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Abstract. The topological asymptotic analysis provides the sensitivity of a given shape functional
with respect to an infinitesimal domain perturbation, like the insertion of holes, inclusions, cracks. In
this work we present the calculation of the topological derivative for a class of shape functionals asso-
ciated to the Kirchhoff plate bending problem, when a circular inclusion is introduced at an arbitrary
point of the domain. According to the literature, the topological derivative has been fully developed
for a wide range of second-order differential operators. Since we are dealing here with a forth-order
operator, we perform a complete mathematical analysis of the problem.
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1. Introduction

The topological derivative measures the sensitivity of a given shape functional with respect to an infinitesimal
singular domain perturbation, such as the insertion of holes, inclusions, source-terms or even cracks. The
topological derivative was rigorously introduced in [15]. Since then, this tool has proved extremely useful in the
treatment of a wide range of problems, namely, topology optimization [1,3,14], inverse analysis [4,6,8] and image
processing [5,9,10], and has become a subject of intensive research. Concerning the theoretical development of
the topological asymptotic analysis, the reader may refer to [2,7,12], for instance.

In order to present this concept in more details, let us consider a bounded domain Ω ⊂ Rn, n = 2, 3, which
is submitted to a non-smooth perturbation confined in a small region ωε(x̂) = x̂ + εω of size ε. Here, x̂ is an
arbitrary point of Ω and ω is a fixed domain of Rn. We denote by Ωε the topologically perturbed domain which,
in the case of a perforation, is defined by Ωε = Ω \ ωε(x̂). Then, we assume that a given shape functional ψ
admits the following topological asymptotic expansion

ψ(Ωε) = ψ(Ω) + f(ε)DTψ(x̂) + o(f(ε)), (1.1)
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1 Laboratoire d’analyse non linéaire et géométrie, Faculté des Sciences, 33 rue Louis Pasteur, 84000 Avignon, France.
samuel.amstutz@univ-avignon.fr
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Figure 1. Sketch of the working domain.

where f(ε) is a positive function such that f(ε) → 0 when ε→ 0. The number DTψ(x̂) is called the topological
derivative of ψ at x̂. Therefore, this derivative can be seen as a first order correction on ψ(Ω) to estimate ψ(Ωε).

According to the literature, the topological derivative has been fully developed for a wide range of second-
order differential operators. In [13] the formal calculation of the topological derivative for the total potential
energy associated to the Kirchhoff plate bending problem, when the domain is perturbed by the introduction
of an infinitesimal hole with homogeneous Neumann boundary condition, was presented. We recall that this
mechanical model involves a forth-order differential operator.

In this work we provide a full mathematical justification for the formula derived in [13]. In particular, we
discuss the regularity assumptions and provide precise estimates of the remainders of the topological asymptotic
expansion. We also extend the result obtained in [13] by considering as topological perturbation the nucleation
of an infinitesimal circular inclusion instead of a hole. Finally, we derive the closed formulas associated to a
large class of shape functionals, including the total potential energy.

The paper is organized as follows. Section 2 describes the model associated to the Kirchhoff plate bending
problem. The topological asymptotic analysis of the biharmonic operator is developed in Section 3, where the
main result of the paper is stated, namely, a closed formula for the topological derivative. In Section 4 we
provide the appropriate estimates of the remainders that come out from the topological asymptotic analysis.
Finally, some examples of shape functionals are given in Section 5.

2. Problem statement

In this section we introduce a plate bending problem under Kirchhoff’s kinematic assumptions. Thus, let us
consider a plate represented by a two-dimensional domain D ⊂ R

2 with thickness τ > 0 supposed to be constant
for simplicity. We assume that the plate is submitted to bending effects. In order to model this phenomenon
Kirchhoff developed, in 1850, a theory based on the following ad hoc kinematic assumptions:

The normal fibers to the middle plane of the plate remain normal during deformation and do
not suffer variations in their length.

Consequently, both transversal shear and normal deformations are null. This fact limits the application of
Kirchhoff’s approach to plates whose deflections are small in relation to the thickness τ .

2.1. The topology optimization problem

Let D be a bounded domain of R2 as shown in Figure 1. This represents the domain in which the middle
plane of the plate to be optimized must be contained. We assume that the boundary of D is a curvilinear
polygon of class C1,1. Then we consider the topology optimization problem:

Minimize
Ω⊂D

JΩ(uΩ), (2.1)
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subject to the state equation: find uΩ ∈ Vh,g, such that

∫
D

γΩM(uΩ) · ∇∇ϕ dx =
∫

ΓNq

qϕ ds+
∫

ΓNm

m∂nϕ ds+
N∑

i=1

Qiϕ(xvi ) ∀ϕ ∈ V0,0. (2.2)

Above, Vh,g is the set of kinematically admissible displacements and V0,0 is the space of admissible displacements
variations, which are respectively defined by

Vh,g :=
{
u ∈ H2 (D) : u|ΓDh

= h and ∂nu|ΓDg
= g

}
, (2.3)

V0,0 :=
{
ϕ ∈ H2 (D) : ϕ|ΓDh

= 0 and ∂nϕ|ΓDg
= 0

}
. (2.4)

Some terms in (2.2)–(2.4) require explanation. The function uΩ is the transversal displacement (or deflection)
of the plate. The Dirichlet and Neumann boundaries are respectively denoted by the pairs (ΓDh

