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EXISTENCE OF CLASSICAL SOLUTIONS AND FEEDBACK STABILIZATION
FOR THE FLOW IN GAS NETWORKS
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Abstract. We consider the flow of gas through pipelines controlled by a compressor station. Under
a subsonic flow assumption we prove the existence of classical solutions for a given finite time interval.
The existence result is used to construct Riemannian feedback laws and to prove a stabilization result
for a coupled system of gas pipes with a compressor station. We introduce a Lyapunov function and
prove exponential decay with respect to the L2-norm.
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Introduction

The problem of the control of compressor stations in gas networks arises in the daily operation of gas networks
and has been studied under a variety of aspects in the recent literature, see for example [1,2,6,14,27,28,30–34,36].
The major physical effect in the transportation of gas through a network is the pipe-wall friction which induces a
pressure loss along the pipe. The compressors stations are used to increase the pressure. The control objective is
twofold. To begin with, the customer demands concerning pressure and flow have to be fulfilled and in addition
shock-waves have to be avoided to prevent the material from serious damage. Depending on the model used for
predicting the pressure loss, different approaches have been proposed to treat this control objective (see [30] for
a comparison). The isothermal Euler equations are considered as the most detailed model, see [31].

In this paper we study the behavior of classical solutions on a pipe network and derive feedback stabilization
laws for a network of pipes with a compressor station. The study of classical solutions in this context is motivated
by the fact that in a gas pipeline network it is desirable to generate a continuously differentiable state, since
non-classical solutions with shocks may damage the pipeline. In this paper we show that for any given finite
time interval and sufficiently regular initial data the system state (that is the gas flow) remains continuously
differentiable for all C1-compatible compressor controls. Moreover, we construct feedback stabilization laws for
a network with one compressor station. The construction uses a strict Lyapunov function for the network and
is stated in terms of Riemann invariants. Our construction is based upon the ideas stated in [7,11,12] for the
case of a system without source terms. However, for our network, the source terms are essential. On account of
the source terms, the stationary states of our system are not constant. In order to take this fact into account,
we have generalized the construction given in [7] to the case of non-constant equilibria.

Keywords and phrases. Classical solution, networked hyperbolic systems, gas networks, feedback law, Lyapunov function.

1 Lehrstuhl 2 für Angewandte Mathematik, Martensstr. 3, 91058 Erlangen, Germany. gugat@am.uni-erlangen.de
2 RWTH Aachen, Lehrstuhl C für Mathematik, Templergraben 55, 52065 Aachen, Germany. herty@mathc.rwth-aachen.de

Article published by EDP Sciences c© EDP Sciences, SMAI 2009

http://dx.doi.org/10.1051/cocv/2009035
http://www.esaim-cocv.org
http://www.edpsciences.org


FLOW IN GAS NETWORKS 29

Figure 1. Illustration of the control of a compressor station with two pipes. The first pipe
corresponds to the supplier and the second to the customer.

The problem of stabilization and control of gas networks is similar to the problem of flow control in open
channels. Networks of open channels modeled by the Saint-Venant equations have been studied for example in
[4,7–11,13,15]. The corresponding results of exact boundary controllability are related with [3]. However, there
are some important differences concerning the equation itself, the type of control which is applied, the source
terms and the control objective. In fact, for the Saint-Venant equations the source term has a more complex
structure than for the system studied in this paper which leads to different stationary states, see [16]. For the
water flow in channel networks, also supercritical flow is of interest, see [17].

This paper is organized as follows. We review the model for gas flow and compressor control in pipe networks
in Section 1 and present our main results. In Section 3 we rewrite the system and the compressor condition
in terms of Riemann invariants and consider the linearization around stationary states (stationary states are
analyzed in Sect. 2). Let us emphasize again that due to the source term the stationary states are not constant
and exist as continuously differentiable functions only on a finite space interval. The semi-global existence result
for classical solutions is given in Sections 4.1 and 4.2. Finally, the stabilization result with the corresponding
feedback law is given in Section 5.

1. Main results for a model of gas flow in pipe networks

A common model for gas flow in pipe networks are the isothermal Euler equations [1,2,5,6,14,18,28,29]. In a
single pipe the gas flow is described by the equations

ρt + qx = 0 (1.1a)

qt +
(

q2

ρ
+ a2ρ

)
x

= −fg
q|q|
2Dρ

(1.1b)

where ρ(t, x) is the density of the gas, q(t, x) is the mass flux in the pipe, fg is the friction factor and D is
the diameter of the pipe. The first equation states the conservation of mass and the second equation is the
momentum equation. The pressure law is

p = a2ρ where a2 =
ZRT
Mg

, (1.2)

and Z is the natural gas compressibility factor, R the universal gas constant, T the absolute gas temperature
and Mg is the gas molecular weight, see [29]. Equations (1.1a), (1.1b) form the p-system which is a hyperbolic
balance law.

In order to treat networks of pipes controlled by compressors we consider a simple network consisting of two
pipes parametrized by the intervals [0, L1] and [0, L2] and connected at x = L1 and x = 0 ∈ [0, L2] respectively
by a compressor station as depicted in Figure 1. Let a time horizon T > 0 be given.

If we consider C1-solutions, using the notation

y =
(

ρ
q

)
, Ĝ(y) =

(
0

−fg
q|q|
2Dρ

)
, (1.3a)

F (y) =

(
q

q2

ρ + a2ρ

)
, Â = DyF (y) =

(
0 1

a2 − q2

ρ2 2 q
ρ

)
(1.3b)
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the dynamics (1.1) for the state y(1) on the first pipe and the state y(2) on the second pipe can be rewritten as

∂ty
(1) + Â(y(1)) ∂xy(1) = Ĝ(y(1)) on D(1) (1.4a)

∂ty
(2) + Â(y(2)) ∂xy(2) = Ĝ(y(2)) on D(2) (1.4b)

where the space-time rectangles D(1), D(1) for the pipes are defined as

D(1) = {(t, x) : t ∈ [0, T ], 0 ≤ x ≤ L1} , D(2) = {(t, x) : t ∈ [0, T ], 0 ≤ x ≤ L2} ·

The two pipes are coupled at x = L1 and x = 0, respectively, by a compressor: By applying a certain
compressor power u ≥ 0 the compressors increases the outlet pressure according to the following nonlinear
conditions (see [14,19])

q(1) (t, L1) = q(2) (t, 0) (1.5a)

u(t) = q(2)(t, 0)

((
ρ(2)(t, 0)
ρ(1)(t, L1)

)κ

− 1

)
. (1.5b)

This model is only valid if the flow in the pipe satisfies the inequality q(2)(t, 0) ≥ 0 that is if the gas flows from
the first pipe into the second pipe. The power κ depends on the gas under consideration and we have κ ∈ [13 , 3

5 ].
In Section 3 the system (1.4a, 1.4b, 1.5a, 1.5b) is rewritten in terms of its Riemann invariants R

(1)
± , R

(2)
± . It

is equivalent to a diagonal system of the form (i ∈ {1, 2}, see (3.8), (3.12))

∂t

(
R

(i)
+

R
(i)
−

)
+

⎛
⎝ −R

(i)
+ +R

(i)
−

2 + a 0

0 −R
(i)
+ +R

(i)
−

2 − a

⎞
⎠ ∂x

(
R

(i)
+

R
(i)
−

)
= − fg

2D

(R(i)
+ + R

(i)
− )

2
|R(i)

+ + R
(i)
− |

2

(
1
1

)
,

R
(2)
+ (t, 0) = Ψ2

(
R

(1)
+ (t, L1), R

(2)
− (t, 0), u(t)

)
,

R
(1)
− (t, L1) = Ψ1

(
R

(1)
+ (t, L1), R

(2)
− (t, 0), u(t)

)

and initial conditions R
(i)
± (0, x) = R

(i)
0,±(x) (i ∈ {1, 2}) and suitable boundary conditions (see Sect. 3.3). Here

for i ∈ {1, 2} in the diagonal system matrix the eigenvalues

λ
(i)
+ = −

R
(i)
+ + R

(i)
−

2
+ a, λ

(i)
− = −

R
(i)
+ + R

(i)
−

2
− a

appear. Let D(R(i)) denote the corresponding 2 × 2 diagonal matrix. Theorem 4.1 states that for a given
stationary x-dependent solution R̄

(i)
± with the constant control ū (see Sect. 2) there exists a solution r

(i)
± (x, t)

(i ∈ {1, 2}) of the perturbed system

∂tr
(i) + D(r(i) + R̄(i)) ∂xr(i) = G̃(i)(R̄(i), r(i)),

Ψ1

(
r
(1)
+ (t, L1) + R̄

(1)
+ (L1), r

(2)
− (t, 0) + R̄

(2)
− (0), ū + v(t)

)
− R̄

(1)
− (L1) = r

(1)
− (t, L1)

Ψ2

(
r
(1)
+ (t, L1) + R̄

(1)
+ (L1), r

(2)
− (t, 0) + R̄

(2)
− (0), ū + v(t)

)
− R̄

(2)
+ (0) = r

(2)
+ (t, 0)

that satisfies the initial conditions r(i)(0, x) = b(i)(x) if the C1-norms of b(i) and v are sufficiently small. Clearly,
R

(i)
± = R̄

(i)
± + r

(i)
± (t, x) or equivalently y(i) = (ρ(i), q(i)) is then a solution to the original problem.

