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THE INTERNAL STABILIZATION BY NOISE
OF THE LINEARIZED NAVIER-STOKES EQUATION ∗

Viorel Barbu
1

Abstract. One shows that the linearized Navier-Stokes equation in O⊂Rd, d ≥ 2, around an un-
stable equilibrium solution is exponentially stabilizable in probability by an internal noise controller

V (t, ξ) =

N∑
i=1

Vi(t)ψi(ξ)β̇i(t), ξ ∈ O, where {βi}N
i=1 are independent Brownian motions in a probability

space and {ψi}N
i=1 is a system of functions on O with support in an arbitrary open subset O0 ⊂ O. The

stochastic control input {Vi}N
i=1 is found in feedback form. One constructs also a tangential boundary

noise controller which exponentially stabilizes in probability the equilibrium solution.
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1. Introduction

Consider the Navier-Stokes equation

Xt − ν0ΔX + (X · ∇)X = fe + ∇p in (0,∞) ×O
∇ ·X = 0, X

∣∣
∂O = 0

X(0) = x0, in O,
(1.1)

where O is an open and bounded subset of Rd, d ≥ 2, with smooth boundary ∂O. Here fe ∈ (L2(O))d is given.
Let Xe be an equilibrium solution to (1.1), i.e.,

−ν0ΔXe + (Xe · ∇)Xe = fe + ∇pe in O
∇ ·Xe = 0 in O, Xe

∣∣
∂O = 0.

(1.2)

If X −→ X −Xe equation (1.1) reduces to

Xt − ν0ΔX + (X · ∇)Xe + (Xe · ∇)X + (X · ∇)X = ∇p in (0,∞) ×O,
∇ ·X = 0 in O, X

∣∣
∂O = 0, ∀t ≥ 0,

X(0) = x in O,
(1.3)

where x = x0 −Xe.
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Then, the linearized system around Xe associated with (1.1) is the Stokes-Oseen system

Xt − ν0ΔX + (X · ∇)Xe + (Xe · ∇)X = ∇p in (0,∞) ×O
∇ ·X = 0 in O, X

∣∣
∂O = 0, t ≥ 0

X(0) = x in O.
(1.4)

If set H = {X ∈ (L2(O))d; ∇ ·X = 0, X · n∣∣
∂O = 0}, where ν is the normal to ∂O and P : (L2(O))d → H is

the Leray projector on H , we can rewrite system (1.4) as

Ẋ(t) + AX(t) = 0, t ≥ 0,

X(0) = x,
(1.5)

where A = ν0A + A0, A = −PΔ, D(A) = (H1
0 (O) ∩ H2(O))d ∩ H, A0(X) = P ((X · ∇)Xe + (Xe · ∇)X),

D(A) = D(A).
Our purpose here is to stabilize (1.5) or, equivalently, the stationary solution Xe to (1.1), using a stochastic

controller with support in an arbitrary open subset O0 ⊂ O. To this aim we associate with (1.5) the control
stochastic system

dX(t) + AX(t)dt =
N∑

i=1

Vi(t)ψidβi(t),

X(0) = x,

(1.6)

where {βi}N
i=1 is an independent system of real Brownian motions in a probability space {Ω,P,F ,Ft}t>0. The

main results, Theorems 2.1 and 4.1 below, amounts to saying that, in the complexified space H̃ associated
with H , under appropriate assumptions on A (and, implicitly, on Xe), for each γ > 0 there exists N ∈ N,
{ψi}N

i=1 ⊂ H̃ and an N -dimensional adapted process {Vi = Vi(t, ω)}N
i=1, ω ∈ Ω such that t → eγtX(t, ω) is

convergent to zero in probability for t→ ∞. Moreover, it turns out that the stabilizable controller {Vi}i=N
i=1 can

be expressed as a linear feedback controller of the form

Vi(t) = η(X(t), ϕ∗
i )H̃ , ψi = P (mφi), i = 1, ..., N, (1.7)

where ϕ∗
i are the eigenfunctions of the dual Stokes-Oseen operator A∗ corresponding to eigenvalues λj with

Reλj ≤ γ, {φi}N
i=1 is a system of functions related to ϕ∗

i and m = XO0 is the characteristic function of O0.

We may view (1.6) as the deterministic system (1.5) perturbed by the white noise controller
N∑

i=1

Vi(t)ψiβ̇i, i.e.,

Ẋ + AX =
N∑

i=1

Vi(t)ψiβ̇i.