,ΓDg ) and
(ΓNm ,ΓNq), such that ΓDh

∩ ΓNq = ∅ and ΓDg ∩ ΓNm = ∅ with ΓDh
and ΓDg of nonzero measure. On ΓDh

and ΓDg we respectively prescribe a displacement h ∈ H3/2(ΓDh
) and a rotation g ∈ H1/2(ΓDg ). The system of

forces compatible with Kirchhoff’s kinematic assumptions are given by q ∈ H3/2(ΓNq)′, m ∈ H−1/2(ΓNm) and
Qi ∈ R. In the right hand side of (2.2), the integrals are to be understood as duality pairings on Sobolev trace
spaces. The distributions q and m stand for a transverse shear load and a moment, respectively prescribed
on ΓNq and ΓNm . Finally, Qi is a transverse shear load concentrated at the point xvi ∈ΓNq in which there is
some singularity, and N is the number of such singularities. The Young modulus γΩ is a piecewise constant
function which takes two values:

γΩ =
{
γin in Ω,
γout in D \ Ω,

(2.5)

where γin > 0 and γout ≥ 0. If γout = 0, only the values of uΩ restricted to Ω are to be considered in the
objective functional JΩ. The resultant moment tensor M(uΩ), normalized to a unitary Young modulus, is
related to the displacement field uΩ through the Hooke law:

M(u) = kC∇∇u, (2.6)

where

C = 2μI + λ(I ⊗ I) (2.7)

is the elasticity tensor, and

k =
τ3

12
· (2.8)

Here, I and I are the second and fourth order identity tensors, respectively, and the Lamé coefficients μ and λ
are given by

μ =
1

2(1 + ν)
and λ =

ν

1 − ν2
, (2.9)

where ν is the Poisson ratio. We recall that τ is the plate thickness.
In order to guarantee the existence and uniqueness of a solution to (2.2) (as a consequence of the Lax-Milgram

theorem), we need to include the following additional assumptions:

• meas(ΓDg ∩ ΓDh
) 
= 0 or ΓDg is not straight (its unit normal is not constant) or ΓDh

is not straight;
• if γout = 0, then in addition ΓDg , ΓDh

, ΓNm , ΓNq are parts of ∂Ω. Note that in this case, the uniqueness
holds only for the restriction of uΩ to Ω.
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Figure 2. Sketch of the perturbed domain (in this example, Ω = D).

Table 1. Coefficients γ̂0 = γ0(x̂) and γ̂1 = γ1(x̂) according to the location of x̂.

x̂ γ̂0 γ̂1

Ω γin γout

D \ Ω γout γin

2.2. Topological perturbations

Given a point x̂ ∈ D \ ∂Ω and a radius ε > 0, we consider a circular inclusion ωε = B(x̂, ε), and we define
the perturbed domain (see Fig. 2):

Ωε =
{

Ω \ ωε if x̂ ∈ Ω,
(Ω ∪ ωε) ∩D if x̂ ∈ D \ Ω.

(2.10)

We denote for simplicity (JΩε , uΩε , γΩε) by (Jε, uε, γε) and (JΩ, uΩ, γΩ) by (J0, u0, γ0). Then, for all ε ∈ [0, 1],
γε can be expressed as:

γε =
{
γ0 in D \ ωε,
γ1 in ωε,

(2.11)

where γ0 and γ1 are piecewise constant functions, constant in the neighborhood of x̂. We will use later the
notations γ̂0 := γ0(x̂) and γ̂1 := γ1(x̂). For the reader’s convenience, the possible values of γ̂0 and γ̂1 are
reported in Table 1. Of course, if γout = 0, one has to choose x̂ ∈ Ω (one cannot create a new connected
component).

For all ε ≥ 0, the function uε ∈ Vh,g satisfies the equilibrium equation:

∫
D

γεM(uε) · ∇∇ϕ dx =
∫

ΓNq

qϕ ds+
∫

ΓNm

m∂nϕ ds+
N∑

i=1

Qiϕ(xvi) ∀ϕ ∈ V0,0. (2.12)

We assume that ε is small enough so that γ1 = γ̂1 in ωε. For γ̂1 we have two possibilities, which depend
on γout.

(1) If γout > 0, then necessarily γ̂1 > 0. The solution of (2.12) is unique.
(2) If γout = 0, then γ̂1 = 0 since x̂ ∈ Ω, which leads to a homogeneous Neumann boundary condition

on ∂ωε. In this case, the solution to (2.12) is not unique. To circumvent this difficulty, we introduce
the following additional condition∫

ωε

M(uε) · ∇∇ϕ dx = 0 ∀ϕ ∈ H2
0 (ωε). (2.13)

Then we clearly get uniqueness of uε in Ω.
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In order to solve (2.1), we are looking for an asymptotic expansion of the objective functional, named as
topological asymptotic expansion, of the form

Jε(uε) − J0(u0) = f(ε)DTJΩ(x̂) + o(f(ε)), (2.14)

where f : R+ → R+ is a function that goes to zero with ε, and DTJΩ : D → R is the so-called topological
derivative of the functional JΩ.

3. Topological sensitivity analysis of a class of shape functionals

In this section, the topological sensitivity analysis of the shape functional JΩ is carried out. Possibly shifting
the origin of the coordinate system, we assume henceforth for simplicity that x̂ = 0.

3.1. A preliminary result

We start by proving an affine version of a result of [2].

Proposition 3.1. Let U be a vector space, V be a subspace of U , w be an element of U , and ε0 be a positive
number. For all ε ∈ [0, ε0), consider a vector uε ∈ {w} + V solution of a problem of the form:

aε(uε, ϕ) = �ε(ϕ) ∀ϕ ∈ V , (3.1)

where aε and �ε are a bilinear form on U × U and a linear form on V, respectively. Consider also, for all
ε ∈ [0, ε0), a functional Jε : U → R and a linear form Lε(u0) ∈ V ′. Suppose that the following hypotheses hold.

