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FEEDBACK STABILIZATION OF A BOUNDARY LAYER EQUATION
PART 1: HOMOGENEOUS STATE EQUATIONS ∗

Jean-Marie Buchot1 and Jean-Pierre Raymond2

Abstract. We are interested in the feedback stabilization of a fluid flow over a flat plate, around a
stationary solution, in the presence of perturbations. More precisely, we want to stabilize the laminar-
to-turbulent transition location of a fluid flow over a flat plate. For that we study the Algebraic
Riccati Equation (A.R.E.) of a control problem in which the state equation is a doubly degenerate
linear parabolic equation. Because of the degenerate character of the state equation, the classical
existence results in the literature of solutions to algebraic Riccati equations do not apply to this
class of problems. Here taking advantage of the fact that the semigroup of the state equation is
exponentially stable and that the observation operator is a Hilbert-Schmidt operator, we are able to
prove the existence and uniqueness of solution to the A.R.E. satisfied by the kernel of the operator which
associates the ‘optimal adjoint state’ with the ‘optimal state’. In part 2 [Buchot and Raymond, Appl.
Math. Res. eXpress (2010) doi:10.1093/amrx/abp007], we study problems in which the feedback law
is determined by the solution to the A.R.E. and another nonhomogeneous term satisfying an evolution
equation involving nonhomogeneous perturbations of the state equation, and a nonhomogeneous term
in the cost functional.
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1. Introduction

We are interested in the feedback stabilization of a fluid flow over a flat plate, around a stationary solution,
in the presence of perturbations. The control variable is a suction velocity through a small slot near the leading
edge of the plate.
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In the stationary case, the fluid flow in the boundary layer may be described by the Prandtl equations, or
similarly by the Crocco equations [14]:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Us
∞ η

∂w

∂ξ
− νw2 ∂

2w

∂η2
= 0 in (0, L) × (0, 1),

ν

(
w
∂w

∂η

)
(ξ, 0) = vs w(ξ, 0), lim

η→1
w(ξ, η) = 0 for ξ ∈ (0, L),

w(0, η) = wb(η) for η ∈ (0, 1).

(1.1)

Here (0, L) represents a part of the plate where the flow is laminar, (0, 1) is the thickness of the boundary layer
in the Crocco variables, (Us

∞, 0) is the velocity of the incident flow, wb is the velocity profile in Crocco variables
at ξ = 0, vs is a suction velocity throughout the plate, the positive constant ν is the viscosity of the fluid. We
set Ω = (0, L) × (0, 1). The transformation used to rewrite the Prandtl equations into the Crocco equation is

ξ = x, η =
us(x, y)
Us∞

, w(ξ, η) =
1
Us∞

∂us

∂y
(x, y), (1.2)

see [14], when (us, vs) is the stationary solution of the Prandtl system, and (x, y) ∈ (0, L) × (0,∞). Assuming
that the regularity and compatibility conditions between wb and vs stated in [14], Theorem 3.3.2, are satisfied,
the stationary equation (1.1) admits a unique solution ws in the class of functions w satisfying

w ∈ Cb(Ω), K1|1 − η| ≤ w(ξ, η) ≤ K2|1 − η|,
∣∣∣∣∂w∂ξ

∣∣∣∣ ≤ K3|1 − η|,
∂w

∂η
∈ L∞(Ω), w

∂2w

∂η2
∈ L∞(Ω),

∂w

∂ξ
∈ L∞(Ω),

(1.3)

where K1, K2, and K3 are positive constants. This class of solution will be called the class of ‘asymptotic type
solutions’ because they may correspond to an asymptotic profile of some solutions to the Prandtl equations
when x tends to infinity (see [7], Sect. 6, where we give an explicit example of such solutions). Another class
of solutions important for applications is the class of ‘Blasius type solutions’ (the term comes from the fact
that some solutions in that class can be obtained by solving the so-called Blasius differential equation) (see [7],
Sect. 6, [14], p. 129).

We are interested in stabilizing a flow over a flat plate when the longitudinal incident velocity is of the form:

U∞(t) = Us
∞ + u∞(t). (1.4)

Using the Crocco transformation (see (1.2) and [14]) when the velocity of the external flow U∞ is positive
and only depends on t, the Prandtl system – describing the velocity field in the boundary layer over the flat
plate – is transformed into a degenerate parabolic equation stated over Ω = (0, L) × (0, 1), called the Crocco
equation [3,4], System 4.7, p. 85, [14], p. 174, written down below:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂w

∂t
+ U∞ η

∂w

∂ξ
+
U ′
∞

U∞
(1 − η)

∂w

∂η

−νw2 ∂
2w

∂η2
+
U ′
∞

U∞
w = 0 in Ω × (0, T ),

w(ξ, η, 0) = w0(ξ, η) in Ω,(
ν w

∂w

∂η

)
(ξ, 0, t) = (vs + �γu)w(ξ, 0, t) − U ′

∞
U∞

(t) for (ξ, t) ∈ (0, L) × (0, T ),

lim
η→1

w(ξ, η, t) = 0 for (ξ, t) ∈ (0, L) × (0, T ),

w(0, η, t) = w1(η, t) for (η, t) ∈ (0, 1) × (0, T ),

(1.5)
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where �γ is the characteristic function of the slot γ = (x0, x1) ⊂ (0, L), u is a control variable and vs is the
function appearing in equation (1.1).