The proof uses some spectral techniques developed in [5,6] (see also [4,13,14,20,21]) for stabilization of Navier-
Stokes equations. The previous treatment for the stabilization of Navier-Stokes equations is a Riccati based
approach which can be described in a few words as follows; one shows first that the unstable finite dimensional
part of the Stokes-Oseen equation is stabilizable and one uses this to construct, via the algebraic infinite
dimensional Riccati equations associated with the Stokes-Oseen operator, a stabilizable feedback controller. In
this context, we note also that in [12] was developed a statistical approach to stabilization of Stokes-Oseen
equation in order to treat the unpredictable fluctuations arising in feedback mechanism. This is related to
some long-time behaviour results for solutions to Navier-Stokes equations perturbed by random kick-forces
(see [16,22]). However, the results obtained here are essentially stochastic not only because the stabilizable
controller arises as multiplicative term of a Brownian N -dimensional motion but mainly because the asymptotic
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nature of stabilization results as well as the stochastic approach have no analogue in deterministic stabilization
technique. As a matter of fact, it was known long time ago that one might use the multiplicative noise to
stabilize differential systems (see [3]) and more recent results in this direction can be found in [1,2,7–9,19]. (See
also [11] for related results.) It must be said however that in the context of Navier-Stokes equations the results
obtained here are new. The apparent advantage of the stochastic feedback controller (1.7) compared with
deterministic stabilizable controllers constructed by spectral techniques (see [5,6,13,14,20,21]) is that it avoids
the infinite dimensional algebraic Riccati equations which are not numerically tractable by discretization with a
larger number of grid points and so are inadequate to treat most fluid dynamic problems with a sufficient degree
of resolution. One might suspect that the controller (1.7) is locally stabilizable as well for the Navier-Stokes
equation (1.3), and we expect to study this problem in a forthcoming paper.

The plan of the paper is the following. The internal stabilization result, Theorem 2.1, is formulated in
Section 2 and proven in Section 3. The boundary stabilization by noise is studied in Section 4.

Notations

Throughout in the following βi, i = 1, ..., are independent real Brownian motions in a probability space
{Ω,P,F ,Ft}t>0 and we shall refer to [10,17] for definition and basic results on stochastic analysis of differential
systems and spaces of stochastic processes adapted to filtration {Ft}t>0. We shall denote by H̃ the complexified
space H + iH with scalar product denoted by 〈·, ·〉 and norm by | · |H̃ . The scalar product of H is denoted
(·, ·)H and the norm | · |H . CW ([0, T ];L2(Ω, H̃)) is the space of all adapted square-mean H̃-valued continuous
processes on [0, T ].

2. The main result

To begin with, let us briefly recall a few elementary spectral properties of the Stokes-Oseen operator A.
Denote again by A the extension of A to the complex space H̃ . The operator A has a compact resolvent

(λI −A)−1 and −A generates a C0-analytic semigroup e−At in H̃ . Consequently, A has a countable number of
eigenvalues {λj}∞j=1 with corresponding eigenfunctions ϕj each with finite algebraic multiplicity mj. Of course,
certain eigenfunctions ϕj might be generalized and so, in general, A is not diagonalizable, i.e., the algebraic
multiplicity of λj might not coincide with its geometric multiplicity. Also, each eigenvalue λj will be repeated
according to its algebraic multiplicity mj .

We shall denote by N the number of eigenvalues λj with Reλj ≤ γ, j = 1, ..., N, where γ is a fixed positive
number.

Denote by PN the projector on the finite dimensional subspace

Xu = lin span{ϕj}N
j=1.

We have Xu = PN H̃ and

PN = − 1
2πi

∫
Γ

(λI −A)−1dλ, (2.1)

where Γ is a closed smooth curve in C which is the boundary of a domain containing in interior the eigenvalues
{λj}N

j=1.
Let Au = PNA, As = (I − PN )A. Then Au, As leave invariant the spaces Xu,Xs = (I − PN )H̃ and the

spectra σ(Au), σ(As) are given by (see [15])

σ(Au) = {λj}N
j=1, σ(As) = {λj}∞j=N+1.

Since σ(As) ⊂ {λ ∈ C; Reλ > γ} and As generates an analytic C0-semigroup on H̃ , we have

|e−Astx|H̃ ≤ Ce−γt|x|H̃ , ∀x ∈ H̃, t ≥ 0. (2.2)
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The eigenvalue λj is said to be semi-simple if for it the algebraic and geometrical multiplicity coincides, or,
equivalently, λj is a simple pole for (λI−A)−1. If all the eigenvalues {λj}N

j=1 of the matrix Au are semi-simple,
then Au is diagonalizable.