In Section 4.2 we establish a global existence result: let T > 0 and γ > 0 be given. There exists a real
number ε > 0 such that for all subsonic stationary initial C1-states with constant flow rate q̄ > 0 and boundary
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density ρ(1)(t, 0) = γq̄ at x = 0 in the first pipe and all control functions u(t) ≥ 0 satisfying u(0) = 0 and the
C1-compatibility conditions at the compressor node and the inequality

‖u‖C1([0,T ])

q̄
≤ ε,

there exist C1-solutions (ρ(i), q(i))(t, x) of the pipeline-compressor system on the sets D(i), i ∈ {1, 2} respectively
with compatible constant boundary densities. Note that in the above inequality, the values of u(t) and q̄ are
allowed to be large as long as their quotient is sufficiently small.

Concerning the stabilization around the stationary state R̄
(i)
± , i ∈ {1, 2} we establish the following result with

precise assumptions given in Theorem 5.3.

Theorem 1.1. Consider the closed loop system, where at the compressor node the control function u(t) is
chosen in such a way that q(t) = q̄, that is the compressor power maintains a steady mass flux. Hence, the
control law is given by

u(t) = q̄

((
ρ(2)(t, 0)
ρ(1)(t, L1)

)κ

− 1

)
.

We assume that at the boundary node x = 0 of the first pipe we have a linear feedback law

r
(1)
+ (t, 0) = k(1)r

(1)
− (t, 0)

with a real constant k(1). Moreover we assume that at the boundary node of the second pipe we have a linear
feedback law of the same form, r

(2)
− (t, L2) = k(2)r

(2)
+ (t, L2).

Assume that the constants k(1), k(2) in the linear boundary feedback laws satisfy the assumptions of Theo-
rem 5.3 and that a C1-solution (r(1), r(2)) exists on the time interval [0, T ] in the pipeline network for the closed
loop system and has sufficiently small C1-norm. For i ∈ {1, 2}, define the functions

λ̄
(i)
+ = −

R̄
(i)
+ + R̄

(i)
−

2
+ a, λ̄

(i)
− = −

R̄
(i)
+ + R̄

(i)
−

2
− a,

and for μ(i) > 0, let

h
(i)
+ (x) = exp

(
−μ(i)

∫ x

0

1

λ̄
(i)
+ (s)

ds

)
, h

(i)
− (x) = exp

(
μ(i)

∫ x

0

1

−λ̄
(i)
− (s)

ds

)
.

We define the network Lyapunov function

EN (t) =
2∑

i=1

∫ Li

0

[
A(i)

λ̄
(i)
+ (x)

[r(i)
+ (t, x)]2h(i)

+ (x) +
B(i)

−λ̄
(i)
− (x)

[r(i)
− (t, x)]2h(i)

− (x)

]
dx.

If the constants A(i) > 0, B(i) > 0 and μ(i) are chosen in such a way that the assumptions of Theorem 5.3 hold
and the pipes are sufficiently short, the function EN (t) decays exponentially on the time-interval [0, T ].

2. Stationary states for a network of isothermal Euler equations

In this section we consider stationary subsonic continuously differentiable states. Due to the source-term, for
our system the stationary states are not constant. In general, they exist as classical solutions only on a finite
(space-) interval until a singularity of the derivative occurs. For the representation of the stationary states, we
need the following lemma.
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Lemma 2.1. Let the real number q̄ ≥ 0 be given. Define the interval I = [|q̄|/a,∞). For z ∈ I, define the
function F (z) = a2 z2 − 2q̄2 log(z). Then for all z ∈ (|q̄|/a,∞), F ′(z) > 0, hence F is strictly increasing on I.
Moreover, F ′′(z) > 0, thus F is strictly convex on I. We have F ′(|q̄|/a) = 0 and limz→∞ F (z) = ∞. Define

a0 = F (|q̄|/a) = q̄2(1 − log((q̄/a)2)). (2.1)

Then the inverse function H(t) := F−1(t) is well-defined and strictly increasing and strictly concave on [a0,∞).
Moreover, we have H(a0) = |q̄|/a,

lim
t→a0+

H ′(t) = lim
z→|q̄|/a

1
F ′(z)

= ∞ (2.2)

and limt→∞ H(t) = ∞, limt→∞ H ′(t) = 0.

Now we construct stationary solutions ȳ(x) = (ρ̄(x), q̄)T to the isothermal Euler equations. Clearly, q̄ is just
a constant and ρ̄ is a solution of the ordinary differential equation

d
dx

(
a2ρ̄ +

q̄2

ρ̄

)
= −fg

q̄|q̄|
2Dρ̄

· (2.3)

Since ρ̄ > 0, we can write this equation as

d
dx

(
a2ρ̄2 − 2q̄2 log (ρ̄)

)
= −fg

q̄|q̄|
D

,

so that ρ̄(x) is implicitly defined by

a2ρ̄2(x) − 2q̄2 log (ρ̄(x)) = a2ρ̄2
0 − 2q̄2 log (ρ̄0) − fg

q̄|q̄|
D

· x, (2.4)

where ρ̄0 = ρ̄(0) > 0. We assume that we have a subsonic state that is

q̄/ρ̄0 < a, (2.5)

hence ρ̄0 > q̄/a, thus F (ρ̄0) is well-defined and ρ̄0 is in the interior of the interval I as defined in Lemma 2.1.
If ρ̄(x) ∈ I, we have F (ρ̄(x)) = a2ρ̄2

0 − 2q̄2 log (ρ̄0) − fg
q̄|q̄|
D · x which implies the equation

ρ̄(x) = H

(
a2ρ̄2

0 − 2q̄2 log (ρ̄0) − fg
q̄|q̄|
D

· x
)

, (2.6)

with H as defined in Lemma 2.1. Since the function H is strictly increasing, this implies that the density ρ̄ is
strictly decreasing along the pipe provided that q̄ > 0.

Assume that q̄ > 0. Define the critical length

x0 = D
a2ρ̄2

0 − 2q̄2 log (ρ̄0) − a0

fg q̄|q̄| = D
F (ρ̄0) − a0

fg q̄|q̄| > 0. (2.7)

Then we have
lim

x→x0
ρ̄(x) = H(a0) = |q̄|/a,

hence for x → x0 the state becomes critical. This implies in particular that the state remains subsonic along
the pipe on the interval [0, x0). Equation (2.2) implies that for x → x0− we have ρ̄(x)′ → −∞, hence for
the stationary solutions after the critical length blow up in the derivative occurs and the solution cannot be
extended as a C1-solution beyond this length. This implies that stationary C1-solutions exist on the whole pipe
if and only if its length L is less than the critical length, that is if L < x0.
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Next, we consider the case as in Section 1 where our system consists of two pipes coupled through a compres-
sor. On each pipe, we have a constant flux q̄ and due to the conservation of mass coupling conditions (1.5a) we
have the same constant flux q̄ on both pipes. Assume that q̄ > 0. This is no restriction to real world applications
since compressor stations work only in one direction and changes of the flux directions do not occur. On each
pipe (that is for i ∈ {1, 2}) the density ρ̄i(x) is given by (2.6).

Let ρ̄0 = ρ̄1(0) be the density at the inflow point of the first pipe, that corresponds to the interval [0, L1].
Let the number a0 be as in (2.1).

To make sure that on the first pipe a C1-stationary state exists, the condition

L1 < x0 (2.8)

with x0 as in (2.7) must hold. This means that the density ρ̄0 at the inflow point must be sufficiently large.
Then ρ̄1(x) is well-defined as a C1-function on the interval [0, L1] that corresponds to the first pipe. The second
coupling condition (1.5b) implies that ρ̄2(0) = ρ̄1(L1) [u/q̄ + 1]1/κ, where u ≥ 0 is the constant compressor
control. Define the real number ρ̃0 = ρ̄2(0). A C1-stationary state exists on the second pipe if and only if the
condition

L2 < x̃0 = D
a2ρ̃2

0 − 2q̄2 log (ρ̃0) − a0

fg q̄|q̄| = D
F (ρ̃0) − a0

fg q̄|q̄| (2.9)

is valid. If it holds, ρ̄2(x) is a well-defined C1-function on [0, L2].
If (2.8) and (2.9) hold, we have a C1-stationary state in our system. Note that through the definition of ρ̃0

inequality (2.9) is a condition on the compressor pressure u. Condition (2.9) is valid if u is sufficiently large.
If (2.9) holds for u = 0, it is also valid for all u > 0. This is a consequence of the fact that the function F
defined in Lemma 2.1 appears in the numerator, and in Lemma 2.1 we have seen that F is strictly increasing,
and ρ̃0 is also strictly increasing as a function of u.

We have seen that the C1-stationary states are uniquely determined by the values q̄ > 0, ρ̄0 > 0 and u > 0,
provided that (2.8) and (2.9) hold. While (2.8) can always be checked explicitly, the verification of (2.9) is
more involved since it requires the computation of ρ̄1(L1). A simple sufficient condition for the existence of
C1-stationary states for all u ≥ 0 is the inequality L1 + L2 < x0, that implies that (2.8) is valid and (2.9) holds
for u = 0 and thus also for all u ≥ 0.