(1) For all ε ∈ [0, ε0), there exists vε ∈ V solution of

aε(ϕ, vε) = −〈Lε(u0), ϕ〉 ∀ϕ ∈ V . (3.2)

(2) There exist two numbers δa and δ� and a function ε ∈ [0, ε0) �→ f(ε) ∈ R such that, when ε goes to
zero,

(aε − a0)(u0, vε) = f(ε)δa+ o(f(ε)), (3.3)
(�ε − �0)(vε) = f(ε)δ�+ o(f(ε)). (3.4)

(3) There exist two numbers δJ1 and δJ2 such that

Jε(uε) = Jε(u0) + 〈Lε(u0), uε − u0〉 + f(ε)δJ1 + o(f(ε)), (3.5)
Jε(u0) = J0(u0) + f(ε)δJ2 + o(f(ε)). (3.6)

Then we have
Jε(uε) − J0(u0) = f(ε)(δa− δ�+ δJ1 + δJ2) + o(f(ε)).

Proof. From (3.5) and (3.6), we obtain

Jε(uε) − J0(u0) = 〈Lε(u0), uε − u0〉 + f(ε)(δJ1 + δJ2) + o(f(ε)).

Taking into account (3.2) and the fact that uε − u0 ∈ V , we get

Jε(uε) − J0(u0) = −aε(uε − u0, vε) + f(ε)(δJ1 + δJ2) + o(f(ε))
= −aε(uε, vε) + (aε − a0)(u0, vε) + a0(u0, vε) + f(ε)(δJ1 + δJ2) + o(f(ε)).
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The state equation (3.1) yields

Jε(uε) − J0(u0) = −�ε(vε) + (aε − a0)(u0, vε) + �0(vε) + f(ε)(δJ1 + δJ2) + o(f(ε)).

Finally, from the hypotheses (3.3) and (3.4), it comes

Jε(uε) − J0(u0) = −f(ε)δ�+ f(ε)δa+ f(ε)(δJ1 + δJ2) + o(f(ε)). �

For readability, we focus in Sections 3.2 through 3.4 on the case where γout > 0. The case γout = 0 is
discussed in Section 3.5.

3.2. Some notations

By defining the spaces
U = H2(D), (3.7)

V =
{
ϕ ∈ H2 (D) : ϕ|ΓDh

= 0 and ∂nϕ|ΓDg
= 0

}
, (3.8)

and the function w as an arbitrary lifting of the Dirichlet boundary condition (h, g) in U , problem (2.12) can
be written in the form (3.1) with the help of the bilinear and linear forms:

aε(u, ϕ) =
∫

D

γεM(u) · ∇∇ϕ dx ∀u, ϕ ∈ U , (3.9)

�ε(ϕ) =
∫

ΓNq

qϕ ds+
∫

ΓNm

m∂nϕ ds+
N∑

i=1

Qiϕ(xvi) ∀ϕ ∈ V . (3.10)

We consider an objective functional satisfying the hypotheses (3.5)–(3.6) for a function f(ε) which will be
specified later. Then the perturbed adjoint state vε ∈ V has to solve the following problem:∫

D

γεM(vε) · ∇∇ϕ dx = −〈Lε(u0), ϕ〉 ∀ϕ ∈ V . (3.11)

By the Lax-Milgram theorem, this problem admits a unique solution.

3.3. Variation of the bilinear form

In order to apply Proposition 3.1, we need to obtain a closed form for the leading term of the quantity:

(aε − a0)(u0, vε) =
∫

ωε

(γ1 − γ0)M(u0) · ∇∇vε dx. (3.12)

In the course of the analysis, the remainders detached from this expression will be denoted by Ei(ε), i = 1, 2, ...
By setting ṽε = vε − v0 and assuming that ε is sufficiently small so that γ0 and γ1 are constant in ωε, we

obtain:

(aε − a0)(u0, vε) = (γ̂1 − γ̂0)
(∫

ωε

M(u0) · ∇∇v0 dx+
∫

ωε

M(u0) · ∇∇ṽε dx
)
.

Since u0 and v0 are smooth in the vicinity of x̂ (at least C4,α under the assumptions of Thm. 3.1), we approximate
M(u0) and ∇∇v0 in the first integral by their values at the point x̂, and write:

(aε − a0)(u0, vε) = (γ̂1 − γ̂0)
(
πε2M(u0)(x̂) · ∇∇v0(x̂) +

∫
ωε

M(u0) · ∇∇ṽε dx+ E1(ε)
)
. (3.13)
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We assume that the linear functional Lε(u0) is of the form:

〈Lε(u0), ϕ〉 =
∫

D

γε(b(u0)ϕ+ B(u0) · ∇∇ϕ) dx + 〈L,ϕ〉 ∀ϕ ∈ V , (3.14)

where L ∈ V ′, b(u0) ∈ L2(D) is a scalar field and B(u0) ∈ L2(D) is a second order tensor field. We assume
further that 〈L,ϕ〉 does not depend on the value of ϕ in a neighborhood B of x̂, i.e., 〈L,ϕ〉 = 〈L̃, ϕ|D\B〉. As
vε is solution of (3.2), then, by difference, we find that the function ṽε ∈ V solves

∫
D

γεM(ṽε) · ∇∇ϕ dx = −(γ̂1 − γ̂0)
(∫

∂ωε

Mnn∂nϕ ds−
∫

∂ωε

(∂tM
tn + divM · n)ϕ ds

)
∀ϕ ∈ V . (3.15)

The tensor field M introduced above is defined by

M = M1 +M2,

with

M1 = M(v0) and M2 = B(u0).

