^/G^. This implies, in
particular, that the end e1 is geometrically infinite. Note that the number of the geometrically
infinite ends of (H^/G^o is the same as that of (H3/^^ because these two manifolds
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are isometric. Since every geometrically infinite end of (H^/G^o has a neighbourhood
which finitely covers that of (H3/^?^ by Pn-i, we have an end e^ of (H^/Gy^o with
a neighbourhood ^parametrized by Sy, x R for a compact surface T.n, which finitely
covers a neighbourhood of e ' .

Taking sufficiently large n and t € R, we can see that there are finite-sheeted coverings
q : So —^ SQ and p : S^ —» S^ such that fn o g(5o) is homotopic to Pn-i(p(J^n) x {^}).
because of the following. Since e' is topologically tame, there is a compact surface Sf such
that e' has a neighbourhood homeomorphic to S ' x R, which we denote itself by 5" x R
by slightly abusing the notation. As Pn-i\En is finite-sheeted covering to its image, for
sufficiently large t G R, the restriction Pn-i(^n x {t}) is homotopic to a finite-sheeted
covering of 5" x {pt.}. On the other hand, if we take a sufficiently large n, the surface
fn(So) is contained in S ' x R, and since fn maps cusps to cusps, the surface fn(So) is
homotopic to a finite-sheeted covering of 5" x {pt.} as we can see by using the fact that
both So and 6" are compact and the boundary of So is mapped into that of S ' x R by fn'
Thus we have proved what we claimed in the first sentence of this paragraph.

By lifting fn o q(So), Pn-i(p(S^) x {t}), and a homotopy between them to (H^/Gn^o,
we can see that Kn-i o q{So) and p(En) x {t} are homotopic. Recall that since Kn-i is
an isometry, Kn-i(So) is a frontier component of the convex core of (H^/Gy^o facing a
geometrically finite end, in particular it is homotopic to a frontier component of a relative
core Cn of (H^/Gy^o. Thus in this situation, finite-sheeted coverings of two frontier
components of a relative Cn, one facing a geometrically finite end, i.e., Kn-i(So), and
the other facing the end e^, which we shall denote by En, are homotopic. (Note that for
a topologically tame end whose end is parametrized by X x R and which faces a frontier
component X' of a core, X and X' are homotopic. This can be proved, for instance, by
using the uniqueness of core proved by McCullough-Miller-Swarup [MMS].) Obviously
this is possible only when Cn has exactly two frontier components. Furthermore even
when Cn has two frontier components, by considering a relative version of characteristic
compression body defined by Bonahon [Bo] as we shall see in the following, we can see
that this is possible only when the frontier components of Cn are incompressible, which
implies that both p(So) and g(S^) x {t} are incompressible.

Suppose, on the contrary, that Cn has a compressible frontier component, say that En is
compressible. Consider a "relative" characteristic compression body Wn of Cn containing
En as the exterior boundary, that is, the union of En and disjoint regular neighbourhoods
of non-parallel compression discs for En. Then, since the surfaces Kn-i(So) and En
are separated by the interior boundary of Wn, which is incompressible, and the groups
i^7r^(Kn-i(So)) and %^7ri(2n) are commensurable, it follows that the group i^7r-t(En) is
commensurable with the fundamental group of a component of the interior boundary of
Wn (where ^ is the induced map on the fundamental groups by the inclusion). This is a
contradiction, and we have proved that the frontier components of Cn are incompressible.

As p(Sn) x W is homotopic to a finite-sheeted covering of En, let p ' : En —> En
denote a covering homotopic to p(^n) x {t}' Take a covering Cn of Cn associated with
^(71-1(60)) == P#(^i(En)). Then both q and p ' are lifted to Cn as homeomorphisms into
the boundary of Cn, whose image we shall denote by So and En. In Cn, the surfaces So
and En are homotopic, hence bound a trivial J-bundle between them. Since 5'o and En lie
on the boundary, it follows that Cn itself is homeomorphic to En x I . This implies that
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Cn is a trivial J-bundle over a frontier component since it is covered by a trivial J-bundle
and has two frontier components. (Refer, for instance, Hempel [He].)

Thus in this case, (H^/G^o is homeomorphic to S^ x R, as Fn is topologically tame.
As a neighbourhood of an end of (H^/G^o carries all the elements of the fundamental
group then, the fact that there is a geometrically infinite end whose neighbourhood finitely
covers its image implies that Pn-i is itself a finite-sheeted covering. Since both (H^/Gy^o
and (H^/G^o are homeomorphic to S^ x R, the covering is a homeomorphism and
Gn = G. This contradicts our assumption. Thus we have proved that {fn} must converge
after taking a subsequence.

Let {fn,} be a convergent subsequence of {/n}. Then there exists an integer jo such that
the map fn and fn., are homotopic if j > j ' > jo. Let T be the frontier component of C^
corresponding to So, i.e., which faces the same end as So does. Let Tn = Kn-i(T), which
is a frontier component of the relative core Cn. Since fn, and fn., are homotopic, we can
see that so are pn., o " ' opn,-i(Tn,} and Tn., by lifting a homotopy to H3/^/.. Then
it follows that if j > j ' > jo, then pn., o ' " o pn.-i maps a subgroup of 7Ti(C^.) ^ Gn,
corresponding to 7ri(T^.) to that of Tri(Cn^) corresponding to 71-1 (T^.,).

Take another geometrically finite end of H^/G facing a frontier component T ' of C
and repeat the same argument. Let T^ denote Kn-i^T'). Then we can see that if we
take a subsequence {nj of {n^}, there exists a lo such that if I > (' > /o ^ Jo. then
Pni, ° • • • °Pm-i maps subgroups of 7Ti(CnJ corresponding to Tri(T^) and 7ri(T^) to
those of Ti-i (C^,) corresponding to 71-1 (T^,) and 71-1 (T^) respectively.

We repeat the same for all the geometrically finite ends of H3/^, taking geometrically
finite ends one by one, and choosing a subsequence each time. Then we obtain a
subsequence {nj of {n} and an %o such that if i > i' > io, then for every frontier
component F facing a geometrically finite end and Fn = kn(F), the covering map
pn., o . . . opn^-i maps a subgroup of 7Ti(CnJ ^ Gn, corresponding to 71-1 (.FnJ to that of
^i{Cn./) corresponding to 71-1 (F^.,). Combining this with the fact that the restriction of
pn., o . . . °Pn,-i to a neighbourhood of each geometrically infinite end is a finitely-sheeted
covering to its image, and recalling that the cusps are preserved by this map, we can
see that pn., o . • . ° Pm-i can be homotoped to a map qi^i whose restriction to Cn, is a
covering map to C^, by Theorem 13.6 in Hempel [He].

Since both Cn, and Cn., are compact and their frontier components have negative
Euler numbers, counting the number of the frontier components or considering the Euler
number as before, we can see that qi,i'\Cm must be a homeomorphism. It follows that
pn., o . . . o pm-i induces an isomorphism between the fundamental groups, which means
that Gm = G n , ' This contradicts our assumption. Thus we have completed the proof
of (b) in Theorem 1.3.
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