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EXISTENCE AND L∞ ESTIMATES OF SOME MOUNTAIN-PASS
TYPE SOLUTIONS

José Maria Gomes1

Abstract. We prove the existence of a positive solution to the BVP

(Φ(t)u′(t))′ = f(t, u(t)), u′(0) = u(1) = 0,

imposing some conditions on Φ and f . In particular, we assume Φ(t)f(t, u) to be decreasing in t. Our
method combines variational and topological arguments and can be applied to some elliptic problems
in annular domains. An L∞ bound for the solution is provided by the L∞ norm of any test function
with negative energy.
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1. Introduction

Early since its publication in 1973, the Mountain Pass Theorem of Ambrosetti and Rabinowitz [10] has
provided existence and multiplicity results in Differential Equations as well as a comprehensive perspective of
variational methods. The characterization of Mountain Pass type solutions became itself a subject of interest.
In [5], the multi-peak shape of the solutions to the Dirichlet problem

ε2Δu − u + f(u) = 0 in Ω ; u > 0 in Ω and u = 0 in Ω,

is established as ε tends to zero. In the same spirit, Bonheure et al. [3] showed that, for a superlinear elliptic
problem with sign-changing weight, the major contribution of volume of mountain pass type solutions should
concentrate in prescribed regions of the domain as a certain coefficient μ affecting the negative part of the
non-linearity tends to +∞. In the above examples the role played by a parameter as it approaches some limit
is crucial. In [6] the author proved the existence of positive Mountain Pass type solutions to a class of singular
differential equations with an increasing friction term and Dirichlet boundary conditions. In addition, a bound
for the L∞ norm of the solution was provided by the L∞ norm of any regular function with negative energy.
Our method combined arguments in the direct calculus of variations with phase plane techniques. In fact,
pursuing the nature of the optimal min-max path connecting the origin to some function where the underlying
functional is negative, we were lead to consider a family of minimizers of truncated functionals containing,

Keywords and phrases. Second order singular differential equation, variational methods, Mountain Pass Theorem.
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as a particular element, a classical solution to our boundary value problem (BVP). In this work we approach
with similar arguments a more general class of equations that include some elliptic problems in an annulus.
More precisely, we will be interested in positive solutions to

(Φ(t)u′(t))′ + f(t, u(t)) = 0, (1.1)

u′(0) = u(1) = 0. (1.2)

By positive solution we mean a C2 function u verifying the above equalities and such that u(t) > 0 for all
t ∈ [0, 1[. Similar problems have been considered in [1,2,8,9].

2. Variational setting and results

We begin by listing the assumptions on the terms of equations (1.1)–(1.2).
Φ ∈ C1([0, 1]) is strictly positive and we choose m, m > 0 such that, for all t ∈ ]0, 1[,

0 < m ≤ Φ(t) ≤ m. (2.1)

We assume that
f(t, u)Φ(t) is decreasing in t for every u ≥ 0, (2.2)

f : [0, 1]× [0, +∞[ �→ R is locally Lipschitz in the variable u, (2.3)

and, for some δ > 0,

f(t, u) = 0 ∀(t, u) ∈ [0, 1] × [0, δ] and f(t, u) > 0 in [0, 1]× ]δ, +∞[. (2.4)

The technical assumption (2.4) will be relaxed subsequently to a sub-linear growth near zero. Since we are
looking for positive solutions we assume throughout the paper that f is extended by zero in [0, 1]× ]−∞, 0[. The
reader may easily verify that any non-trivial solution to (1.1)–(1.2) with this extension – which we will still
denote by f – should be positive in [0, 1[ therefore being a solution of the initial problem. We shall consider the
Sobolev space H ⊂ H1(]0, 1[) consisting in absolutely continuous functions u such that

‖u‖2 :=
∫ 1

0

u′2(t) dt < ∞, u(1) = 0.