As a result of our discussion we give a simple sufficient condition for the existence of a stationary state on
our network of two pipes from Section 1.

Lemma 2.2. Let q̄ > 0 and ρ̄0 > 0 be given such that q̄ < a ρ̄0. Define the number a0 as in (2.1) and the
critical length x0 as in (2.7). Assume that the inequality

L1 + L2 < x0 (2.10)

holds. Then for all constant controls u ≥ 0 a subsonic C1-stationary solution exists in our network with the
constant flow rate q̄ and the boundary value ρ(1)(t, 0) = ρ̄0. It satisfies the isothermal Euler equations along the
pipes and the coupling conditions (1.5a), (1.5b) in the compressor.

3. Transformation to Riemann invariants

In order to prove the semi-global existence of classical solutions we reformulate the dynamics on each
pipe (1.4a, 1.4b) in terms of Riemann invariants. Since the equations are the same for each pipe and in or-
der to improve the readability we skip the upper index in the following derivation and study the equation

∂ty + Â(y) ∂xy = Ĝ(y). (3.1)
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We will frequently switch between the variable y and the pair of ρ and q. A state is called subsonic, if

∣∣∣∣ qρ
∣∣∣∣ < a

with the number a defined in (1.2).

3.1. The Riemann invariants of the system

For subsonic states Â(y) has two eigenvalues λ±(y) = q
ρ ± a with the property λ− < 0 < λ+ and we obtain

Â(y) =
(

0 1
−λ− λ+ λ+ + λ−

)
.

The corresponding left and right eigenvectors are given by

l±(y) =
(

q

ρ2
∓ a

ρ
, −1

ρ

)
=

1
ρ

(λ∓, −1) ,

r±(y) =
(

ρ
q ± aρ

)
= ρ

(
1

λ±

)
.

Denote by L(y) the matrix of left eigenvectors, then det (L (y)) = 1
ρ2 (λ+ − λ−) = 2 a

ρ2 	= 0. We obtain the
Riemann invariants as

R±(y) = − q

ρ
∓ a ln(ρ)

and restate the eigenvalues λ±, ρ and q in terms of R± as

λ± = −R+ + R−
2

± a, ρ = exp
(

R− − R+

2a

)
, q = −R+ + R−

2
exp
(

R− − R+

2a

)
·

For subsonic states we have |R+ + R−| < 2a and

∂q

∂R+
< 0,

∂q

∂R−
< 0,

and for ρ > exp(0) = 1 we have the inequality R+ < R−. Define the function

Q(R+, R−) = −R+ + R−
2

exp
(

R− − R+

2a

)
· (3.2)

Due to the monotonicity properties there exist differentiable functions F+, F− such that for all fixed real values
of R+, q∗ with q∗ ∈ (−a exp(1 − R+/a), a exp(−1 − R+/a)) = (Q(R+, 2a − R+), Q(R+, −2a − R+)) we have
the equation

Q(R+, F−(q∗, R+)) = q∗, (3.3)

and for all fixed R−, q∗ with q∗ ∈ (−a exp(−1 + R−/a), a exp(1 + R−/a)) = (Q(2a − R−, R−), Q(−2a − R−))
we have the equation

Q(F+(q∗, R−), R−) = q∗ (3.4)

and the states (R+, F−(q∗, R+)), (F+(q∗, R−), R−) are subsonic.
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We have ∂R+F− =
q
ρ +a
q
ρ−a < 0 and ∂R−F+ =

q
ρ −a
q
ρ +a < 0 hence the functions F−, F+ are strictly decreasing with

respect to R+, R− respectively. Moreover,

∂qF+ =
2

−ρ − q
a

< 0, ∂qF− =
2

−ρ + q
a

< 0

and

F+(0, R−) = −R−, F−(0, R+) = −R+.

3.2. The compressor condition in terms of Riemann invariants

In this section we show that for given values u(t), R
(1)
+ and R

(2)
− satisfying (3.6) we can express the compressor

conditions (1.5a, 1.5b) in the form

(
R

(1)
− (t, L1)

R
(2)
+ (t, 0)

)
=

⎛
⎝ Ψ1

(
R

(1)
+ (t, L1), R

(2)
− (t, 0), u(t)

)
Ψ2

(
R

(1)
+ (t, L1), R

(2)
− (t, 0), u(t)

)
⎞
⎠ .

Due to the previous calculations for fixed q∗ ≥ 0, R
(1)
+ , R

(2)
− we have the equations

R
(1)
− = F−(q∗, R

(1)
+ ), R

(2)
+ = F+(q∗, R

(2)
− ) (3.5)

and obtain a subsonic state that satisfies the condition (1.5a) and

R
(1)
− ≤ F−(0, R

(1)
+ ) = −R

(1)
+ , R

(2)
+ ≤ F+(0, R

(2)
− ) = −R

(2)
− .

We have

ρ(2)

ρ(1)
=

exp
(

R
(2)
− −F+(q∗, R

(2)
− )

2a

)

exp
(

F−(q∗, R
(1)
+ )−R

(1)
+

2a

)

= exp

(
R

(1)
+ + R

(2)
− − F+(q∗, R

(2)
− ) − F−(q∗, R

(1)
+ )

2a

)
= A0(q∗).

Then for any subsonic state we have A′
0(q∗) > 0. Moreover,

A0(0) = exp

(
R

(2)
− + R

(1)
+

a

)
·

Assume that A0(0) < 1, that is
R

(1)
+ + R

(2)
− < 0. (3.6)

Lemma 3.1 gives a sufficient condition for the inequality (3.6). Let q1 = sup{q ≥ 0 : A0(q) < 1}. Then q1 > 0.
Note that with the flow rate q1 at the compressor we have ρ(1) = ρ(2).

We can write the second compressor condition (1.5b) in the form

A1(q∗) := (A0(q∗)κ − 1) q∗ = u(t). (3.7)
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We have A1(0) = 0, A1(q1) = 0 and

A′
1(q

∗) = (A0(q∗)κ − 1) + q∗κA0(q∗)κ−1A′
0(q

∗),

hence A′
1(0) < 0, A′

1(q1) = q1κA′
0(q1) > 0 and for all values q∗ ≥ q1 close to q1 we have A′

1(q
∗) > 0.

Therefore for all sufficiently small values u(t) ≥ 0 we can find a unique value q∗ ≥ q1 such that (3.7) holds.
This value q∗ depends continuously differentiable on u(t), R

(1)
+ and R

(2)
− .

If u(t) = 0 we have in general two solutions that satisfy the compressor equations, namely the solution q = q1,
A0(q1) = 1 and q = 0 as a second solution. In this case we set q = q1.

Then, for all u(t) ≥ 0, the previous construction yields a value for q∗ ≥ q1 and we can define R
(1)
− , R

(2)
+

by (3.5) for this particular q∗. Then, we have a solution of the compressor equations (1.5a), (1.5b).
Hence, for data satisfying (3.6), that is with R

(1)
+ + R

(2)
− ≤ 0 the compressor equations (1.5a), (1.5b) can be

reformulated as (
R

(1)
− (t, L1)

R
(2)
+ (t, 0)

)
=

⎛
⎝ Ψ1

(
R

(1)
+ (t, L1), R

(2)
− (t, 0), u(t)

)
Ψ2

(
R

(1)
+ (t, L1), R

(2)
− (t, 0), u(t)

)
⎞
⎠ (3.8)

with C1-functions Ψ1, Ψ2.
In the next lemma we give a sufficient condition for (3.6) in terms of the physical variables, which states that

(3.6) holds if the control values are sufficiently small.

Lemma 3.1. Assume that q > 0 and

u(t) ∈
[
0, q

{[
exp
(

q

aρ(1)

)]κ

− 1
}]

. (3.9)

Then (3.6) holds.

Proof. We have R
(2)
− = −q/ρ(2) + a ln(ρ(2)), R

(1)
+ = −q/ρ(1) − a ln(ρ(1)). Hence our desired inequality is

equivalent to

ln
(

ρ(2)

ρ(1)

)
<

q

a

[
1

ρ(1)
+

1
ρ(2)

]
=

q

aρ(1)

(
1 +

1
ρ(2)/ρ(1)

)
· (3.10)

Due to the compressor equation (1.5b), our assumption on u implies that

ρ(2)

ρ(1)
=
(

1 +
u

q

)1/κ

≤ exp
(

q

aρ(1)

)
·

Define the function H(z) = ln(z)
1+1/z = z ln(z)

1+z . Then H is strictly increasing on the interval [1,∞). Hence we have
the inequality

H

(
ρ(2)

ρ(1)

)
≤ H

(
exp
(

q

aρ(1)

))
<

q

aρ(1)

and inequality (3.10) and thus the assertion follows. �

3.3. Boundary conditions in terms of Riemann invariants

The boundary conditions at the end of the first pipe at x = 0 and at x = L2 for the second pipe respectively
can be rewritten in terms of Riemann invariants. Typical boundary conditions for gas flow are either flow or
density conditions. A boundary condition of the form Q(t, 0) = q1(t) where the flow rate is prescribed can be
written as R+(t, 0) = F+(q1(t), R−(t, 0)). Analogously, a boundary condition of the form Q(t, L2) = q2(t) can
be written as R−(t, L2) = F−(q2(t), R+(t, L2)).
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A boundary condition of the form ρ(t, 0) = ρ1(t) where the density is prescribed can be written as

R+(t, 0) = R−(t, 0) − 2a ln(ρ1(t)) (3.11)

or analogously ρ(t, L2) = ρ2(t) can be transformed to R−(t, L2) = R+(t, L2) + 2a ln(ρ2(t)).

