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Abstract. The Monge-Kantorovich problem is revisited by means of a variant of the saddle-point
method without appealing to c-conjugates. A new abstract characterization of the optimal plans
is obtained in the case where the cost function takes infinite values. It leads us to new explicit
sufficient and necessary optimality conditions. As by-products, we obtain a new proof of the well-
known Kantorovich dual equality and an improvement of the convergence of the minimizing sequences.
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1. Introduction

The Monge-Kantorovich problem is revisited by means of a variant of the saddle-point method derived in [12],
without appealing to c-conjugates. A new abstract characterization of the optimal plans is obtained (Thm. 4.2)
in the case where the cost function takes infinite values. It leads us to new explicit sufficient and necessary
conditions of optimality which are stated in Theorems 1.8 and 1.9. As by-products, we obtain a new proof of
the well-known Kantorovich dual equality and an improvement of the convergence of the minimizing sequences.

1.1. The Monge-Kantorovich transport problem

Let us take A and B two Polish (separable complete metric) spaces furnished with their respective Borel
σ-fields, a lower semicontinuous (cost) function c : A×B → [0,∞] which may take infinite values and two
probability measures μ ∈ PA and ν ∈ PB on A and B. We denote PA, PB and PAB the sets of all Borel
probability measures on A, B and A×B. The Monge-Kantorovich problem is

minimize π ∈ PAB �→
∫

A×B

c(a, b)π(dadb) subject to π ∈ P (μ, ν) (MK)

where P (μ, ν) is the set of all π ∈ PAB with prescribed marginals πA = μ on A and πB = ν on B. Note that c
is measurable since it is lower semicontinuous and the integral

∫
A×B

c dπ ∈ [0,∞] is well-defined since c ≥ 0.

For a general account on this active field of research, see the books of Rachev and Rüschendorf [15] and
Villani [18,19].
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The subset {c = ∞} of A×B is a set of forbidden transitions. Optimal transport on the Wiener space [11]
and on configuration spaces [8,9] provide natural infinite dimensional settings where c takes infinite values.

Let us denote CA, CB and CAB the spaces of all continuous bounded functions on A, B and A×B. The
Kantorovich maximization problem:

⎧⎨
⎩maximize

∫
A

f dμ +
∫

B

g dν for all f, g such that

f ∈ CA, g ∈ CB and f ⊕ g ≤ c
(K)

is the basic dual problem of (MK). Here and below, we denote f ⊕g(a, b) = f(a)+g(b). Under our assumptions,
we have

inf (MK) = sup (K) ∈ [0,∞] (1.1)

which is called the Kantorovich dual equality. For a proof of this well known result, see [19], Theorem 5.10, for
instance.

Definitions 1.1 (plans).
(1) Any probability measure in P (μ, ν) is called a transport plan, or shorter: a plan.
(2) One says that π ∈ P (μ, ν) is a finite plan if

∫
A×B c dπ < ∞. The set of all finite plans is denoted by

P (μ, ν, c).
(3) One says that π is an optimal plan if it is a finite plan and it minimizes γ �→ ∫

A×B c dγ on P (μ, ν).

It is well-known that there exists at least an optimal plan if and only if P (μ, ν, c) is nonempty; this will be
found again in Theorem 3.1. Definition 1.1-(3) throws away the uninteresting case where

∫
A×B

c dπ = ∞ for all
π ∈ P (μ, ν).

Since it is a convex but not a strictly convex problem, infinitely many optimal plans may exist.
Recently, Beiglböck et al. [2,3,17] have improved previous optimality criteria in several directions. Before

stating some of their results, let us introduce the notion of strongly c-cyclically monotone plan.
Clearly, there is no reason for the dual equality (1.1) to be attained at continuous functions f and g. Suppose

instead that there exist two [−∞,∞)-valued integrable functions f ∈ L1(μ) and g ∈ L1(ν) such that f ⊕ g ≤ c
everywhere and sup{∫

A
u dμ+

∫
B

v dν; u ∈ L1(μ), v ∈ L1(ν), u⊕v ≤ c} =
∫

A
f dμ+

∫
B

g dν. Let π be an optimal
plan. We have

sup (K) ≤ sup
u∈L1(μ),v∈L1(ν),u⊕v≤c

∫
A

u dμ +
∫

B

v dν =
∫

f ⊕ g dπ ≤
∫

c dπ = inf (MK)

and by (1.1), this is a series of equalities. In particular, the couple (f, g) is an integrable dual optimizer,∫
(c − f ⊕ g) dπ = 0 and since c − f ⊕ g ≥ 0, we see that c = f ⊕ g, π-almost everywhere. This leads naturally

to the following notion.

Definition 1.2 (strongly c-cyclically monotone plan [17]). A transport plan π ∈ P (μ, ν) is called strongly
c-cyclically monotone if there exist [−∞,∞)-valued measurable functions f on A and g on B such that

{
f ⊕ g ≤ c everywhere
f ⊕ g = c π-almost everywhere. (1.2)

In the whole paper, measurable functions and sets are intended to be Borel measurable.
Note that it is not required in this definition that f and g are integrable. In fact, one can find examples

where there is an optimal plan but no integrable dual optimizer, see [2], Example 4.5. Without integrability,
one cannot write

∫
A

f dμ +
∫

B
g dν anymore. Nevertheless, the following result allows us to extend the notion

of dual optimizer to measurable functions (f, g) as in Definition 1.2.
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Lemma 1.3 ([2], Lem. 1.1). Let c : A×B → [0,∞] be measurable, f and g be [−∞,∞)-valued measurable
functions on A and B respectively such that f ⊕ g ≤ c everywhere. Then, for any π, π̃ ∈ P (μ, ν, c),

∫
A×B

f ⊕ g dπ =
∫

A×B

f ⊕ g dπ̃ ∈ [−∞,∞).

With this lemma in hand, we are allowed to denote∫
A×B

f ⊕ g d(μ, ν, c) :=
∫

A×B

f ⊕ g dπ, π ∈ P (μ, ν, c) (1.3)

this common value. A natural extension of the dual problem (K) is

⎧⎨
⎩ maximize

∫
A×B

f ⊕ g d(μ, ν, c) for all f ∈ [−∞,∞)A, g ∈ [−∞,∞)B

f, g measurable such that f ⊕ g ≤ c everywhere.

(K̃)

Of course, sup (K) ≤ sup (K̃) ≤ inf (MK) so that (1.1) implies

sup (K̃) = inf (MK). (1.4)

A couple of functions (f, g) as in Definition 1.2 is clearly an optimizer of (K̃). We call it a measurable dual
optimizer.

Some usual optimality criteria are expressed in terms of cyclical c-monotonicity.

Definition 1.4 (c-cyclically monotone plan). A subset Γ ⊂ A×B is said to be c-cyclically monotone if for
any integer n ≥ 1 and any family (a1, b1), . . . , (an, bn) of points in Γ,

∑n
i=1 c(ai, bi) ≤

∑n
i=1 c(ai, bi+1) with the

convention bn+1 = b1.
A probability measure π ∈ PAB is said to be c-cyclically monotone if it is concentrated on a measurable

c-cyclically monotone set Γ, i.e. π(Γ) = 1.

This notion goes back to the seminal paper [16] by Rüschendorf where the standard cyclical monotonicity
of convex functions introduced by Rockafellar has been extended in view of solving the Monge-Kantorovich
problem.

One easily shows that a strongly c-cyclically monotone plan is c-cyclically monotone.
The main results of [2,3,17] are collected in the next two theorems.

Theorem 1.5 ([2,3]). Let c be a measurable nonnegative function such that

μ ⊗ ν({c < ∞}) = 1. (1.5)

If there exists some πo ∈ P (μ, ν) such that
∫

A×B
c dπo < ∞, then (1.4) holds true and for any π ∈ P (μ, ν), the

following three statements are equivalent:

(i) π is an optimal plan;
(ii) π is c-cyclically monotone;
(iii) π is strongly c-cyclically monotone.

This result is valid under a very weak regularity condition on c which is only assumed to be Borel measurable.
It was first proved in [17] under the assumption that c is a lower semicontinuous nonnegative finitely-valued
function. However, condition (1.5) is close to the assumption that c is finitely valued.

The next result is concerned with cost functions c which may take infinite values.
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Theorem 1.6 ([1,3,17]). Let c be a lower semicontinuous [0,∞]-valued function.
(a) Any optimal plan is c-cyclically monotone.
(b) If there exists some πo ∈ P (μ, ν) such that

∫
A×B

c dπo < ∞, then any strongly c-cyclically monotone
plan in P (μ, ν) is an optimal plan.

Let c be a measurable [0,∞]-valued function.
(c) Every finite c-cyclically monotone transport plan is optimal if there exist a closed set F and a μ⊗ ν-null

set N such that {c = ∞} = F ∪ N.

Statement (a) is proved in Ambrosio and Pratelli’s lecture notes [1] and (b) is taken from [17]. Statement (c)
is proved in [3], it extends recent results of Pratelli [14].

Counterexamples 1.7. Otherwise stated, c is assumed to be lower semicontinuous.
(1) c is real valued.

