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PARTIAL REGULARITY OF MINIMIZERS OF HIGHER ORDER INTEGRALS
WITH (p, q)-GROWTH

Sabine Schemm1

Abstract. We consider higher order functionals of the form

F [u] =

∫
Ω

f(Dmu) dx for u : R
n ⊃ Ω → R

N ,

where the integrand f :
⊙m(Rn, RN ) → R, m ≥ 1 is strictly quasiconvex and satisfies a non-standard

growth condition. More precisely we assume that f fulfills the (p, q)-growth condition

γ|A|p ≤ f(A) ≤ L(1 + |A|q) for all A ∈⊙m(Rn, RN ),

with γ, L > 0 and 1 < p ≤ q < min
{
p + 1

n
, 2n−1

2n−2
p
}
. We study minimizers of the functional F [·] and

prove a partial Cm,α
loc -regularity result.
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Introduction

In this paper we are interested in the interior regularity theory for minimizers of higher order functionals
with (p, q)-growth. For m ≥ 1 we consider variational integrals of the type

F [u] =
∫
Ω

f(Dmu) dx, (0.1)

where Ω is a bounded domain in R
n, u ∈ Wm,1(Ω,RN ), n ≥ 2, N ≥ 1 and f ∈ C2(

⊙m(Rn,RN )) (here⊙m(Rn,RN ) denotes the vectorspace of symmetric m-linear functions on R
n with values in R

N ). Furthermore,
we assume that the integrand f is a strictly Wm,p-quasiconvex function (see (H3s), Sect. 1 for the definition)
and satisfies the (p, q)-growth condition

γ|A|p ≤ f(A) ≤ L(1 + |A|q) (0.2)
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for every A ∈ ⊙m(Rn,RN ) with γ, L > 0 and 1 < p ≤ q < min
{
p + 1

n ,
2n−1
2n−2p

}
. In the following we show

existence and partial Cm,α
loc regularity of Wm,p-minimizers of the functional (0.1) with respect to some fixed

boundary values. Thereby Wm,p-minimizers of F [·] are defined as follows:

Definition 0.1. Let p ∈ [1,∞]. A map u ∈ Wm,p(Ω,R) with F [u] <∞ is called a Wm,p-minimizer of F [·] if

F [u] ≤ F [u+ ϕ] for every ϕ ∈ Wm,p
0 (Ω,RN ).

For second order functionals, i.e. m = 1, there are numerous papers dealing with existence and partial
regularity of minimizers of quasiconvex functionals (see (1.7), Sect. 1 for the definition) which satisfy the
standard p-growth condition

γ|A|p ≤ f(A) ≤ L(1 + |A|p)
for every A ∈ ⊙m(Rn,RN ) and 1 < p ≤ ∞. Since under certain circumstances quasiconvexity is a necessary
and sufficient condition for sequential weak lower semicontinuity of F [·] it turned out to be a primary hypothesis
in the existence theory of minimizers (see Sect. 1.1 for further details). Strengthening this condition slightly,
Evans derived a first regularity result in [20]. More precisely, he showed for the superquadratic case (p ≥ 2)
that minimizers of strictly quasiconvex functionals are partially C1,α

loc -regular. This result was extended to the
subquadratic case (1 < p < 2) in [11]. Further papers concerning this topic are for example [2,5,13,15,16,23,26]
and also [31] investigating the Hausdorff-dimension of the singular set. For higher order functionals partial
regularity results have been shown in [27,32] (see also [45]).

In the last years functionals with non-standard growth conditions attracted more attention. In this paper,
we focus on the so called (p, q)-growth condition (0.2) which was introduced by Marcellini. Examples in the
late 80’s (see [25,29,35]) show that we cannot expect regularity in general if q is large enough with respect to p.
As a start Marcellini studied in the scalar case variational functionals and elliptic equations with (p, q)-growth
(see [36,37]) and deduced basic regularity results. Also various contributions in the vectorial case appeared, see
for first examples [4,38,41]. In particular, in [41] it is proved under the assumptions that f is strictly convex
and satisfies the (p, q)-growth condition with 2 ≤ p < q < min{p+ 1, pn

n−1} that minimizers of F [·] are partially
C1,α

loc -regular. Imposing an additional growth condition on the second derivatives of f in [7] this result was
gained under the weaker condition q < pn+2

n and for integrands with x dependency in [8] (see also [12]). For a
higher order version of [41] we refer to [10].

Furthermore, results concerning higher integrability of gradients of minimizers have been established in [18,19].
A first regularity result for quasiconvex functionals with m = 1 was recently given in [43]. There it is

proved that if f is strictly W 1,p-quasiconvex (see (H2), Sect. 1 for the definition) and satisfies the (p, q)-growth
condition (0.2) with

1 < p ≤ q < p+
min{2, p}

2n
, (0.3)

then u is partial C1,α
loc -regular. The same author also follows an alternative approach of treating regularity of

minimizers [44]. This approach relies on a natural relaxation procedure in the spirit of the Lebesgue-Serrin
extension which was introduced in [9,21,34].

Following the strategy in [43] this paper aims to give a higher order version of the result in [43]. Under the
condition

1 < p ≤ q < min
{
p+

1
n
,
2n− 1
2n− 2

p
}

(0.4)

we show that a minimizer u of (0.1) is partial Cm,α
loc -regular. We remark that condition (0.4) is more general

than (0.3). But this improvement has only technical reasons. It appears also in [42] where strong local minimizers
of first order functionals are treated. We show the partial regularity of u via A-harmonic approximation,
a method developed in [14]. The main step to proof the regularity result is the derivation of a decay estimate
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for the excess function

Φ(ρ) =
( ∫

−
Bρ(x0)

|V (Dmu) − V ((Dmu)x0,ρ)|2 dx
) 1

2

,

where (Dmu)x0,ρ :=
∫−

Bρ(x0)
Dmu dx. For the proof of this decay estimate we need as a key tool the trace

preserving operator T which was introduced by Fonseca and Malý in [21] and extended by the same authors to
higher orders in [22].

1. Preliminaries and statement of the result

In this section we state our main result concerning partial regularity of minimizers. Let Ω ⊂ R
n be a bounded

domain, 1 < p ≤ q <∞ and u ∈ Wm,1(Ω,RN ), n ≥ 2, N ≥ 1. We consider Wm,p-minimizers of the functional

F [u] =
∫
Ω

f(Dmu) dx,

where f is a C2-function which satisfies some of the following conditions:
(H1) q-Growth: There exists a bound L > 0 such that we have

0 ≤ f(A) ≤ L(1 + |A|q) for every A ∈⊙m(Rn,RN ).

(H2) p-Coercivity: There is a coercivity constant γ > 0 such that holds

f(A) ≥ γ|A|p for every A ∈⊙m(Rn,RN ).

(H3) Wm,p-Quasiconvexity: f is Wm,p-quasiconvex, iff∫
Ω

f(A+Dmϕ) dx ≥
∫
Ω

f(A) dx

for all A ∈⊙m(Rn,RN) and for all ϕ ∈Wm,p
0 (Ω,RN ).

Remark. The Wm,p-quasiconvexity condition has been introduced by Ball and Murat in [6]. There it is
proved for m = 1 that (H3) is a necessary condition for the sequential weak lower semicontinuity of the
functional F [·] on Wm,p(Ω,RN ) (an easy adaptation of the arguments gives this result also for m > 1).
We will later see that the Wm,p-quasiconvexity condition together with the q-growth condition (H1)
and the p-coercivity condition (H2) implies the existence of at least one minimizer.