In the sequel we will also refer
‖u‖∞ := sup{u(t) : t ∈ [0, 1]},

the natural norm on the space of continuous functions C([0, 1]).
Note that problem (1.1)–(1.2) may be viewed as the Euler-Lagrange equation of the functional J : H → R

defined by:

J(u) :=
1
2

∫ 1

0

Φ(t)u′2(t) dt −
∫ 1

0

F (t, u(t)) dt,

where F (t, u) =
∫ u

0 f(t, s)ds. We will suppose that J satisfies the fundamental property:

∃h ∈ H : J(h) < 0. (2.5)

Remark 2.1. Property (2.5) can be easily verified if, for some ε > 0, f(t, u) ≥ εuα − C for all u ≥ 0 and
t ∈ [0, 1], where α > 1 and C > 0.
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We denote M = ‖h‖∞. Since
∀w ∈ H, ‖w‖∞ ≤ δ ⇒ J(w) ≥ 0,

(where δ was defined in (2.4)) we have M > δ. For all M ∈ [
δ, M

]
, consider the subset of H

CM = {u ∈ H : maxu ≥ M},

and the truncated functional JM : H → R,

JM (u) =
1
2

∫ 1

0

Φ(t)u′2(t) dt −
∫ 1

0

FM (t, u(t)) dt

where

FM (u) =

⎧⎨
⎩

F (t, u) if u ≤ M

F (t, M) if u > M.

Remark 2.2. From the compact injection of H1(]0, 1[) in C([0, 1]) we conclude that CM is weakly sequentially
closed and that JM is coercive and weakly lower semi-continuous.

We will be interested in the family of minimizers of JM in CM . By Remark 2.2 we know that a minimizer
exists for every M ∈ [

δ, M
]
. We also know that:

Lemma 2.3. Let u be a minimizer of JM in CM . Then

max
[0,1]

u = M and min
[0,1]

u = 0.

Proof. Given w ∈ CM , let
w(t) = max{0, min{w(t), M}}·

Of course, w ∈ H ∩ CM . If w �= w we have,

∫ 1

0

Φ(t)w′2(t) dt <

∫ 1

0

Φ(t)w′2(t) dt

and ∫ 1

0

FM (t, w(t)) dt =
∫ 1

0

FM (t, w(t)) dt.

Then JM (w) < JM (w) which is absurd and the lemma follows. �

Given M ∈ [
δ, M

]
, we define two types of minimizers of JM in CM :

Definition 2.4. Let u be a minimizer of JM in CM . We say that u is a minimizer of type A if

u ∈ C1([0, 1]), u(0) = M, u(t) < M ∀t ∈ ]0, 1].

We say that u is a minimizer of type B if, for some t̄ ≥ 0, we have

u ∈ C1([0, 1]), u(t) = M in [0, t̄] , u(t) < M in ]t̄, 1] and u′(0) = 0.

Remark 2.5. If u is a minimizer of JM in CM then u satisfies equation (1.1) in the open set U := u−1 (]−∞, M [).
In fact, let v be a regular function with support strictly contained in U . Then, for sufficiently small s, we have,

u + sv ∈ CM and u(t) + sv(t) < M ∀t ∈ supp(v).
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Since u is a minimizer, we conclude

lim
s→0

JM (u + sv) − JM (u)
s

= lim
s→0

J(u + sv) − J(u)
s

=
∫ 1

0

Φ(t)u′(t)v′(t) dt −
∫ 1

0

f(t, u(t))v(t) dt = 0,

and the assertion follows. In particular, if u is a minimizer of type A (B), then u satisfies (1.1) in ]0, 1[ (]t̄, 1[).
If u is simultaneously of type A and B then it is a classical solution to (1.1)–(1.2).

Lemma 2.6. Let u be a minimizer of JM in CM . Then u is of type A or B (possibly both).

Proof. Let
t̄ := sup{t ∈ [0, 1] : u(t) = M}·

Since H ⊂ C([0, 1]), we have u ( t̄ ) = M and we may consider w ∈ H

w(t) :=

⎧⎨
⎩

M if t ≤ t̄

u(t) if t > t̄.

Moreover, ∫ 1

0

FM (t, w(t)) dt ≥
∫ 1

0

FM (t, u(t)) dt,

and ∫ 1

0

Φ(t)w′2(t) dt ≤
∫ 1

0

Φ(t)u′2(t) dt,

the last inequality being strict if w �= u in [ 0, t̄ ]. Since JM (u) ≤ JM (w), we conclude u ≡ w. If t̄ = 0, by
Remark 2.5, integrating equation (1.1) between t and a fixed t0 ∈ ]0, 1[, we conclude u ∈ C1([0, 1]), being
therefore of type A.