(a) [3], Example 1.3, c is not lower semicontinuous and no optimal plan exists.
(b) [2], Example 4.5, c is the squared distance and no integrable dual optimizers exist.

(2) c takes infinite values on a non-null set.
(a) [2], Example 4.1, c is not lower semicontinuous and the weak Kantorovich dual equality (1.4) fails

to hold: we have sup (K̃) < inf (MK).
(b) [1], Example 3.5, a c-cyclically monotone plan which is not optimal.
(c) [17], Example 1, a c-cyclically monotone plan which is not strongly c-cyclically monotone.
(d) [3], Example 5.1, an optimal plan which is not strongly c-cyclically monotone.
(e) [2], Example 4.2, an optimal plan which is not strongly c-cyclically monotone with c continuous.

It appears that Theorem 1.5 is the best possible result under the assumption (1.5) but that its extension to
the general case where c takes infinite values on a non-null set is still open. The Counterexample (2)-(b) tells us
that one must drop the notion of c-cyclically monotone plan and with the Counterexamples (2)-(d) and (2)-(e),
one sees that even the notion of strongly c-cyclically monotone plan is not enough to characterize optimality.

Because of the dual gap when c is not lower semicontinuous (Counterexample (2)-(a), it is reasonable to
assume that c is lower semicontinuous in the general case. This will be assumed from now on.

1.2. The aim of this paper

This paper is aimed at implementing the saddle-point method for solving (MK) in the general case where
c might take infinite values, without appealing to c-conjugates, see [18,19]. After all, (MK) is a convex mini-
mization problem and one may wonder what the standard approach based on convex duality could yield. It
appears that an extended version of the saddle-point is necessary to investigate (MK) without imposing strong
qualifications of the constraints such as the standard requirement:

∫
A cA dμ+

∫
B cB dν < ∞ where c ≤ cA ⊕ cB,

see [18,19]. The present paper relies on an extension of the standard saddle-point method which has been
developed in [12].

– A new proof of the Kantorovich dual equality (1.1) is given in Theorem 3.1 providing at the same time
an improved result about the behavior of the minimizing sequences of (MK).

– An abstract characterization of the optimal plans is given in Theorem 4.2. It expresses a saddle-point
property and extends the notion of strong c-cyclical monotonicity.

– It leads easily to a sufficient condition of optimality in Theorem 1.8 below which is an improvement of
Theorem 1.6-(b). Its proof is given in Section 5.

– Finding good necessary conditions for optimal plans with a genuinely [0,∞]-valued cost function c is
still an open problem. Theorem 1.9 below, which is a corollary of Theorem 4.2, goes one step in this
direction. Its proof is given in Section 6.

One says that f is μ-measurable if there exists a measurable set N such that μ(N) = 0 and 1Nf is a
measurable function. A property holds P (μ, ν, c)-almost everywhere if it holds true outside a measurable set N
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such that γ(N) = 0, for all γ ∈ P (μ, ν, c). With these definitions in hand, we can state our sufficient condition
of optimality.

Theorem 1.8. Let π ∈ P (μ, ν, c) be any finite plan. If there exist a μ-measurable function f on A and a
ν-measurable function g on B which satisfy{

f ⊕ g ≤ c P (μ, ν, c)-almost everywhere
f ⊕ g = c π-almost everywhere, (1.6)

then π is optimal.

The Counterexamples 1.7-(d,e) are optimal plans which are not strongly c-cyclically monotone but they both
satisfy the weaker property (1.6). See Section 5.3 for more details.

The following result is our necessary condition of optimality.

Theorem 1.9. Take any optimal plan π, ε > 0 and p any probability measure on A×B such that
∫

A×B
c dp < ∞.

Then, there exist functions ϕ ∈ L1(π+p), u and v bounded continuous on A and B respectively and a measurable
subset D ⊂ A×B such that:

(1) ϕ = c, π-almost everywhere on A×B \ D;
(2)

∫
D(1 + c) dπ ≤ ε;

(3) −c/ε ≤ ϕ ≤ c, (π + p)-almost everywhere;
(4) −c/ε ≤ u ⊕ v ≤ c, everywhere;
(5) ‖ϕ − u ⊕ v‖L1(π+p) ≤ ε.

An important thing to notice in this result is the appearance of the probability measure p in items (3) and (5).
One can read (3)–(5) as an approximation of f ⊕ g ≤ c, (π + p)-almost everywhere. Since it is required that∫

A×B
c dp < ∞, one can choose p in P (μ, ν, c), and the properties (1)–(5) of this theorem are an approximation

of (1.6) where P (μ, ν, c)-a.e. is replaced by (π + p)-a.e.
In [4], Beiglböck et al. investigate the same problem with a different approach which is still based on a

saddle point method. A characterization of optimal plans which is more explicit than Theorem 4.2 is obtained
under some restrictive assumptions. In particular, the problem of considering simultaneously all the measures
p ∈ P (μ, ν, c) in Theorem 1.9 is handled by means of a projective limit argument.

1.3. Notation

Let X and Y be topological vector spaces and f : X → [−∞, +∞] be an extended-real valued function.
– The algebraic dual space of X is X∗, the topological dual space of X is X ′.
– The topology of X weakened by Y is σ(X, Y ) and one writes 〈X, Y 〉 to specify that X and Y are in

separating duality.
– The convex conjugate of f with respect to 〈X, Y 〉 is f∗(y) = supx∈X{〈x, y〉−f(x)} ∈ [−∞, +∞], y ∈ Y.
– The subdifferential of f at x with respect to 〈X, Y 〉 is ∂Y f(x) = {y ∈ Y ; f(x + ξ) ≥ f(x) + 〈y, ξ〉,
∀ξ ∈ X}. If no confusion occurs, one writes ∂f(x).

– The effective domain of f is dom f = {x ∈ X ; f(x) < ∞}.
– One denotes icordom f the intrinsic core of the effective domain of f dom f. Recall that the intrinsic

core of a subset A of a vector space is icorA = {x ∈ A; ∀x′ ∈ aff A, ∃t > 0, [x, x + t(x′ − x)[ ⊂ A}
where aff A is the affine space spanned by A.

– The domain of ∂f is dom∂f = {x ∈ X ; ∂f(x) �= ∅}.
– The indicator function of a subset A of X is defined by

ιA(x) =
{

0, if x ∈ A
+∞, otherwise, x ∈ X.

– The support function of A ⊂ X is ι∗A(y) = supx∈A〈x, y〉, y ∈ Y.
– The Dirac measure at a is denoted δa.
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2. The abstract convex minimization problem

The Monge-Kantorovich problem is a particular instance of an abstract convex minimization problem which
is solved in [12] by means of an extension of the saddle-point method. This extension allows to remove standard
topological restrictions on the constraint sets (the so-called constraint qualifications) at the price of solving
an arising new problem. Namely, one has to compute a lower semicontinuous convex extension of the convex
conjugate of the objective function. This may be a rather difficult task in some situations, but it is immediate
in the case of the Monge-Kantorovich problem.

Let us recall the main results of [12].

2.1. The minimization problem

Let Uo, Yo be two vector spaces,
Φo : Uo → [0,∞]

an extended-nonnegative function on Uo, and

T ∗
o : Yo → Uo

a linear mapping from Yo to Uo. Throughout this section, it is assumed that
(HΦ) (1) Φo : Uo → [0, +∞] is convex and Φo(0) = 0;

(2) ∀u ∈ Uo, ∃α > 0, Φo(αu) < ∞;
(3) ∀u ∈ Uo, u �= 0, ∃t ∈ R, Φo(tu) > 0;

(HT ) (1) T ∗
o (Yo) ⊂ Uo;

(2) ker T ∗
o = {0}.

Let Lo and Xo be the algebraic dual vector spaces of Uo and Yo. The convex conjugate of Φo with respect to
the dual pairing 〈Uo,Lo〉 is

Φ∗
o() = sup

u∈Uo

{〈u, 〉 − Φo(u)} ∈ [0,∞],  ∈ Lo

and the adjoint of T ∗
o is To : Lo → Xo defined for all  ∈ Lo by 〈y, To〉Yo,Xo = 〈T ∗

o y, 〉Uo,Lo . We obtain the
diagram 〈

Uo, Lo

〉
T ∗

o

�⏐⏐ ⏐⏐�To〈
Yo, Xo

〉
.

(Diagram 0)

For each x ∈ Xo, the optimization problem to be considered is

minimize Φ∗
o() subject to To = x,  ∈ Lo. (P x

o )

2.2. A dual problem

Let us define

Λo(y) := Φo(T ∗
o y), y ∈ Yo

|u|Φ := inf
{
a > 0; max

(
Φo(−u/a), Φo(u/a)

)
≤ 1

}
, u ∈ Uo

|y|Λ := inf
{
a > 0; max

(
Λo(−y/a), Λo(y/a)

)
≤ 1

}
, y ∈ Yo.

Under our assumptions, | · |Φ and | · |Λ are norms. One introduces
– U and Y the completions of (Uo, | · |Φ) and (Yo, | · |Λ);
– The topological dual spaces of U and Y are U ′ = L and Y ′ = X ;
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– The algebraic dual spaces of L and X are denoted by L∗ and X ∗;
– T is the restriction of To to L ⊂ Lo;
– Φ∗ is the restriction of Φ∗

o to L ⊂ Lo.