(H3s) Strict Wm,p-quasiconvexity: f is strictly non-degenerate Wm,p-quasiconvex, i.e. for each M > 0
there is a convexity constant λM > 0 such that∫

Ω

(
f(A+Dmϕ) − f(A)

)
dx ≥ λM

∫
Ω

(1 + |Dmϕ|2) p−2
2 |Dmϕ|2 dx (1.1)

for all A ∈⊙m(Rn,RN) with |A| ≤M + 1 and for all ϕ ∈Wm,p
0 (Ω,RN ).

Remark. This strong quasiconvexity assumption is necessary in particular for the proof of the par-
tial regularity result, whereas for the existence result, condition (H3) is sufficient. Note that (H3s) is
even stronger than the strict quasiconvexity of f that has to be assumed in the corresponding stan-
dard growth case: There, we require that (1.1) be satisfied for all smooth functions ϕ ∈ C∞

0 (Ω,RN ).
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Due to the q-growth of the functional, this amounts to allowing all ϕ ∈ Wm,q(Ω,RN ) as test functions.
This condition does not suffice here, since we want to test with functions which are in general only
in Wm,p(Ω,RN ) and not in Wm,q(Ω,RN ). Therefore, we assume that f is Wm,p-quasiconvex.

Remark 1.1. The following properties of f are consequences of the preceding assumptions.
(1) From the quasiconvexity condition (H3s) and the growth condition (H1) we can derive (see e.g. [33])

that
|Df(A)| ≤ c(1 + |A|)q−1 for every A ∈⊙m(Rn,RN ), (1.2)

with c = c(n,N, q, L).
(2) Let M > 0 and consider A ∈⊙m(Rn,RN) with |A| ≤M + 1. Then (H3s) implies that D2f(A) fulfills

the strong Legendre-Hadamard condition, i.e. we have

D2f(A)(ξm ⊗ η, ξm ⊗ η) ≥ 2λM

m!
|ξ|2m|η|2 (1.3)

for all ξ ∈ R
n and η ∈ R

N , see [32] and [39], Theorem 7.
(3) We have no explicit growth condition on the second derivatives of f . But here it is sufficient that for

every M > 0 there exists a constant KM <∞ such that there holds

sup
|A|≤M

A∈⊙m(Rn,RN )

|D2f(A)| ≤ KM . (1.4)

(4) Since f is a C2 function for each M > 0 exists a monotone non-decreasing, concave function νM :
[0,∞) → [0,∞) continuous at 0 such that νM (0) = 0 and

|D2f(A) −D2f(B)| ≤ νM (|A−B|) (1.5)

for any A, B ∈⊙m(Rn,RN ) with |A| ≤M + 1 and |B| ≤M + 1.

We can now formulate our main result:

Theorem 1.2. Let

1 < p ≤ q < min
{
p+

1
n
,
2n− 1
2n− 2

p
}

(1.6)

and suppose that f ∈ C2 satisfies (H1) and (H3s). Then for each Wm,p(Ω,RN )-minimizer (see Def. 0.1) of the
functional F [u] =

∫
Ω f(Dmu) dx there exists an open subset Ω0 ⊂ Ω with

Ln(Ω\Ω0) = 0 and u ∈ Cm,α
loc (Ω0,R

N )

for every 0 < α < 1. Furthermore Ω\Ω0 = Σ1 ∪ Σ2 where

Σ1 =
{
x0 ∈ Ω : lim inf

ρ↘0

∫
−

Bρ(x0)

|Dmu− (Dmu)x0,ρ|p dx > 0
}
,

Σ2 =
{
x0 ∈ Ω : lim sup

ρ↘0
|(Dmu)x0,ρ| = ∞

}
.

1.1. Existence

Although our main result concerns the regularity of minimizers for the sake of completeness we also want to
investigate whether minimizers of F exists.
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First Morrey [40] has proved for m = 1 that the quasiconvexity condition on f is a necessary and sufficient
condition for weak lower semicontinuity of certain functionals on certain Sobolev spaces. Thereby f is called
quasiconvex if it fulfills ∫

Ω

f(A) dx ≤
∫
Ω

f(A+Dmϕ) dx (1.7)

for all ϕ ∈ C∞
0 (Ω,RN ) and all A ∈⊙m(Rn,RN ). Later Acerbi and Fusco [1] showed for m = 1 that if f is a

continuous function and satisfies the p-growth condition

0 ≤ f(A) ≤ L(1 + |A|p) (L > 0, 1 ≤ p <∞, A ∈⊙m(Rn,RN )),

then the related functional F [u] =
∫
Ω f(Dmu) dx is sequentially weakly lower semicontinuous onWm,p(Ω,RN ) iff

f is quasiconvex. For a higher order version of this result we refer to Meyers [39] and Guidorzi and Poggiolini [28].
Assuming additionally the following coercivity condition

1
L

(1 + |A|p) ≤ f(A) for all A ∈⊙m(Rn,RN )

it is known – by the direct method in the calculus of variations – that for given boundary data there exists at
least one minimizer u ∈Wm,p(Ω,RN ) of the functional F .

Now, if we have (p, q)-growth in [21,30] it is shown for m = 1 and 1 < p ≤ q < np
n−1 that the quasiconvexity

condition (1.7) together with the q-growth condition (H1) implies that F [·] is lower semicontinuous with respect
to weak W 1,p-convergence of W 1,q-functions. Then, using the p-coercivity condition (H2) we only get that for
given boundary data there exists a u ∈W 1,p(Ω,RN ) such that

F [u] ≤ F [v] for all v ∈W 1,q
loc (Ω,RN ) ∩

[
u+W 1,p

0 (Ω,RN )
]
.

But if we use instead of the quasiconvexity condition the stronger Wm,p-quasiconvexity condition (H3) we
can deduce that F [·] is sequentially weakly lower semicontinuous on Wm,p (see [43] for the case m = 1; note that
Wm,p-quasiconvexity is also a necessary condition for sequential weak lower semicontinuity on Wm,p). More
precisely we can prove the following higher order version of [43], Theorem 4.4:

Theorem 1.3 (semicontinuity). Suppose that f fulfills the q-growth condition (H1) with 1 < p ≤ q < np
n−1

and the Wm,p(Ω,RN )-quasiconvexity condition (H3). Then F [·] is sequentially weakly lower semicontinuous
on Wm,p(Ω,RN ).

Proof. As mentioned in [43], form = 1 the proof is basically identical to the proof of [21], Theorem 4.1, except for
one difference. In Theorem 4.1 of [21] the authors consider sequences of functions (uk)k with uk ∈ W 1,q(Ω,RN )
and not generalW 1,p-functions uk. Therefore, on the other hand in [21] they do not have to assumeW 1,p(Ω,RN )-
quasiconvexity for f but only quasiconvexity. However, this does not change the proof in a significant way. For
an improvement of the result in [21] see also [30].

In [17], Theorem 4.1, Esposito and Mingione have generalized Theorem 4.1 of [21] to higher orders under the
condition q < pmn

mn−1 .
The proof of our theorem follows beside slight differences exactly the proofs of [17], Theorem 4.1, and [21],

Theorem 4.1. For the readers comfort we carry out the first step of the proof and give a sketch of the second one.
Step 1. We suppose that Ω = B := B1(0). Let u, uk ∈ Wm,p(B,RN ), uk ⇀ u weakly in Wm,p(B,RN ) and let
us further assume that u is a polynomial function of degree m, u =

∑
|α|≤m cαx

α with cα ∈ R. Since uk ⇀ u

in Wm,p(B,RN ), passing to a subsequence we may assume that

‖u− uk‖W m−1,p(B,RN ) ≤ k−1.
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Let 1
4 < r < 1 and ρ = r+1

2 . Now instead of [17], Lemma 3.1, we apply here a variant of [10], Lemma 2.4, which
in turn goes back on a theorem of Fonseca and Malý [22], Theorem 3.3. Due to [10], Lemma 2.4, there exist
functions zk ∈ Wm,p(B,RN ) and r < s′k < r′k < ρ < 1 with r′k and s′k depending on u and uk, such that

zk = uk on Bs′
k
, zk = u on B\Br′

k
,

(ρ− r)k−1 ≥ r′k − s′k ≥ (ρ− r)(3k)−1 (1.8)

and

‖Dmzk‖Lq(Br′
k
\Bs′

k
,RN ) ≤ C

(ρ− r)τ

kτ

(
‖u‖W m,p(Bρ\Br ,RN ) + ‖uk‖W m,p(Bρ\Br,RN )

+
k

ρ− r
‖u− uk‖W m−1,p(Bρ\Br ,RN )

)

where C = C(n, p, q) and τ = τ(n, p, q) > 0. Therefore, we have

Ln(Br′
k
\Bs′

k
) ≤ c(r)

k
and

∫
Br′

k
\Bs′

k

|Dmzk|q dx ≤ c(r)k−qτ .