The notation ∂t stands for the tangential derivative, and M tn = t ·Mn, where t and n are the unit tangent and
outward unit normal to ∂ωε. The corresponding strong formulation for ṽε reads:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

div[div(γ0M(ṽε))] = 0 in D \ ωε,
div[div(M(ṽε))] = 0 in ωε

ṽε = 0 on ΓDh
,

∂nṽε = 0 on ΓDg ,
γ0Mnn(ṽε) = 0 on ∂D \ ΓDg ,
∂t[γ0Mtn(ṽε)] + div[γ0M(ṽε)] · n = 0 on ∂D \ ΓDh

,
[[γεMnn(ṽε)]] = −(γ1 − γ0)Mnn

[[γε(∂tMtn(ṽε) + divM(ṽε) · n)]] = −(γ1 − γ0)(∂tM
tn + divM · n)

}
on ∂ωε,

(3.16)

where [[γεMnn(ṽε)]] and [[γε(∂tMtn(ṽε) + divM(ṽε) · n)]] are the jumps of the normal moment and transversal
shear through the interface ∂ωε. We use the convention that in the jump [[(·)]] the quantity (·) is taken positively
on the inclusion side. As we will see later, due to the fast decrease of the fundamental solution associated with
this problem, it is important to have a sufficiently accurate approximation of ṽε near the inclusion, but the
external boundary conditions can be rejected at infinity. Thus we approximate M(ṽε) by M(hM

ε ), solution of
the auxiliary exterior problem:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

div[div(M(hM
ε ))] = 0 in R

2 \ ωε,
div[div(M(hM

ε ))] = 0 in ωε

M(hM
ε ) → 0 at ∞,

[[γεMnn(hM
ε )]] = −(γ̂1 − γ̂0)Mnn(x̂)

[[γε(∂tMtn(hM
ε ) + divM(hM

ε ) · n)]] = −(γ̂1 − γ̂0)(∂tM
tn(x̂) + divM(x̂) · n)

}
on ∂ωε.

(3.17)
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In the present case of a circular inclusion, the tensor M(hM
ε ) admits the following expression in a polar coordinate

system (r, θ) centered in x̂ (the general solution associated to the biharmonic operator can be found in [11], for
instance):

• for r ≥ ε

Mr(r, θ) = − (α1 + α2)
1 − γ

1 + ξγ

ε2

r2
− 1 − γ

1 + ηγ

(
4ν

3 + ν

ε2

r2
+ 3η

ε4

r4

)
(β1 cos 2θ + β2 cos 2(θ + φ)), (3.18)

Mθ(r, θ) = (α1 + α2)
1 − γ

1 + ξγ

ε2

r2
− 1 − γ

1 + ηγ

(
4

3 + ν

ε2

r2
− 3η

ε4

r4

)
(β1 cos 2θ + β2 cos 2(θ + φ)) , (3.19)

Mrθ(r, θ) = η
1 − γ

1 + ηγ

(
2
ε2

r2
− 3

ε4

r4

)
(β1 sin 2θ + β2 sin 2(θ + φ)) ; (3.20)

• for 0 < r < ε

Mr(r, θ) = (α1 + α2) ξ
1 − γ

1 + ξγ
+ η

1 − γ

1 + ηγ
(β1 cos 2θ + β2 cos 2(θ + φ)), (3.21)

Mθ(r, θ) = (α1 + α2) ξ
1 − γ

1 + ξγ
− η

1 − γ

1 + ηγ
(β1 cos 2θ + β2 cos 2(θ + φ)), (3.22)

Mrθ(r, θ) = −η 1 − γ

1 + ηγ
(β1 sin 2θ + β2 sin 2(θ + φ)). (3.23)

The notations used above are the following. The parameter φ denotes the angle between the eigenvectors of the
tensors M1(x̂) and M2(x̂),

αi =
1
2
(μi

I + μi
II) and βi =

1
2
(μi

I − μi
II), i = 1, 2;

where μi
I and μi

II are the eigenvalues of the tensors Mi for i = 1, 2. In addition, the constants ξ and η are
respectively given by

ξ =
1 + ν

1 − ν
and η =

1 − ν

3 + ν
, (3.24)

and γ is the contrast, that is,

γ =
γ̂1

γ̂0
· (3.25)

From these elements, we obtain successively:

∫
ωε

M(u0) · ∇∇ṽε dx =
∫

ωε

M(ṽε) · ∇∇u0 dx =
∫

ωε

M(hM
ε ) · ∇∇u0 dx+ E2(ε). (3.26)

Then approximating ∇∇u0 in ωε by its value at x̂ and calculating the resulting integral with the help of the
expressions (3.21)–(3.23) yields:

∫
ωε

M(u0) · ∇∇ṽε dx =
∫

ωε

M(hM
ε ) · ∇∇u0(x̂) dx+ E2(ε) + E3(ε)

= −πε2ρ (TM · ∇∇u0) (x̂) + E2(ε) + E3(ε), (3.27)
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with

ρ =
γ − 1
1 + γη

and T = ηI +
1
2
ξ − η

1 + γξ
I ⊗ I. (3.28)

Finally, the variation of the bilinear form can be written as:

(aε − a0)(u0, vε) = πε2(γ̂1 − γ̂0) [(I − ρT)M(u0) · ∇∇v0 − ρTB(u0) · ∇∇u0] (x̂) + (γ̂1 − γ̂0)
3∑

i=1

Ei(ε). (3.29)

3.4. Variation of the linear form

Since here �ε is independent of ε, it follows trivially that

(�ε − �0)(vε) = 0. (3.30)