It is proved in [12] that TL ⊂ X . This allows one to define the algebraic adjoint T ∗ : L∗ → X ∗. We have the
following diagram 〈

L, L∗
〉

T
⏐⏐� �⏐⏐T ∗〈
X , X ∗

〉
.

(Diagram 1)

Also consider {
Φ(ζ) := sup�∈L{〈ζ, 〉 − Φ∗()}, ζ ∈ L∗

Λ(ω) := Φ(T ∗ω), ω ∈ X ∗.
(2.1)

The maximization problem
maximize 〈ω, x〉 − Λ(ω), ω ∈ X ∗ (D

x
)

is the dual problem associated with

minimize Φ∗() subject to T  = x,  ∈ L (P x)

with respect to the usual Fenchel perturbation.

2.3. Statements of the abstract results

Let us introduce
Λ∗(x) := sup

y∈Yo

{〈y, x〉 − Λo(y)}, x ∈ X

the convex conjugate of Λo + ιYo with respect to the dual pairing 〈Y,X〉.
Theorem 2.1 (primal attainment and dual equality [12]). Assume that (HΦ) and (HT ) hold.

(a) For all x in X , we have the dual equality

inf{Φ∗();  ∈ L, T  = x} = inf(P x
o ) = inf(P x) = Λ∗(x) ∈ [0,∞]. (2.2)

Moreover, Λ∗ is σ(X ,Y)-inf-compact.
(b) If x �∈ X , (P x

o ) admits no solution. Otherwise, P x
o and P x admit the same (possibly empty) set of

solutions.
(c) If in addition

x ∈ dom Λ∗,

then P x
o (or equivalently P x) is attained in L. Moreover, any minimizing sequence for P x

o has σ(L,U)-
cluster points and every such cluster point solves P x

o .

Denote the “algebraic” subdifferentials

∂LΦ(ζo) = { ∈ L; Φ(ζo + ζ) ≥ Φ(ζo) + 〈ζ, 〉, ∀ζ ∈ L∗}, ζo ∈ L∗

∂X ∗Λ∗(xo) = {ω ∈ X ∗; Λ∗(xo + x) ≥ Λ∗(xo) + 〈ω, x〉, ∀x ∈ X}, xo ∈ X

and define
dom∂Λ∗ = {x ∈ X ; ∂X ∗Λ∗(x) �= ∅}

the subset of the constraint specifiers x ∈ X such that ∂X ∗Λ∗(x) is not empty.
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Theorem 2.2 (dual attainment and representation [12]). Let us assume that (HΦ) and (HT ) hold.
(1) For any  ∈ L and ω ∈ X ∗, {

T  = x
 ∈ ∂LΦ(T ∗ω)

(2.3)

is equivalent to ⎧⎨
⎩

 is a solution to P x,
ω is a solution to D

x
and

the dual equality inf(P x) = Λ∗(x) holds.
(2) Suppose that in addition the constraint qualification

x ∈ dom∂Λ∗, (2.4)

is satisfied. Then, the primal problem P x is attained in L, the dual problem D
x

is attained in X ∗ and
every couple of solutions (, ω) to P x and D

x
satisfies (2.3).

By the geometric version of Hahn-Banach theorem, icordomΛ∗: the intrinsic core of domΛ∗, is included
in dom∂Λ∗. But, as will be seen at Remark 4.3 below, the Monge-Kantorovich problem provides us with a
situation where icordomΛ∗ is empty. This is one of the main difficulties to be overcome when applying the
saddle-point method to solve (MK).

It is a well-known result of convex conjugacy that the representation formula

 ∈ ∂LΦ(T ∗ω) (2.5)

is equivalent to
T ∗ω ∈ ∂L∗Φ∗()

and also equivalent to Fenchel’s identity

Φ∗() + Φ(T ∗ω) = 〈ω, T 〉. (2.6)

Proposition 2.3 ([12]). Assume that (HΦ) and (HT ) hold. Any solution ω ∈ X ∗ of D
x

shares the following
properties:

(a) ω is in the σ(X ∗,X )-closure of dom Λ;
(b) T ∗ω is in the σ(L∗,L)-closure of T ∗(dom Λ).

If in addition the level sets of Φo are | · |Φ-bounded, then
(a’) ω is in Y ′′. More precisely, it is in the σ(Y ′′,X )-closure of domΛ;
(b’) T ∗ω is in U ′′. More precisely, it is in the σ(U ′′,L)-closure of T ∗(dom Λ)

where Y ′′ and U ′′ are the topological bidual spaces of (U , | · |Φ) and (Y, | · |Λ).

3. Kantorovich dual equality and existence of optimal plans

We apply the results of Section 2 to the Monge-Kantorovich problem (MK).

3.1. Statement of the results

The set of all probability measures π on A×B such that
∫

A×B
c dπ < ∞ is denoted Pc. Hence, P (μ, ν, c) =

Pc ∩ P (μ, ν). It is immediate to see that

sup (K) ≤ sup(K̃) ≤ inf (MK) (3.1)

where for the last inequality, we state inf ∅ = +∞ as usual.



690 C. LÉONARD

In the next theorem, Pc will be endowed with the weak topology σ(Pc, Cc) where Cc is the space of all
continuous functions u on A×B such that

lim
t→∞ sup{|u(x)|/(1 + c(x)); x ∈ A×B, |u(x)| ≥ t} = 0

with the convention that sup ∅ = 0 which implies that the space CAB of bounded continuous functions on A×B
satisfies CAB ⊂ Cc.

Theorem 3.1 (dual equality and primal attainment).
(1) The dual equality for (MK) is

inf (MK) = sup (K) = sup (K̃) ∈ [0,∞]. (3.2)

(2) Assume that there exists some πo in P (μ, ν) such that
∫

A×B
c dπo < ∞. Then:

(a) there is at least one optimal plan;
(b) any minimizing sequence is relatively compact for the topology σ(Pc, Cc) and all its cluster points

are optimal plans.

Proof. It directly follows from Theorem 2.1 with Proposition 3.5-(3) and Proposition 3.7 which are stated and
proved below. About statement (1), note that the dual equality (2.2) is inf (MK) = sup (K) and conclude
with (3.1). �

Except for the appearance of the dual problem (K̃) and for the statement (2)-(b) with the topology σ(Pc, Cc),
this result is well-known. The dual equality (3.2) is the Kantorovich dual equality. The proof of Theorem 3.1 will
be an opportunity to make precise the abstract material Φo, Uo, To and so on in terms of the Monge-Kantorovich
problem.

3.2. The spaces and functions

Let us particularize the spaces and functions of Section 2 which are necessary for solving the Monge-
Kantorovich problem.

3.2.1. Description of Uo, Lo, Φo and Φ∗
o

Define
S := {(a, b) ∈ A×B; c(a, b) < ∞}

the effective domain of c and consider the equivalence relation on CAB defined for any u, v in CAB by

u ∼ v ⇔ u|S = v|S ,

which means that u and v match on S. Take

Uo := CAB/ ∼

the set of all equivalence classes and

Φo(u) := ιΓ(u) =
{

0, if u ≤ c
+∞, otherwise, u ∈ Uo

the convex indicator function of
Γ = {u ∈ Uo; u ≤ c}.



A SADDLE-POINT APPROACH TO THE MONGE-KANTOROVICH OPTIMAL TRANSPORT PROBLEM 691

Assumption (HΦ1) is obviously satisfied and it is easy to see that (HΦ3) also holds. Note that, without factorizing
by the equivalence relation in the definition of Uo, (HΦ3) would fail if c is infinite on some nonempty open set.
For (HΦ2) to be satisfied, assume that

c ≥ 1.

Doing this, one doesn’t loose any generality since changing c into c + 1 raises inf (MK) by +1 without changing
the minimizers.

The algebraic dual space Lo = U∗
o of Uo is identified as a subset of C∗

AB as follows. Any  ∈ C∗
AB is in Lo

if and only if for all u, v ∈ CAB such that u|S = v|S , we have (u) = (v). One shows at Proposition 3.3 below
that any  ∈ C∗

AB which is in Lo has its support included in the closure clS of S in the sense of the following:

Definition 3.2. For any linear form  on the space of all (possibly unbounded) continuous functions on A×B,
we define the support of  as the subset of all (a, b) ∈ A×B such that for any open neighborhood G of (a, b),
there exists some function u in CAB satisfying {u �= 0} ⊂ G and 〈u, 〉 �= 0. It is denoted by supp .

Proposition 3.3. For any  ∈ Lo, we have supp  ⊂ clS.

Proof. As  ∈ Lo, for all u ∈ CAB such that u|S = 0, we have 〈u, 〉 = 0. Take x �∈ clS. There exists an open
neighborhood G of x such that G ∩ S = ∅. For all u ∈ CAB such that {u �= 0} ⊂ G, we have u|S = 0 so that
〈u, 〉 = 0. This proves that x �∈ supp . �

Denote C|S the space of the restrictions u|S of all the functions u in CAB.

Remark 3.4. Beware, C|S is smaller than the space CS of all bounded and continuous functions on S. It
consists of the functions in CS which admit a continuous and bounded extension to A×B.