Since zk − u ∈ Wm,p
0 (B,RN ) and f is Wm,p-quasiconvex we can conclude that

∫
B

f(Dmu) dx ≤
∫
B

f(Dmzk) dx.

If we use the previous inequalities and the condition (H1) is follows that

∫
B

f(Dmu) dx−
∫
B

f(Dmuk) dx ≤
∫
B

(
f(Dmzk) − f(Dmuk)

)
dx

≤
∫

B\Br′
k

f(Dmu) dx+
∫

Br′
k
\Bs′

k

f(Dmzk) dx

≤ c

(
Ln(B\Br′

k
) +

∫
Br′

k
\Bs′

k

(1 + |Dmzk|q) dx
)

≤ c (1 − r) + c(r)k−qτ + c(r)k−1.

Letting first k → ∞ and then r → 1 we finally conclude

lim inf
k→∞

∫
B

f(Dmuk) dx ≥
∫
B

f(Dmu) dx.

Step 2. Now we treat the general case. Let u, uk ∈ Wm,p(Ω,RN ), uk ⇀ u weakly in Wm,p(Ω,RN ). This
Step 2 is identical to Step 2 of [17], Theorem 4.1, and therefore, we will only give a brief sketch of it. Without
loss of generality we may assume that

lim
k→∞

∫
Ω

f(Dmuk) dx



478 S. SCHEMM

exists and is finite. There exist a non-negative Radon measure μ such that passing, if necessary, to a subsequence

f(Dmuk)Ln ⇀ μ

weakly in the sense of measures. Now using Step 1, it can be shown that

dμ
dLn

(x0) ≥ f(Dmu(x0)) (1.9)

for almost every x0 ∈ Ω. Once (1.9) is verified the assertion of the theorem follows immediately. For further
details we refer to [17]. �

Finally for q ∈ [p, pn
n−1

]
, Theorem 1.3 together with the coercivity assumption (H2) implies – using the direct

method – the existence of at least one minimizer u ∈ Wm,p(Ω,RN ) of F [·] in every Dirichlet class.

2. Preliminary lemmas

2.1. The functions Vβ and Wβ

Let β > 0. Throughout the paper we use the functions Vβ : R
k �→ R

k and Wβ : R
k �→ R

k which we define as

Vβ(ξ) =
(
1 + |ξ|2) β−2

4 ξ, Wβ(ξ) =
(
1 + |ξ|) β

2 −1
ξ (2.1)

for ξ ∈ R
k, k ∈ N. For t ≥ 0 the functions t �→ Vβ(t) and t �→ Wβ(t) are both monotone non-decreasing. Using

elementary inequalities we can deduce that

c−1(β)|Wβ(ξ)| ≤ |Vβ(ξ)| ≤ c(β)|Wβ(ξ)|, (2.2)

see [16], Section 3. Further we can calculate that |Wp|2 is convex for 1 ≤ p < ∞ and |Wp| 2p is convex only for
p ≤ 2 (in contrast to |Vp|2 and |Vp| 2p ). In the following we present some useful properties of the functions Vβ

and Wβ .

Lemma 2.1. Let 1 < p < ∞, β > 0 and Vβ , Wβ : R
k → R

k be the functions defined by (2.1). Then for any
ξ, η ∈ R

k and t > 0 we have:
(i) |Vp(tξ)| ≤ max

{
t, t

p
2
}|Vp(ξ)| ;

(ii) |Vβ(ξ + η)| ≤ c(β)(|Vβ(ξ)| + |Vβ(η)|) ;
(iii) c−1(k, p)|ξ − η| ≤ |Vp(ξ)−Vp(η)|

(1+|ξ|2+|η|2) p−2
4

≤ c(k, p)|ξ − η| ;
(iv) c−1(p,M)|Vp(ξ − η)| ≤ |Vp(ξ) − Vp(η)| ≤ c(k, p,M)|Vp(ξ − η)| ∀ η with |η| ≤M ;
(v) (1 + |ξ|2 + |η|2) p

2 ≤ c(p)(1 + |Vp(ξ)|2 + |Vp(η)|2).
Inequalities (i) and (ii) also hold if we replace V by W .

Proof. The assertions (i)–(iv) for Vp andWp can be found in [3], Lemma 2.1, [11], Lemma 2.1, and [16], Lemma 1,
(v) is obvious. �

The next lemma is taken from [2].

Lemma 2.2. Consider f ∈ C2 satisfying (H1) and (H3s) and A, B ∈⊙m(Rn,RN ) with |A| ≤ M + 1. Then
the following estimates hold:

|f(A+B) − f(A) −Df(A)B| ≤ c |Vq(B)|2
|Df(A+B) −Df(A)| ≤ c (1 + |B|2) q−2

2 |B|,
where c depends on n, N , q, L, M and KM .
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2.2. A Poincaré-type inequality

The following Poincaré-type inequality is for p ≥ 2 a direct consequence of the usual Poincaré inequality. For
1 < p < 2 it is a special case of the Sobolev-Poincaré-type inequality stated in [16] (see also [11]).

Lemma 2.3. Let 1 < p < ∞ and Vp the function defined in (2.1). Then there exists a constant cp depending
on n, N and p such that ∫

Bρ(x0)

∣∣∣Vp

(u− ux0,ρ

ρ

)∣∣∣2 dx ≤ cp

∫
Bρ(x0)

∣∣Vp(Du)
∣∣2 dx (2.3)

for all Bρ(x0) ⊂⊂ R
n and every function u ∈ W 1,p(Bρ(x0),RN ). �

2.3. An iteration lemma

The next lemma is a variant of [43], Lemma 6.6, [11], Lemma 2.7, and [16], Lemma 2, which in turn traces
back to the well-known iteration lemma [24], Lemma 3.1, Chapter 5.

Lemma 2.4 (iteration lemma). Let 0 ≤ ϑ < 1, A, B ≥ 0, v ∈ Wm,p(Bρ(x0),RN ), α1, α2 ∈ R and g be a
non-negative bounded function satisfying

g(r) ≤ ϑ g(s) +A

∫
Bρ(x0)

m−1∑
k=0

∣∣∣∣∣Vp

(
Dkv

(s− r)m−k

)∣∣∣∣∣
2

dx+B (s− r)α1

( ∫
Bρ(x0)

m∑
k=0

∣∣∣∣∣Vp

(
Dkv

(s− r)m−k

)∣∣∣∣∣
2

dx

)α2

for all ρ/2 ≤ r < s ≤ ρ. Then there exists a constant c = c(ϑ, p, α1, α2) such that

g(ρ/2) ≤ c

[
A

∫
Bρ(x0)

m−1∑
k=0

∣∣∣∣∣Vp

(
Dkv

ρm−k

)∣∣∣∣∣
2

dx+B ρα1

( ∫
Bρ(x0)

m∑
k=0

∣∣∣∣∣Vp

( Dkv

ρm−k

)∣∣∣∣∣
2

dx

)α2]
.