Herein, we shall assume that the following hypothesis holds.
(A1) All the eigenvalues λj , j = 1, ..., N, are semi-simple.

It should be said that hypothesis (A1) is less restrictive as it might appear to be at first glance. Indeed, it follows
by a standard argument involving the Sard-Smale theorem that the property of eigenvalues of the Stokes-Oseen
operator to be simple (and, consequently, semi-simple) is generic in the class of coefficients Xe. So, “almost
everywhere” (in the sense of a set of first category), hypothesis (A1) holds.

Denote by A∗ the adjoint operator and by P ∗
N the adjoint of PN . We have

P ∗
N = − 1

2πi

∫
Γ

(λI −A∗)−1dλ. (2.3)

The eigenvalues of A∗ are precisely the complex conjugates λj of eigenvalues λj of A and they have the same
multiplicity. Denote by ϕ∗

j the eigenfunction of A∗ corresponding to the eigenvalue λj . We have, therefore,

Aϕj = λjϕj , A∗ϕ∗
j = λjϕ

∗
j , j = 1, ... (2.4)

Since the eigenvalues {λj}N
j=1 are semi-simple, it turns out that the system consisting of {ϕj}N

j=1, {ϕ∗
j}N

j=1 can
be chosen to form a bio-orthonormal sequence in H̃ , i.e,

〈ϕj , ϕ
∗
i 〉 = δij , i, j = 1, ..., N, (2.5)

(see, e.g., [5]). We notice also that the functions ϕj and ϕ∗
j have the unique continuation property, i.e.,

ϕj 
≡ 0, ϕ∗
j 
≡ 0 on O0 for all j = 1, ..., N, (2.6)

(see, e.g., Lem. 3.7 in [5]). We shall assume also that the following condition holds:
(A2) The system {ϕ∗

j}N
j=1 is linearly independent in (L2(O0))d.

It should be noticed that hypothesis (A2) automatically holds if Xe is analytic because in this case ϕ∗
j are

analytic too and so (A2) is the consequence of linear independence of {ϕ∗
j}N

j=1 on O0. Also, in the case where
the system {ϕ∗

j}N
j=1 contains only one distinct eigenvalue (which might be multiple), hypothesis (A2) is implied

by the unique continuation property (2.6). It turns out via unique continuation arguments that (A2) holds
under more general conditions on Xe but the presentation of this result is beyond the goals of this work.

Consider the following stochastic perturbation of the linearized system (1.5) considered in the complex space

dX + AXdt = η

N∑
i=1

〈X,ϕ∗
i 〉P (mφi)dβi,

X(0) = x,

(2.7)

where η ∈ R and m = χO0 is the characteristic function of the open subset O0 ⊂ O. Here {φi}N
i=1 ⊂ H̃ is a

system of functions to be precised below. We may rewrite (2.7) as

X(t) = e−Atx+ η

N∑
i=1

∫ t

0

〈X(s), ϕ∗
i 〉 e−A(t−s)P (mφi)dβi(s), t ≥ 0, P-a.s. (2.8)

which, by the standard existence theory (see [10]), has a unique solution X ∈ CW ([0, T ];L2(Ω, H̃)), ∀T > 0.
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The closed loop system (2.7) can be equivalently written as (see (1.4))

dX(t) − ν0ΔX(t)dt+ (X(t) · ∇)Xedt+ (Xe · ∇)X(t)dt

= ηm

N∑
i=1

〈X(t), ϕ∗
i 〉φidβi(t) + ∇p(t)dt in (0,∞) ×O, P-a.s.

∇ ·X(t) = 0 in O, X(t)
∣∣∣
∂O

= 0, ∀t ≥ 0, P-a.s.

X(0) = x in O.

(2.9)

Hence, in the space (L2(O))d, the feedback controller {ui = ηm 〈X,ϕ∗
i 〉φi}N

i=1 has the support in O0.
We shall define now φj , j = 1, ..., N, as follows:

φj(ξ) =
N∑

i=1

αijϕ
∗
i (ξ), ξ ∈ O, (2.10)

where αij are chosen such that
N∑

i=1

αij 〈ϕ∗
i , ϕ

∗
k〉0 = δjk, j, k = 1, ..., N.

(Since, in virtue of hypothesis (A2), the matrix {〈ϕ∗
i , ϕ

∗
j

〉
0
}N

i,j=1 is not singular, this is possible.) With this
choice, we have

〈φj , ϕ
∗
i 〉0 = δij , i, j = 1, ..., N. (2.11)

Here, we have used the notation 〈u, v〉0 =
∫
O0

u(ξ)v̄(ξ)dξ.