Identifying
Uo

∼= C|S , (3.3)

one sees with Proposition 3.3 that for all  ∈ Lo,

Φ∗
o() := sup{〈u, 〉; u ∈ C|S , u ≤ c}.

3.2.2. Description of Yo, Xo, T ∗
o and To

Consider
Yo := (CA × CB)/ ∼

where CA, CB are the spaces of bounded continuous functions on A, B and ∼ is a new equivalence relation
on CA × CB defined for all f, f ′ ∈ CA, g, g′ ∈ CB by

(f, g) ∼ (f ′, g′) def⇔ f ⊕ g ∼ f ′ ⊕ g′ ⇔ f ⊕ g|S = f ′ ⊕ g′|S .

The algebraic dual space Xo = Y∗
o of Yo is identified as a subset of C∗

A ×C∗
B as follows. Any (k1, k2) ∈ C∗

A ×C∗
B

is in Xo if and only if for all f, f ′ ∈ CA, g, g′ ∈ CB such that f ⊕ g|S = f ′ ⊕ g′|S , we have 〈f, k1〉 + 〈g, k2〉 =
〈f ′, k1〉 + 〈g′, k2〉.

It is immediate to see that the operator T ∗
o defined by

T ∗
o (f, g) := f ⊕ g|S , (f, g) ∈ Yo

satisfies the assumptions (HT ). In particular, one sees that T ∗
o (Yo) ⊂ C|S .

Define the A and B-marginal projections A ∈ C∗
A and B ∈ C∗

B of any  ∈ C∗
AB by

〈f, A〉 := 〈f ⊗ 1, 〉 and 〈g, B〉 := 〈1 ⊗ g, 〉
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for all f ∈ CA and all g ∈ CB. Since for all (f, g) ∈ Yo, 〈T ∗
o (f, g), 〉C|S ,Lo = 〈f ⊕ g, 〉C|S,Lo = 〈f, A〉+ 〈g, B〉 =

〈(f, g), (A, B)〉, one obtains that for all  ∈ Lo ⊂ C∗
AB ,

To() = (A, B) ∈ Xo ⊂ C∗
A × C∗

B .

3.2.3. Description of U and Y
For each u ∈ C|S , Φ±

o (u) := max(Φo(u), Φo(−u)) = ι{|u|≤c}. Hence, |u|Φ is the norm

‖u‖c := sup
S

|u|/c, u ∈ C|S .

Recall that it is assumed that c ≥ 1. Let us denote the Banach space

U := Uc

which is the completion of C|S with respect to the norm ‖ · ‖c.

Proposition 3.5.
(1) Uc is a space of functions on S which are continuous in restriction to each level set {c ≤ α}, α ≥ 1. In

particular, any u ∈ Uc is a measurable function.
(2) Even if c is finite everywhere, Uc may contain functions which are not continuous.
(3) Cc ⊂ Uc.

Proof.
• Proof of (1). Let (un)n≥1 be a ‖ · ‖c-Cauchy sequence in C|S . For all x ∈ S, limn→∞ un(x) := u(x) exists
since (un(x))n≥1 is a Cauchy sequence in R. For each ε > 0, and there are large enough n, m such that
supx∈S |un(x)− um(x)|/c(x) ≤ ε for all x ∈ S. Letting m tend to infinity leads us to |un(x)−u(x)|/c(x) ≤ ε for
all x ∈ S, which gives us

lim
n→∞ ‖un − u‖c = 0

where the definition ‖v‖c := supS |v|/c still holds for any function v on S. As for any x, y ∈ S,

u(x) − u(y)
c(x) + c(y)

≤ 2‖u − un‖c +
un(x) − un(y)

c(x) + c(y)
≤ 2‖u − un‖c + |un(x) − un(y)|,

the announced continuity result follows from the above limit. The measurability statement follows from this
continuity result and the measurability of c.

• Proof of (2). To see this, take:
∗ A = B = R;
∗ c(a, b) = 1 + 1/a2 for any (a, b) with a �= 0, and c(0, b) = 1 for all real b;
∗ 0 ≤ un ≤ 1 with un(a, b) = 0 if a ≤ −1/n, un(a, b) = 1 if a ≥ 1/n and un(0, b) = 1/2 for all real b.

Then, (un)n≥1 admits the limit u in Uc with u(a, b) = 0 if a < 0, u(a, b) = 1 if a > 0 and u(0, b) = 1/2.

• Proof of (3). By the very definition of Cc, one sees that for any u ∈ Cc, defining un := (−n) ∨ u ∧ n ∈ CAB ,
the sequence (un)n≥1 converges to u in Uc. �

The norm on Yo is given by

|(f, g)|Λ := ‖f ⊕ g‖c = sup
S

|f ⊕ g|/c, (f, g) ∈ Yo.

Identifying
Yo

∼= (CA ⊕ CB)|S
by means of (f, g) ∈ Yo �→ f ⊕ g|S ∈ (CA ⊕ CB)|S ⊂ C|S , the | · |Λ-completion Y of Yo is identified with the
‖ · ‖c-closure of (CA ⊕ CB)|S in Uc.
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3.2.4. Description of L, X , Λ and Λ∗

The topological dual space of Uc

L := U ′
c

is equipped with the dual norm

‖‖∗c = sup{〈u, 〉; u ∈ Uc, ‖u‖c ≤ 1},  ∈ U ′
c.

The function Λ is given by
Λ(f, g) = ι{f⊕g≤c}, f ⊕ g ∈ (CA ⊕ CB)|S

and the corresponding norm is

|(f, g)|Λ = ‖f ⊕ g‖c, f ⊕ g ∈ (CA ⊕ CB)|S .

The topological dual space of Y is

X = {(k1, k2) ∈ Xo; |(k1, k2)|∗Λ < ∞}

with

|(k1, k2)|∗Λ = sup{〈f, k1〉 + 〈g, k2〉; (f, g) ∈ Yo, ‖f ⊕ g‖c ≤ 1}
= inf{‖‖∗c;  ∈ U ′

c : A = k1, B = k2}

where this last equality is a direct consequence of the dual equality (2.2). Hence, k = (k1, k2) ∈ C∗
A × C∗

B

belongs to X if and only if there exists some (k) ∈ L such that 〈f, k1〉+ 〈g, k2〉 = 〈f ⊕g, (k)〉 for all (f, g) ∈ Yo

and limn→∞〈un, (k)〉 = 0 for any sequence (un)n≥1 in CAB such that limn→∞ ‖un‖c = 0.
The function Λ∗ is given by

Λ∗(k1, k2) = sup{〈f, k1〉 + 〈g, k2〉; (f, g) ∈ Yo, f ⊕ g ≤ c}, k = (k1, k2) ∈ X .

3.2.5. Description of X ∗ and T ∗

Seeing X as a subspace of C∗
A ×C∗

B , X ∗ is a subspace of (C∗
A × C∗

B)∗. By the axiom of choice, there exists a
subspace Z of C∗

A×C∗
B in direct sum with X : C∗

A×C∗
B = X ⊕Z. To any ω ∈ X ∗, one associates its extension ω̄

to C∗
A × C∗

B characterized by ω̄|Z = 0 and ω̄|X = ω. This permits us to define the marginal projections ωA

and ωB and their tensor sum ωA ⊕ ωB ∈ U ′∗
c as follows. For all (k1, k2) ∈ X ,

〈ω, (k1, k2)〉X ∗,X = 〈ω̄, (k1, k2)〉(C∗
A×C∗

B)∗,C∗
A×C∗

B

= 〈ω̄, (k1, 0) + (0, k2)〉(C∗
A×C∗

B)∗,C∗
A×C∗

B

:= 〈ωA, k1〉C∗∗
A ,C∗

A
+ 〈ωB, k2〉C∗∗

B ,C∗
B

:= 〈ωA ⊕ ωB, (k)〉U ′∗
c ,U ′

c
.

For any ω ∈ X ∗ and  ∈ U ′
c, 〈T ∗ω, 〉U ′∗

c ,U ′
c

= 〈ω, (A, B)〉X ∗,X := 〈ωA ⊕ ωB, 〉U ′∗
c ,U ′

c
which means that

T ∗ω = ωA ⊕ ωB ∈ U ′∗
c , ω ∈ X ∗. (3.4)

3.3. The connection with (MK)

The connection with the Monge-Kantorovich problem is given at Proposition 3.7 below. The modified primal
problem is

minimize Φ∗() subject to A = μ and B = ν,  ∈ U ′
c (P1)
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where
Φ∗() = sup{〈u, 〉; u ∈ Uc, u ≤ c},  ∈ U ′

c.

Definition 3.6.
(a) One says that  ∈ U ′

c acts as a probability measure if there exists ̃ ∈ PAB such that supp ̃ ⊂ clS and
for all u ∈ CAB, 〈u|S , 〉 =

∫
S u d̃. In this case, we write:  ∈ PS .

(b) One says that  ∈ U ′
c stands in Pc if there exists ̃ ∈ Pc such that supp ̃ ⊂ clS and for all u ∈ Uc,

〈u|S , 〉 =
∫
S u d̃. In this case, we write:  ∈ Pc.