2.4. Trace preserving operator

The trace preserving operator T was first introduced in [21] and later used in [9]. A version for higher
derivatives can be found in [22], Theorem 3.3. We state the extension result here in a slightly changed form.

Lemma 2.5. Let Ω̃ ⊂ R
n be a bounded domain. Let u ∈ Wm,p(Ω̃,RN ), 1 ≤ p < ∞, 0 < r < s and Bs ⊂ Ω̃.

Then there exists a bounded linear operator

Tr,s : Wm,p(Ω̃) →Wm,p(Ω̃)

with the following properties:

(i) u = Tr,su a.e. on (Ω̃\Bs) ∪Br and Tr,su− u ∈ Wm,p
0 (Bs\Br,R

N);
(ii) ‖DkTr,su‖Lp(Bs\Br ,RN ) ≤ c(n,m, p)‖Dku‖Lp(Bs\Br,RN ) for k = 0, 1, . . . ,m;
(iii) ‖DkTr,su‖Lq(Bs\Br,RN )

≤ c(n,m, p, q)(s− r)
n
q −n−1

p ·
(

sup
t∈ ]r,s[

(t− r)−1

∫
Bt\Br

|Dku|p dx+ sup
t∈ ]r,s[

(s− t)−1

∫
Bs\Bt

|Dku|p dx
) 1

p

for k = 0, 1, . . . ,m and for all 1 ≤ p ≤ q < n
n−1p;

(iv) ‖ |Vp(DkTr,su)|2‖L1(Bs\Br,RN ) ≤ c(n,m, p)‖ |Vp(Dku)|2‖L1(Bs\Br,RN ) for k = 0, 1, . . . ,m;
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(v) ‖ |Vp(DkTr,su)|2‖Lq̃(Bs\Br ,RN )

≤ c(n,m, p, q)(s−r)n
q̃ −(n−1)·

(
sup

t∈ ]r,s[

(t−r)−1

∫
Bt\Br

|Vp(Dku)|2 dx+ sup
t∈ ]r,s[

(s−t)−1

∫
Bs\Bt

|Vp(Dku)|2 dx
)

for k = 0, 1, . . . ,m and for all 1 ≤ q̃ < n
n−1 .

Proof. As mentioned above this lemma can be found in [22], Theorem 3.3, in a slightly different form and
(i)–(iii) follow from it directly by setting Ω = Bs\Br and ε = r−s

2 . Since c−1|Wp| ≤ |Vp| ≤ c|Wp|, it suffices to
show (iv) and (v) for Wp instead of Vp and therefore we can exploit the convexity of |Wp|2. In [22], Theorem 3.3,
the following estimate is stated:

(T1) |DkTr,su(x)| ≤ C

∫
−

B3ri
(xi)

|Dku| dy for x ∈ Bri(xi), Bri(xi) ∈ W k = 0, 1, . . . ,m,

where W denotes a family of Whitney balls for Ω = Bs\Br. Then estimate (T1) together with Jensen’s
inequality and Lemma 2.1 gives us the following inequality:

∫
−

Bri
(xi)

∣∣Wp(DkTr,su(x))
∣∣2q̃ dx ≤ c

∫
−

Bri
(xi)

∣∣∣∣Wp

( ∫
−

B3ri
(xi)

|Dku| dy
)∣∣∣∣

2q̃

dx

≤ c

( ∫
−

B3ri
(xi)

∣∣Wp(Dku)
∣∣2 dy

)q̃

.

If we use the last inequality instead of (T2) in [22], Theorem 3.3, and proceed otherwise as for the derivation
of (T3) and (T5) in [22], Theorem 3.3, we can deduce (iv) and (v). �

Later we want to estimate the terms on the right hand side of Lemma 2.5 (iii) and (v) using the following
lemma. A proof of this lemma is given e.g. in [21].

Lemma 2.6. Let −∞ < r < s < ∞ and a continuous nondecreasing function Ξ : [r, s] → R be given. Then
there are r̃ ∈ [r, 2r+s

3

]
and s̃ ∈ [ r+2s

3 , s
]

for which hold:

Ξ(t) − Ξ(r̃)
t− r̃

≤ 3
Ξ(s) − Ξ(r)

s− r
Ξ(s̃) − Ξ(t)

s̃− t
≤ 3

Ξ(s) − Ξ(r)
s− r

,
(2.4)

for every t ∈ ]r̃, s̃[. In particular we have

s− r

3
≤ s̃− r̃ ≤ s− r. (2.5)

�

3. Caccioppoli inequality

Similarly to the case m = 1 treated in [43], we use the trace operator T defined in Lemma 2.5 to prove a
Caccioppoli-type inequality, which differs from the usual Caccioppoli inequality under standard growth condi-
tions (see e.g. [16,32] for higher orders) by an additional term on the right hand side. Using common smallness
assumptions, we will see that this additional term causes no problems when deriving the decay estimate for the
excess function Φ(ρ) (see Sect. 6).
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Lemma 3.1 (Caccioppoli inequality). Let 1 < p ≤ q < min
{
p+ 1

n ,
2n−1
2n−2 p

}
, i.e. q satisfies (1.6), and M > 0.

We consider a Wm,p-minimizer u of the functional F [u] =
∫
Ω
f(Dmu), where the integrand f ∈ C2 fulfills (H1)

and (H3s). Then for all balls Bρ ⊂⊂ Ω and for all polynomials P : Ω → R
N of degree ≤ m with |DmP | ≤M+1

we have

∫
−

Bρ/2

|Vp(Dmv)|2 dx ≤ cc

[ ∫
−
Bρ

m−1∑
k=0

∣∣∣∣Vp

(
Dkv

ρm−k

)∣∣∣∣
2

dx+

( ∫
−
Bρ

m∑
k=0

∣∣∣∣∣Vp

(
Dkv

ρm−k

)∣∣∣∣
2

dx

) n
n−1
]
, (3.1)

where we have set v = u− P . The constant cc is of the form cc(n,N,m, p, q, L,M, λM ,KM ).

Proof. Choose ρ
2 ≤ r < s ≤ ρ and set

Ξ(t) :=
∫
Bt

m∑
k=0

∣∣∣∣Vp

(
Dkv

(s− r)m−k

)∣∣∣∣
2

dx.

For this function Ξ we choose r ≤ r̃ < s̃ ≤ s as in Lemma 2.6. Now we define a cut-off function η ∈ C∞
0 (Bρ)

which satisfies 0 ≤ η ≤ 1, η ≡ 1 in a neighborhood of Br̃, η ≡ 0 on Bρ\Bs̃ and |Dkη| ≤ (cη (s̃ − r̃))−k for all
1 ≤ k ≤ m. Using the operator T from Lemma 2.5 we define

φ := (1 − η)v, ψ := Tr̃,s̃φ and ϕ := v − ψ,

where
Dmu−DmP = Dmv = Dmϕ+Dmψ on Bρ.

According to (i) of Lemma 2.5 we have ϕ ∈ Wm,p
0 (Bs̃,R

N ) and ϕ = v on Br̃. With the product formula
and (2.5) we calculate

|Dmφ| =
∣∣∣ m∑

k=0

(
m

k

)
Dm−k(1 − η) ⊗Dkv

∣∣∣ ≤ c

m∑
k=0

|Dkv|
(s− r)m−k

· (3.2)

As abbreviation we further set

X :=
∫

Bs\Br

m∑
k=0

∣∣∣∣Vp

(
Dkv

(s− r)m−k

)∣∣∣∣
2

dx.