Theorem 2.1 below is the main result.

Theorem 2.1. Under hypotheses (A1), (A2), the solution X to equation (2.7), where {φi}N
i=1 are given by (2.10),

satisfies for |η| sufficiently large

P

[
lim

t→∞ eγt|X(t, x)|H̃ = 0
]

= 1, ∀x ∈ H. (2.12)

Remark 2.2. As mentioned earlier, system (2.9) is written here in the complex space H̃. If set X1(t) = ReX(t),
X2(t) = ImX(t), it can be rewritten as a real system in (X1, X2). In this case, the feedback controller is an
implicit stabilizable feedback controller with support in O0 for the real Stokes-Oseen equation (1.4). Of course,
if λj , j = 1, ..., N , are real, then we may view X(t) as a real valued function and so, in (2.12), |X |H̃ = |X |H .

3. Proof of Theorem 2.1

The idea is to decompose equation (2.7) in a finite dimensional system and an infinite dimensional exponen-
tially stable system. To this end, we set Xu = PNX, Xs = (I − PN )X and we shall rewrite equation (2.7) as

dXu(t) + AuXu(t)dt = ηPN

N∑
i=1

〈Xu(t), ϕ∗
i 〉P (mφi)dβi(t), t ≥ 0, P-a.s.,

Xu(0) = PNx.

(3.1)

dXs(t) + AsXs(t)dt = η(I − PN )
N∑

i=1

〈Xu(t), ϕ∗
i 〉P (mφi)dβi(t), t ≥ 0, P-a.s.,

Xs(0) = (I − PN )x.

(3.2)
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Then, we may represent Xu as Xu(t) =
N∑

i=1

yi(t)ϕi and reduce so equation (3.1) via biorthogonal relations (2.5)

and (2.11) to the finite dimensional complex system

dyj + λjyjdt = ηyjdβj , j = 1, ..., N, t ≥ 0, P-a.s.

yj(0) = y0
j ,

(3.3)

where y0
j =

〈
PNx, ϕ

∗
j

〉
.

Applying Ito’s formula in (3.3) to ϕ(y) = eγt|y|2, we obtain that

1
2

d
(
e2γt|yj(t)|2

)
+ e2γt (Reλj−γ) |yj(t)|2dt =

1
2
η2e2γt|yj(t)|2dt+ ηe2γt|yj(t)|2dβj(t), for j = 1, ..., N.

(3.4)
Now, in (3.4) we take z(t) = e2γt|yj(t)|2 and get that

dz + 2e2γt (Reλj − γ) |yj |2dt = η2e2γt|yj |2dt+ 2ηe2γt|yj |2dβj , j = 1, ..., N.

In the latter equation, we shall apply Ito’s formula to the function

φ(r) = (ε+ r)δ, where 0 < δ <
1
2

and ε > 0.

We have
φ′(r) = δ(ε+ r)δ−1, φ′′(r) = δ(δ − 1)(ε+ r)δ−2, r > 0

and we obtain therefore that
dφ(z) = φ′(z)dz + 2η2e4γtφ′′(z)|yj|4dt.

This yields
dφ(z) = −δe2γt(ε+ z)δ−1[2(Reλj − γ)|yj(t)|2dt− η2|yj |2dt

− 2η|yj|2dβj ] + 2η2δ(δ − 1)e4γt(ε+ z)δ−2|yj |4dt.
Now, in the latter equation, if replace z by e2γt|yj |2, we obtain that

d((ε+e2γt|yj|2)δ)+2δ(ε+e2γt|yj |2)δ−1e2γt(Re λj − γ)|yj(t)|2dt = 2η2(δ−1)δe4γt(ε+e2γt|yj |2)δ−2|yj |2dt

+ η2δe2γt(ε+e2γt|yj|2)δ−1|yj |dt

+ 2ηδe2γt(ε+e2γt|yj |2)δ−1|yj|dβj , j = 1, ..., N.
(3.5)

We set
Kj

ε(t) = 2δ e2γt(ε+ e2γt|yj|2)δ−1(Re λj − γ)|yj(t)|2
− δη2e2γt(ε+ e2γt|yj(t)|2)δ−1|yj(t)|2
− 2δ(δ − 1)η2e4γt(ε+ e2γt|yj(t)|2)δ−2|yj(t)|4, j = 1, ..., N.