Due to the lack of existence result for the instationary Prandtl system when U∞(t) is of the form (1.4) (or to
the corresponding instationary Crocco equation – see [14] for some results corresponding to particular profiles,
and the more recent results in [20]), we have chosen to describe the velocity field in the boundary layer by solving
the Crocco equation linearized about the stationary solution ws. Since the perturbation u∞(t) and the control
function u are supposed to be small with respect to Us

∞, the linearized model is an accurate approximation of
the nonlinear one. This assertion, which is not proved, is actually confirmed by numerical experiments [4,7].
The Crocco equation (1.5) linearized about ws with a boundary control u is the degenerate parabolic equation:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂z

∂t
= Az + f (t, ξ, η) ∈ (0,∞) × Ω,

z(0, ξ, η) = z0(ξ, η) (ξ, η) ∈ Ω,
√
a z(t, 0, η) =

√
a zb(t, η) (t, η) ∈ (0,∞) × (0, 1),

(bz)(t, ξ, 1) = 0,
∂z

∂η
(t, ξ, 0) = (�γu+ g)(t, ξ) (t, ξ) ∈ (0,∞) × (0, L),

(1.6)

where

Az = −a(η)∂z
∂ξ

+ b(ξ, η)
∂2z

∂η2
− c(ξ, η)z,

f(t, ξ, η) = u∞(t)d(ξ, η) +
u′∞(t)
Us∞

e(ξ, η), g(t, ξ) = − u′∞(t)
νws(ξ, 0)Us∞

·
(1.7)

The coefficients a, b, c, d, e depend on the stationary solution ws of the Crocco equation, and are defined by:

a = Us
∞η, b = ν(ws)2, c = −2ws

∂2ws

∂η2
,

d = −η ∂ws

∂ξ
, e = −ws − (1 − η)

∂ws

∂η
·

Assumptions on the coefficients a, b, c, d and e are not the same ones if ws belongs to the class of Blasius type
solutions or if it belongs to the class of asymptotic type solutions.

In this paper we only consider the class of asymptotic type solutions because we have studied equation (1.6)
in [6] when ws belongs to this class.

In the case of Blasius type solutions the so-called laminar-to-turbulent transition location – which is an
important criterion in applications – is a nonlinear mapping depending on the state variable w and on U∞. Its
linearization about (ws, U

s∞) – called the linearized transition location – is of the form
∫
Ω ψ(ξ, η) z(t, ξ, η) dξdη+

c0u∞(t), where the function ψ belongs to L2(Ω) and c0 belongs to R (they can be determined numerically in a
precise manner see [7], Sect. 6, Test 3).

Here, we consider observation operators of the more general form

Cz(t, ·) + yd(t, ·) =
∫

Ω

φ(·, ξ, η) z(t, ξ, η) dξdη + yd(t, ·) ∈ L2(Ω), (1.8)

where φ ∈ L2(Ω×Ω) and yd ∈ L2(0,∞;L2(Ω)) are given. Thus C is a Hilbert-Schmidt operator in L2(Ω). (For
the linearized laminar-to-turbulent transition location the function φ(x, y, ξ, η) = ψ(ξ, η) only depends on (ξ, η)
and yd(t, ·) = c0u∞(t) only depends on t.) It is obvious that the identity in L2(Ω) is not a Hilbert-Schmidt
operator, however the identity operator from L2(Ω) into L2(Ω) equipped with a norm weaker than the usual
one can also be written in the above form (see Prop. 2.1).
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Our main objective is to determine a control u, in feedback form, in order that the observation Cz(t)+ yd(t)
decays to zero when t tends to infinity. For that we use the optimal control theory, and we consider the
linear-quadratic control problem

(Pf,g,zb,yd,z0) inf
{
J(z, u) | (z, u) ∈ L2(0,∞;Z) × L2(0,∞;U), (z, u) satisfies (1.6)

}
,

where Z = L2(Ω), U = L2(0, L), and

J(z, u) =
1
2

∫ ∞

0

‖Cz(t) + yd(t)‖2
Z dt+

1
2

∫ ∞

0

‖u(t)‖2
U dt,

where C ∈ L(Z) is the Hilbert-Schmidt operator of kernel φ defined above.
First of all we would like to explain in which aspects problem (Pf,g,zb,yd,z0) is a classical matter of the optimal

control theory, and what are the questions that the existing results in the literature cannot answer.
In Section 2 we give a precise definition of solution to equation (1.6), and we prove that it can be rewritten

in the form
z′ = Az +B(�γu) + F, z(0) = z0. (1.9)

Moreover, the solution z to equation (1.9) belongs to Cb([0,∞);Z) ∩ L2(0,∞;Z), the mapping u 	→ z is
continuous from L2(0,∞;U) into Cb([0,∞);Z) ∩ L2(0,∞;Z), and the semigroup (etA)t≥0 is exponentially
stable on Z. Thus it seems that we are in a very favorable position to characterize the optimal solution of
(Pf,g,zb,yd,z0) by means of a feedback law, and our control problem seems to enter into a classical setting.

Even if the analysis of the nonlinear model with the feedback law is not performed, let us explain why the
results obtained for the LQ control problem (Pf,g,zb,yd,z0) are quite new and interesting.

In Section 3, we are able to prove that (Pf,g,zb,yd,z0) admits a unique solution (z, u), and that this solution
is characterized by an optimality system of the form⎧⎪⎪⎨⎪⎪⎩

z′ = Az +B(�γu) + F, z(0) = z0,

−p′ = A∗p+ C∗(Cz + yd), p(∞) = 0,

u = −�γB
∗p.