3.5. Study of the limit case γout = 0

Let us now examine what changes in the preceding derivations when γout = 0. The variational formulation
is still given by the bilinear and linear forms (3.9) and (3.10) with the spaces (3.7) and (3.8). The additional
condition (2.13) is assumed. The perturbed adjoint state is defined as solution of (3.11) complemented with
the condition inside the hole∫

ωε

γ0M(vε) · ∇∇ϕ dx = −〈L0(u0), ϕ〉 ∀ϕ ∈ H2
0 (ωε), (3.31)

which yields uniqueness of vε in Ω. The functional Lε is assumed to satisfy (3.14), where b(u0) and B(u0) are
as in the previous case, and L ∈ V ′ is of the form 〈L,ϕ〉 = 〈L̃, ϕ|Ω\B〉 for some neighborhood B of x̂. Then we
find that the variation ṽε solves (3.15) together with∫

ωε

M(ṽε) · ∇∇ϕ dx = 0 ∀ϕ ∈ H2
0 (ωε). (3.32)

This corresponds to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

div[div(γ0M(ṽε))] = 0 in D \ ωε,
div[div(M(ṽε))] = 0 in ωε

ṽε = 0 on ΓDh
,

∂nṽε = 0 on ΓDg ,
γ0Mnn(ṽε) = 0 on ∂Ω \ ΓDg ,
∂t[γ0Mtn(ṽε)] + div[γ0M(ṽε)] · n = 0 on ∂Ω \ ΓDh

,
[[γεMnn(ṽε)]] = −(γ1 − γ0)Mnn

[[γε(∂tMtn(ṽε) + divM(ṽε) · n)]] = −(γ1 − γ0)(∂tM
tn + divM · n)

}
on ∂ωε.

Compared with (3.16), only the external boundary condition is modified. Thus the approximation (3.17) remains
valid. All the subsequent derivations leading to (3.29) are unchanged (the contrast is now γ = 0). Of course,
(3.30) still holds true.

3.6. Topological derivative

In Section 4 we prove that the remainders Ei(ε), i = 1, 2, 3, behave like a o(ε2) in both situations γout > 0
and γout = 0. Therefore, after summation of the different terms according to Proposition 3.1 and a few
simplifications, we arrive at the following result.
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Theorem 3.1. Let Jε(uε) be an objective functional satisfying the hypotheses (3.5) and (3.6) with f(ε) = πε2

and Lε(u0) such that (3.14) holds true. We assume that b(u0) and B(u0) are respectively of class C0,α and
C2,α in a neighborhood of x̂, 0 < α < 1, and that ∂D (∂Ω if γout = 0) is Lipschitz. Then, Jε(uε) admits the
topological asymptotic expansion

Jε(uε) − J0(u0) = πε2DTJΩ(x̂) + o(ε2),

with the topological derivative given by

DTJΩ = (γ1 − γ0) [(I − ρT)M(u0) · ∇∇v0 − ρTB(u0) · ∇∇u0] + δJ1 + δJ2. (3.33)

We recall that ρ and T are given by (3.28), and that the coefficients γ0 and γ1 are given by Table 1. Moreover,
u0 = uΩ is the solution of the state equation (2.2) and v0 = vΩ is the solution of the adjoint equation (3.2) for
ε = 0, i.e., v0 ∈ V and ∫

D

γ0M(v0) · ∇∇ϕ dx = −〈L0(u0), ϕ〉 ∀ϕ ∈ V . (3.34)

Formula (3.33) is valid for all x̂ ∈ D \ ∂Ω (x̂ ∈ Ω if γout = 0).

4. Estimation of the remainders

In this section, we proceed to the estimation of the remainders Ei(ε), i = 1, 2, 3. We use the letter c to denote
any constant independent of ε. In order to be able to treat simultaneously the cases γout > 0 and γout = 0, we
introduce the set

Ξ =
{
D if γout > 0,
Ω if γout = 0. (4.1)

We start by two preliminary lemmas.

Lemma 4.1. Let B be a bounded Lipschitz domain, H be a closed subspace of H2(B) and ‖.‖ be a norm on H
verifying

∃c1, c2 > 0 s.t. c1‖∇∇u‖L2(B) ≤ ‖u‖ ≤ c2‖u‖H2(B) ∀u ∈ H.
Then the norm ‖.‖ is equivalent on H to the norm ‖.‖H2(B).

Proof. We assume by contradiction that there exists a sequence (vn)n∈N of elements of H such that

∀n ∈ N, ‖vn‖H2(B) = 1 and ‖vn‖ < 1
n
·

Thanks to the compact imbedding of H2(B) into H1(B), we can extract a subsequence, still denoted by vn, such
that vn → v ∈ H1(B) for the H1 norm. In addition, the fact that ‖vn‖ → 0 implies that ‖∇∇vn‖L2(B) → 0.
We deduce that (vn) is a Cauchy sequence in H2(B), hence vn → v ∈ H2(B) for the H2 norm. As H is closed,
we have v ∈ H, and vn → v for the norm ‖.‖. In particular, ‖vn‖ → ‖v‖, thus v = 0. This contradicts the
assumption that ‖vn‖H2(B) = 1 for all n ∈ N. �

Lemma 4.2. For any tensor field M of class C1,α in a neighborhood of the point x̂, 0 < α < 1, let wε ∈ V be
solution of:∫

Ξ

γεM(wε) · ∇∇ϕ dx = −(γ̂1 − γ̂0)
(∫

∂ωε

Mnn∂nϕ ds−
∫

∂ωε

(∂tM
tn + divM · n)ϕ ds

)
∀ϕ ∈ V .