(3.6)

Now, taking into account (3.6), we may rewrite (3.5) as

(ε+ e2γt|yj |2)δ +
∫ t

0

Kj
ε(s)ds = (ε+ |y0

j |2)δ +M j
ε (t), t ≥ 0, j = 1, ..., N, P-a.s., (3.7)
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where M j
ε is the following stochastic process

M j
ε (t) = 2δη

∫ t

0

e2γs|yj(s)|2(ε+ e2γs|yj(s)|2)δ−1dβj(s), j = 1, ..., N.

Taking into account that

lim
ε→0

|yj(s)|2(ε+ e2γs|yj(s)|2)δ−1e2γs = e2γδs|yj(s)|2δ, P-a.s.

uniformly on [0, T ], we may pass to limit into the stochastic equation (3.7) to get that

e2γδt|yj(t)|2δ +
∫ t

0

Kj(s)ds = |y0
j |2δ +Mj(t), P-a.s., t > 0, (3.8)

where
Kj(t) = lim

ε→0
Kj

ε(t) = 2δ(Reλj − γ)e2γδt|yj(t)|2δ + 2δ(1 − 2δ)η2e2γδt|yj(t)|2δ,

Mj(t) = 2δη
∫ t

0

e2γδs|yj(s)|2δdβj(s), P-a.s.

If in (3.8) we take the expectation E, we obtain that

e2γδtE|yj(t)|2δ + E

∫ t

0

Kj(s)ds = |y0
j |2δ, ∀t ≥ 0.

This yields

2δ(η2(1 − 2δ) + Reλj − γ)E
∫ t

0

e2γδs|yj(s)|2δds ≤ |y0
j |2δ, j = 1, ..., N,

and, since 0 < δ <
1
2
, for all j = 1, ..., N, we get therefore, for η sufficiently large,

E

∫ t

0

e2γδs|yj(s)|2δds ≤ C, ∀t ≥ 0, j = 1, ..., N.

This yields

E

∫ ∞

0

e2γδs|yj(s)|2δds <∞, ∀j = 1, ..., N,

and, in particular, it follows that∫ ∞

0

e2γδs|yj(s)|2δds <∞, P-a.s., j = 1, ..., N. (3.9)

It should be said however that the latter does not imply automatically that e2γδt|yj(t)|2δ is P-a.s. convergent to
zero as t→ ∞ and for this we need to invoke some more sophisticated stochastic argument.

We write ∫ t

0

Kj(s)ds = Ij(t) − (Ij)1(t), j = 1, ..., N, ∀t ≥ 0, P-a.s.,

where

Ij(t) = 2(1 − 2δ)δη2

∫ t

0

e2γδs|yj(s)|2δds

(Ij)1(t) = 2δ(γ − Reλj)
∫ t

0

e2γδs|yj(s)|2δds.
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Then, we may rewrite (3.8) as

e2γδt|yj(t)|2δ + Ij(t) = |y0
j |2δ + (Ij)1(t) +Mj(t), t ≥ 0, P-a.s. (3.10)

Taking into account that, for each ε > 0 and j = 1, ..., N , Mj(t) is a local martingale and t → Ij(t),
t→ (Ij)1(t) are nondecreasing processes, we see by equation (3.10) that t→ e2γδt|yj(t)|2δ is a semi-martingale,
as the sum of a local martingale and of an adapted finite variation process (see, e.g., [17]). Then, we may apply
to equation (3.10) the following asymptotic result which is a variant of the martingale convergence theorem (see
Thm. 7 in [18], p. 139, or Lem. 1 in [2]).

Lemma 3.1. Let I and I1 be nondecreasing adapted processes, Z be a nonnegative semi-martingale and M a
local martingale such that E(Z(t)) <∞, ∀t ≥ 0, I1(∞) <∞, P-a.s. and

Z(t) + I(t) = Z(0) + I1(t) +M(t), ∀t ≥ 0.

Then, there is lim
t→∞Z(t) <∞, P-a.s. and I(∞) <∞, P-a.s.

We are going to apply Lemma 3.1 to processes Z(t) = e2γδt|yj(t)|2δ, I = Ij , I1 = (Ij)1, M = Mj defined
above.