(1.10)

We want to prove that there exists an operator Π ∈ L(Z) satisfying Π = Π∗ ≥ 0, and a function r ∈ L2(0,∞;Z)
such that

p(t) = Πz(t) + r(t).
The main objective of the present paper is to obtain an algebraic Riccati equation characterizing Π. The
equation satisfied by r, which involves the nonhomogeneous terms f , g, zb, and yd is studied in Part 2 [7]. To
find an equation satisfied by Π, we study problem (Pf,g,zb,yd,z0) in the case when f = 0, g = 0, zb = 0 and
yd = 0. Denoting this problem by (Pz0), we can easily show that

inf(Pz0) =
1
2
(
Πz0, z0

)
L2(Ω)

.

Since A is a degenerate parabolic operator, we explain at the beginning of Section 5 why the existing results
in the literature are not sufficient to obtain a Riccati equation characterizing Π in the domain of A. To overcome
this difficulty we look for Π in the form of a Hilbert-Schmidt operator in L2(Ω), and we characterize the equation
satisfied by its kernel π. The existence of a weak solution to the algebraic Riccati equation satisfied by π is
studied in Section 5. In Section 6 we show that

inf(Pz0) =
1
2

∫
Ω×Ω

π z0 ⊗ z0,
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for all solution π to the algebraic Riccati equation. (z0⊗z0 denotes the function defined in Ω×Ω by (x, y, ξ, η) 	→
z0(x, y)z0(ξ, η).) Thus π is unique and it is the kernel of Π. The analysis in the nonhomogeneous case, that is
when f , zb, g and yd are not necessarily zero, is performed in Part 2 [7]. Numerical results are also given in [7],
showing the efficiency of the linear feedback law applied to the nonlinear Crocco equation in the presence of
perturbations.

2. Assumptions and preliminary results

As in [6], we make the following assumptions on the coefficients a, b, and c.

(H1) a(η) = Us
∞ η for η ∈ [0, 1], and b ∈ W 1,∞(Ω). There exist positive constants Ci, i = 1 to 4, such that

C1|1 − η|2 ≤ b(ξ, η) ≤ C2|1 − η|2,∣∣∣ ∂b
∂η

(ξ, η)
∣∣∣ ≤ C3|1 − η| and

∣∣∣∣∂b∂ξ (ξ, η)
∣∣∣∣ ≤ C4|1 − η|2 for all (ξ, η) ∈ Ω.

(2.1)

(H2) The function c belongs to L∞(Ω), and we denote by C0 a positive constant such that

‖c‖L∞(Ω) ≤ C0. (2.2)

The nonhomogeneous terms f , g, zb and the initial condition z0 and the function φ satisfy
(H3) z0 ∈ L2(Ω), zb ∈ L2(0,∞;L2(0, 1)) and g ∈ L2(0,∞;L2(0, L)).

(H4) f ∈ L2(0,∞;L2(Ω)), φ ∈ L2(Ω × Ω) and yd ∈ L2(0,∞;L2(Ω)).
Let us recall some notation introduced in [5,6]. Let H1(0, 1; d) be the closure of C∞([0, 1]) in the norm:

‖z‖H1(0,1;d) =

(∫ 1

0

|z|2 + |1 − η|2
∣∣∣∣∂z∂η

∣∣∣∣2 dη

)1/2

. (2.3)

To take the Dirichlet boundary condition bz(ξ, 1, t) = 0 into account, we denote by H1
{1}(0, 1; d) the closure of

C∞
c ([0, 1)) in the norm ‖ · ‖H1(0,1;d). According to Triebel [16], Theorem 2.9.2,

H1(0, 1; d) = H1
{1}(0, 1; d).

Let us set
Γ0 =

(
[0, L) × {0}) ∪ ({0} × (0, 1)

)
, Γ1 =

({L} × (0, 1)
) ∪ (

(0, L] × {1}).
If the vectorfield

(
az,−b ∂z

∂η

)
belongs to (L2(Ω))2, and its divergence belongs to L2(Ω), the normal trace on the

boundary Γ of the vectorfield
(
az,−b ∂z

∂η

)
belongs to H−1/2(Γ). We denote this normal trace by T

(
az,−b ∂z

∂η

)
.

Let us recall the definitions of some trace spaces (see [13] or [8], Chap. 7, Sect. 2, Rem. 1)

H
1/2
00 (Γ0) =

{
ϕ ∈ L2(Γ0) | ∃ψ ∈ H1(Ω), ψ = 0 on Γ1 and ψ = ϕ on Γ0

}
,

H
1/2
00 (Γ1) =

{
ϕ ∈ L2(Γ1) | ∃ψ ∈ H1(Ω), ψ = 0 on Γ0 and ψ = ϕ on Γ1

}
.

We can define T0

(
az,−b ∂z

∂η

)
as an element in (H1/2

00 (Γ0))′ in the following way

〈
T0

(
az,−b∂z

∂η

)
, ϕ
〉

(H
1/2
00 (Γ0))′,H

1/2
00 (Γ0)

=
〈
T
(
az,−b∂z

∂η

)
, γ0ψ

〉
H−1/2(Γ),H1/2(Γ)
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for all ϕ ∈ H
1/2
00 (Γ0), where γ0 ∈ L(H1(Ω), H1/2(Γ)) is the trace operator and ψ ∈ H1(Ω) is a function such

that ψ = 0 on Γ1 and ψ = ϕ on Γ0.
Similarly, if the vectorfield

(
− az,− ∂

∂η (bz)
)

belongs to (L2(Ω))2, and its divergence belongs to L2(Ω), the

normal trace on the boundary Γ of the vectorfield
(
− az,− ∂

∂η (bz)
)
, denoted by T

(
− az,− ∂

∂η (bz)
)
, belongs to

H−1/2(Γ), and we can define T1

(
− az,− ∂

∂η (bz)
)

by

〈
T1

(
− az,− ∂

∂η
(bz)

)
, ϕ
〉

(H
1/2
00 (Γ1))′,H

1/2
00 (Γ1)

=
〈
T
(
− az,− ∂

∂η
(bz)

)
, γ0ψ

〉
H−1/2(Γ),H1/2(Γ)

for all ϕ ∈ H
1/2
00 (Γ1), where ψ ∈ H1(Ω) is a function such that ψ = 0 on Γ0 and ψ = ϕ on Γ1.