3.4. The system in Riemann invariants and its representation around a stationary state

Now we write our system in terms of Riemann invariants (R+, R−) as unknown functions and obtain the
corresponding diagonal system matrix D(R+, R−) as

D(R+, R−) =
(

λ+ 0
0 λ−

)
=
(

−R++R−
2 + a 0
0 −R++R−

2 − a

)
.

The source term Ĝ is also rewritten in Riemann invariants and given by

G(R+, R−) =
(

l+Ĝ

l−Ĝ

)
=

⎛
⎝ fg

2D
q |q|
ρ2

fg

2D
q |q|
ρ2

⎞
⎠ = − fg

2D

(R+ + R−)
2

|R+ + R−|
2

(
1
1

)
.

Finally, for a single pipe we obtain the equivalent system to (3.1) in diagonal form as

∂t

(
R+

R−

)
+ D(R+, R−) ∂x

(
R+

R−

)
= G(R+, R−). (3.12)

With the notation R = (R+, R−)T we can write (3.12) as

∂tR + D(R) ∂xR = G(R). (3.13)

In this diagonal form we can study the classical solutions by using characteristic curves. For our analysis
we linearize the system around a stationary state. The existence of classical stationary states is discussed in
Section 2. For a subsonic stationary state R̄, we have ∂tR̄ = 0 and

D(R̄) ∂xR̄ = G(R̄),

hence ∂xR̄ = D(R̄)−1 G(R̄). Locally around this stationary state R̄, we can write our system states in the form
R = R̄ + r. We derive a partial differential equation for r, starting with the left-hand side of (3.13):

∂t(r + R̄) + D(r + R̄) ∂x(r + R̄) = ∂tr + D(r + R̄) ∂xr + D(r + R̄)D(R̄)−1 G(R̄)
= G(r + R̄),

hence for r we obtain the partial differential equation

∂tr + D(r + R̄) ∂xr = G(r + R̄) − D(r + R̄)D(R̄)−1 G(R̄) =: G̃(R̄, r) (3.14)

where the source term G̃ has the property

G̃(R̄, 0) = 0. (3.15)
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We use the notation G̃(R̄, r) = (G̃+(R̄, r), G̃−(R̄, r))T . If q ≥ 0 we have

G̃±(R̄, r) =
fg

8D

[
(R̄+ + R̄− + r+ + r−)2 −

λ̄± − r++r−
2

λ̄±
(R̄+ + R̄−)2

]

=
fg

8D

{
(r+ + r−)

[
2 (R̄+ + R̄−) +

1
2λ̄±

(R̄+ + R̄−)2
]

+ (r+ + r−)2
}

=
fg

8D

⎧⎨
⎩−(r+ + r−)

⎡
⎣2 q̄

ρ̄

(
±2a + q̄

ρ̄

)
q̄
ρ̄ ± a

⎤
⎦+ (r+ + r−)2

⎫⎬
⎭ ·

Hence if |r+ + r−| is small enough we have (r+ + r−) G̃±(R̄, r) < 0. In other words, if |r+ + r−| is small
enough we have

sign G̃±(R̄, r) = −sign(r+ + r−). (3.16)

We have |G̃±(R̄, r)| = O(|r+ + r−|), in particular r+ + r− = 0 implies G̃±(R̄, r) = 0.

3.5. Scaling of the state variables by a factor θ > 0

An essential observation for our analysis is the fact that if (ρ(i), q(i)) is a solution to the system (1.1) for
given control function u, then for any θ > 0 also (θρ(i), θq(i)) is a solution with the control function θu.

For θ > 0 sufficiently small in this way we obtain initial data and a control function with arbitrarily small
C1-norm. It is important that this scaling does not change the subsonic nature of the state. In terms of the
Riemann invariants this scaling corresponds to replacing (R(i)

+ , R
(i)
− ) by

R
(i)
+,θ = R

(i)
+ − a ln(θ), R

(i)
−,θ = R

(i)
− + a ln(θ),

hence R
(i)
+ + R

(i)
− = R

(i)
+,θ + R

(i)
−,θ. Interestingly, in terms of Riemann invariants the scaling does not lead to

a change in the maximum norms of the derivatives. Moreover, it also does not change the eigenvalues of the
system. However, for the control function the corresponding scaling remains θu(t). Note that if (3.6) holds then
also R

(2)
−,θ + R

(1)
+,θ ≤ 0 for all θ > 0. For all θ > 0 equations (3.3) and (3.2) imply

θq∗ = Q(R+,θ, F−(θ q∗, R+,θ)) = Q(R+,θ, F−(q∗, R+) + a ln(θ)).

Hence (3.3) implies F−(θq∗, R+,θ) = F−(q∗, R+)+a ln(θ). Analogously, we obtain the equation F+(θq∗, R−,θ) =
F+(q∗, R−) − a ln(θ).

Since the physical variables corresponding to the scaled Riemann invariants Rθ with the control θu(t) satisfy
the compressor equations (1.5a), (1.5b) if and only if they are satisfied for θ = 1, the compressor equations
for Rθ have the following form:

(
R

(1)
−,θ(t, L1)

R
(2)
+,θ(t, 0)

)
=

⎛
⎝ Ψ1

(
R

(1)
+,θ(t, L1), R

(2)
−,θ(t, 0), θ u(t)

)
Ψ2

(
R

(1)
+,θ(t, L1), R

(2)
−,θ(t, 0), θ u(t)

)
⎞
⎠ . (3.17)

Note that (3.17) holds for θ = 1 if and only if it holds for all θ > 0.

4. Existence of solutions

The results presented below give the existence of solutions R
(i)
± = R̄

(i)
± + r

(i)
± for a a fixed given time T > 0,

a given subsonic stationary state R̄
(i)
± and a given control u = ū + v(t). The local result refers to the case
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where ū/q̄ is bounded and r
(i)
± (0, x) and v(t) are sufficiently small in the C1-norm. For the global result these

assumptions are replaced by the assertion that ‖v‖C1/q̄ is sufficiently small.

4.1. Local existence result

In this section we apply a result of Wang [35] about semi-global C1-solutions for initial-boundary value
problems for quasilinear hyperbolic systems, see also [21–26]. For the system introduced in Section 1, we obtain
the existence of C1-solutions in a C1-neighbourhood of a stationary subsonic C1-state R̄.

Theorem 4.1. Let q̄ > 0 and ρ̄0 > 0 be given such that q̄ < a ρ̄0. Assume that q̄ and ρ̄0 define a subsonic
stationary C1-state with the constant flow rate q̄ and constant boundary density ρ(1)(t, 0) = ρ̄0 that satisfies the
isothermal Euler equations along the pipes and the coupling conditions (1.5a), (1.5b) with the constant control
ū ≥ 0 in the compressor. Assume that

ū ∈
[
0, q̄

{[
exp
(

q̄

aρ(1)(L1)

)]κ

− 1
})

(4.1)

where ρ(1)(L1) denotes the constant density for the stationary state at the end of the first pipe.
Denote the corresponding Riemann invariants by R̄ = (R̄(1), R̄(2)) and let ρ̃1 = ρ(2)(L2) denote the constant

density for the stationary state at the end of the second pipe.
Let T > 0 be given. Then there exists ε > 0 such that the following statement holds true:
Let initial data R̄(1)(x) + b(1)(x), R̄(2)(x) + b(2)(x) with ‖b(1)‖C1([0,L1]) ≤ ε, ‖b(2)‖C1([0,L2]) ≤ ε and a control

function u(t) = ū+v(t) ≥ 0 with ‖v‖C1([0,T ]) ≤ ε be given such that the C1-compatibility conditions are satisfied
at the boundary points x = 0 of the first pipe and x = L2 of the second pipe with the physical boundary data

ρ(1)(t, 0) = ρ̄0, (4.2)

ρ(2)(t, L2) = ρ̃1 (4.3)

and such that u(t) satisfies the C1-compatibility conditions at the compressor.
Then, there exists a C1-function (r(1), r(2)) ∈

(
C1([0, T ] × [0, L1])

)2 × (C1([0, T ]× [0, L2])
)2 such that R̄ + r

is a solution of the system (1.4a), (1.4b) in terms of Riemann invariants.
More precisely, for i ∈ {1, 2} the function r(i) solves the partial differential equations on [0, Li]

∂tr
(i) + D(r(i) + R̄(i)) ∂xr(i) = G(r(i) + R̄(i)) − D(r(i) + R̄(i))D(R̄(i))−1 G(R̄(i)) =: G̃(i)(R̄(i), r(i))

and satisfies the initial conditions r(i)(0, x) = R̄(i)(x) + b(i)(x) on [0, Li], the boundary conditions

r
(1)
+ (t, 0) = r

(1)
− (t, 0), (4.4a)

r
(2)
− (t, L2) = r

(2)
+ (t, L2) (4.4b)

and the coupling conditions

(
r
(1)
− (t, L1)

r
(2)
+ (t, 0)

)
=

⎛
⎝ Ψ1

(
r
(1)
+ (t, L1) + R̄

(1)
+ (L1), r

(2)
− (t, 0) + R̄

(2)
− (0), u(t)

)
− R̄

(1)
− (L1)

Ψ2

(
r
(1)
+ (t, L1) + R̄

(1)
+ (L1), r

(2)
− (t, 0) + R̄

(2)
− (0), u(t)

)
− R̄

(2)
+ (0)

⎞
⎠ . (4.5)

Proof. Without restriction, assume that our pipes have equal length that is L1 = L2 = L. This can be achieved
by a parameter change x 
→ xL/Li for i ∈ {1, 2}. As a consequence of this change, the corresponding eigenvalues
are multiplied by factors L/Li. The Riemann invariants are not affected by this parameter change (see [20]).
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The coupling conditions become boundary conditions at the end L if we transform the variable x corre-
sponding to the second pipe by x 
→ L − x which leads to a change in sign of both eigenvalues for the second
pipe.