In virtue of (3.9), (Ij)1(∞) <∞. This implies, in virtue of Lemma 3.1, that there exists the limit

lim
t→∞(e2γδt|yj(t)|2δ) <∞, j = 1, ..., N, P-a.s. (3.11)

Since, by (3.9), e2γδt|yj |2δ ∈ L1(0,∞), P-a.s., the limit in (3.11) is zero. It follows therefore that

lim
t→∞ eγt|y(t)| = 0, P-a.s., (3.12)

where |y|2 =
N∑

j=1

|yj|2. We have therefore that

lim
t→∞ e2γt|Xu(t)|2

H̃
= 0, P-a.s. (3.13)

By (3.9) and (3.12), it follows also that ∫ ∞

0

e2γt|y(t)|2dt <∞, P-a.s.,

because, by (3.11), it follows that e2γδt|y|2δ ∈ L∞(0,∞) P-a.s. This yields∫ ∞

0

e2γt|Xu(t)|2
H̃

dt <∞, P-a.s. (3.14)

Next, we come back to the infinite dimensional system (3.2). Since, as seen earlier, the operator−As generates
a γ-exponentially stable C0-semigroup on H̃ , by the Lyapunov theorem there is Q ∈ L(H̃, H̃), Q = Q∗ ≥ 0 such
that

Re 〈Qx,Asx− γx〉 =
1
2
|x|2

H̃
, ∀x ∈ D(As).

(We note that thoughQ is not positively definite in the sense that inf{〈Qx, x〉 ; |x| = 1} > 0, we have nevertheless
that 〈Qx, x〉 > 0 for all x 
= 0.)
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Applying Ito’s formula in (3.2) to the function ϕ(x) =
1
2
〈Qx, x〉, we obtain that

1
2

d 〈QXs(t), Xs(t)〉 +
1
2
|Xs(t)|2H̃dt+ γ 〈QXs(t), Xs(t)〉 dt =

1
2
η2

N∑
i=1

(QYi(t), Yi(t))Hdt

+ η

N∑
i=1

((Re(QXs(t)),ReYi(t))H + (Im(QXs(t)), Im Yi(t))H)dβi(t),

where Yi are processes defined by

Yi(t) = 〈Xu(t), ϕ∗
i 〉 (I − PN )P (mφi), i = 1, ..., N.

This yields

e2γt 〈QXs(t), Xs(t)〉 +
∫ t

0

e2γs|Xs(s)|2H̃ds = 〈Q(I − PN )x, (I − PN ) x〉 + η2

N∑
i=1

∫ t

0

e2γs 〈QYi(s), Yi(s)〉 ds

+ 2η
N∑

i=1

∫ t

0

e2γs((Re(QXs(s)),Re Yi(s))H

+ (Im(QXs(s)), Im Yi(s))H)dβi(s), t ≥ 0, P-a.s.
(3.15)

We shall once again apply Lemma 3.1 to processes Z, I, M defined below

Z(t) = e2γt 〈QXs(t), Xs(t)〉 ,

I(t) =
∫ t

0

e2γs|Xs(s)|2H̃ds, I1(t) = η2
N∑

i=1

∫ t

0

e2γs 〈QYi, Yi〉ds,

M(t) = 2η
N∑

i=1

∫ t

0

e2γs((Re(QXs(s)),Re Yi(s))H + (Im(QXs(s)), Im Yi(s))H)dβj(s), P-a.s., t ≥ 0.

Since, by the first step of the proof (see (3.14)), I1(∞) <∞, we conclude therefore that

lim
t→∞ e2γt 〈QXs(t), Xs(t)〉 = 0, P-a.s.,

and, since Q is positive definite in the sense that 〈Qx, x〉 = (Qx, x)H > 0 for all x ∈ H̃, we have that

lim
t→∞ eγt|Xs(t)|H̃ = 0, P-a.s.

Recalling that X = Xu +Xs and again invoking (3.13), the latter implies (2.12), thereby completing the proof
of Theorem 2.1.



126 V. BARBU

4. The tangential boundary stabilization by noise

We shall keep the notations of Section 3.
We come back to the Stokes-Oseen system with boundary controller, i.e.,

Xt − ν0ΔX + (X · ∇)Xe + (Xe · ∇)X = ∇p in (0,∞) ×O,
∇ ·X = 0 in (0,∞) ×O,
X · ν = 0, X = u in (0,∞) × ∂O,
X(0) = x in O.

(4.1)

Our purpose here is to stabilize the null solutions to (4.1) by a noise boundary controller u of the form

u = η

N∑
i=1

∂φ̃i

∂ν
〈X,ϕ∗

i 〉 β̇i, (4.2)

where N is, as above, the number of eigenvalues λj of the operator A with Reλj ≤ γ and φ̃i will be defined
below. As in the previous case, ϕ∗

j are the eigenfunctions of A∗ corresponding to λj (see (2.4)) and {βi}N
i=1 is

an independent system of real Brownian motions in {Ω,P,F ,Ft}.
Here, we shall assume that hypothesis (A1) holds and also that

(A3) The system
{
∂ϕ∗

i

∂ν

}N

i=1

is linearly independent in (L2(∂O))d.