The differential operators A and A∗ are defined by

Az = −a ∂z
∂ξ

+ b
∂2z

∂η2
− cz, A∗p = a

∂p

∂ξ
+
∂2(bp)
∂η2

− cp.

The unbounded operators in L2(Ω) associated with the above differential operators are given by:

D(A) =
{
z ∈ L2(0, L;H1(0, 1; d)) | Az ∈ L2(Ω), T0

(
az,−b∂z

∂η

)
= 0

}
,

Az = Az for all z ∈ D(A),

D(A∗) =
{
p ∈ L2(0, L;H1(0, 1; d)) | A∗p ∈ L2(Ω), T1

(
− ap,− ∂

∂η
(bp)

)
= 0

}
,

A∗p = A∗p for all p ∈ D(A∗).

According to [6], Theorem 5.9, (A∗, D(A∗)) is the adjoint of (A, D(A)) and (A, D(A)) is the infinitesimal gen-
erator of a strongly continuous semigroup on L2(Ω). As in [6], we also need to define the operators (Ak, D(Ak))
and (A∗

k, D(A∗
k)) by setting D(Ak) = D(A), D(A∗

k) = D(A∗),

Akζ = Aζ − k a ζ, for all ζ ∈ D(A), and A∗
kζ = A∗ζ − k a ζ, for all ζ ∈ D(A∗).

The interest of introducing the operator (Ak, D(Ak)) is explained right now. We can easily verify that a function
z ∈ L2(0, T ;L2(Ω)) is a weak solution to

z′ = Az in (0, T ), z(0) = z0,

if and only if the function ζ = e−kξz is a weak solution to

ζ′ = Akζ in (0, T ), ζ(0) = e−kξz0. (2.4)

We are able to prove estimates for ζ that can be translated in estimates for z. Actually, we have proved
in [6], Theorem 6.2, that, for all z0 ∈ L2(Ω), the weak solution ζ ∈ L2(0, T ;L2(Ω)) to equation (2.4) obeys the
following inequality

1
2

∫ 1

0

∫ ξ

0

|ζ(x, η, t)|2 dxdη +
1
2

∫ t

0

∫ 1

0

a |ζ(ξ, η, τ)|2 dηdτ

+
∫ t

0

∫ 1

0

∫ ξ

0

(
b

∣∣∣∣∂ζ∂η
∣∣∣∣2 +

∂b

∂η

∂ζ

∂η
ζ + (c+ ka)|ζ|2

)
dxdη dτ ≤ 1

2

∫ 1

0

∫ ξ

0

e−2kx |z0(x, η)|2 dxdη, (2.5)
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for all t ∈ (0, T ) and all ξ ∈ [0, L]. Formally estimate (2.5) could be obtained by multiplying equation (2.4)
by ζ and by making integrations in space and time. In that case we obtain an equality in (2.5) in place of an
inequality. Due to the degenerate character of the operator Ak only an inequality has been proved in [6]. If
we choose k > 0 big enough, due to Lemma 2.1 below, inequality (2.5) can provide estimates for ζ that can be
translated in estimates for z. The existence of k, for which we can establish a coercivity condition, is established
in [6], Lemma 3.1. Due to the crucial role of this coercivity condition, we state and we give a complete proof of
this lemma below.

Lemma 2.1. There exists k > 0 such that∫ 1

0

(
b(ξ, ·)

∣∣∣∣dzdη
∣∣∣∣2 +

∂b

∂η
(ξ, ·)dz

dη
z + (−C0 + ka) z2

)
dη ≥ C1

2
‖z‖2

H1(0,1;d) + ‖z‖2
L2(0,1), (2.6)

for all ξ ∈ [0, L], all z in H1(0, 1; d).

Proof. Step 1. With the first inequality in (2.1) we can easily verify that

α1‖z‖2
H1(0,1;d) ≤

∫ 1

0

(
|z|2 + |b(ξ, ·)|

∣∣∣∣dzdη
∣∣∣∣2
)

dη ≤ α2‖z‖2
H1(0,1;d), (2.7)

for all ξ ∈ [0, L], and all z ∈ H1(0, 1; d), with α1 = min(C1, 1) and some α2 > α1.
Step 2. We set

βk(ξ; z, z) =
∫ 1

0

(
b(ξ, ·)

∣∣∣∣dzdη
∣∣∣∣2 +

∂b(ξ, ·)
∂η

dz
dη
z + (−c+ ka)|z|2

)
dη.

Using (2.7) and inequality (2.1), we have

βk(ξ; z, z) ≥
∫ 1

0

(
b

∣∣∣∣dzdη
∣∣∣∣2 +

∂b

∂η

dz
dη
z + (−C0 + ka)|z|2

)
dη

≥
∫ 1

0

(
C1

2
|1 − η|2

∣∣∣dz
dη

∣∣∣2 +
∂b

∂η

dz
dη
z +

(
− C0 + ka− 1

2

)
|z|2

)
dη +

α1

2
‖z‖2

H1(0,1;d).