Claim. If t̄ > 0 then u is of type B.

By Remark 2.5, u ∈ C1([t̄, 1]) and
u′(t̄+) := lim

t→t̄ +
u′(t)

is well defined, necessarily non-positive. Suppose, in view of a contradiction, that u′(t̄+) < 0. Choose θ, ε > 0
such that u′(t) ≤ −θ for every t ∈ ]t̄, t̄ + ε[ and, for ε < t̄/2, define the perturbation

vε(t) = −(|t − t̄| − ε)−. (2.6)

We assert that, for sufficiently small ε,

lim
s→0

JM (u + svε) − JM (u)
s

< 0. (2.7)

If (2.7) holds, for some s∗ > 0 close to zero, we have u+s∗vε ∈ CM (recall that, by our choice of ε, (u+s∗vε)(0) =
M) and JM (u + s∗vε) < JM (u), a contradiction. In fact, Lemma 2.3 and (2.6) imply u + s∗vε ≤ M . Therefore

lim
s→0

JM (u + svε) − JM (u)
s

=
∫ 1

0

Φ(t)u′(t)v′ε(t) dt −
∫ 1

0

f(t, u(t))vε(t) dt

≤ −θ

∫ t̄+ε

t̄

Φ(t) dt −
∫ t̄+ε

t̄−ε

f(t, u(t))vε(t) dt.
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Observe that, by (2.1),

− θ

∫ t̄+ε

t̄

Φ(t) dt ≤ −mθε (2.8)

and, for some C > 0 depending only on f ,

∫ t̄+ε

t̄−ε

f(t, u(t))vε(t) dt ≥ −Cε2. (2.9)

Therefore, by (2.8) and (2.9), we have

lim
s→0

JM (u + svε) − JM (u)
s

≤ −mθε + Cε2,

and the claim follows by taking ε sufficiently small. �

In the next lemma we prove a necessary ordering relation between type A and type B minimizers of JM

in CM .

Lemma 2.7. Suppose that for a certain M ∈ ]
0, M

]
there exist minimizers u and v of JM in CM such that u

is of type A and v is of type B. Then u(t) < v(t) for all t ∈ ]0, 1[ or else u is a classical solution to (1.1)–(1.2).

Proof. Suppose that u is not a solution to (1.1)–(1.2). By Remark 2.5, we have u′(0) < 0. Then u(t) < v(t) for
all t ∈ ]0, ε[ provided ε is sufficiently small. Assume, in view of a contradiction, the existence of t∗ ∈ ]0, 1[ such
that

u(t∗) = v(t∗) < M and u′(t∗) > v′(t∗),

(the case u′(t∗) = v′(t∗) is excluded by the Existence and Uniqueness Theorem using (2.3)). Moreover, suppose
that

1
2

∫ 1

t∗
Φ(t)u′2(t) dt −

∫ 1

t∗
FM (t, u(t)) dt ≤ 1

2

∫ 1

t∗
Φ(t)v′2(t) dt −

∫ 1

t∗
FM (t, v(t)) dt, (2.10)

and let

v∗(t) =

⎧⎨
⎩

v(t) if 0 ≤ t ≤ t∗

u(t) if t∗ < t ≤ 1.

Then v∗ ∈ H and
JM (v∗) ≤ JM (v),

i.e. v∗ is also a minimizer of JM in CM . But this is absurd since v∗ is not differentiable at t∗. In case where,
instead of (2.10), we had the reversed inequality we would get the same contradiction by considering:

u∗(t) =

⎧⎨
⎩

u(t) if 0 ≤ t ≤ t∗

v(t) if t∗ < t ≤ 1.
�

In the next lemma we establish an important fact concerning the coexistence of type A and type B minimizers
at a same truncating level.

Lemma 2.8. Assume that conditions (2.1), (2.2) and (2.3) hold. Suppose that for a certain M ∈ ]
0, M

]
there

exist minimizers u and v of JM in CM such that u is of type A and v is of type B. Then the minimizer u is a
classical solution to (1.1)–(1.2).
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Proof. Let us prove that u admits an inverse function. By Remark 2.5, we may write

u′(t) =
1

φ(t)

(
φ(0)u′(0) −

∫ t

0

f(s, u(s)) ds

)
.