In the case of a hole, it is assumed the additional condition∫
ωε

M(wε) · ∇∇ϕ dx = 0 ∀ϕ ∈ H2
0 (ωε).
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Then, there exists δ > 0 such that ∥∥M(wε − hM
ε )

∥∥
L2(Ξ)

= O(ε1+δ). (4.2)

Proof. We take an arbitrary test function ϕ ∈ V . By integration by parts, we obtain

∫
Ξ

γεM(hM
ε ) · ∇∇ϕ dx = −(γ̂1 − γ̂0)

(∫
∂ωε

Mnn(x̂)∂nϕ ds−
∫

∂ωε

(∂tM
tn(x̂) + divM(x̂) · n)ϕ ds

)

+
∫

∂Ξ

γ0M(hM
ε )∂nϕ ds−

∫
∂Ξ

(∂t(γ0M(hM
ε )) + div(γ0M(hM

ε )) · n)ϕ ds

+
∫

∂Ω∩Ξ

[[γ0M(hM
ε )]]∂nϕ ds−

∫
∂Ω∩Ξ

[[∂t(γ0M(hM
ε )) + div(γ0M(hM

ε )) · n]]ϕ ds.

Then, the difference eε = wε − hM
ε satisfies

∫
Ξ

γεM(eε) · ∇∇ϕ dx = −(γ̂1 − γ̂0)
∫

∂ωε

(Mnn −Mnn(x̂))∂nϕ ds

+ (γ̂1 − γ̂0)
∫

∂ωε

(∂tM
tn − ∂tM

tn(x̂) + (divM − divM(x̂)) · n)ϕ ds

+
∫

∂Ξ

γ0M(hM
ε )∂nϕ ds−

∫
∂Ξ

(∂t(γ0M(hM
ε )) + div(γ0M(hM

ε )) · n)ϕ ds

+
∫

∂Ω∩Ξ

[[γ0M(hM
ε )]]∂nϕ ds−

∫
∂Ω∩Ξ

[[∂t(γ0M(hM
ε )) + div(γ0M(hM

ε )) · n]]ϕ ds.

We shall now estimate every term in the right hand side of the above equation. From the explicit formu-
las (3.18)–(3.20), the last four terms are bounded by cε2 ‖ϕ‖H2(Ξ). For the first term we proceed by a change
of variable. We obtain∣∣∣∣

∫
∂ωε

(Mnn −Mnn(x̂))∂nϕ ds
∣∣∣∣ = ε

∣∣∣∣
∫

∂ω

(Mnn(εx) −Mnn(x̂))∂nϕ(εx) ds
∣∣∣∣

≤ cε2 ‖∂nϕ(εx)‖H1/2(∂ω),

where we have used the Lipschitz continuity of Mnn in the vicinity of x̂. Then, from the trace theorem we
obtain ∣∣∣∣

∫
∂ωε

(Mnn −Mnn(x̂))∂nϕ ds
∣∣∣∣ ≤ cε ‖ϕ(εx)‖H2(ω)/R

,

with the quotient norm defined by

‖u‖H2(ω)/R
:= inf

β∈R

‖u+ β‖H2(ω) ∀u ∈ H2(ω).

The quotient space H2(ω)/R can be identified with the space of functions of H2(ω) with zero mean, endowed
with the H2(ω) norm. Hence, by virtue of Lemma 4.1, the quotient norm on H2(ω)/R is equivalent to the
semi-norm

|u|H2(ω) :=
(
‖∇u‖2

L2(ω) + ‖∇∇u‖2
L2(ω)

)1/2

∀u ∈ H2(ω).

Therefore, after another change of variable, we get∣∣∣∣
∫

∂ωε

(Mnn −Mnn(x̂))∂nϕ ds
∣∣∣∣ ≤ cε |ϕ(εx)|H2(ω)

≤ cε ‖∇ϕ‖L2(ωε) + cε2 ‖∇∇ϕ‖L2(ωε) .
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From the Hölder inequality, it comes for any p > 1∣∣∣∣
∫

∂ωε

(Mnn −Mnn(x̂))∂nϕ ds
∣∣∣∣ ≤ cε1+1/p ‖∇ϕ‖L2p/(p−1)(ωε) + cε2 ‖∇∇ϕ‖L2(ωε) .

Finally, taking into account the Sobolev embedding theorem, we obtain∣∣∣∣
∫

∂ωε

(Mnn −Mnn(x̂))∂nϕ ds
∣∣∣∣ ≤ cε1+1/p ‖ϕ‖H2(Ξ) ∀ϕ ∈ V .

For the second term we proceed in a similar way, that is

∣∣∣∣
∫

∂ωε

(∂tM
tn − ∂tM

tn(x̂) + (divM − divM(x̂)) · n)ϕ ds
∣∣∣∣

= ε

∣∣∣∣
∫

∂ω

(∂tM
tn(εx) − ∂tM

tn(x̂) + (divM(εx) − divM(x̂))ϕ(εx) ds
∣∣∣∣

≤ cε1+α ‖ϕ(εx)‖H3/2(∂ω)

≤ cε1+α ‖ϕ(εx)‖H2(ω)

≤ cεα ‖ϕ‖L2(ωε) + cε1+α ‖∇ϕ‖L2(ωε) + cε2+α ‖∇∇ϕ‖L2(ωε)

≤ cε1+α ‖ϕ‖L∞(ωε) + cε1+α ‖∇ϕ‖L2(ωε) + cε2+α ‖∇∇ϕ‖L2(ωε)

≤ cε1+α ‖ϕ‖H2(Ξ) ,

where we have used again the Sobolev embedding theorem. From these results we get∣∣∣∣
∫

Ξ

γεM(eε) · ∇∇ϕ dx
∣∣∣∣ ≤ cε1+min(α,1/p) ‖ϕ‖H2(Ξ) . (4.3)