From inequality (2.1), and Young’s inequality, it yields∫ 1

0

∂b

∂η

dz
dη
z dη ≥ −C3ε

2

∫ 1

0

|1 − η|2
∣∣∣dz
dη

∣∣∣2 dη − C3

2ε

∫ 1

0

|z|2 dη,

for all ε > 0. Consequently, βk(ξ; ·, ·) satisfies the estimate

βk(ξ; z, z) ≥ α1

2
‖z‖2

H1(0,1;d) +

(
C1

2
− C3ε

2

)∫ 1

0

|1 − η|2
∣∣∣∣dzdη

∣∣∣∣2 dη +
∫ 1

0

(
− C0 + ka− 1

2
(1 +

C3

ε
)

)
|z|2 dη.

Now, we choose ε such that C1
4 = C1

2 − C3ε
2 > 0. We have

βk(ξ; z, z) ≥ α1

2
‖z‖2

H1(0,1;d) +
C1

4

∫ 1

0

|1 − η|2
∣∣∣∣dzdη

∣∣∣∣2 dη +
∫ 1

0

(
− C0 + ka− 1

2
(1 +

C3

ε
)

)
|z|2 dη.
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To establish the lemma, it is enough to prove that, there exists k > 0 such that

C̃1

∫ 1

0

|1 − η|2
∣∣∣∣dzdη

∣∣∣∣2 dy +
∫ 1

0

k̃a |z|2 dη ≥ ‖z‖2
L2(0,1),

with C̃1 = C1/(4r̃0), k̃ = k/r̃0, c̃ = c/r̃0 and r̃0 = 1
2

(
C3
ε + 1

)
+ C0 + 1.

This can be shown by arguing by contradiction. We suppose that exists a sequence (zn)n ⊂ H1(0, 1; d) that
satisfies ∫ 1

0

|zn|2 dy = 1 and C̃1

∫ 1

0

|1 − η|2
∣∣∣dzn

dη

∣∣∣2 dη + n

∫ 1

0

a |zn|2 dη < 1. (2.8)

Due to the second condition in (2.8), the sequence (zn)n (or at least a subsequence) tends to 0 almost everywhere
in [0, 1] and strongly in L2(ε, 1) for all ε > 0. Since the imbedding from H1(0, 1) in L2(0, 1) is compact and since
((1−η)zn)n is bounded in H1(0, 1), the sequence ((1 − η)zn)n tends to 0 in L2(0, 1). We know that the sequence
(zn)n converges to 0 in L2(1/2, 1), and that the sequence ((1 − η)zn)n converges to 0 in L2(0, 1/2). Thus, the
sequence (zn)n converges to 0 in L2(0, 1), which is in contradiction with the first condition in (2.8). �

Thanks to this lemma we can prove the following theorem.

Theorem 2.1. The operator (A, D(A)) is the infinitesimal generator of a strongly continuous semigroup expo-
nentially stable on L2(Ω).

Proof. The complete proof of this result is given in [6], Proof of Theorem 6.1. We only explain how the
exponential stability of the semigroup (eAt)t≥0, can be obtained. By using Lemma 2.1 and inequality (2.5), we
can show that, for all z0 ∈ L2(Ω), the function z(t) = eAtz0 obeys

‖z‖L2(0,∞;L2(Ω)) ≤ C‖z0‖L2(Ω).

The exponential stability follows from Datko’s Theorem (see e.g. [21], Thm. 3.1(i)). �

In the following we shall denote by ω > 0 an exponent and C(ω) ≥ 1 a constant depending on ω such that

‖eAt‖L(L2(Ω)) ≤ C(ω) e−ωt and ‖eA∗t‖L(L2(Ω)) ≤ C(ω) e−ωt for all t > 0.

As in [6], it is useful to introduce a parameter k to obtain estimates of solutions of different equations related
to the operator A.

Now we show that there is a norm in L2(Ω), weaker than the usual one, which is associated with a Hilbert-
Schmidt operator. More precisely, we have the following:

Proposition 2.1. For 1 ≤ i <∞ and 1 ≤ j <∞, let us set

ψi,j(x, y) =

√
2
L

sin
(
iπx

L

)√
2 sin (jπy) ,

and

φα(x, y, ξ, η) =
∞∑

i,j=1

1
(i2α + j2α)1/2

ψi,j(x, y)ψi,j(ξ, η) with α > 1.

Then φα belongs to L2(Ω × Ω). Let Cα be the Hilbert-Schmidt operator defined by

Cαz =
∫

Ω

φα(·, ξ, η) z(ξ, η) dξdη.
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The mapping

z 	−→ ‖Cαz‖L2(Ω) =

⎛⎝ ∞∑
i,j=1

1
i2α + j2α

(∫
Ω

ψi,j z

)2
⎞⎠1/2

,

is a norm in L2(Ω) weaker than the usual one.

Proof. The family (ψi,j)1≤i,j≤∞ is a Hilbertian basis of L2(Ω), and the family (ψi,j⊗ψi,j)1≤i,j≤∞ is a Hilbertian
basis of L2(Ω × Ω). Thus it is easy to see that

‖φα‖2
L2(Ω×Ω) =

∞∑
i,j=1

1
i2α + j2α

<∞.