Of course, if there exists ̃ satisfying (a), it belongs to Pc and is unique since any probability measure on
a metric space is determined by its values on the continuous bounded functions. This explains why the notation
 ∈ Pc in (b) is not misleading.

Note also that any probability measure ̃ ∈ Pc has a support included in clS. Since A×B is a metric space,
for any  ∈ Pc acting as a measure, supp  in the sense of Definition 3.2 matches with the usual support of the
measure ̃.

Proposition 3.7. For all  ∈ U ′
c,

(a) Φ∗() < ∞ ⇒  ≥ 0;
(b) Φ∗() < ∞ ⇒ supp  ⊂ clS;
(c) [ ≥ 0, supp  ⊂ clS, A = μ and B = ν] ⇒  ∈ PS ; and
(d) for all  ∈ PS , Φ∗() =

∫
S c d ∈ [0,∞].

It follows that domΦ∗ ⊂ Pc and the problems (MK) and (P1) share the same values and the same minimizers.

Proof. Clearly, the last statement follows from the first part of the proposition.

• Proof of (a). Suppose that  ∈ U ′
c is not in the nonnegative cone. This means that there exists uo ∈ Uc such

that uo ≥ 0 and 〈uo, 〉 < 0. Since uo satisfies λuo ≤ 0 ≤ c for all λ < 0, we have Φ∗() ≥ supλ<0〈λuo, 〉 = +∞.
Hence, Φ∗() < ∞ implies that  ≥ 0 and one can restrict our attention to the nonnegative ’s.

• Proof of (b). Suppose ad absurdum that supp  �⊂ clS. Then, there exists a nonnegative function uo ∈ CAB

such that {uo > 0}∩S = ∅ and 〈uo, 〉 > 0. As λuo ≤ c|A×B\S ≡ ∞ for all λ > 0, Φ∗() ≥ supλ>0〈λuo, 〉 = +∞.

• Proof of (c). Let us take  ≥ 0 such that supp  ⊂ clS, A = μ and B = ν. It is clear that 〈1, 〉 = 1. It
remains to check that for any  ∈ U ′

c

[ ≥ 0, supp  ⊂ clS, A = μ and B = ν] ⇒  is σ-additive, (3.5)

rather than only additive. Since A×B is a metric space, one can apply an extension of the construction
of Daniell’s integrals ([13], Prop. II.7.2) to see that  acts as a measure if and only if for any decreasing
sequence (un) of continuous functions such that 0 ≤ un ≤ 1 for all n and limn→∞ un = 0 pointwise, we have
limn→∞〈un, 〉 = 0. This insures the σ-additivity of .

Unfortunately, this pointwise convergence of (un) is weaker than the uniform convergence with respect to
which any  ∈ U ′

c is continuous. Except if A×B is compact, since in this special case, any decreasing sequence
of continuous functions which converges pointwise to zero also converges uniformly on the compact space clS.

So far, we have only used the fact that A×B is a metric space. We now rely on the Polishness of A and B
to get rid of this compactness restriction. It is known that any probability measure P on a Polish space X is
tight (i.e. a Radon measure): for all ε > 0, there exists a compact set Kε ⊂ X such that P (X \ Kε) ≤ ε ([13],
Prop. II.7.3). As in addition a Polish space is completely regular, there exists a continuous function fε with
a compact support such that 0 ≤ fε ≤ 1 and

∫
X

(1 − fε) dP ≤ ε. This is true in particular for the probability
measures μ ∈ PA and ν ∈ PB which specify the constraint in (MK). Hence, there exist fε ∈ CA and gε ∈ CB

with compact supports such that 0 ≤ fε, gε ≤ 1 and 0 ≤ ∫
A
(1 − fε) dμ,

∫
B

(1 − gε) dν ≤ ε. It follows with the
elementary fact: 0 ≤ 1− st ≤ 2− s− t for all 0 ≤ s, t ≤ 1, that any nonnegative  ∈ U ′

c with A = μ and B = ν
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satisfies 0 ≤ 〈(1 − fε ⊗ gε), 〉 ≤ 2ε. With the following easy estimate 0 ≤ 〈un, 〉 ≤ 2ε + 〈un(fε ⊗ gε), 〉 and the
compactness of the support of fε ⊗ gε, one concludes that limn→∞〈un, 〉 = 0 which proves (3.5).

• Proof of (d). Let us take  ∈ PS . As c is bounded below and lower semicontinuous, there exists a sequence
(cn)n≥1 in CAB such that 0 ≤ cn ≤ c converges pointwise and increasingly to c. Therefore,

∫
S

c d
(a)
= lim

n→∞

∫
S

cn d
(b)
= lim

n→∞〈cn, 〉 ≤ Φ∗() (3.6)

where equality (a) holds by monotone convergence and equality (b) holds since cn belongs to CAB.
Let us show the converse inequality: Φ∗() ≤ ∫

S c d. Let us first assume that  ∈ domΦ∗. It is proved
at Lemma 3.8 below that for any u ≥ 0 in Uc, 〈u, 〉 =

∫
S u d. It follows that Φ∗() = sup{〈u, 〉; u ∈ Uc,

u ≤ c} ≤ ∫
S c d.

If Φ∗() = ∞, there exists a sequence (un)n≥1 in CAB such that 0 ≤ un ≤ c and supn

∫
S un d = ∞.

Therefore,
∫

c d ≥ supn

∫
un d = ∞. �

Lemma 3.8. For any u ≥ 0 in Uc and any  ∈ PS ∩ U ′
c such that Φ∗() < ∞, we have 〈u, 〉 =

∫
S u d.

Proof. There exists a sequence (un)n≥1 in CAB such that limn→∞ un = u in Uc. As  belongs to U ′
c,

lim
n→∞

∫
S

un d = lim
n→∞〈un, 〉 = 〈u, 〉. (3.7)

On the other hand, |un − u| ≤ ‖un − u‖cc implies that |un| ≤ [‖u‖c + ‖un − u‖c]c. Hence, for some large
enough no,

|un| ≤ (1 + ‖u‖c)c, ∀n ≥ no.

Together with (3.6), the assumption that Φ∗() < ∞ and the dominated convergence theorem, this entails
limn→∞

∫
S un d =

∫
S u d. This and (3.7) lead us to 〈u, 〉 =

∫
S u d which is the desired result. �

4. An abstract characterization of optimality

The abstract characterization of optimality is stated in Theorem 4.2. It will allow us to obtain as corollaries,
an explicit sufficient condition in Theorem 1.8 and an explicit necessary condition in Theorem 1.9. To prove it,
one has to compute the extension Φ. As it is the greatest convex σ(U ′∗

c , U ′
c)-lower semicontinuous extension of

Φ = ιΓ and Γ = {u ∈ Uo; u ≤ c} is a convex subset of Uo, we have

Φ(ξ) = ιΓ(ξ), ξ ∈ U ′∗
c (4.1)

where Γ is the σ(U ′∗
c , U ′

c)-closure of Γ. By (3.4), this gives

Λ(ω) = ιΓ(ωA ⊕ ωB), ω ∈ X ∗

and the extended problem (D
x
) is

maximize 〈ωA, μ〉 + 〈ωB, ν〉, ω ∈ X ∗ such that ωA ⊕ ωB ∈ Γ. (K)

Note that for this dual problem to be meaningful, it is necessary that (μ, ν) ∈ X . This is realized if (μ, ν) ∈
dom Λ∗ or equivalently if inf (MK) < ∞.

Applying the first part of Theorem 2.2, taking into account the dual equality (3.2) and Proposition 3.7 gives
the following:
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Lemma 4.1. Any (π, ω) ∈ PAB ×X ∗ is a solution to (MK,K) if and only if

⎧⎨
⎩

(a) π ∈ P (μ, ν, c);
(b) π ∈ ∂U ′

c
Φ(η) where

(c) η = T ∗ω.
(4.2)

As Φ∗ and Φ are mutually convex conjugates, (4.2)-(b) is equivalent to

η ∈ ∂U ′∗
c

Φ∗(π) (4.3)

and also equivalent to Fenchel’s identity

Φ∗(π) + Φ(η) = 〈η, π〉 (4.4)

and by Proposition 3.7 this is also equivalent to

{
Φ(η) = 0
〈η, π〉 =

∫
A×B

cdπ.

Therefore, with Theorem 2.2 one obtains:

Theorem 4.2.

(1) Any (π, ω) ∈ P (μ, ν, c) ×X ∗ is a solution to (MK,K) if and only if

{
(a) ωA ⊕ ωB ∈ Γ
(b) 〈ω, (μ, ν)〉 =

∫
A×B

cdπ.
(4.5)

(2) Suppose in addition that
(μ, ν) ∈ dom∂Λ∗. (4.6)

Then, (MK,K) admits a solution in P (μ, ν, c) ×X ∗.
(3) Writing η = ωA ⊕ ωB, (4.2)-(b), (4.3), (4.4) and (4.5) are equivalent statements.

One was allowed to apply the second part of Theorem 2.2 under the constraint qualification (2.4) = (4.6).
Let us give some details about this abstract requirement.