We want to apply Theorem 2.1 from [35] about the existence of a semi-global C1-solution on the time interval
[0, T ]. For this purpose, we write our partial differential equation as a hyperbolic system for r in diagonal form
with a 4 × 4 diagonal matrix containing the eigenvalues and the vector of four unknown functions

(
r
(1)
− , r

(2)
+ , r

(1)
+ , r

(2)
−
)T

.

In fact, in our case the in the notation from [35] (1.1) the vectors li are canonical unit vectors and ai = bi =
ci = 0. For the source terms (3.15) implies the equations G̃(i)(R̄(i), r(i)) = 0 (i ∈ {1, 2}) which guarantee that
equation (1.4) required in [35] holds.

The transformation of the physical boundary conditions (4.2), (4.3) with constant density to the boundary
conditions in Riemann invariants (4.4a), (4.4b) is given in Section 3.3. Moreover, we can write our coupling
conditions in the form (4.5) (where as mentioned before the end zero of the second pipe is transformed to x = 0),
since our assumption (4.1) implies that u(t) satisfies the assumption (3.9) of Lemma 3.1 if ε is sufficiently small,
which in turn implies that we can write the coupling conditions in the form (3.8).

Hence we have a system with boundary conditions of the form (1.10), (1.11) from [35] with H1(t) =
Ψ1

(
R̄

(1)
+ (L1), R̄

(2)
− (0), u(t)

)
− R̄

(1)
− (L1), H2(t) = Ψ2

(
R̄

(1)
+ (L1), R̄

(2)
− (0), u(t)

)
− R̄

(2)
+ (0) and ‖u‖C1([0,T ]) small

implies ‖Hi‖C1([0,T ]) (i ∈ {1, 2}) small and such that (1.13) also holds. Therefore Theorem 2.1 from [35] implies
the assertion. �

4.2. Global existence result

Due to the scaling properties of the system described in Section 3.5 our local existence result implies a global
existence result for C1-compatible control functions. To obtain the global result, we combine the observation
that for all solutions of our system we can obtain scaled solutions with θ > 0 as described in Section 3.5 with
the local result from Theorem 4.1 to obtain the following lemma:

Lemma 4.2. Let θ > 0 be given. Let q̄ > 0 and ρ̄0 > 0 be given such that q̄ < a ρ̄0. Assume that θq̄
and θρ̄0 define a subsonic stationary C1-state with the constant flow rate θq̄ and constant boundary density
ρ(1)(t, 0) = θρ̄0 that satisfies the isothermal Euler equations along the pipes and the coupling conditions (1.5a),
(1.5b) with the constant control θū ≥ 0 in the compressor. Assume that (4.1) holds where ρ(1)(L1) denotes the
constant density for the stationary state with θ = 1 at the end of the first pipe.

Denote the corresponding Riemann invariants by R̄θ = (R̄(1)
θ , R̄

(2)
θ ) and let ρ̃1 = ρ(2)(L2) denote the constant

density for θ = 1 for the stationary state at the end of the second pipe.
Let T > 0 be given. Then there exists ε > 0 such that the following statement holds uniformly for all θ > 0:
For all initial data R̄

(1)
θ (x) + b(1)(x), R̄

(2)
θ (x) + b(2)(x) with ‖b(1)‖C1([0,L1]) ≤ ε, ‖b(2)‖C1([0,L2]) ≤ ε and all

control functions u(t) = θū + v(t) ≥ 0 with ‖v‖C1([0,T ]) ≤ θ ε such that the C1-compatibility conditions are
satisfied at the boundary points x = 0 of the first pipe and x = L2 of the second pipe with the physical boundary
data

ρ(1)(t, 0) = θ ρ̄0, (4.6a)

ρ(2)(t, L2) = θ ρ̃1 (4.6b)

and such that u(t) satisfies the C1-compatibility conditions on the compressor there exists a C1-function (r(1),
r(2)) ∈

(
C1([0, T ]× [0, L1])

)2 × (C1([0, T ]× [0, L2])
)2 such that R̄θ + r is a solution of our system in terms of

Riemann invariants. More precisely, for i ∈ {1, 2} the function r(i) solves on [0, Li] the system

∂tr
(i) + D(r(i) + R̄

(i)
θ ) ∂xr(i) = G(r(i) + R̄

(i)
θ ) − D(r(i) + R̄

(i)
θ )D(R̄(i)

θ )−1 G(R̄(i)
θ ) =: G̃(i)(R̄(i), r(i)) (4.7a)
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and satisfies the initial conditions r(i)(0, x) = R̄
(i)
θ (x) + b(i)(x) on [0, Li] and the boundary conditions

r
(1)
+ (t, 0) = r

(1)
− (t, 0), (4.8a)

r
(2)
− (t, L2) = r

(2)
+ (t, L2) (4.8b)

and the coupling conditions

(
r
(1)
− (t, L1)

r
(2)
+ (t, 0)

)
=

⎛
⎝ Ψ1

(
r
(1)
+ (t, L1) + R̄

(1)
+,θ(L1), r

(2)
− (t, 0) + R̄

(2)
−,θ(0), u(t)

)
− R̄

(1)
−,θ(L1)

Ψ2

(
r
(1)
+ (t, L1) + R̄

(1)
+,θ(L1), r

(2)
− (t, 0) + R̄

(2)
−,θ(0), u(t)

)
− R̄

(2)
+,θ(0)

⎞
⎠ . (4.9)

Now we give a result that applies if the compressor initially is switched off. It states that starting with a
subsonic stationary state with positive flow rate q̄ > 0 and ū = 0 we obtain the existence of C1-solutions for all
C1-control functions u(t) that satisfy the C1-compatibility conditions and for which u(t)/q̄ is sufficiently small.

Theorem 4.3. Let T > 0 and γ > 0 be given. There exists ε > 0 such that for all subsonic stationary initial
C1-states with constant flow rate q̄ > 0 and switched off compressor (that is control value zero at the compressor)
and boundary density ρ(1)(t, 0) = γq̄ at x = 0 in the first pipe and all for control functions u(t) satisfying the
C1-compatibility conditions at the compressor and ‖u‖C1([0,T ])/q̄ ≤ ε, there exists a C1-solution on the time
interval [0, T ] with constant boundary densities.

Proof. Fix a flow rate q1 > 0. Let ρ1 > 0 denote a constant boundary density at x = 0 in the first pipe that
generates a stationary subsonic initial state with the flow rate q1 > 0. In Lemma 4.2 applied to the case with
this stationary subsonic initial state we have ū = 0 and hence (4.1) holds and v(t) = u(t). Moreover, due to
the assumption that the initial state is stationary we have b(1) = b(2) = 0. We choose ε > 0 from Lemma 4.2.
Lemma 4.2 states that uniformly for all θ > 0 for the stationary initial states R̄θ corresponding to the physical
variables θq1, θρ1 and control functions v at the compressor that satisfy the C1-compatibility conditions and
for which

‖v‖C1([0,T ]) ≤ θε (4.10)

a C1-state is generated. Inequality (4.10) is satisfied if
‖v‖C1([0,T ])

θq1
≤ ε

q1
. We obtain the last inequality in the

statement of Theorem 4.3 by replacing θq1 by q̄ and by letting ε
q1

be the ε in the statement of Theorem 4.3.
Define γ = ρ1/q1. Then we have θρ1 = θγq1 = γq̄. �

5. Stabilization

In this section we consider the problem to stabilize our system locally around a given classical stationary
solution using a boundary feedback and a feedback law at the compressor. Note that in the literature about
stabilization of hyperbolic systems, usually systems without source terms are considered (see [7,20]), whereas
in the system that we consider here the influence of the source term is essential. We use a Lyapunov function
taking care of both the special source term and of the fact that the coefficients in the transport equation are
space dependent, see below. Then, the idea to stabilize the system is to use a Riemann control law at the
two boundary points and a control that yields the correct flow rate at the compressor. For our analysis it is
important that the source term satisfies (3.16).