Let R1[x] be the space of polynomial functions of two variables with degree not greater than one, and C be
a neighborhood of ∂D a positive distance away from x̂. By identifying the quotient space H2(C)/R1[x] with
the orthogonal complement R1[x]⊥ := {u ∈ H2(C), 〈u, v〉H2(C) = 0 ∀v ∈ R1[x]}, Lemma 4.1 implies that the
quotient norm on H2(C)/R1[x] is equivalent to the energy norm u �→ ‖∇∇u‖L2(C). Then there holds

‖eε‖H3/2(ΓDh
)/R1[x] + ‖∂neε‖H1/2(ΓDg )/R = ‖hM

ε ‖H3/2(ΓDh
)/R1[x] + ‖∂nh

M
ε ‖H1/2(ΓDg )/R

≤ c‖hM
ε ‖H2(C)/R1[x]

≤ c‖M(hM
ε )‖L2(C)

≤ cε2.

For the latter estimate, we have used the explicit formulas (3.18)–(3.20). In (4.3), we make the splitting
eε = e1ε + e2ε, where e1ε is a lifting of the first order trace of eε on ∂Ξ whose support does not contain the
inclusion, and e2ε ∈ V . Then, we have by the trace theorem

‖e1ε‖H2(Ξ)/R1[x] ≤ cε2. (4.4)

From (4.3) and (4.4), it comes∣∣∣∣
∫

Ξ

γεM(e2ε) · ∇∇ϕ dx
∣∣∣∣ ≤ c(ε1+min(α,1/p) + ε2) ‖ϕ‖H2(Ξ) . (4.5)

We shall now distinguish between the cases γout > 0 and γout = 0.
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• We first treat the case γout > 0. As γε(x) ≥ min(γin, γout) > 0 for all x ∈ D, the bilinear form on the
left hand side of (4.5) is uniformly coercive on V with respect to ε. Hence by elliptic regularity, we have∥∥e2ε∥∥H2(D)

≤ cε1+min(α,1/p),

which, together with (4.4), yields (4.2).
• We now turn to the case γout = 0. Using the equivalence of the H2 norm and the energy norm on the

space
{
ϕ ∈ H2 (Ω) : ϕ|ΓDh

= 0 and ∂nϕ|ΓDg
= 0

}
, we obtain

c
∥∥e2ε∥∥2

H2(Ω)
≤ ‖∇∇e2ε‖2

L2(Ω) = ‖∇∇e2ε‖2
L2(Ω\ωε) + ‖∇∇e2ε‖2

L2(ωε).

Yet, a change of variable entails

‖∇∇e2ε‖2
L2(ωε) =

1
ε2

‖∇∇(e2ε(εx))‖2
L2(ω)

≤ c

ε2
‖e2ε(εx)‖2

H3/2(∂ω)/R1[x]

≤ c

ε2
‖e2ε(εx)‖2

H2(C(1,2))/R1[x]

≤ c

ε2
‖∇∇(e2ε(εx))‖2

L2(C(1,2)) = c‖∇∇e2ε‖2
L2(C(ε,2ε)),

where C(r1, r2) = {x ∈ R2 : r1 < |x| < r2}. It comes

∥∥e2ε∥∥2

H2(Ω)
≤ c‖∇∇e2ε‖2

L2(Ω\ωε) ≤ c

∫
Ω

γεM(e2ε) · ∇∇e2ε dx.

Using (4.5) with ϕ = e2ε and (4.4) leads to the desired result.
�

4.1. First remainder

The first remainder E1(ε) in (3.13) is given by

E1(ε) =
∫

ωε

(M(u0) · ∇∇v0 −M(u0)(x̂) · ∇∇v0(x̂)) dx. (4.6)

By interior elliptic regularity, u0 and v0 are respectively of class C∞ and C4,α in a neighborhood of x̂. From
these observations, it comes immediately that

|E1(ε)| ≤ cε3. (4.7)

4.2. Second remainder

The second remainder E2(ε) in (3.26) is given by

E2(ε) =
∫

ωε

M(ṽε − hM
ε ) · ∇∇u0 dx. (4.8)

The Cauchy-Schwarz inequality entails

|E2(ε)| ≤ ∥∥M(ṽε − hM
ε )

∥∥
L2(ωε)

‖u0‖H2(ωε)

≤ cε
∥∥M(ṽε − hM

ε )
∥∥

L2(ωε)
. (4.9)
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Then, by Lemma 4.2, there exists δ > 1, such that

|E2(ε)| ≤ cε2+δ. (4.10)

4.3. Third remainder

The third remainder E3(ε) in (3.27) is given by

E3(ε) =
∫

ωε

M(hM
ε ) · (∇∇u0 −∇∇u0(x̂)) dx. (4.11)

From the Cauchy-Schwarz inequality and taking into account the regularity of u0 near x̂ as well as the explicit
formulas (3.21)–(3.23), we obtain

|E3(ε)| ≤ ∥∥M(hM
ε )

∥∥
L2(ωε)

‖∇∇u0 −∇∇u0(x̂)‖L2(ωε)

≤ cε2
∥∥M(hM

ε )
∥∥

L2(ωε)

≤ cε3. (4.12)

5. Examples of shape functionals

We present two examples of objective functionals which are of interest for practical applications.

Proposition 5.1. We consider an objective functional of the form

Jε(u) := J(u|D̃),

where D̃ is an open subset of D (Ω if γout = 0) which does not contain a neighborhood of x̂. In addition, we
assume that J admits the following expansion,

J(u0|D̃ + ϕ) − J(u0|D̃) =
〈
L(u0|D̃), ϕ

〉
+O(‖ϕ‖2

H2(D̃)) ∀ϕ ∈ Ṽ ,

where Ṽ = {u|D̃ , u ∈ V} and L(u0) ∈ Ṽ ′. We set

〈Lε(u0), ϕ〉 = 〈L0(u0), ϕ〉 =
〈
L(u0|D̃), ϕ|D̃

〉 ∀ϕ ∈ V .