One might suspect that this property is generic in the class of equilibrium solutions Xe as is the case with the
following weaker version of (A3):

“Each
∂ϕ∗

j

∂ν
is not identically zero on ∂O.”

We set
Ly = −ν0Δy + (Xe · ∇)y + (y · ∇)Xe in O. (4.3)

The Stokes-Oseen system
Xt + LX = ∇p in (0,∞) ×O
∇ ·X = 0 in (0,∞) ×O
X · ν = 0, X = u in (0,∞) × ∂O
X(0) = x in O

(4.4)

can be equivalently written as (see, e.g., [6])

d
dt
X(t) + ÃX(t) = ÃαDu(t), t ≥ 0,

X(0) = x,
(4.5)

where y = Du is the solution to the equation

αy + Ly = ∇p in O
∇ · y = 0 in O, y = u, y · ν = 0 on ∂O

and α > 0 is fixed and sufficiently large. (D : (L2(∂O))d → H is the Dirichlet map associated with the operator
L + αI.)

Indeed, subtracting the latter from (4.4), we obtain

Xt + (α+ L)(X −Du) − αX = ∇p in (0,∞) ×O
∇ ·X = 0, X(0) = x

X −Du = 0 on (0,∞) × ∂O
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and this can be expressed in the form (4.5), where Ã : H̃ → (D(A))′ is the extension by transposition of A = PL
to all of H̃ and with values in (D(A))′, defined by

Ãy(ϕ) =
∫
O
yA∗

ϕdξ = 〈y,A∗ϕ〉 , ∀ϕ ∈ D(A∗), y ∈ H̃, (4.6)

and Ãα = αI + Ã. Here, (D(A))′ = (D(A∗))′ is the dual of the space D(A) endowed with the graph norm in
pairing induced by H̃ as pivot space; we have D(A) ⊂ H̃ ⊂ (D(A))′ algebraically and topologically. It should
be noticed that in this formulation, which is standard in boundary control theory, the right hand side of (4.5)
is an element of (D(A))′ = (D(A∗))′, i.e., roughly speaking is a “pure” distribution on O, which incorporates
the boundary control u. We note also that (see [6]) the dual D∗A∗

α of AαD is given by

D∗A∗
αϕ = −ν0 ∂ϕ

∂ν
, ∀ϕ ∈ D(A). (4.7)

Our aim here is to insert into the controlled system (4.5) a stochastic boundary controller of the form (4.2).
Namely, we shall consider the stochastic differential equation

dX(t) + ÃX(t)dt = η
N∑

i=1

ÃαD

(
∂φ̃i

∂ν

)
〈X(t), ϕ∗

i 〉dβi(t), t ≥ 0,

X(0) = x.

(4.8)

Here, {φ̃i}N
i=1 is given by (2.10), where αij are chosen such that

N∑
i=1

αij

〈
∂ϕ∗

i

∂ν
,
∂ϕ∗

k

∂ν

〉
1

= δjk, j, k = 1, ..., N.

Here, | · |1 = | · |(L2(∂O))d and 〈u, v〉1 =
∫

∂O

∂u

∂ν

∂v̄

∂ν
dξ. By assumption (A3), it is clear that the system {φ̃i}N

i=1 is

well defined and 〈
ϕ∗

i , φ̃j

〉
1

= δij , i, j = 1, ..., N. (4.9)

We can, equivalently, write (4.8) as

X(t) = e−Ãtx+ η

∫ t

0

N∑
i=1

e−Ã(t−s)

(
ÃαD

(
∂φ̃i

∂ν

))
〈X(s), ϕ∗

i 〉dβi(s). (4.10)

Equation (4.10) has a unique solution X = X(t), which is an H̃-valued continuous process which can be viewed
as solution to problem (see [10], p. 244)

Xt − ν0ΔX + (X · ∇)Xe + (Xe · ∇)X = ∇p in (0,∞) ×O
∇ ·X = 0 in (0,∞) ×O
X(0, ξ) = x(ξ) in O

X =
N∑

i=1

∂φ̃i

∂ν
〈X,ϕ∗

i 〉 β̇i on (0,∞) × ∂O.