In order to highlight the idea of the particular choice of the Lyapunov function we consider at first the toy
example on [0, 1] × (0,∞)

∂ta + c(x)∂xa = d(x, a)

with c(x) > 0 and a(t, 0) = a0 = ka(t, 1). A coupled system of these equations comprises a linearized gas model
and will be studied below. For the given equation we extend recently introduced Lyapunov functions [8,9,11,13]
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and use the following ansatz

E(t) =
∫ 1

0

exp
(
−μ

∫ x

0

1
c(s)

ds

)
a2 A

c(x)
dx.

Using careful estimates on the source term d(x, a) we will establish for the linearized gas model that

E′(t) ≤ −μE(t) + boundary terms.

This idea is extended to the nonlinear system (that is c = c(x, a)) and using appropriate boundary conditions at
the end of the pipe and a suitable compressor control, we prove exponential decay in the L2-norm in Theorem 5.3.

5.1. A single pipe: Stabilization of the linearized system

To construct a stabilizing feedback law, we consider the following linear approximation of the characteristic
form (3.14):

∂tr+ + λ̄+∂xr+ = −K+(r+ + r−), (5.1a)
∂tr− + λ̄−∂xr− = −K−(r+ + r−) (5.1b)

with the appropriate functions K+(x) > 0, K−(x) > 0 from (3.14) that is

K± =
fg

8D

⎡
⎣2 q̄

ρ̄

(
±2a + q̄

ρ̄

)
q̄
ρ̄ ± a

⎤
⎦ · (5.2)

In the source term we have omitted the quadratic term +(r+ + r−)2. In this approximation the fixed eigenval-
ues λ̄± and the characteristic curves corresponding to the steady state (R̄+, R̄−) are used.

Let μ > 0 be given. Define the functions

h+(x) = exp
(
−μ

∫ x

0

1
λ̄+(s)

ds

)
,

h−(x) = exp
(

μ

∫ x

0

1
−λ̄−(s)

ds

)
.

Then for all x ∈ [0, L] we have

exp

(
μ

(∫ L

0

− 1
λ̄+

+
1

λ̄−

))
=

h+(L)
h−(L)

≤ h+(x)
h−(x)

≤ h+(0)
h−(0)

= 1

and h+(x) ∈ [h+(L), 1], h−(x) ∈ [1, h−(L)].
For A > 0, B > 0 define the Lyapunov function

E(t) =
∫ L

0

A

λ̄+(x)
r2
+(t, x)h+(x) +

B

−λ̄−(x)
r2
−(t, x)h−(x) dx. (5.3)

Definition (5.3) is a generalization of the definition in [7] to the case where the eigenvalues depend on the spatial
variable. This is essential for our problem, since the stationary states are non-constant in space.
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The time derivative of E is

E′(t) =
∫ L

0

−Ah+(x) ∂x [r+(t, x)]2 − 2Ah+(x)
K+(x)

λ̄+
r+ ∗ (r+ + r−) dx

+
∫ L

0

B h−(x) ∂x [r−(t, x)]2 + 2B h−(x)
K−(x)

λ̄−
r− ∗ (r+ + r−) dx

=
[
−Ah+(x) [r+(t, x)]2 + B h−(x) [r−(t, x)]2

]
|Lx=0

−
∫ L

0

A
μ

λ̄+
h+(x) [r+(t, x)]2 − B

μ

λ̄−
h−(x) [r−(t, x)]2 dx

−
∫ L

0

2
[
Ah+(x)

K+(x)
λ̄+

r+ + B h−(x)
K−(x)
−λ̄−

r−

]
(r+ + r−) dx

= −μE(t) +
[
−Ah+(x) [r+(t, x)]2 + B h−(x) [r−(t, x)]2

]
|Lx=0

−
∫ L

0

2Ah+(x)
K+(x)

λ̄+
r2
+ + 2B h−(x)

K−(x)
−λ̄−

r2
− dx

−
∫ L

0

2Ah+(x)
K+(x)

λ̄+
r+ r− + 2B h−(x)

K−(x)
−λ̄−

r+ r− dx.

Using the inequality |r+r−| ≤ (r2
+ + r2

−)/2 we obtain

E′(t) ≤ −μE(t) +
[
−Ah+(x) [r+(t, x)]2 + B h−(x) [r−(t, x)]2

]
|Lx=0

−
∫ L

0

Ah+(x)
K+(x)

λ̄+
r2
+ + B h−(x)

K−(x)
−λ̄−

r2
− dx

+
∫ L

0

Ah+(x)
K+(x)

λ̄+
r2
− + B h−(x)

K−(x)
−λ̄−

r2
+ dx.

Case 1. Assume that
A

B
≥ sup

x∈[0,L]

λ̄+(x)
−λ̄−(x)

K−(x)
K+(x)

h−(x)
h+(x)

· (5.4)

Then we have the inequality

−Ah+K+

λ̄+
+

Bh−K−
−λ̄−

≤ 0

which implies

E′(t) ≤ −μE(t) +
[
−Ah+(x) [r+(t, x)]2 + B h−(x) [r−(t, x)]2

]
|Lx=0

+
∫ L

0

[
−B h−(x)

K−(x)
−λ̄−

+ Ah+(x)
K+(x)

λ̄+

]
r2
− dx.

Assume that
A

B
≤ inf

x∈[0,L]

λ̄+(x)
−λ̄−(x)

K−(x)
K+(x)

(
1 +

μ

2K−(x)

)
· (5.5)

Then since h−(x)/h+(x) ≥ 1 we obtain the inequality

−
(μ

2
+ K−

) Bh−
−λ̄−

+
Ah+K+

λ̄+
≤ 0
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which implies

E′(t) ≤ −μ

2
E(t) +

[
−Ah+(x) [r+(t, x)]2 + B h−(x) [r−(t, x)]2

]
|Lx=0. (5.6)

Case 2. Assume that

B

A
≥ sup

x∈[0,L]

−λ̄−(x)
λ̄+(x)

K+(x)
K−(x)

h+(x)
h−(x)

· (5.7)

Then we have the inequality
Ah+K+

λ̄+
− Bh−K−

−λ̄−
≤ 0

which implies

E′(t) ≤ −μE(t) +
[
−Ah+(x) [r+(t, x)]2 + B h−(x) [r−(t, x)]2

]
|Lx=0

+
∫ L

0

[
−Ah+(x)

K+(x)
λ̄+

+ B h−(x)
K−(x)
−λ̄−

]
r2
+ dx.

Assume that
B

A
≤ inf

x∈[0,L]

−λ̄−(x)
λ̄+(x)

h+(x)
h−(x)

K+(x)
K−(x)

(
1 +

μ

2K+(x)

)
· (5.8)

Then we obtain the inequality

−
(μ

2
+ K+

) Ah+

λ̄+
+

B h−K−
−λ̄−

≤ 0

which implies inequality (5.6).

Lemma 5.1. Consider the linearized system (5.1a), (5.1b) on the set [0, T ]× [0, L]. Assume that a C1-solution
exists on [0, T ]× [0, L]. Define

1
μ

=
∫ L

0

1
λ̄+(x)

− 1
λ̄−(x)

dx. (5.9)

Assume that

sup
x∈[0,L]

λ̄+(x)
−λ̄−(x)

K−(x)
K+(x)

exp(1) ≤ inf
x∈[0,L]

λ̄+(x)
−λ̄−(x)

K−(x)
K+(x)

(
1 +

μ

2 K−(x)

)
(5.10)

or

sup
x∈[0,L]

−λ̄−(x)
λ̄+(x)

K+(x)
K−(x)

exp(1) ≤ inf
x∈[0,L]

−λ̄−(x)
λ̄+(x)

K+(x)
K−(x)

(
1 +

μ

2 K+(x)

)
· (5.11)

Then there exist real numbers A > 0 and B > 0 such that [(5.4) and (5.5)] or [(5.7) and (5.8)] hold and

E′(t) ≤ −μ

2
E(t) +

[
−Ah+(x) [r+(t, x)]2 + B h−(x) [r−(t, x)]2

]
|Lx=0.

Remark 5.1. The inequalities (5.10) and (5.11) hold true, whenever 1/μ is sufficiently small. The constant μ
is large, if the length of the pipe L becomes small. This implies that stabilization becomes ‘easier’ as soon as
the pipe length decreases.

Proof. Case 1. If (5.4) and (5.5) hold true, (5.6) implies the desired inequality. It remains to show that (5.10)
implies that we can find A/B such that (5.4) and (5.5) hold with μ defined by (5.9). Inequality (5.10) implies
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that

sup
x∈[0,L]

λ̄+(x)
−λ̄−(x)

K−(x)
K+(x)

h−(x)
h+(x)

≤ sup
x∈[0,L]

λ̄+(x)
−λ̄−(x)

K−(x)
K+(x)

h−(L)
h+(L)

= exp(1) sup
x∈[0,L]

λ̄+(x)
−λ̄−(x)

K−(x)
K+(x)

≤ inf
x∈[0,L]

λ̄+(x)
−λ̄−(x)

K−(x)
K+(x)

(
1 +

μ

2 K−(x)

)
·

Thus the interval

I =

[
sup

x∈[0,L]

λ̄+(x)
−λ̄−(x)

K−(x)
K+(x)

h−(x)
h+(x)

, inf
x∈[0,L]

λ̄+(x)
−λ̄−(x)

K−(x)
K+(x)

(
1 +

μ

2 K−(x)

)]

is nonempty and for all A/B ∈ I the inequalities (5.4) and (5.5) hold for the particular choice of μ.