First we derive some useful inequalities. If we apply (vi) and (v) of Lemma 2.5 to our operator Tr̃,s̃ and use
then Lemma 2.1 (i), (ii) and inequality (3.2) we get the following estimates:∫

Bs̃\Br̃

|Vp(DmTs̃,r̃φ)|2 ≤ c

∫
Bs̃\Br̃

|Vp(Dmφ)|2 dx ≤ cX (3.3)

and ∫
Bs̃\Br̃

|Vp(DmTs̃,r̃φ)|2q̃ ≤ c (s̃− r̃)n

(
sup

t∈ ]r̃,s̃[

(s̃− r̃)1−n

(t− r̃)

∫
Bt\Br̃

|Vp(Dmφ)|2 dx

+ sup
t∈ ]r̃,s̃[

(s̃− r̃)1−n

(s̃− t)

∫
Bs̃\Bt

|Vp(Dmφ)|2 dx
)q̃

≤ c (s̃− r̃)n

(
sup

t∈ ]r̃,s̃[

(s̃− r̃)1−n Ξ(t) − Ξ(r̃)
(t− r̃)

+ sup
t∈ ]r̃,s̃[

(s̃− r̃)1−n Ξ(s̃) − Ξ(t)
(s̃− t)

)q̃
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for 1 ≤ q̃ < n
n−1 . Combining the last inequality with the estimates of Lemma 2.6 we obtain

∫
Bs̃\Br̃

|Vp(DmTs̃,r̃φ)|2q̃ ≤ c (s− r)n

(
X

(s− r)n

)q̃

, for 1 ≤ q̃ <
n

n− 1
· (3.4)

We remark that for q̃ = 1 this formula is identical to equation (3.3).
Now, using the quasiconvexity condition (H3s) we get

λM

∫
Br̃

|Vp(Dmv)|2 dx = λM

∫
Br̃

|Vp(Dmϕ)|2 dx

≤ λM

∫
Bs̃

(1 + |Dmϕ|2) p−2
2 |Dmϕ|2 dx ≤

∫
Bs̃

(
f(DmP +Dmϕ) − f(DmP )

)
dx

=
∫
Bs̃

(
f(Dmu−Dmψ) − f(Dmu)

)
dx+

∫
Bs̃

(
f(Dmu) − f(Dmu−Dmϕ)

)
dx

+
∫
Bs̃

(
f(DmP +Dmψ) − f(DmP )

)
dx.

The second term is smaller or equal to zero because of the minimality of u. Therefore we deduce with Lemmas 2.2
and 2.1 (i), (ii) (for β = 2q − 2)

λM

∫
Br

|Vp(Dmv)|2 dx ≤
∫
Bs̃

[ 1∫
0

(
Df(DmP ) −Df(Dmu− τDmψ)

)
dτDmψ

+ f(DmP +Dmψ) − f(DmP ) −Df(DmP )Dmψ

]
dx

≤ c

∫
Bs̃

[ 1∫
0

(
1 + |Dmv − τDmψ|2) q−2

2 |Dmv − τDmψ| dτ |Dmψ| + |Vq(Dmψ)|2
]

dx

≤ c

∫
Bs̃\Br̃

[
|Vq(Dmψ)|2 +

(
1 + |Dmv|2) q−2

2 |Dmv||Dmψ|
]

dx

= c
[
(I) + (II)

]
, (3.5)

where c is a constant depending on n, N , p, q, M , KM and L.
Estimate for (I). To estimate (I) we apply inequality (v) of Lemma 2.1 and deduce

(I) = c

∫
Bs̃\Br̃

|Vp(Dmψ)|2(1 + |Dmψ|2) p
2

q−p
p dx

≤ c

∫
Bs̃\Br̃

|Vp(Dmψ)|2(1 + |Vp(Dmψ)|2) q−p
p dx

≤ c

∫
Bs̃\Br̃

(
|Vp(Dmψ)|2 + |Vp(Dmψ)| 2q

p

)
dx.
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The first term on the right-hand side of the preceding inequality can be estimated using (3.3) (recall ψ := Tr̃,s̃φ),
while the second one is treated using inequality (3.4) with q̃ = q

p (recall that q < np
n−1 ). Altogether we get

(I) ≤ c

[
X + (s− r)n

(
X

(s− r)n

) q
p
]
≤ c

[
X + (s− r)n

(
X

(s− r)n

) n
n−1
]

(3.6)

where c = c(n,N,m, p, q).
Estimate for (II). For the estimation of (II) we distinguish the cases p > 2 n−1

n and 1 < p ≤ 2 n−1
n .

Case 1: 1 < p ≤ 2 n−1
n . In this case (1.6) reads q < p 2n−1

2n−2 and therefore we have also q < p
2 + 1. We estimate

the integrand of (II) pointwise. If |Dmv| ≤ |Dmψ| we use that (1 + t2)
q−2
2 t is non-decreasing in t ≥ 0 to get

(
1 + |Dmv|2) q−2

2 |Dmv||Dmψ| ≤ |Vq(Dmψ)|2

and if |Dmv| > |Dmψ| we obtain (recall 2q − p− 1 < 0)

(
1 + |Dmv|2) q−2

2 |Dmv||Dmψ| =
(
1 + |Dmv|2) p−2

4
(
1 + |Dmv|2) 2q−p−2

4 |Dmv||Dmψ|
≤ |Vp(Dmv)||V2q−p(Dmψ)|.

These pointwise estimates together with Hölder’s inequality imply the following estimate for (II):

(II) ≤
∫

Bs̃\Br̃

(
|Vq(Dmψ)|2 + |Vp(Dmv)||V2q−p(Dmψ)|

)
dx

≤
∫

Bs̃\Br̃

∣∣Vq(Dmψ)
∣∣2 dx+

( ∫
Bs̃\Br̃

∣∣V2q−p(Dmψ)
∣∣2 dx

) 1
2
( ∫

Bs̃\Br̃

∣∣Vp(Dmv)
∣∣2 dx

) 1
2

.

We have already estimated the first term (see estimation of (I)). The second integral can be estimated analo-
gously recalling that q < p 2n−1

2n−2 :

∫
Bs̃\Br̃

∣∣V2q−p(Dmψ)
∣∣2 dx ≤ cX + c(s− r)n

(
X

(s− r)n

)2 q
p−1

≤ c

[
X + (s− r)n

(
X

(s− r)n

) n
n−1
]
·

Collecting terms we deduce

(II) ≤ c

[
X + (s− r)n

(
X

(s− r)n

) n
n−1
]

with c = c(n,N,m, p, q).
Case 2: p > 2 n−1

n . In this case (1.6) reads q < p + 1
n and we have p

2 + 1 < p + 1
n . If p ≤ q ≤ p

2 + 1 we can
estimate (II) exactly as in the Case 1. Otherwise q satisfies 2q− p− 2 > 0 and applying Young’s inequality we
estimate the integrand of (II) for |Dmv| ≤ 1 by

(
1 + |Dmv|2) q−2

2 |Dmv||Dmψ| = (1 + |Dmv|2) p−2
4 + 2q−p−2

4 |Dmv||Dmψ|
≤ c (1 + |Dmv|2) p−2

4 |Dmv||Dmψ|
≤ c(p, q)

(|Vp(Dmv)|2 + |Dmψ|2),
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and for |Dmv| > 1 by

(
1 + |Dmv|2) q−2

2 |Dmv||Dmψ| = (1 + |Dmv|2) p−2
2

q−1
p + 2q−p−2

2p |Dmv||Dmψ|
≤ c (1 + |Dmv|2) p−2

2
q−1

p |Dmv|2 q−1
p |Dmψ|

≤ c(p, q)
(|Vp(Dmv)|2 + |Dmψ| p

p+1−q
)
.