The end of proof is obvious. �

3. Control system

In this section, we want to prove that equation (1.6) can be rewritten as a control evolution equation of the
form

z′ = Az +B(�γu) + F, z(0) = z0. (3.1)
In particular we want to define the operators A and B, and the function F .

3.1. Existence and uniqueness results for the state equation

To define solutions to equation (1.6) by the transposition method, we introduce the adjoint system:

− p′ = A∗p+ ψ in (0,∞), p(∞) = 0. (3.2)

Due to Theorem 2.1, and with results in [6], we can prove the following theorem.

Theorem 3.1. Let ψ ∈ L2(0,∞;L2(Ω)). The system (3.2) admits a unique weak solution p such that

p ∈ Cb([0,∞);L2(Ω)) ∩ L2(0,∞;L2(0, L;H1(0, 1; d))),
√
ap ∈ Cw([0, L];L2(0,∞;L2(0, 1))),

where Cw([0, L];L2(0,∞;L2(0, 1))) is the space of continuous functions from [0, L] into L2(0,∞;L2(0, 1)) equipped
with its weak topology and Cb([0,∞);L2(Ω)) is the space of bounded and continuous functions from [0,∞)
into L2(Ω). It satisfies the estimate

‖p‖L∞(0,∞;L2(Ω)) + ‖√ap‖L∞(0,L;L2(0,∞;L2(0,1))) + ‖p‖L2(0,∞;L2(0,L;H1(0,1;d))) ≤ C‖ψ‖L2(0,∞;L2(Ω)). (3.3)

We define weak solutions to equation (1.6) by the transposition method.

Definition 3.1. A function z ∈ L2
(
0,∞;L2(Ω)

)
is a weak solution to equation (1.6) if and only if we have∫

Q

zψ dτdξdη =
∫

Q

fp dτdξdη +
∫

Ω

p(0, ξ, η)z0(ξ, η) dξdη

−
∫ ∞

0

∫ L

0

b(ξ, 0) (g + �γu)(τ, ξ) p(τ, ξ, 0) dτdξ +
∫ ∞

0

∫ 1

0

a(η)zb(τ, ξ)p(τ, 0, η) dτdη, (3.4)

for all ψ ∈ L2
(
0,∞;L2(Ω)

)
, where p is the solution to equation (3.2), and Q = Ω × (0,∞).
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In [6], Theorem 6.6, it is shown that if z ∈ L2
(
0,∞;L2(Ω)

)
is a weak solution to equation (1.6), in the

sense of semigroup theory, then it is also a solution in the sense of transposition, that is to say in the sense
of Definition 3.1. By taking in (3.4) functions ψ of the form ψ(t, ξ, η) = −θ′(t)ζ(ξ, η) − θ(t)A∗ζ(ξ, η), where
ζ ∈ D(A∗) and θ ∈ D(R+), we recover the weak formulation of the definition in the sense of semigroup theory.
The initial condition can also be recovered by choosing a particular sequence of functions ψ.

Theorem 3.2. Let f be in L2(0,∞;L2(Ω)), g ∈ L2(0,∞;L2(0, L)), u ∈ L2(0,∞;L2(0, L)), zb ∈ L2(0,∞;L2(0, 1)),
and z0 ∈ L2(Ω), then equation (1.6) admits a unique weak solution z ∈ L2(0,∞; L2(Ω)). Moreover

z ∈ L2(0,∞;L2(0, L;H1(0, 1; d))) ∩ Cb([0,∞);L2(Ω)),
√
a z ∈ Cw([0, L];L2(0,∞;L2(0, 1))),

and the solution obeys:

‖z‖L∞(0,∞;L2(Ω)) + ‖√az‖L∞(0,L;L2(0,∞;L2(0,1))) + ‖z‖L2(0,∞;L2(0,L;H1(0,1;d)))

≤ C5

(
‖f‖L2(Q) + ‖u‖L2(0,∞;L2(0,L)) + ‖g‖L2(0,∞;L2(0,L)) + ‖zb‖L2(0,∞;L2(0,1)) + ‖z0‖L2(Ω)

)
. (3.5)

Proof. Theorem 3.2 is proved in [6], Theorem 6.6. Its proof relies on inequality (2.5), on Lemma 2.1, and on
an approximation procedure (the boundary terms u, g and zb are approximated by a sequence of distributed
terms). �

3.2. Dirichlet and Neumann operators

Let v belong to L2(0, L) and zb ∈ L2(0, 1). We define the solution to the Neumann problem

Aw = 0 in Ω,
√
aw(0, ·) = 0 in (0, 1), (bw)(·, 1) = 0 and

∂w

∂η
(·, 0) = v in (0, L), (3.6)

and to the Dirichlet problem

Aζ = 0 in Ω,
√
aζ(0, ·) =

√
azb in (0, 1), (bζ)(·, 1) = 0 and

∂ζ

∂η
(·, 0) = 0 in (0, L), (3.7)

by the transposition method as follows.

Definition 3.2. A function w ∈ L2(Ω) is a weak solution to equation (3.6) if and only if we have∫
Ω

wA∗p dξdη = −
∫ L

0

b(ξ, 0)v(ξ)p(ξ, 0) dξ for all p ∈ D(A∗). (3.8)

Similarly, a function ζ ∈ L2(Ω) is a weak solution to equation (3.7) if and only if we have∫
Ω

ζA∗p dξdη = −
∫ 1

0

a(η)zb(η)p(0, η) dξ for all p ∈ D(A∗). (3.9)

Using the method in [6], Proof of Theorem 6.6, we can establish the following theorem.