Case 2. If (5.7) and (5.8) hold true, (5.6) implies the desired inequality. It remains to show that (5.11) implies
that we can find B/A such that (5.7) and (5.8) hold with μ defined by (5.9). Since h+(x)/h−(x) ≥ exp(−1),
Inequality (5.11) implies that

sup
x∈[0,L]

−λ̄−(x)
λ̄+(x)

K+(x)
K−(x)

h+(x)
h−(x)

≤ sup
x∈[0,L]

−λ̄−(x)
λ̄+(x)

K+(x)
K−(x)

h+(0)
h−(0)

= sup
x∈[0,L]

−λ̄−(x)
λ̄+(x)

K+(x)
K−(x)

≤ exp(−1) inf
x∈[0,L]

−λ̄−(x)
λ̄−(x)

K+(x)
K−(x)

(
1 +

μ

2 K+(x)

)

≤ inf
x∈[0,L]

−λ̄−(x)
λ̄−(x)

h+(x)
h−(x)

K+(x)
K−(x)

(
1 +

μ

2 K+(x)

)
·

Thus the interval

I =

[
sup

x∈[0,L]

−λ̄−(x)
λ̄+(x)

K+(x)
K−(x)

h+(x)
h−(x)

, inf
x∈[0,L]

−λ̄−(x)
λ̄+(x)

h+(x)
h−(x)

K+(x)
K−(x)

(
1 +

μ

2 K+(x)

)]

is nonempty and for all B/A ∈ I the inequalities (5.7) and (5.8) hold for the particular choice (5.9) of μ. �

5.2. A single pipe: Stabilization of the nonlinear system

In this section we analyze feedback control for the nonlinear system, with the state dependent eigenvalues
λ± = λ̄± − r++r−

2 . We write the system (3.14) in the following form:

∂tr + D(R̄)∂xr = G̃(R̄, r) +
r+ + r−

2
∂xr.

For the components r+, r− this yields the equations

∂tr+ + λ̄+∂xr+ = −K̃+(r+ + r−), (5.12)

∂tr− + λ̄−∂xr− = −K̃−(r+ + r−) (5.13)
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with the functions K̃+, K̃− defined as

K̃±(t, x) = K±(x) − fg

8D
(r+(t, x) + r−(t, x)) − 1

2
∂xr±(t, x). (5.14)

Consider the Lyapunov function E(t) defined as in (5.3) but with (r+, r−) denoting the solution of the nonlinear
system (5.12), (5.13). This yields the time derivative

E′(t) = − μE(t) +
[
−Ah+(x) [r+(t, x)]2 + B h−(x) [r−(t, x)]2

]
|Lx=0

−
∫ L

0

2Ah+
K̃+

λ̄+
r2
+ + 2B h−

K̃−
−λ̄−

r2
− dx −

∫ L

0

2Ah+
K̃+

λ̄+
r+ r− + 2B h−

K̃−
−λ̄−

r+ r− dx.

Lemma 5.2. Consider the nonlinear system (5.12), (5.13) on the set [0, T ]× [0, L]. Assume that a C1-solution
(r+, r−) exists on [0, T ]× [0, L] that satisfies the inequality

fg

8D
(r+ + r−) +

1
2
∂xr± < K± (5.15)

on [0, T ]× [0, L]. Define the number 1
μ =

∫ L

0
1

λ̄+(x)
− 1

λ̄−(x)
dx. Assume that

exp(1) sup
(t,x)∈[0,T ]×[0,L]

λ̄+(x)
−λ̄−(x)

K̃−(t, x)
K̃+(t, x)

≤ inf
(t,x)∈[0,T ]×[0,L]

λ̄+(x)
−λ̄−(x)

K̃−(t, x)
K̃+(t, x)

(
1 +

μ

2 K̃−(t, x)

)
(5.16)

or

exp(1) sup
(t,x)∈[0,T ]×[0,L]

−λ̄−(x)
λ̄+(x)

K̃+(t, x)
K̃−(t, x)

≤ inf
(t,x)∈[0,T ]×[0,L]

−λ̄−(x)
λ̄+(x)

K̃+(t, x)
K̃−(t, x)

(
1 +

μ

2 K̃+(t, x)

)
(5.17)

which is the case if 1/μ is sufficiently small. Then we can choose A > 0 and B > 0 such that [(5.4) and (5.5)]
or [(5.7) and (5.8)] hold with K replaced by K̃ defined in (5.14) and we have the inequality

E′(t) ≤ −μ

2
E(t) +

[
−Ah+(x) [r+(t, x)]2 + B h−(x) [r−(t, x)]2

]
|Lx=0.

Proof. Our assumption (5.15) implies that K̃±(t, x) > 0 on [0, T ]× [0, L]. Hence the assertion follows as in the
proof of Lemma 5.1. �

5.3. Stabilization of a network with one compressor station

In this section we propose a feedback law for the compressor that yields exponential decay of a network
Lyapunov function in the L2-sense if it is combined with appropriate boundary feedback laws at the two
boundary nodes of the network, for example absorbing boundary conditions. We choose the compressor control
in such a way that at the compressor the flow rate has the equilibrium value corresponding to the stationary
state.

In this section we assume that the compressor is at the end L1 of the first pipe that correspond to the interval
[0, L1] and that the compressor is at the end 0 of the second pipe corresponding to the interval [0, L2]. We
further assume a stationary subsonic state R̄

(i)
± to be given. Note that this stationary state has a constant mass

flux through pipes and compressor due to the coupling conditions that is given by the constant

q̄ = −
R̄

(1)
+ + R̄

(1)
−

2
exp

(
R̄

(1)
− − R̄

(1)
+

2a

)
= −

R̄
(2)
+ + R̄

(2)
−

2
exp

(
R̄

(2)
− − R̄

(2)
+

2a

)
·
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Let real numbers A(1), B(1), A(2), B(2), μ(1), μ(2) ∈ (0,∞) be given. For i ∈ {1, 2} define the functions

h
(i)
+ (x) = exp

(
−μ(i)

∫ x

0

1

λ̄
(i)
+ (s)

ds

)
,

h
(i)
− (x) = exp

(
μ(i)

∫ x

0

1

−λ̄
(i)
− (s)

ds

)
.

Define the Lyapunov functions for the pipes

E(1)(t) =
∫ L1

0

A(1)

λ̄
(1)
+ (x)

[r(1)
+ (t, x)]2 h

(1)
+ (x) +

B(1)

−λ̄
(1)
− (x)

[r(1)
− (t, x)]2 h

(1)
− (x) dx,

E(2)(t) =
∫ L2

0

A(2)

λ̄
(2)
+ (x)

[r(2)
+ (t, x)]2 h

(2)
+ (x) +

B(2)

−λ̄
(2)
− (x)

[r(2)
− (t, x)]2 h

(2)
− (x) dx,

and the network Lyapunov function
EN (t) = E(1)(t) + E(2)(t). (5.18)

At the boundary node x = 0 of the first pipe we assume that we have a linear feedback law

r
(1)
+ (t, 0) = k(1)r

(1)
− (t, 0) (5.19)

with a constant k(1) such that the following inequality holds:

A(1)[r(1)
+ (t, 0)]2 ≤ B(1)[r(1)

− (t, 0)]2. (5.20)

At the boundary node x = L2 of the second pipe we assume that we have a linear feedback law

r
(2)
− (t, L2) = k(2)r

(2)
+ (t, L2) (5.21)

with a constant k(2) such that the following inequality holds:

B(2) h
(2)
− (L2) [r(2)

− (t, L2)]2 ≤ A(2) h
(2)
+ (L2) [r(2)

+ (t, L2)]2. (5.22)

At the compressor node the control function u(t) is chosen in such a way that q(t) = q̄, that is the compressor
power maintains a steady mass flux. Hence, the control law is given by

u(t) = q̄

((
ρ(2)(t, 0)
ρ(1)(t, L1)

)κ

− 1

)
. (5.23)

Then the following theorem holds:

Theorem 5.3. Assume that a C1-solution (r(1), r(2)) exists on the time interval [0, T ] in the pipeline network for
the closed loop system with the feedback conditions (5.19), (5.19), (5.23) described above such that the inequalities

fg

8D
(r(i)

+ + r
(i)
− ) +

1
2
∂xr

(i)
± < K

(i)
±

hold for i ∈ {1, 2}. For i ∈ {1, 2} define the numbers

1
μ(i)

=
∫ Li

0

1

λ̄
(i)
+ (x)

+
1

−λ̄
(i)
− (x)

dx. (5.24)
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Assume that we have the inequalities

exp(1) sup
(t,x)∈[0,T ]×[0,L1]

λ̄
(1)
+ (x)

−λ̄
(1)
− (x)

K̃
(1)
− (t, x)

K̃
(1)
+ (t, x)

≤ inf
(t,x)∈[0,T ]×[0,L1]