Note that, if u(0) ≤ δ, then u′(0) < 0 (in case u′(0) = 0 we would conclude from (2.4), Lem. 2.3 and Rem. 2.5
that u ≡ u(0), contradicting the assumption that u ∈ H). If u(0) > δ, (2.4) and Remark 2.5 imply u′(t) < 0
for all t ∈ ]0, 1]. In both cases we conclude that u′(t) < 0 in ]0, 1]. We may therefore define

tA : [0, M ] → [0, 1], u ◦ tA = I, tA ∈ C([0, M ]) ∩ C1([0, M [),

where I is the identity function. Using similar arguments we may define an inverse function for v(t)

tB : [0, M ] → [t̄, 1], v ◦ tB = I, tB ∈ C([0, M ]) ∩ C1([0, M [).

We suppose, in view of a contradiction, that u is not a solution to (1.1)–(1.2). By Lemma 2.7 we have

tA(u) ≤ tB(u) ∀u ∈ [0, M ].

Consider1

ZA : [0, M ] → R, u �→ Φ(tA(u))u′(tA(u)),
and

ZB : [0, M ] → R, v �→ Φ(tB(v))u′(tB(v)).
Since u′(0) < 0, (2.1) implies

ZA(M) < 0 = ZB(M). (2.11)
Note that ZA and ZB are negative in [0, M [. By (1.1), we may write, for u, v ∈ [0, M [,

−dZA

du

du

dtA
= f(tA(u), u) and − dZB

dv

dv

dtB
= f(tB(v), v)

or
dZA

du
= −Φ(tA(u))

ZA
f(tA(u), u) and

dZB

dv
= −Φ(tB(v))

ZB
f(tB(v), v). (2.12)

Claim. Assumption (2.11) implies that ZA(u) < ZB(u) for all u ∈ [0, M ].

We have ZA(0) �= ZB(0). In fact, if ZA(0) = ZB(0), then u′(1) = v′(1). Since u, v ∈ H , the Existence and
Uniqueness Theorem implies u(t) = v(t) for all t ∈ [t̄, 1]. In particular, (2.11) fails for u = M .

Suppose that, for some u∗ ∈ ]0, M [, we had

ZA(u∗) = ZB(u∗).

We choose u∗ to be the maximum point satisfying the previous equality. Then

dZA

du
(u∗) ≤ dZB

du
(u∗). (2.13)

The equality of the derivatives is excluded by the Existence and Uniqueness Theorem applied to (2.12) and
the fact that ZA(0) �= ZB(0). In view of (2.12) and assumption (2.2) (recalling ZA(u∗) = ZB(u∗) < 0 and
tB(u∗) ≥ tA(u∗)) we have

dZA

du
(u∗) >

dZB

du
(u∗),

contradicting (2.13) and the claim is proved.

1 This change of variables is adapted from [7].
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In particular, if u is not a classical solution to (1.1)–(1.2), then ZA(0) < ZB(0) or

u′(1) < v′(1) < 0.

We conclude the existence of t∗ < 1 such that u(t∗) > v(t∗), a contradiction with Lemma 2.7. The proof is
complete. �

We are now in a position to prove:

Proposition 2.9. Assume that conditions (2.1), (2.2), (2.3), (2.4) and (2.5) hold. Then there exists a positive
solution u to (1.1)–(1.2) such that

‖u‖∞ ≤ ‖h‖∞
where h was defined in (2.5).

Proof. Recalling our notation M = ‖h‖∞, let I =
[
δ, M

]
and consider the following subsets IA and IB :

IA (IB) = {M ∈ [
δ, M

]
: JM has a minimizer in CM of type A (B)}·

By Lemma 2.6 we have I = IA ∪ IB. We assert that IA and IB are non-empty. In fact δ ∈ IA since, as noticed
in Lemma 2.8, if u is a minimizer of Jδ in Cδ and u′(0) = 0 then u ≡ δ, which is absurd.

Claim 1. IB is non-empty.