Thus, since p
p+1−q ≥ 2 this pointwise estimates lead us to

(II) ≤ c

∫
Bs̃\Br̃

(|Vp(Dmv)|2 + |Dmψ|2 + |Dmψ| p
p+1−q

)
dx

≤ c

(
X +

∫
Bs̃\Br̃

(|Vp(Dmψ)|2 + |Vp(Dmψ)| 2
p+1−q

)
dx
)
.

We use the estimates (3.3) and (3.4) (remember that q < p+ 1
n ) to get

(II) ≤ c

[
X + (s− r)n

(
X

(s− r)n

) 1
p+1−q

]
≤ c

[
X + (s− r)n

(
X

(s− r)n

) n
n−1
]
,

where c = c(n,N,m, p, q).
Inserting the preceding estimates for (I) and (II) into (3.5) we finally arrive at

∫
Br

|Vp(Dmv)|2 dx ≤ C1X + C1(s− r)n

(
X

(s− r)n

) n
n−1

with C1 = C1(n,N,m, p, q, L,KM , λM ,M). Adding C1

∫
Br

|Vp(Dmv)|2 on both sides leads to

∫
Br

|Vp(Dmv)|2 dx ≤ C1

1 + C1

∫
Bs

|Vp(Dmv)|2 dx+
∫
Bρ

m−1∑
k=0

∣∣∣∣Vp

(
Dkv

(s− r)m−k

)∣∣∣∣
2

dx

+ (s− r)n

(
1

(s− r)n

∫
Bρ

m∑
k=0

∣∣∣∣Vp

(
Dkv

(s− r)m−k

)∣∣∣∣
2

dx
) n

n−1

.

Now we can apply the iteration Lemma 2.4 with ϑ = C1
1+C1

and g(t) =
∫

Bt
|Vp(Dmv)|2 dx to infer the desired

estimate: ∫
−

Bρ/2

|Vp(Dmv)|2 dx ≤ c

[ ∫
−
Bρ

m−1∑
k=0

∣∣∣∣Vp

(
Dkv

ρm−k

)∣∣∣∣
2

dx+
( ∫

−
Bρ

m∑
k=0

∣∣∣∣Vp

(
Dkv

ρm−k

)∣∣∣∣
2

dx
) n

n−1
]
,

with c = c(n,N,m, p, q, L,KM , λM ,M). �

4. A-harmonic approximation

In this section we consider a bilinear form A ∈⊙2(
⊙m(Rn,RN ),R) which is elliptic in the sense of Legendre-

Hadamard with ellipticity constant κ and upper bound K, that means

A(ξm ⊗ η, ξm ⊗ η) ≥ κ|ξ|2m|η|2 (4.1)
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for all ξ ∈ R
n and η ∈ R

N and

A(A,B) ≤ K|A||B| ∀A,B ∈⊙m(Rn,RN ). (4.2)

The next lemma provides a standard a-priori estimate for solutions of linear elliptic systems with constant
coefficients.

Lemma 4.1. Consider A satisfying (4.1) and (4.2) and a function h ∈Wm,1(Bρ(x0),RN ) with

∫
Bρ(x0)

A(Dmh,Dmϕ) dx = 0

for all ϕ ∈ C∞
0 (Bρ(x0),RN ). Then h ∈ C∞(Bρ(x0),RN ) and there exists a constant ca = ca(n,N,m, κ,K)

such that the following estimate holds:

sup
Bρ/2(x0)

|Dmh| + ρ sup
Bρ/2(x0)

|Dm+1h| ≤ ca

∫
−

Bρ(x0)

|Dmh| dx.

Proof. This lemma can be found in [32] for h ∈ Wm,2. A standard approximation argument (see [11], Prop. 2.1)
shows the desired estimates for h ∈Wm,1. �

The main tool for proving partial regularity via A-harmonic approximation is the so called A-harmonic
approximation lemma. For m = 1 a basic version of this lemma is given in [14]. In our case we need the
following higher order version:

Lemma 4.2 ((A,m)-harmonic approximation lemma). Let κ, K be positive constants and 1 < p̃ ≤ 2. Then for
any ε > 0 there exists δ = δ(n,N,m, κ,K, ε) ∈ (0, 1] with the following property: for any given A satisfying (4.1)
and (4.2) and for any v ∈Wm,p̃(Bρ(x0),RN ) with

∫
−

Bρ(x0)

|Wp̃(Dmv)|2 dx ≤ γ2 ≤ 1 and

∣∣∣∣
∫
−

Bρ(x0)

A(Dmv,Dmϕ) dx
∣∣∣∣ ≤ γ δ sup

Bρ(x0)

|Dmϕ| ∀ϕ ∈ C∞
0 (Bρ(x0),RN ),

there exists an (A,m)-harmonic function h ∈ Wm,p̃(Bρ(x0),RN ) satisfying

∫
−

Bρ(x0)

|Wp̃(Dmh)|2 dx ≤ 1 and
∫
−

Bρ(x0)

m−1∑
k=0

∣∣∣Wp̃

(Dk(v − γh)
ρ

)∣∣∣2 dx ≤ γ2ε.

A function h is called (A,m)-harmonic if
∫

Bρ(x0)
A(Dmh,Dmϕ) dx = 0 for all ϕ ∈ C∞

0 (Bρ(x0),RN ).

Proof. For p̃ = 2 a proof of this lemma is presented in [32]. In the case 1 < p̃ < 2 the lemma is shown in [16],
Lemma 6, for m = 1. The here stated higher order version is an easy adaption of [16], Lemma 6. �

Since we want to treat the cases p ≥ 2 and 1 < p < 2 simultaneously it is useful to combine the last two
lemmas and state them here in the form of [43], Lemma 6.8.
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Corollary 4.3. Let κ, K be positive constants and 1 < p < ∞. Then for any ε > 0 there exists δ =
δ(n,N,m, κ,K, ε) ∈ (0, 1] with the following property: for any given A satisfying (4.1) and (4.2) and for any
v ∈ Wm,p(Bρ(x0),RN ) with ∫

−
Bρ(x0)

|Vp(Dmv)|2 dx ≤ γ2 ≤ 1 and

∣∣∣∣
∫
−

Bρ(x0)

A(Dmv,Dmϕ) dx
∣∣∣∣ ≤ γ δ sup

Bρ(x0)

|Dmϕ| ∀ϕ ∈ C∞
0 (Bρ(x0),RN )

exists an (A,m)-harmonic function h ∈ C∞(Bρ(x0),RN ) with

sup
Bρ/2(x0)

|Dmh| + ρ sup
Bρ/2(x0)

|Dm+1h| ≤ ca and
∫
−

Bρ/2(x0)

m−1∑
k=0

∣∣∣Vp

(Dk(v − γh)
ρ

)∣∣∣2 dx ≤ γ2ε,

where ca = ca(n,N,m, κ,K) denotes the constant of Lemma 4.1.

Proof. In the case 1 < p ≤ 2 this follows immediately combining Lemmas 4.2 and 4.1. In the case p ≥ 2 we can
apply Lemma 4.2 for p̃ = 2 to the function v. Assuming x0 = 0 and ρ = 1 (scaling argument, B := B1(0)) we
get then an (A,m)-harmonic h ∈Wm,2(B,RN ) with

∫
−
B

|Dmh|2 dx ≤ 1 and
∫
−
B

m−1∑
k=0

|Dk(v − γh)|2 ≤ ε̃γ2,

ε̃ will be chosen later.
Without loss of generality we may assume

∫−
B1/2

Dk(v− γh) = 0 for k = 0, . . . ,m− 1. Due to Lemma 4.1 we

know that h ∈ C∞(B,RN ) and

sup
B1/2

|Dmh| + sup
B1/2

|Dm+1h| ≤ ca

∫
−
B

|Dmh| dx ≤ ca.