Then, the assumptions of Theorem 3.1 are satisfied with

B(u0) = 0, δJ1 = δJ2 = 0.

Proof. It is sufficient to verify the conditions (3.5) and (3.6). The second one is straightforward. For the first
condition we write

Jε(uε) − Jε(u0) = J(uε|D̃) − J(u0|D̃)

=
〈
L(u0|D̃), uε|D̃ − u0|D̃

〉
+O(‖uε − u0‖2

H2(D̃))

= 〈Lε(u0), uε − u0〉 +O(‖uε − u0‖2
H2(D̃)).

Then we make the splitting

‖M(uε) −M(u0)‖L2(D̃) =
∥∥M(uε) −M(u0) −M(hM

ε )
∥∥

L2(D̃)
+

∥∥M(hM
ε )

∥∥
L2(D̃)

,
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where M = M(u0). On the one hand, by setting wε = uε − u0 we deduce from Lemma 4.2 that

∥∥M(uε − u0 − hM
ε )

∥∥
L2(D̃)

= O(ε1+δ), δ > 0.

On the other hand, taking into account the analytical formulas (3.18)–(3.23) we straightforwardly derive

∥∥M(hM
ε )

∥∥
L2(D̃)

= O(ε2), �

which completes the proof.

Corollary 5.1. For the total potential energy functional

Jε(u) =
1
2
aε(u, u) − �ε(u),

the topological derivative reads

DTJΩ =
γ1 − γ0

2
[(I − ρT)M(u0) · ∇∇u0] . (5.1)

Proof. Let w ∈ U be a lifting of the Dirichlet boundary conditions on ΓDg and ΓDh
whose support does not

contain a neighborhood of x̂. Using that

aε(uε, ϕ) = �ε(ϕ) ∀ϕ ∈ V ,

we can rewrite the objective functional as

Jε(uε) = J̃ε(uε),

where

J̃ε(u) =
1
2

(aε(u,w) − �ε(u) − �ε(w)) .

Clearly, this functional satisfies the assumptions of Proposition 5.1, with for all ε ≥ 0,

〈Lε(u0), ϕ〉 =
1
2

(aε(ϕ,w) − �ε(ϕ)) ∀ϕ ∈ V .

The adjoint problem reads: find v0 ∈ V such that

a0(v0, ϕ) = −1
2

(a0(ϕ,w) − �0(ϕ))

= −1
2

(a0(w,ϕ) − a0(u0, ϕ)) ∀ϕ ∈ V .

By uniqueness we get

v0 =
1
2
(u0 − w).

Then

∇∇v0(x̂) =
1
2
∇∇u0(x̂),

which concludes the proof. �
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Proposition 5.2. We consider an objective functional of the form

Jε(u) :=
1
2

∫
D̃

γεKM(uε) ·M(uε),

where K is a symmetric fourth order tensor and D̃ is an open subset of D containing x̂. We set for all ϕ ∈ V:

〈Lε(u0), ϕ〉 =
∫

D̃

γεKM(u0) ·M(ϕ) =
∫

D̃

γεkCKM(u0) · ∇∇ϕ,

that is,
B(u0) = kCKM(u0).

Then, the assumptions of Theorem 3.1 are satisfied with the contributions δJ1 and δJ2 at the point x̂ given by

δJ1 =
1
2
γ̂1

∫
ω

KM·M +
1
2
γ̂0

∫
R2\ω

KM·M,

δJ2 =
1
2
(γ̂1 − γ̂0)KM(u0)(x̂) ·M(u0)(x̂).

Above, M(x) = M(hM
ε )(εx) is given by the explicit formulas (3.18)–(3.23), with M = M(u0)(x̂).

Proof. A simple calculation results in

V J1(ε) := Jε(uε) − Jε(u0) − 〈Lε(u0), uε − u0〉 =
1
2

∫
D̃

γεKM(ũε) ·M(ũε),

with ũε = uε − u0. Then we write

V J1(ε) =
1
2

∫
D̃

γεKM(hM
ε ) · M(hM

ε ) + E4(ε),

with E4(ε) = o(ε2). Indeed, it stems from the Cauchy-Schwarz inequality that

|E4(ε)| ≤ c‖M(ũε − hM
ε )‖L2(D̃)‖M(ũε) + M(hM

ε )‖L2(D̃)

≤ c‖M(ũε − hM
ε )‖L2(D̃)

(
‖M(ũε − hM

ε )‖L2(D̃) + 2‖M(hM
ε )‖L2(D̃)

)
.

According to Lemma 4.2, ‖M(ũε − hM
ε )‖L2(D̃) = o(ε), and, in view of the explicit expression of M(hM

ε ), one
easily checks that ‖M(hM

ε )‖L2(D̃) = O(ε). Now take a ball B(x̂, R) in which γ0 and γ1 are constant. Due to
the decrease of M(hM

ε ) we have

V J1(ε) =
1
2

∫
ωε

γ̂1KM(hM
ε ) · M(hM

ε ) +
∫

B(x̂,R)\ωε

γ̂0KM(hM
ε ) · M(hM

ε ) + o(ε2).

Using again the decrease of M(hM
ε ), it appears that replacing in the second integral the domain B(x̂, R) \ ωε by

R2 \ ωε produces an error of order O(ε4). A change of variable completes the calculation of δJ1. The calculation
of δJ2 is straightforward. �
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