Theorem 3.3. Let v ∈ L2(0, L), then equation (3.6) admits a unique weak solution w ∈ L2(Ω). Moreover

w ∈ L2(0, L;H1(0, 1; d)),
√
aw ∈ Cw([0, L];L2(0, 1)),

and
‖√aw‖L∞(0,L;L2(0,1)) + ‖w‖L2(0,L;H1(0,1;d)) ≤ C‖v‖L2(0,L). (3.10)
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Let zb ∈ L2(0, 1), then equation (3.7) admits a unique weak solution ζ ∈ L2(Ω). Moreover

ζ ∈ L2(0, L;H1(0, 1; d)),
√
aζ ∈ Cw([0, L];L2(0, 1)),

and the solution obeys:

‖√aζ‖L∞(0,L;L2(0,1)) + ‖ζ‖L2(0,L;H1(0,1;d)) ≤ C‖zb‖L2(0,1). (3.11)

Proof. We briefly give the proof of (3.10). The second statement can be proved in the same way. The uniqueness
of solution to equation (3.6) is obvious. The only difficult point is the existence of a solution and estimate (3.10).
We proceed by approximation. We set vn(ξ, η) = nv(ξ)χn(η), where χn is the characteristic function of the
interval (0, 1

n ). Let wn be the solution to equation

Awn = b vn. (3.12)

It can be shown that ζn = e−kξwn satisfies an inequality similar to (2.5). More precisely, we have

1
2

∫ 1

0

a ζn(x, η)2 dη+
∫ 1

0

∫ x

0

(
b

∣∣∣∣∂ζn∂η
∣∣∣∣2 +

∂b

∂η

∂ζn
∂η

ζn + (c+ ka)ζ2
n

)
dξ dη ≤

∫ 1

0

∫ x

0

e−kξ b vn ζn dξ dη, (3.13)

for all x ∈ [0, L]. With Lemma 2.1 and classical majorizations we arrive at

‖√aζn‖L∞(0,L;L2(0,1)) + ‖ζn‖L2(0,L;H1(0,1;d)) ≤ C‖vn‖L2(0,L),

where the constant C is independent of n. Therefore, there exists a subsequence, still indexed by n to simplify
the notation, such that

ζn ⇀ w weakly in L2(0, L;H1(0, 1; d)),√
aζn ⇀

√
aw weakly-star in L∞(0, L;L2(Ω)),

(3.14)

for some function w ∈ L∞(0, L;L2(0, 1)) ∩ L2(0, L;H1(0, 1; d)). By passing to the limit in the variational
formulation satisfied by ζn, we can show that w is a weak solution to equation (3.6). �

3.3. Control system

We denote by N and D the operators defined by

Nv = w, Dzb = ζ

where w is the solution to equation (3.6), and ζ is the solution to equation (3.7).
Observe that N belongs to L(L2(0, L), L2(0, L;H1(0, 1; d))), and that D belongs to L(L2(0, 1),

L2(0, L;H1(0, 1; d))). Moreover according to Definition 3.2, we have

N∗A∗p = −b(ξ, 0)p(ξ, 0) and D∗A∗p = −a(η)p(0, η) for all p ∈ D(A∗).

Thus N∗A∗p is the trace of −bp on (0, L) × {0}.
Using the extrapolation method the semigroup (etA)t∈R+ can be extended to (D(A∗))′. Denoting the cor-

responding semigroup by (etÂ)t∈R+ , the generator (Â, D(Â)) of this semigroup is an unbounded operator
in (D(A∗))′ with domain D(Â) = Z.

First assume that g ∈ C1
c (0,∞, L2(0, L)), u ∈ C1

c (0,∞;L2(0, L)), and zb ∈ C1
c (0,∞;L2(0, 1)), and set

w(t) = N(�γu(t) + g(t)), ζ(t) = Dzb(t).
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Let z be the unique weak solution to equation (1.6), and set Z = z − w − ζ. We can check that Z is the weak
solution to the equation

Z ′ = AZ − w′ − ζ′ + f, Z(0) = z0,

that is

Z(t) = etAz0 +
∫ t

0

e(t−τ)Af(τ)dτ −
∫ t

0

e(t−τ)Aw′(τ)dτ −
∫ t

0

e(t−τ)Aζ′(τ)dτ.

Making integration by parts, we can show that (see e.g. [2]) equation (1.6) can be rewritten in the form

z′ = Âz + f + (−Â)Ng + (−Â)N(�γu) + (−Â)Dzb, z(0) = z0. (3.15)

This equation is still meaningful if g ∈ L2(0,∞;L2(0, L)), u ∈ L2(0,∞;L2(0, L)), and zb ∈ L2(0,∞;
L2(0, 1)). We set

F = f + (−Â)Ng + (−Â)Dzb and B = (−Â)N, (3.16)

and we obtain equation (3.1) if, by abuse of notation, we replace Â by A.

4. Optimal control

Let us recall the definition of

(Pf,g,zb,yd,z0) inf
{
J(z, u) | (z, u) ∈ L2(0,∞;Z) × L2(0,∞;U), (z, u) satisfies (4.2)

}
,

where
J(z, u) =

1
2

∫ ∞

0

‖Cz(t) + yd(t)‖2
Z dt+

1
2

∫ ∞

0

‖u(t)‖2
U dt, (4.1)

with
z′ = Az +B(�γu) + F, z(0) = z0, (4.2)

and F is defined in (3.16). Let us recall that Z = L2(Ω), U = L2(0, L), C ∈ L(Z), and yd ∈ L2(0,∞;Z) are
defined in the introduction. In the above setting ‖ · ‖Z and ‖ · ‖U denote respectively the norm in Z and in U ,
and the associated inner products will be denoted by (·, ·)Z and (·, ·)U .