For p∗ =
{ np

n−p if 1 ≤ p < n

p∗ ∈ ]p,∞[ fixed if p ≥ n
we define t ∈ [0, 1[ by 1

p = (1 − t)1
2 + t 1

p∗ . Applying the Sobolev-

Poincaré inequality we conclude for k = 0, . . . ,m− 1

∫
−

B1/2

|Dk(v − γh)|p dx ≤
( ∫

−
B1/2

|Dk(v − γh)|2 dx

)(1−t) p
2
( ∫

−
B1/2

|Dk(v − γh)|p∗
dx

) tp
p∗

≤ c (γ2ε̃)(1−t) p
2

( ∫
−

B1/2

|Dk+1(v − γh)|p dx

)t

≤ ck (γ2ε̃)(1−t) p
2

( ∫
−

B1/2

(|Dmv|p + γp|Dmh|p) dx

)t

≤ ck (γ2ε̃)(1−t) p
2 (γ2 + γp)t ≤ ckγ

2ε̃(1−t) p
2 .

Choosing ε̃ such that 2p
∑m−1

k=0 ckε̃
(1−t) p

2 + 2pε̃ = ε we get the claim. �
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5. Approximate A-harmonicity

If we want to apply the (A,m)-harmonic approximation lemma of the last section to minimizers of the
functional F the following lemma is required. Before stating this lemma we define the excess functional for the
function u ∈Wm,p(Bρ(x0),RN ) as

Φ(x0, ρ,D
mP ) =

( ∫
−

Bρ(x0)

∣∣Vp(Dmu) − Vp(DmP )
∣∣2 dx

) 1
2

, (5.1)

where P is a polynomial of degree ≤ m and Bρ(x0) ⊂⊂ Ω.

Lemma 5.1 (approximate (A,m)-harmonicity). Let u ∈ Wm,p(Ω,RN ) be a Wm,p-minimizer of the functional
F [u] =

∫
Ω
f(Dmu) dx where f satisfies the assumptions (H1) and (H3s) with q ≤ p + 1. Then there exists for

every M > 0 a constant ce = ce(n,N, p, q, L,M,KM+1) such that for every ball Bρ(x0) ⊂⊂ Ω and for every
polynomial P of degree ≤ m with |DmP | ≤M we have∣∣∣∣∣

∫
−

Bρ(x0)

D2f(DmP )(Dm(u− P ), Dmϕ) dx

∣∣∣∣∣ ≤ ce
(
Φ
√
νM (Φ) + Φ2

)
sup

Bρ(x0)

|Dmϕ| (5.2)

for all ϕ ∈ C∞
0 (Bρ(x0),RN ). Here we have abbreviated Φ(x0, ρ,D

mP ) by Φ and νM denotes the modulus of
continuity from Remark 1.1 (4).

Proof. Since q ≤ p+1 holds and since f satisfies (1.2), the following Euler equation holds for all ϕ ∈ C∞
0 (Ω,RN ):∫

Ω

Df(Dmu)Dmϕdx = 0. (5.3)

Setting v = u− P we can derive from (5.3)

∣∣∣∣
∫
−

Bρ(x0)

D2f(DmP )(Dmv,Dmϕ) dx
∣∣∣∣ ≤

∫
−

Bρ(x0)

∣∣∣∣
1∫

0

(
D2f(DmP ) −D2f(DmP + tDmv)

)
dt(Dmv,Dmϕ)

∣∣∣∣ dx
=:

∫
−

Bρ(x0)

I dx.

To estimate I we distinguish the cases |Dmv| ≤ 1 and |Dmv| > 1 on the ball Bρ(x0).
Case 1: x ∈ Bρ(x0) ∩ {|Dmv| ≤ 1}. Since |DmP + tDmv| ≤ M + 1 we can use that D2f(B) is bounded on
{B ∈⊙m(Rn,RN ) : |B| ≤M +1}. We obtain with (1.4), (1.5), Lemma 2.1 and the fact that νM is a monotone
non-decreasing function

I ≤ sup
Bρ(x0)

|Dmϕ|
√

2KM+1

1∫
0

√
νM (t|Dmv|)|Dmv| dt

≤ c sup
Bρ(x0)

|Dmϕ|
√
νM (|Vp(Dmu) − Vp(DmP )|)|Vp(Dmu) − Vp(DmP )|,

where c = c(n,N, p,M,KM+1).
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Case 2: x ∈ Bρ(x0) ∩ {|Dmv| > 1}. Using the fact |D2f(DmP )| ≤ KM and inequality (1.2) (recall that
q ≤ p+ 1) we see that

I =
∣∣∣∣D2f(DmP )(Dmv,Dmϕ) +Df(DmP )Dmϕ−Df(Dmu)Dmϕ

∣∣∣∣
≤ sup

Bρ(x0)

|Dmϕ|(KM |Dmv| + c|Dmv|q−1) ≤ c sup
Bρ(x0)

|Dmϕ||Dmv|p

≤ c sup
Bρ(x0)

|Dmϕ||Vp(Dmu) − Vp(DmP )|2,

where the constant c depends on n, N , p, q, L, M and KM .
Returning to the general case we apply the inequalities of Hölder and Jensen to conclude (νM concave and

non-decreasing) ∣∣∣∣
∫
−

Bρ(x0)

D2f(DmP )(Dm(u − P ), Dmϕ) dx
∣∣∣∣ ≤ ce(Φ

√
νM (Φ) + Φ2) sup

Bρ(x0)

|Dmϕ|. �

6. Proof of Theorem 1.2

In this section we prove the main theorem. For Bρ(x0) ⊂⊂ Ω we set

Φ(ρ) := Φ(x0, ρ, (Dmu)x0,ρ) =

( ∫
−

Bρ(x0)

|Vp(Dmu) − Vp((Dmu)x0,ρ)|2 dx

) 1
2

.

We next derive an excess-improvement estimate assuming that the excess Φ(ρ) is initially sufficient small.

Lemma 6.1 (excess-improvement). Let M > 0 be fixed. For every ϑ ∈ ]0, 1
4 ] there exists δ = δ(n,N,m, λM ,

KM , ϑ, p) such that if the following smallness conditions are satisfied
(i) |(Dmu)x0,ρ| ≤M ; |(Dmu)x0,ϑρ| ≤M ;
(ii)

√
νM (Φ(ρ)) + Φ(ρ) ≤ δ/2;

(iii) c1cecaΦ(ρ) ≤ 1;

(iv) ϑ−
n2

n−1 Φ2 1
n−1 (ρ) ≤ ϑ2

then the following excess improvement holds:

Φ2(x0, ϑρ, (Dmu)x0,ϑρ) ≤ cdecϑ
2Φ2(x0, ρ, (Dmu)x0,ρ), (6.1)

where cdec = cdec(n,N,m, p, q, L, λM ,M,KM+1). The constants c1, ca and ce denote the constants from
Lemma 2.1 (iv), Corollary 4.3 and Lemma 5.1.

Proof. We define

w = u− 1
m!