(4.11)

In other words, the boundary controller u = X
∣∣∣
∂O

is a white noise on ∂O. Moreover, since

(
∂φ̃i

∂ν
· ν
)

· ν = 0

on ∂O (see, e.g., Lem. 3.3.1 in [6]) this stochastic controller is tangential, i.e., X · ν = 0 on (0,∞) × ∂O.
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Theorem 4.1. Assume that hypothesis (A1), (A3) are satisfied. Then, for |η| large enough we have for the
solution X to (4.8) (equivalently, (4.10))

P

[
lim

t→∞ eγt‖X(t)‖(D(A))′
]

= 0. (4.12)

In particular, we have
lim

t→∞ eγt 〈X(t), ϕ〉 = 0, P-a.s., ∀ϕ ∈ D(A). (4.13)

Proof. We shall argue as in the proof of Theorem 2.1. Namely, as in the previous case, we shall decompose
system (4.8) in two parts,

dXu + AuXudt = ηP̃N

N∑
i=1

Ãα

(
∂φ̃i

∂ν

)
〈X,ϕ∗

i 〉dβi, P-a.s.

Xu(0) = PNx

(4.14)

dXs + AsXsdt = η(I − P̃N )
N∑

i=1

Ãα

(
∂φ̃i

∂ν

)
〈X,ϕ∗

i 〉 dβi, P-a.s.

Xs(0) = (I − PN )x.

(4.15)

Here P̃N : (D(A))′ → Xu = lin span{ϕj}N
i=1 is the projector defined as in (2.1) and Au = P̃NA∣∣Xu

,

As = (I − P̃N )A∣∣Xs
. The operator Ãs is the extension of As to all of H̃, i.e., Ãs : H̃ → (D(A))′ is defined

by (4.6).

We represent the solution Xu to (4.14) as Xu =
N∑

j=1

yjϕj and taking into account (2.5), (4.9), we obtain for

{yj}N
j=1 the finite dimensional stochastic system

dyj + λjyjdt = ηyjdβj , j = 1, ..., N,

yj(0) = y0
j .

(4.16)

System (4.16) will be treated in the same way as system (3.3). In fact, we get by exactly the same argument as
in the proof of Theorem 2.1, that (see (3.12), (3.14))

lim
t→∞ eγt|y(t)| = 0, P-a.s. (4.17)∫ ∞

0

e2γt|y(t)|2dt <∞, P-a.s. (4.18)

where |y|2 =
N∑

j=1

y2
j , y = Xu.

Now, coming back to system (4.15), we shall write it as

dXs + ÃsXsdt = η

N∑
i=1

Yi(t)dβi, t ≥ 0,

Yi(t) = (I − P̃N )ÃsD

(
∂φ̃i

∂ν

)
〈Xu(t), ϕ∗

i 〉 , i = 1, ..., N.

(4.19)
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By (2.2), it follows that
‖e−Astx‖(D(A))′ ≤ Ce−γt‖x‖(D(A))′ , ∀x ∈ (D(A))′

and so, by the Lyapunov theorem, there is a self-adjoint, continuous and positive operator Q = L((D(A))′,
(D(A))′) such that

Re
〈
Qx, Ãsx

〉
∗

= γ 〈Qx, x〉∗ +
1
2
‖x‖2

(D(A))′ , ∀x ∈ (D(A))′ (4.20)

where 〈·, ·〉∗ is the natural scalar product in (D(A))′.
Applying Ito’s formula in (4.19), we obtain that

1
2

d 〈QXs(t), Xs(t)〉∗ +
1
2
‖Xs(t)‖2

(D(A))′dt+ γ 〈QXs(t), Xs(t)〉∗ dt

=
1
2
η2

N∑
i=1

(QYi(t), Yi(t))Hdt+ η

N∑
i=1

(〈Re(QXs), Yi〉∗ + 〈Im(QXs), Im Yi〉∗)dβi.

This yields

e2γt 〈QXs(t), Xs(t)〉∗ +
∫ t

0

e2γs‖Xs(s)‖2
(D(A))′ds = 〈Q(I − PN )x, (I − PN )x〉∗ + 2η

N∑
i=1

∫ t

0

e2γs 〈QYi(s), Yi(s)〉∗ ds

+ 2η
N∑

i=1

∫ t

0

e2γs(〈Re(QXs), ImYi〉∗ + 〈Im(QXs), ImYi〉∗)dβi.

Then, applying Lemma 3.1 exactly as in the proof of Theorem 2.1, we infer that

P

[
lim

t→∞ 〈QXs(t), Xs(t)〉∗ e2γt = 0
]

= 1

and, since 〈Qx, x〉∗ = 0 implies x = 0, we infer that

P

[
lim

t→∞ eγt|Xs(t)|(D(A))′ = 0
]

= 1,

as claimed. This completes the proof. �
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