λ̄
(1)
+ (x)

−λ̄
(1)
− (x)

K̃
(1)
− (t, x)

K̃
(1)
+ (t, x)

(
1 +

μ(1)

2 K̃
(1)
− (t, x)

)
(5.25)

which is the case if the number 1/μ(1) is sufficiently small.
Assume that the quotient A(1)/B(1) > 0 is in the interval

I(1) =

[
exp(1) sup

(t,x)∈[0,T ]×[0,L1]

λ̄
(1)
+ (x)

−λ̄
(1)
− (x)

K̃
(1)
− (t, x)

K̃
(1)
+ (t, x)

, inf
(t,x)∈[0,T ]×[0,L1]

λ̄
(1)
+ (x)

−λ̄
(1)
− (x)

K̃
(1)
− (t, x)

K̃
(1)
+ (t, x)

(
1 +

μ(1)

2 K̃
(1)
− (t, x)

)]
·

Assume that

exp(1) sup
(t,x)∈[0,T ]×[0,L2]

−λ̄
(2)
− (x)

λ̄
(2)
+ (x)

K̃
(2)
+ (t, x)

K̃
(2)
− (t, x)

≤ inf
(t,x)∈[0,T ]×[0,L2]

−λ̄
(2)
− (x)

λ̄
(2)
+ (x)

K̃
(2)
+ (t, x)

K̃
(2)
− (t, x)

(
1 +

μ(2)

2 K̃
(2)
+ (t, x)

)
(5.26)

which is the case if the number 1/μ(2) is sufficiently small.
Assume that B(2)/A(2) > 0 is in the interval

I(2) =

[
sup

(t,x)∈[0,T ]×[0, L2]

−λ̄
(2)
− (x)

λ̄
(2)
+ (x)

K̃
(2)
+ (t, x)

K̃
(2)
− (t, x)

, exp(−1) inf
(t,x)∈[0,T ]×[0,L2]

−λ̄
(2)
− (x)

λ̄
(2)
+ (x)

K̃
(2)
+ (t, x)

K̃
(2)
− (t, x)

(
1 +

μ(2)

2 K̃
(2)
+ (t, x)

)]
·

Moreover, assume that A(1)/B(1) and B(2)/A(2) are sufficiently large in the sense that the inequalities (5.30)
and (5.33) hold which is possible if 1/μ(1) and 1/μ(2) are sufficiently small. (This is possible if L1 and L2 are
sufficiently small.)

Then the following inequality is valid:

E′
N (t) ≤ −μ(1)

2
E(1)(t) − μ(2)

2
E(2)(t).

Hence for α = min{μ(1)

2 , μ(2)

2 } we have E′
N (t) ≤ −αEN (t), hence

EN (t) ≤ EN (0) exp(−αt).

Proof. Inequality (5.25) implies that assumption (5.16) of Lemma 5.2 holds for the first pipe that corresponds
to the interval [0, L1]. Inequality (5.26) implies that assumption (5.17) of Lemma 5.2 holds for the second pipe
corresponding to the interval [0, L2]. Hence for the network Lyapunov function Lemma 5.2 yields the inequality

E′
N (t) ≤ −μ(1)

2
E(1)(t) − μ(2)

2
E(2)(t)

+ B(1) [r(1)
− (t, L1)]2 h

(1)
− (L1) − A(1) [r(1)

+ (t, L1)]2 h
(1)
+ (L1)

+ A(2) [r(2)
+ (t, 0)]2 h

(2)
+ (0) − B(2) [r(2)

− (t, 0)]2 h
(2)
− (0)

where we have omitted the boundary terms for the boundary nodes x = 0 for the first pipe and x = L2 for the
second pipe since due to our assumptions (5.20), (5.22) on the feedback laws they are negative. So it remains
to prove that

B(1) [r(1)
− (t, L1)]2 h

(1)
− (L1) ≤ A(1) [r(1)

+ (t, L1)]2 h
(1)
+ (L1) (5.27)
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and
A(2) [r(2)

+ (t, 0)]2 h
(2)
+ (0) ≤ B(2) [r(2)

− (t, 0)]2 h
(2)
− (0). (5.28)

We start with the functions defined on the first pipe. Since we have

r
(1)
− (t, L1) = F−(q̄, R̄

(1)
+ (L1) + r

(1)
+ (t, L1)) − R̄

(1)
− (L1)

if r
(1)
+ (t, L1) = 0 also r

(1)
− (t, L1) = 0 hence in this case inequality (5.27) holds. If r

(1)
+ (t, L1) 	= 0 inequality (5.27)

is equivalent to

[r(1)
− (t, L1)]2

[r(1)
+ (t, L1)]2

h
(1)
− (L1)

h
(1)
+ (L1)

≤ A(1)

B(1)

or since h
(1)
+ (L1)/h

(1)
− (L1) = exp(−μ ∗ (1/μ)) = exp(−1)

[r(1)
− (t, L1)]2

[r(1)
+ (t, L1)]2

≤ exp(−1)
A(1)

B(1)
· (5.29)

Hence (5.29) is equivalent to

[
F−(q̄, R̄

(1)
+ (L1) + r

(1)
+ (t, L1)) − F−(q̄, R̄

(1)
+ (L1))

r
(1)
+ (t, L1)

]2

≤ exp(−1)
A(1)

B(1)
· (5.30)

Due to the mean value theorem we have

F−(q̄, R̄
(1)
+ (L1) + r

(1)
+ (t, L1)) − F−(q̄, R̄

(1)
+ (L1))

r
(1)
+ (t, L1)

= ∂R+F−(q̄, R̄
(1)
+ (L1) + ξ+(t)) (5.31)

for some real number ξ+(t) with |ξ+(t)| ≤ ‖r(1)
+ (·, L1)‖C([0,T ]). Therefore inequality (5.30) holds if A(1)

B(1) is chosen
sufficiently large since the function F−(q̄, ·) is continuously differentiable and the derivative

∂R+F−(q̄, R̄
(1)
+ (L1) + ·)

is uniformly bounded on [0, T ] for r
(1)
+ in a sufficiently small C(1) neighbourhood of zero. More precisely, (5.30)

holds if ‖r(1)
+ (·, L1)‖C([0,T ]) ≤ ε and

sup
|ξ+|≤ε

∣∣∣∂R+F−(q̄, R̄
(1)
+ (L1) + ξ+)

∣∣∣2 ≤ exp(−1)
A(1)

B(1)
·

Now we come to functions defined on the second pipe. Since we have

r
(2)
+ (t, 0) = F+(q̄, R̄

(2)
− (0) + r

(2)
− (t, 0)) − R̄

(2)
+ (0)

if r
(2)
− (t, 0) = 0 also r

(2)
+ (t, 0) = 0 hence in this case inequality (5.28) holds. If r

(2)
− (t, 0) 	= 0 inequality (5.28) is

equivalent to

[r(2)
+ (t, 0)]2

[r(2)
− (t, 0)]2

h
(2)
+ (0)

h
(2)
− (0)

≤ B(2)

A(2)
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or since h
(2)
+ (0)/h

(2)
− (0) = 1

[r(2)
+ (t, 0)]2

[r(2)
− (t, 0)]2

≤ B(2)

A(2)
· (5.32)

Hence (5.32) is equivalent to

[
F+(q̄, R̄

(2)
− (0) + r

(2)
− (t, 0)) − F+(q̄, R̄

(2)
− (0))

r
(2)
− (t, 0)

]2

≤ B(2)

A(2)
· (5.33)

Due to the mean value theorem we have

F+(q̄, R̄
(2)
− (0) + r

(2)
− (t, 0)) − F+(q̄, R̄

(2)
− (0))

r
(2)
− (t, 0)

= ∂R−F+(q̄, R̄
(2)
− (0) + ξ−(t)) (5.34)

for some real number ξ−(t) with |ξ−(t)| ≤ ‖r(2)
− (·, 0)‖C([0,T ]). Therefore equation (5.33) holds if B(2)

A(2) is chosen

sufficiently large since the function F+(q̄, ·) is continuously differentiable and the derivative ∂R−F+(q̄, R̄
(2)
− (0)+·)

is uniformly bounded on [0, T ] for r
(2)
− in a sufficiently small C1-neighbourhood of zero. More precisely, (5.33)

holds if ‖r(2)
− (·, )‖C([0,T ]) ≤ ε and

sup
|ξ−|≤ε

∣∣∣∂R−F+(q̄, R̄
(2)
− (0) + ξ−)

∣∣∣2 ≤ B(2)

A(2)
· �

6. Summary

We have established an existence result for semi-global classical solutions for a network model of gas dynamics
governed by a compressor station. We have given sufficient conditions for the existence of classical stationary
states of this system. We have studied the stabilization of the flow of this system by suitable boundary feedback
laws and feedback laws at the compressor. In our analysis we have used a Lyapunov function.

The presented results are given for two pipes and a single compressor station. However, the techniques
applied can be extended to tree-like networks and more compressor stations. Furthermore, it would be desirable
to obtain stabilizability of the system for unbounded time intervals [0,∞). To this end, the existence result has
to be extended to be global in time and different Lyapunov functions have to be studied. This will be dealt
with in a forthcoming publication.
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