Suppose that M /∈ IB . In this case, let u be a type A minimizer of JM in CM with u′(0) < 0. Let

f̄(t, u) := f(t, min{u, u(t)}).

Define, for u ∈ H ,

J̄(u) :=
1
2

∫ 1

0

φ(t)u′2(t) dt −
∫ 1

0

F (t, u(t)) dt,

where F (t, u) =
∫ u

0 f̄(t, s)ds. By (2.5) we have J̄(u) < 0. Also J̄ is coercive and lower semi-continuous in H

and therefore attains a minimum at some function w ∈ H such that J̄(w) < 0. In fact

0 < w(t) < u(t) ∀t ∈ [0, 1[,

(0 and u are a pair of well ordered lower and upper solutions respectively) and w is a classical solution to (1.1)–
(1.2) (see for instance [4], Chap. 4, for details). In particular, ‖w‖∞ ∈ IB .

Claim 2. IA and IB are closed subsets of I.

Let (Mn) be a sequence in IA (IB) such that Mn → M . Let un be a corresponding sequence of type A (B)
minimizers of JMn in CMn . Since (un) is bounded in H we may extract a weakly convergent subsequence (still
denoted by un) such that

un ⇀ u in H and un → u in C([0, 1]).
We assert that u is a minimizer of JM in CM . In fact, by Lemma 2.3,

lim
n→∞

∫ 1

0

FMn(t, un(t)) dt = lim
n→∞

∫ 1

0

F (t, un(t)) dt =
∫ 1

0

F (t, u(t)) dt =
∫ 1

0

FM (t, u(t)) dt

and ∫ 1

0

Φ(t)u′2(t) dt ≤ lim inf
n→∞

∫ 1

0

Φ(t)un
′2(t) dt,

we conclude
JM (u) ≤ lim inf

n→∞ JMn(un).
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However, if we set wn = (Mn/M)u, we have wn → u in H and wn ∈ CMn , for all n ∈ N. Therefore

JM (u) = lim
n→∞JMn(wn)

and
JMn(wn) ≥ JMn(un),

for all n ∈ N. We conclude

JM (u) ≤ lim inf
n→∞ JMn(un) ≤ lim sup

n→∞
JMn(un) ≤ lim

n→∞JMn(wn) = JM (u),

or
lim

n→∞JMn(un) = JM (u).

If, for some u∗ in CM , we had JM (u∗) < JM (u) then, for sufficiently large n, we would obtain

JMn(w∗
n) < JMn(un),

where w∗
n = (Mn/M)u∗, and the assertion follows.

Note that so far we have just used the fact that un is a sequence of minimizers. It remains to prove that
the limit function u is of type A (B). If (un) is a type A sequence, we may suppose, up to a subsequence that
un → u in L∞ and (1.1) is verified for all un in ]0, 1[. We conclude that u satisfies (1.1) in ]0, 1[, being in
particular of type A. In case of a type B sequence, the L∞-convergence argument above insures that

u′
n −−→

H1
u′.

Then, up to a subsequence,
un −−→

C1
u.

In particular we have u′(t̄ ) = 0, where
t̄ := max{t : u(t) = M},

and the claim is proved.

We conclude, since I is connected, that IA ∩ IB �= ∅. By Lemma 2.8 it implies the existence of a classical
solution u such that max u ∈ IA ∩ IB. �

In the next result we relax condition (2.4) using a standard approximating technique.

Theorem 2.10. Suppose that f(t, u) is locally Lipschitz in the variable u and

0 < f(t, u) ≤ ρu + Kup for (t, u) ∈ [0, 1]× ]0, +∞[ (2.14)

for some p > 1, K > 0 and ρ such that, for all u ∈ H,

ρ

∫ 1

0

u2(t) dt ≤ (m − ε)‖u‖2,

where m > ε > 0. Also assume (2.1), (2.2) and that condition (2.5) is fulfilled for some non-negative h ∈ H.
Then there exists a positive solution u to (1.1)–(1.2) such that maxu ≤ ‖h‖∞.
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Proof. We may suppose that f is bounded above by ‖h‖∞. Consider the following translation of the nonlinearity:

fδ(t, u) = f(t, (u − δ)+),

where u+ := max{0, u}. Observe that assumption (2.2) is verified by fδ for all δ > 0 as well as the right
hand-side of (2.14) for the same constants K and ρ. Also (2.5) is satisfied for all the functionals