Remark 4.3. Note that if A×B is an uncountable set, (μ, ν) �∈ icordomΛ∗ for all μ ∈ PA, ν ∈ PB. Indeed, for all
π ∈ P (μ, ν, c) one can find (ao, bo) such that with δ(ao,bo) the Dirac measure at (ao, bo), t := tδ(ao,bo)+(1−t)π �≥ 0
for all t < 0, so that Φ∗

1(t) = +∞ (Prop. 3.7-(a)). This shows that [0, 1] = [π, δ(ao,bo)] ⊂ domΦ∗
1 while

t �∈ domΦ∗
1 for all t < 0. Hence, (μ, ν) �∈ icordomΛ∗ and one has to consider the assumption (4.6) on (μ, ν)

rather than (μ, ν) ∈ icordomΛ∗.

Remarks 4.4 (some remarks about Φ∗(), Φ∗(||), Λ∗(k) and Λ∗(|k|)). Remark 4.3 shows that icordomΛ∗ is
empty in general. The following remarks are motivated by the problem of circumventing this restrictive property
which stops us from applying Theorem 4.2 with an easy sufficient condition for (4.6).

(a) As U ′
c is a Riesz space (it is the topological dual space of the Riesz space C|S), any  in U ′

c admits
an absolute value || = + + − and one can consider the convex and real-valued function Φ∗(||) =
Φ∗(+) + Φ∗(−) on U ′

c.
(b) Rather than the positively homogeneous sublinear function Λ∗(k) one could think of a real-valued

positively homogeneous function of the type Λ∗(|k|), since its icordom is nonempty. But, unlike U ′
c, X

is not a Riesz space and Λ∗(|k|) is meaningless.
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(c) The dual equality is Λ∗(k) = inf{Φ∗();  ∈ U ′
c, To = k} and unlike Φ∗, the effective domain of

Φ∗(||) is the whole space. It is natural to think of the function J(k) := inf{Φ∗(||);  ∈ U ′
c, To = k}

instead of Λ∗. The corresponding dual equality is J = ι∗Υo
where Υo := {(f ′, g′) ∈ (CA ⊕ CB)|S ; −c ≤

f ′ ⊕ g′ ≤ c}.It follows that J is a positively homogeneous sublinear function. But it is not true that J
and Λ∗ match on dom Λ∗. We have J ≤ Λ∗ and this inequality can be strict. To see this, let us consider
the following example. Take A = {a, α}, B = {b, β}, c(a, b) = c(a, β) = c(α, b) = 0 and c(α, β) = 1.
Clearly Λ∗(δα, δβ) = c(α, β) = 1 while J(δα, δβ) = Φ∗(|δ(a,β) + δ(α,b) − δ(a,b)|) = 0.

Theorem 4.2 is the core of the extended saddle-point method applied to the Monge-Kantorovich problem.
To prove a practical optimality criterion one still has to translate these abstract properties.

5. A sufficient condition of optimality

The aim of this section is to prove Theorem 1.8.

5.1. Any finite strongly c-cyclically monotone plan is optimal

Next lemma gives a characterization of the closed convex hull cl cv A of a set A in terms of its support
functional ι∗A.

Lemma 5.1. Let X and Y be two topological vector spaces in duality. For any subset A of X, one has

x ∈ cl cv (A) ⇔ 〈x, y〉 ≤ ι∗A(y), ∀y ∈ Y

where ι∗A(y) = supz∈A〈z, y〉, y ∈ Y.

Proof. The biconjugate ι∗∗A of the indicator function ιA is its closed convex envelope which is also the indicator
function ιcl cv A of cl cv A. Therefore,

x ∈ cl cv (A) ⇔ ι∗∗A (x) = 0
⇔ ι∗∗A (x) ≤ 0
⇔ 〈x, y〉 ≤ ι∗A(y), ∀y ∈ Y

where the second equivalence follows from ι∗∗A (x) = supy〈x, y〉 − ι∗A(y) ≥ 〈x, 0〉 − ι∗A(0) = 0, for all x ∈ X. �

Proposition 5.2. Any finite strongly c-cyclically monotone plan is optimal.

This result is a restatement of [17], Theorem 2, see Theorem 1.6-(b).

Proof. This is a corollary of the first (easy) part of Theorem 4.2.
Let π be a finite strongly c-cyclically monotone plan: There exist two measurable [−∞,∞)-valued functions

f and g such that f ⊕ g satisfies (1.2):

{
f ⊕ g ≤ c everywhere
f ⊕ g = c π-almost everywhere.

Let us first check that (μ, ν) belongs to X . Indeed, |(μ, ν)|∗Λ = inf{‖‖∗c;  ∈ U ′
c, A = μ, B = ν} ≤ ‖π‖∗c ≤∫

c dπ < ∞. Let Eo be the vector subspace of X spanned by (μ, ν) and by means of Lemma 1.3, define the
linear form on Eo

〈ωo, t(μ, ν)〉 := t

∫
f ⊕ g d(μ, ν, c), t ∈ R.
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As f ⊕ g = c, π-almost everywhere and π ∈ P (μ, ν, c), we have

〈ωo, (μ, ν)〉 =
∫

c dπ. (5.1)

On the other hand, thanks to (2.2) and Theorem 3.1-(1), Λ∗(μ, ν) = sup(K) ≥ ∫
f ⊕ g d(μ, ν, c) = 〈ωo, (μ, ν)〉.

It follows that
〈ωo, k〉 ≤ Λ∗(k), ∀k ∈ Eo.

Denoting
Υ := {(f ′, g′) ∈ (CA ⊕ CB)|S ; f ′ ⊕ g′ ≤ c},

one has Λ∗(k) = ι∗Υ(k), k ∈ X . In particular, it is a [0,∞]-valued positively homogeneous convex function on X .
By the analytic form of the Hahn-Banach theorem (see Rem. 5.3 below), there exists an extension ω of ωo to X
which satisfies

〈ω, k〉 ≤ ι∗Υ(k), ∀k ∈ X .

By Lemma 5.1, this means that ω belongs to the σ(X ∗,X )-closure Υ of Υ. It is clear that T ∗
o Υ ⊂ Γ and one

sees that T ∗Υ ⊂ Γ because of the σ(X ∗,X )-σ(L∗,L)-continuity of T ∗ : X ∗ → L∗, see [12], Lemma 4.13. Since
T ∗ω = ωA ⊕ ωB, we have

ωA ⊕ ωB ∈ Γ.

Together with (5.1), this allows us to apply Theorem 4.2-(1) to obtain the desired result. �

Remark 5.3. We have used an unusual form of the Hahn-Banach theorem where the positively homogeneous
sublinear function Λ∗(k) is (−∞, +∞]-valued instead of real-valued. For a proof of this variant, rewrite without
any change the proof the analytic version of Hahn-Banach theorem based on Zorn’s lemma; see for instance [6],
Theorem 1.1.

The reason for not considering this extended version in the literature might be the following: to obtain
separation by closed hyperplane, the positively homogeneous sublinear function of interest is the gauge of an
open convex neighborhood of zero which is finite.

5.2. Measurability considerations. Strong c-cyclical monotonicity revisited

Definitions 5.4. Let γ be a probability measure and Γ be a set of probability measures on some measurable
space.

(1) A set N is said to be γ-negligible if it is measurable and γ(N) = 0.
(2) A set is said to be Γ-negligible if it is γ-negligible for all γ ∈ Γ.
(3) A property holds Γ-almost everywhere if it holds everywhere except on a Γ-negligible set.
(4) A function h is said to be γ-measurable if there exists a γ-negligible set N such that 1Nch is measurable.
(5) A function h is said to be Γ-measurable if there exists a Γ-negligible set N such that 1Nch is measurable.

In particular the spaces L1(μ) and L1(ν) of all μ and ν-integrable functions on A and B consist of classes
with respect to the μ and ν-almost everywhere equalities of μ and ν-measurable functions.

Definitions 5.5 ((μ, ν)-measurability). These notions are meaningful only for a measurable product space
A×B.

(1) A subset N of A×B is said to be (μ, ν)-negligible if there exist two measurable sets NA ⊂ A and
NB ⊂ B such that μ(NA) = ν(NB) = 0 and N ⊂ (NA × B) ∪ (A × NB).

(2) A property holds (μ, ν)-almost everywhere if it holds everywhere except on a (μ, ν)-negligible set.
(3) A function ϕ on A×B is said to be (μ, ν)-measurable if there exists a (μ, ν)-negligible measurable set N

such that 1Ncϕ is measurable on A×B.
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Proposition 5.6.
(1) Any (μ, ν)-negligible set is P (μ, ν)-negligible.

Hence, any (μ, ν)-measurable function is P (μ, ν)-measurable.
(2) Let f and g be functions on A and B. The following statements are equivalent.

(a) f is μ-measurable and g is ν-measurable;
(b) f ⊕ g is (μ, ν)-measurable;
(c) f ⊕ g is P (μ, ν)-measurable;
(d) f ⊕ g is μ⊗ν-measurable.

Proof.
• Proof of (1). Let π ∈ P (μ, ν) and N = (NA×B) ∪ (A×NB) be a (μ, ν)-negligible measurable set. We have
π(N) ≤ π(NA×B) + π(A×NB) = μ(NA) + ν(NB) = 0.