(Dmu)x0,ρ(x − x0)m and γ = c1ceΦ(ρ),

where we have γ ≤ 1 from the smallness condition (iii). Now we want to show that the conditions of Corollary 4.3
are fulfilled for A = D2f((Dmu)x0,ρ) and v = w. We know from (1.3) and (1.4) thatD2f((Dmu)x0,ρ) is elliptic in
the sense of Legendre-Hadamard with ellipticity constant 2λM

m! and upper bound K = KM = sup|A|≤M |D2f(A)|.
For ϑ ∈ ]0, 1

4 ] we set ε = ϑn+2+max{2,p} and denote with δ = δ(n,N,m, λM ,KM , ε) = δ(n,N,m, λM ,KM , ϑ, p)
the constant from Corollary 4.3. Lemma 2.1 (vi) (recall |(Dmu)x0,ρ| ≤M) and γ = c1ceΦ(ρ) imply:∫

−
Bρ(x0)

|Vp(Dmw)|2 dx ≤ c1(p,M)
∫
−

Bρ(x0)

∣∣Vp(Dmu) − Vp((Dmu)x0,ρ)
∣∣2 dx ≤ γ2.
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Furthermore, from Lemma 5.1 with A = D2f((Dmu)x0,ρ), the definition γ = c1ceΦ(ρ), and the smallness
condition

√
νM (Φ(ρ)) + Φ(ρ) ≤ δ/2 we infer:∣∣∣∣

∫
−

Bρ(x0)

D2f((Dmu)x0,ρ)(Dmw,Dmϕ) dx
∣∣∣∣ ≤ ce

(√
νM (Φ(ρ))Φ(ρ) + Φ2(ρ)

)
sup

Bρ(x0)

|Dmϕ| ≤ γδ sup
Bρ(x0)

|Dmϕ|.

Hence the assumptions of Corollary 4.3 are fulfilled and it follows that there exists a D2f((Dmu)x0,ρ)-harmonic
function h ∈ C∞(Bρ(x0),RN ) such that

sup
Bρ/2(x0)

|Dmh| + ρ sup
Bρ/2(x0)

|Dm+1h| ≤ ca and
∫
−

Bρ/2(x0)

m−1∑
k=0

∣∣∣Vp

(Dk(w − γh)
ρ

)∣∣∣2 dx ≤ γ2ε. (6.2)

With Taylor’s theorem applied to Dm−1h on B2ϑρ we obtain the estimate

sup
B2ϑρ(x0)

∣∣Dm−1h(x) −Dm−1h(x0) −Dmh(x0)(x − x0)
∣∣ ≤ 1

2
(2ϑρ)2 sup

Bρ/2(x0)

|Dm+1h| ≤ c ϑ2ρ.

Next we define P as the unique polynomial of degree m satisfying∫
−

B2ϑρ(x0)

Dk(u − P ) dx = 0 for k = 0, . . . ,m− 2 and

Dm−1P = γDm−1h(x0) +
(
(Dmu)x0,ρ + γDmh(x0)

)
(x− x0)

and set v = u − P . Using Lemma 2.1 (ii) and (iii) together with the Poincaré-type inequality (2.3) and
estimate (6.2) we get:

I :=
m−1∑
k=0

∫
−

B2ϑρ(x0)

∣∣∣∣∣Vp

(
Dkv

(2ϑρ)(m−k)

)∣∣∣∣∣
2

dx ≤ c

∫
−

B2ϑρ(x0)

∣∣∣∣∣Vp

(
Dm−1(u − P )

2ϑρ

)∣∣∣∣∣
2

dx

≤ c

[
ϑ−n−max{2,p}

∫
−

Bρ/2(x0)

∣∣∣∣∣Vp

(
Dm−1(w − γh)

ρ

)∣∣∣∣∣
2

dx

+
∫
−

B2ϑρ(x0)

∣∣∣∣∣Vp

(
γ
Dm−1h(x) −Dm−1h(x0) −Dmh(x0)(x − x0)

2ϑρ

)∣∣∣∣∣
2

dx

]

≤ c
[
ϑ−n−max{2,p}γ2ε+ |Vp(ϑγ)|2

]
≤ c

[
ϑ−n−max{2,p}γ2ε+ (ϑγ)2

]
.

Moreover, Lemma 2.1 (iv) (|(Dmu)x0,ρ| ≤M) and (6.2) gives us

II :=
∫
−

B2ϑρ(x0)

|Vp(Dm(u− P ))|2 ≤ c (ϑ−nΦ2(ρ) + |Vp(γDmh(x0))|2) ≤ c(ϑ−nΦ2(ρ) + γ2).

Recalling the choice ε = ϑn+2+max{2,p} and the definition of γ we finally derive

I ≤ c ϑ2Φ2(ρ) and II ≤ c ϑ−nΦ2(ρ),
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where c = c(n,N,m, p, λM ,KM ,M). With the help of Lemma 2.1 (ii) and (iv) (|(Dmu)x0,ϑρ| ≤ M), inequal-
ity (2.2), the convexity of |Wp|2 and Jensen’s inequality we deduce:

Φ2(ϑρ) =
∫
−

Bϑρ(x0)

|Vp(Dmu) − Vp((Dmu)x0,ϑρ)|2 dx

≤ c(p, n,N,M)
∫
−

Bϑρ(x0)

|Vp(Dmu− (Dmu)x0,ϑρ)|2 dx

≤ c

∫
−

Bϑρ(x0)

|Vp(Dmu− (Dmu)x0,ρ − γDmh(x0))|2 dx

+ c |Wp((Dmu)x0,ϑρ − (Dmu)x0,ρ − γDmh(x0))|2

≤ c

∫
−

Bϑρ(x0)

|Vp(Dmu− (Dmu)x0,ρ − γDmh(x0))|2 dx =
∫
−

Bϑρ(x0)

|Vp(Dmv)|2 dx, (6.3)

where c depends on n, N , M and p. Using |(Dmu)x0,ρ| ≤ M , (6.2), the definition of γ and the smallness
assumption (iii) we conclude

|DmP | ≤ |(Dmu)x0,ρ| + |γDmh(x0)| ≤M + γca ≤M + c1cecaΦ(ρ) ≤M + 1.

Now we apply the Caccioppoli inequality (Lem. 3.1) on Bϑρ(x0) and obtain with Lemma 2.1 (ii) and the
estimates for I and II:

Φ2(ϑρ) ≤ c

∫
−

Bϑρ(x0)

|Vp(Dmv)|2 dx

≤ c

[ ∫
−

B2ϑρ(x0)

m−1∑
k=0

∣∣∣∣Vp

(
Dkv

(2ϑρ)m−k

)∣∣∣∣
2

dx+

( ∫
−

B2ϑρ(x0)

m∑
k=0

∣∣∣∣Vp

(
Dkv

(2ϑρ)m−k

)∣∣∣∣
2

dx

) n
n−1
]

≤ c
[
I + I

n
n−1 + II

n
n−1

]
≤ c
[
ϑ2Φ2(ρ) + ϑ2 n

n−1 Φ2 n
n−1 (ρ) + ϑ−

n2
n−1 Φ2 n

n−1 (ρ)
]
.

The smallness assumption (iv) and Φ(ρ) ≤ 1 imply

Φ2(x0, ϑρ, (Dmu)x0,ϑρ) = Φ2(ϑρ) ≤ cdecϑ
2Φ2(ρ) = cdecϑ

2Φ2(x0, ρ, (Dmu)x0,ρ),

where cdec depends on n, N , m, p, q, L, λM , M and KM+1. �

The smallness conditions of Lemma 6.1 are fulfilled in all points x0 ∈ Ω0. We can now iterate inequality (6.1)
of Lemma 6.1 to derive the following excess-decay estimate for Φ(ρ) (for further details see [11,20])

Φ(x0, r, (Dmu)x0,r) ≤
( r
ρ

)α

Φ(x0, ρ, (Dmu)x0,ρ)

for all 0 < r ≤ ρ and 0 < α < 1. Using Camapanato’s integral characterization of Hölder continuous functions
(see e.g. [24]) and the property Lemma 2.1 (iii) of the function Vp we complete the proof of Theorem 1.2.
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Non Linéaire 19 (2002) 81–112.



492 S. SCHEMM

[33] P. Marcellini, Approximation of quasiconvex functions and lower semicontinuity of multiple integrals. Manuscr. Math. 51
(1985) 1–28.

[34] P. Marcellini, On the definition and the lower semicontinuity of certain quasiconvex integrals. Ann. Inst. Henri Poincaré Anal.
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