Jδ(u) :=
1
2

∫ 1

0

Φ(t)u′2(t) dt −
∫ 1

0

Fδ(t, u(t)) dt,

where Fδ(t, u) =
∫ u

0
fδ(t, s)ds, provided δ is small. We may therefore apply Proposition 2.9 and conclude the

existence of a solution uδ to

(Φ(t)uδ
′(t))′ = fδ(t, uδ(t)), u′

δ(0) = uδ(1) = 0, ‖uδ‖∞ ≤ ‖h‖∞. (2.15)

Since uδ is a critical point of Jδ, H is continuously embedded in Lp+1(0, 1) with p > 1, we have, by (2.14) and
classical estimates, for some K1 independent of δ,

m‖uδ‖2 ≤
∫ 1

0

Φ(t)u′
δ
2(t) dt =

∫ 1

0

fδ(t, uδ(t))uδ(t) dt

≤ ρ

∫ 1

0

uδ
2 dt + K

∫ 1

0

|uδ|p+1 dt ≤ (m − ε)‖uδ‖2 + K1‖uδ‖p+1. (2.16)

We conclude, for k∗ = (ε/K1)
1

p−1 ,
‖uδ‖ ≥ k∗ > 0,

for all sufficiently small δ. Consider a sequence δn → 0 and the corresponding sequence un of solutions to (2.15).
Noting that (‖un‖) is bounded, we may consider a subsequence (still denoted by (un)) and u ∈ H such that

un ⇀ u in H and un → u in C([0, 1]).

Then, ∫ 1

0

f(t, u(t))u(t) dt = lim
δn→0

∫ 1

0

fδn(t, un(t))un(t) dt = lim
δn→0

∫ 1

0

Φ(t)u′
n

2(t) dt ≥ mk∗,

i.e. u is non-trivial. Standard arguments now insure that u is a classical solution to (1.1)–(1.2) with ‖u‖∞ ≤
‖h‖∞. �

Remark 2.11. Instead of (1.2) we may consider the more general boundary conditions

u′(r) = u(R) = 0 (r < R),

and obtain an equivalent version of Theorem 2.10 with obvious adaptations.

Remark 1. Some type of condition near zero like (2.14) is necessary, as one may deduce from the following
example. Consider the existence of a positive solution to the BVP:

u′′ + (2λ − 1)2u = 0 u′
(π

2

)
= u(π) = 0.

As the reader may easily verify, all conditions of Theorem 2.10 are fulfilled except (2.14), provided λ is sufficiently
large. If λ ∈ N there is an infinity of solutions all multiples of sin((2λ − 1)t) functions. If λ /∈ N the previous
BVP has no solution.
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Finally we apply our results to an elliptic problem in an annulus.

Corollary 2.12. Let Ω := BR\Br ⊂ R
N , where 0 < r < R and BL is the N -dimensional Euclidean ball of

center 0 and radius L. Consider the following BVP:

− Δu = g(‖x‖, u) in Ω, (2.17)

u = 0 on ∂BR and
∂u

∂n
= 0 on ∂Br. (2.18)

In view of Remark 2.11, suppose that, for Φ(t) = tN−1, the function

f(t, u) : [r, R] × [0,∞] �→ R, (t, u) → tN−1g(t, u)

satisfies (2.2)–(2.5) as well as (2.14). Then there exists a radial symmetric positive solution u to (2.17)–(2.18)
such that ‖u‖∞ ≤ ‖h‖∞, where h is defined in (2.5).

Proof. Observe that a positive radial symmetric solution to (2.17)–(2.18) can be obtained as a solution of

(tN−1u′(t))′ + tN−1g(t, u(t)) = 0, u′(r) = u(R) = 0,

and apply Theorem 2.10. �
Remark 2.13. We may apply the previous results to the BVP:

−Δu = exp(−L‖x‖)up in Ω,

u = 0 on ∂BR and
∂u

∂n
= 0 on ∂Br,

provided L is large and p > 1.
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