Let us prove (2).
• Proof of (a) ⇒ (b). Let NA and NB be negligible sets such that f1Nc

A
and g1Nc

B
are measurable. Of course,

N = (NA×B) ∪ (A×NB) is (μ, ν)-negligible and 1Ncf ⊕ g is measurable.

• Proof of (b) ⇒ (c). This follows from (1).

• Proof of (c) ⇒ (d). Immediate.

• Proof of (d) ⇒ (a). Let S be a measurable subset of A×B such that μ⊗ν(S) = 1 and 1Sf ⊕ g is measurable.
For all a ∈ A, denote Sa = {b ∈ B; (a, b) ∈ S} the a-section of S. It is measurable and by Fubini’s theorem

1 = μ⊗ν(S) =
∫

A

[∫
B

1S(a, b) ν(db)
]

μ(da) =
∫

A

ν(Sa)μ(da).

Therefore, ν(Sa) = 1, μ-a.e. and there exists some ao ∈ A such that ν(Sao) = 1. As a section of a measurable
function, the function b �→ 1Sao

(b)(f(ao) + g(b)) is measurable. It follows that 1Sao
g is measurable: this proves

that g is ν-measurable. A similar proof works for f . �

It is immediate from the Definition 1.2 that a transport plan π ∈ P (μ, ν) is strongly c-cyclically monotone if
and only if there exist a μ-measurable function f on A and a ν-measurable function g on B such that{

f ⊕ g ≤ c (μ, ν)-almost everywhere
f ⊕ g = c π-almost everywhere. (5.2)

The underlying measurability properties of f ⊕ g which are required by (5.2) are insured by Proposition 5.6.
By Proposition 5.6-1, if a property holds true (μ, ν)-almost everywhere, then it is still true P (μ, ν)-almost

everywhere and a fortiori P (μ, ν, c)-almost everywhere. Therefore,

{
f ⊕ g ≤ c P (μ, ν, c)-almost everywhere
f ⊕ g = c π-almost everywhere (5.3)

is weaker than the strong c-cyclical monotonicity. Without changing a word to the proof of Proposition 5.2,
one obtains the following sufficient condition of optimality.

Theorem 1.8. Let π ∈ P (μ, ν, c) be any finite plan. If there exist a μ-measurable function f on A and a
ν-measurable function g on B which satisfy (5.3), then π is optimal.

5.3. The Counterexamples 1.7-(d, e)

They are optimal plans which are not strongly c-cyclically monotone but they both satisfy the weaker
property (5.3).
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– Counterexample 1.7-(d). Let A = B = [0, 1] both equipped with the Lebesgue measure λ = μ = ν.
Define c to be ∞ above the diagonal and 1 − √

a − b for b ≤ a. The set P (μ, ν, c) is reduced to the
uniform probability measure π on the diagonal which is a fortiori optimal. It is shown in [3] that π is
not strongly c-cyclically monotone. But (5.3) is trivially satisfied.

– Counterexample 1.7-(e). Let A = B = N ∪ {ω} where ω is a “number” larger than all n ∈ N. Equip A

and B with the discrete topology and define μ = ν with a full support. Define c(a, b) =

⎧⎨
⎩

∞ for a < b
1 for a = b
0 for a > b

for each a ∈ A and b ∈ B. Again, the set P (μ, ν, c) is reduced to a single probability measure π which is
a fortiori optimal and (5.3) is trivially satisfied. Nevertheless, it is proved in [2] that π is not strongly
c-cyclically monotone.

6. A necessary condition of optimality

The aim of this section is to prove Theorem 1.9 which states that an optimal plan satisfies approximately (5.3).

6.1. A first approach to the necessary condition

We sketch a direct approach to the necessary condition and emphasize some problems which remain to be
solved. The Kantorovich dual equality (3.2) yields a maximizing sequence {(fn, gn)}n≥1 in CA×CB. Assume
that inf (MK) < ∞ and define cn := fn ⊕ gn so that cn ≤ c and limn→∞

∫
cn dπ∗ = inf (MK) =

∫
c dπ∗ for any

optimal plan π∗. Clearly, c − cn ≥ 0 and limn→∞
∫
(c − cn) dπ∗ = 0. Hence, cn converges to c in L1(π∗) and

one can extract a subsequence, denoted (ck)k≥1, which converges to c pointwise π∗-almost everywhere. By a
result of Borwein and Lewis [5], Corollary 3.4, (ck)k≥1 converges pointwise π∗-almost everywhere to some sum
function f ⊕ g. Therefore, c = f ⊕ g, π∗-almost everywhere.

The remaining problem of extending f and g such that f ⊕ g ≤ c everywhere is not obvious. By Tykhonov’s
theorem, one can extract a subnet from (ck)k≥1 which converges pointwise to a [−∞, +∞]-valued function c̃
such that c̃ ≤ c everywhere and c̃ = c, π∗-almost everywhere. Unfortunately, a subnet limit is not enough to
insure that c̃ is measurable. In addition, one cannot apply the above cited Borwein-Lewis convergence result
since [−∞, +∞] is not a group. Consequently, one cannot assert that c̃ is of the sum form f ⊕ g.

6.2. A necessary condition

The idea in this section is to approximate Φ = ιΓ by the sequence (Φk)k≥1 with Φk = ιΓk
the convex indicator

function of
Γk := {u ∈ Uo;−kc ≤ u ≤ c}, k ≥ 1.

We define
Φ∗

k() = ‖+‖∗c + k‖−‖∗c ,  ∈ U ′
c (6.1)

its convex conjugate, where ‖‖∗c = sup{〈u, 〉; u ∈ Uc : ‖u‖c ≤ 1} is the dual norm on U ′
c. Note that as U ′

c is a
Riesz space, the positive and negative part + and − are meaningful for all  ∈ U ′

c.
The restriction of Φ∗

k to the set Q(μ, ν, c) of all q ∈ U ′
c with first and second marginals μ and ν is denoted

Fk(q) = ‖q+‖∗c + k‖q−‖∗c , q ∈ Q(μ, ν, c) := {q ∈ U ′
c; qA = μ, qB = ν}.

It is clear that (Fk)k≥1 converges pointwise and increasingly to the restriction F of Φ∗ to Q(μ, ν, c). By Propo-
sition 3.7-(c), the effective domain of F is P (μ, ν, c). Hence, F is the objective function of (MK):

F (q) =
{ ∫

A×B c dq, if q ∈ P (μ, ν, c),
+∞, otherwise,

q ∈ Q(μ, ν, c).
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Lemma 6.1.

(a) The following Γ-convergence result
Γ- lim

k→∞
Fk = F

holds true for both the ∗-weak topology σ(Q(μ, ν, c), Uc) and the strong topology associated with ‖ · ‖∗c
on Q(μ, ν, c);

(b) minF = limk→∞ inf Fk = supk min Fk.

Proof. Since Q(μ, ν, c) is σ(U ′
c, Uc)-closed, one sees with the Banach-Alaoglu theorem that Fk is σ(Q(μ, ν, c), Uc)-

inf-compact for all k ≥ 1. It is a fortiori lower semicontinuous with respect to σ(Q(μ, ν, c), Uc) and ‖ · ‖∗c . As
the sequence (Fk)k≥1 is increasing, it is also σ(Q(μ, ν, c), Uc)-equicoercive.

Now, (a) and (b) follow respectively from [7], Proposition 5.4 and Remark 5.5, and [7], Theorem 7.8. �

Let us denote Mε(Fk) the set of the ε-minimizers of Fk:

Mε(Fk) = {q ∈ Q(μ, ν, c); Fk(q) ≤ inf Fk + ε}, ε > 0, k ≥ 1

and M(F ) the set of all the minimizers of F.

Lemma 6.2. Clearly, the set of all the optimal plans is M(F ).
Assume that P (μ, ν, c) is nonempty. Then M(F ) is nonempty and

M(F ) =
⋂

ε>0,k≥1

Mε(Fk)

where Mε(Fk) is the closure of Mε(Fk) with respect to ‖ · ‖∗c .
Proof. Lemma 6.1 and [7], Theorem 7.19, give us M(F )=

⋂
ε K- lim infk→∞Mε(Fk) where K- lim infk→∞ Mε(Fk)

is the liminf in the sense of Kuratowski associated with the topology generated by ‖ · ‖∗c . Since (Fk)k≥1 is
increasing, we obtain K- lim infk→∞ Mε(Fk) =

⋂
k≥1 Mε(Fk) which completes the proof. �

This result invites us to learn more about Mε(Fk). We denote U ′′
c the strong bidual of Uc and denote ‖ · ‖c

its norm. Let Σk be the σ(U ′′
c , U ′

c)-closure of

Σk = {f ⊕ g ∈ (CA ⊕ CB)|S ; −kc ≤ f ⊕ g ≤ c}

and Φk the largest convex σ(U ′′
c , U ′

c)-lower semicontinuous extension of Φk to U ′′
c . We denote Λ∗

k the analogue
of Λ∗ where Φ is replaced by Φk.

Lemma 6.3. For each ε > 0, k ≥ 1 and q ∈ Mε(Fk), there exist η̄ ∈ Σk, η̃ ∈ U ′′
c and ̃ ∈ U ′

c such that
‖̃ − q‖∗c ≤ √

ε, ‖η̃ − η̄‖c ≤ √
ε and ̃ ∈ ∂Φk(η̃).

Proof. Since the effective domain of Φ∗
k is the whole space U ′

c, the dual equality insures that the effective domain
of Λ∗

k is the whole space X . In particular,
∂Λ∗

k(μ, ν) �= ∅.
This non-emptiness is crucial. The approximation Fk of F was introduced to circumvent the problem of knowing
whether ∂Λ∗(μ, ν) is empty or not. One is allowed to apply Theorem 2.2 and Proposition 2.3.

Let q̄ be a minimizer of Fk. We have q̄ ∈ Q(μ, ν, c) and ∂Φ∗
k(q̄) is nonempty. More precisely, with ω̄ ∈ ∂Λ∗

k(μ, ν)
and η̄ = ω̄A ⊕ ω̄B we have η̄ ∈ ∂Φ∗

k(q̄) and

〈η̄, q̄〉 = 〈η̄, q〉, ∀q ∈ Q(μ, ν, c). (6.2)
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Fenchel’s equality is Φ∗
k(q̄) = 〈η̄, q̄〉−Φk(η̄). But, Φk(η̄) is equal to 0 or +∞ and Φ∗

k(q̄) > −∞. Hence, Φk(η̄) = 0
and {

η̄ ∈ Σk

Φ∗
k(q̄) = 〈η̄, q̄〉.

As the level sets of Φk are ‖ · ‖c-bounded, by Proposition 2.3-(b’) we have η̄ ∈ U ′′
c . Now, we consider the

topological duality 〈U ′
c, U

′′
c 〉.

Let us take q in Mε(Fk). With (6.2) one sees that 〈η̄, q̄〉 = 〈η̄, q〉. It follows that Φ∗
k(q) ≤ Φ∗

k(q̄)+ε = 〈η̄, q〉+ε =
〈η̄, q〉−Φk(η̄)+ ε. This means that q stands in the ε-subdifferential ∂εΦk(η̄) of Φk at η̄. One completes the proof
applying Ekeland’s principle [10], Theorem 6.2. �

Lemma 6.4. Let π be an optimal plan. There exist a sequence (̃k)k≥1 in U ′
c and two sequences (η̃k)k≥1 and

(η̄k)k≥1 in U ′′
c such that:

(i) limk→∞ ‖̃k − π‖∗c = 0
and for each k ≥ 1:

(ii) η̃k ∈ ∂Φ∗
k(̃k);

(iii) ‖η̃k − η̄k‖c ≤ 1/k and η̄k ∈ Σk;
(vi) ‖̃−k ‖∗c ≤ (inf (MK) + 2)/k.

Proof. By Lemma 6.2, there exists a sequence (qk)k≥1 such that

lim
k→∞

‖qk − π‖∗c = 0 (6.3)

and qk ∈ Mεk
(Fk) for each k ≥ 1, where limk→∞ εk = 0.

By Lemma 6.3, for each k ≥ 1, there exist ̃k ∈ U ′
c, η̄ ∈ Σk and η̃k ∈ U ′

c such that ‖̃k − qk‖∗c ≤ √
εk,

‖η̃k − η̄k‖c ≤ √
εk and η̃k ∈ ∂Φ∗

k(̃k).
Since Φ∗

k is k-Lipschitz, we have

Φ∗
k(̃k) ≤ Φ∗

k(qk) + k‖̃k − qk‖c

≤ inf (MK) + εk + k
√

εk

≤ inf (MK) + 2

taking
εk = 1/k2.

It follows from (6.1) that ‖̃−k ‖∗c ≤ Φ∗
k(̃k)/k ≤ (inf (MK) + 2)/k. One concludes with ‖̃k − π‖∗c ≤ ‖̃k − qk‖∗c +

‖qk − π‖∗c ≤ 1/k + ‖qk − π‖∗c and (6.3). �
Lemma 6.5. Let η ∈ U ′′

c be in the σ(U ′′
c , U ′

c)-closure of Σk for some k ≥ 1. For each probability measure p ∈ Pc,
there exists a function η̂ in L1(p) such that{

(a) 〈η, h.p〉 =
∫

A×B hη̂ dp, ∀h ∈ L∞(p)
(b) η̂ ∈ cl L1(p)(Σk)

(6.4)

where cl L1(p)(Σk) is the closure of Σk in L1(p) with respect to its usual strong topology.

Proof. For any bounded measurable function h on A×B we have

|〈η, h.p〉| ≤ ‖η‖U ′′
c

∫
A×B

|h|c dp (6.5)

since |〈η, h.p〉| ≤ ‖η‖U ′′
c
‖h.p‖U ′

c
with ‖h.p‖U ′

c
=

∫
A×B

|h|c dp. Let (hk)k≥1 be a sequence of bounded measurable
functions such that the sequence (|hk|)k≥1 decreases pointwise to zero. By (6.5) and dominated convergence,
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we have limk→∞〈η, hk.p〉 = 0. This means that h �→ 〈η, h.p〉 is σ-additive: there exists a measure ρ such that
〈η, h.p〉 =

∫
A×B

h dρ, ∀h. By (6.5), ρ is absolutely continuous with respect to p: there exists η̂ in L1(p) such
that (6.4-a) holds.

Let {uα}α be a net in Σk such that limα uα = η. For all h in L∞(p),∫
A×B

hη̂ dp = 〈η, h.p〉 = lim
α
〈uα, h.p〉 = lim

α

∫
A×B

huα dp.

This means that η̂ is in the σ(L1(p), L∞(p))-closure of Σk. As Σk is convex, this implies (6.4)-(b). �
We are now ready to give the proof of Theorem 1.9.

Theorem 1.9. Let π be any optimal plan and let us take ε > 0 and p ∈ Pc. Then, there exist ϕ ∈ L1(π + p),
f ∈ CA, g ∈ CB and a measurable subset D ⊂ A×B such that:

(1) ϕ = c, 1(S\D).π-almost everywhere;
(2)

∫
D(1 + c) dπ ≤ ε;

(3) −c/ε ≤ ϕ ≤ c, (π + p)-almost everywhere;
(4) −c/ε ≤ f ⊕ g ≤ c, everywhere;
(5) ‖ϕ − f ⊕ g‖L1(π+p) ≤ ε.

Proof. By Lemma 6.4, for any ε > 0, there exist k large enough, ̃ in U ′
c and η̃, η̄ in U ′′

c such that⎧⎪⎪⎨
⎪⎪⎩

(i) ‖̃ − π‖∗c ≤ ε and ‖̃−‖∗c ≤ ε

(ii) η̃ ∈ ∂Φ∗
k(̃)

(iii) η̄ ∈ Σk

(iv) ‖η̃ − η̄‖c ≤ ε.

Let ̂̃η and ̂̄η be the functions in L1(π+p) which are built from η̃ and η̄ as in Lemma 6.5 and satisfy: 〈η̃, h.(π+p)〉 =∫
A×B

ĥ̃η d(π + p) and 〈η̄, h.(π + p)〉 =
∫

A×B
ĥ̄η d(π + p) for all h ∈ L∞(π + p). By (iii) and (6.4)-(b), there exist

f ∈ CA and g ∈ CB such that −kc ≤ f ⊕ g ≤ c and

‖̂̄η − f ⊕ g‖L1(π+p) ≤ ε.

With the notation of Lemma 6.5, we have ‖η̂‖L1(p) ≤ [
∫

A×B
c dp]‖η‖c for all η ∈ U ′′

c . Taking ϕ = ̂̃η, this and (iv)
give ‖ϕ − ̂̄η‖L1(π+p) ≤ ε

∫
A×B

c d(π + p). Therefore,

‖ϕ − f ⊕ g‖L1(π+p) ≤
(

1 +
∫

A×B

c d(π + p)
)

ε.

By (ii), we have η̃ ∈ dom Φk = Σk. Hence, −kc ≤ ϕ = ̂̃η ≤ c, (π + p)-a.e.
Since Uo is identified with C|S which is a subspace of CS , see (3.3), any  ∈ U ′

c is the restriction to C|S of a
continuous linear form on CS . Therefore it can be uniquely decomposed as  = a + s where a is a measure
and s is singular with ‖‖∗c = ‖a‖∗c + ‖s‖∗c . By (i), we have ‖̃+ − π‖∗c ≤ 2ε. Since π is a measure, its singular
part vanishes: πs = 0. It follows that ‖̃+a − π‖∗c ≤ 2ε where ̃+a is the measure part of ̃+. Therefore, the
nonnegative measures ̃+a and π are concentrated on the same set except for a measurable set D such that∫

D
c d(̃+a + π) ≤ 2ε.

Finally, (ii) implies that c = ϕ, ̃+a-almost everywhere (and also that −kc = ϕ, ̃−a-almost everywhere). One
completes the proof, putting everything together and replacing ε by ε/C with an appropriate constant C. �
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[15] S. Rachev and L. Rüschendorf, Mass Transportation Problems. Vol. I: Theory, Vol. II: Applications. Springer-Verlag, New York

(1998).
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