Theorem 4.1. Assume that (H1) − (H4) are fulfilled. Then problem (Pf,g,zb,yd,z0) admits a unique solution
(z̄, ū).

Proof. The proof is classical. We briefly introduce the main ingredients for the convenience of the reader. Let
us denote by z(u) the solution to equation (4.2) corresponding to u. Due to Theorem 2.1, J(z(0), 0) < ∞.
Thus (Pf,g,zb,yd,z0) admits minimizing sequences, and minimizing sequences are bounded in L2(0,∞;U). Due
to Theorem 3.2, if a sequence (un)n converges weakly in L2(0,∞, U) to some u, then (z(un))n converges weakly
in L2(0,∞;L2(0, L;H1(0, 1; d))) to z(u). Thus, by standard arguments, if (un)n is a minimizing sequence,
converging to u for the weak topology of L2(0,∞;U), then

J(z(u), u) ≤ lim inf
n→∞ J(z(un), un) = inf(Pf,g,zb,yd,z0).

Thus, (z(u), u) is a solution of (Pf,g,zb,yd,z0). The uniqueness follows from the strict convexity of the mapping
u 	→ J(z(u), u). �
Theorem 4.2. If (z̄, ū) is the solution to (Pf,g,zb,yd,z0) then

ū(t) = �γbp̄|γ×{0} = −�γB
∗p̄(t), (4.3)

where p̄ is the solution to equation (3.2) with

ψ = C∗(Cz̄ + yd).
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Conversely if a pair (z, p) ∈ (
L2(0,∞;L2(0, L;H1(0, 1; d)))

)2 obeys the system{
z′ = Az +B(�γb(·, 0)p(·, 0)) + F in (0,∞), z(0) = z0,

−p′ = A∗p+ C∗(Cz + yd) in (0,∞), p(∞) = 0,
(4.4)

then the pair
(
z,�γbp|γ×{0}

)
is the optimal solution to problem (Pf,g,zb,yd,z0).

Proof. Let (z̄, ū) be the optimal solution to problem (Pf,g,zb,yd,z0). Set I(u) = J(z(u), u), where z(u) is the
solution to equation (4.2) corresponding to u. For every v ∈ L2(0,∞;U) and λ ∈ R

∗, we denote by zλ the
solution to the equation (1.6) associated with ū+ λv. We have

I(ū+ λv) − I(ū) =
1
2

∫ ∞

0

(C(zλ − z̄), C(zλ + z̄) + 2yd)Z dτ +
1
2

∫ ∞

0

(
(2λv, ū)U + λ2‖v(τ)‖2

U

)
dτ. (4.5)

The function w = (zλ − z̄)/λ is the solution of equation

w′ = Aw +B(�γv) in (0,∞), w(0) = 0.

Due to Theorem 3.2, we have

‖w‖L2(0,∞;L2(0,L;H1(0,1;d))) ≤ C‖v‖L2(0,∞;U).

Thus the sequence (zλ)λ converges to z̄ in L2(0,∞;L2(0, L;H1(0, 1; d))) when λ tends to zero. Dividing I(ū+
λv) − I(ū) by λ and passing to the limit when λ tends to zero, we obtain

I ′(ū)v =
∫ ∞

0

(Cw,Cz̄ + yd)Z dτ +
∫ ∞

0

(v, ū)U dτ.

With formula (3.4) in which z is replaced by w and p by the solution of equation (3.2) corresponding to
ψ = C∗(Cz̄ + yd), we have∫ ∞

0

(Cw,Cz̄ + yd)Z dτ = −
∫ ∞

0

∫
γ

b(ξ, 0)v(τ)p̄(τ, ξ, 0) dξdτ.

Hence

I ′(ū)v = −
∫ ∞

0

∫
γ

b(ξ, 0)p̄(τ, ξ, 0)v(τ) dξdτ +
∫ ∞

0

(ū(τ), v(τ))U dτ.

Since (z̄, ū) is the solution to the problem (Pf,g,zb,yd,z0), we have I ′(ū) = 0 and ū = �γbp̄|γ×{0} = −�γB
∗p̄.

Conversely, assume that (z, p) ∈ (
L2(0,∞;L2(0, L;H1(0, 1; d)))

)2 is the solution of system (4.4). Let us set

u(t, ξ) = �γ(ξ)b(ξ, 0)p(t, ξ, 0).

From previous calculations, it follows that

I ′(ū) = 0.

Due to the convexity of the mapping I we deduce that ū is the solution to problem (Pf,g,zb,yd,z0). �
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5. Riccati equation

In this section, we study problem (Pf,g,zb,yd,z0) in the case where f = 0, zb = 0, g = 0 and yd = 0. We
denote it by (Pz0). In the previous section, we have proved that the solution (z, u) of (Pz0) is characterized by
u = −�γ B

∗p, where (z, p) ∈ (
L2(0,∞;L2(0, L;H1(0, 1; d)))

)2 is the unique solution of system{
z′ = Az −B(�γB

∗p), z(0) = z0,

−p′ = A∗p+ C∗Cz, p(∞) = 0.
(5.1)

Let us denote by Π the operator
Π : z0 	−→ p(0). (5.2)

This operator is well defined since p belongs to Cb([0,∞);L2(Ω)) (it is sufficient to apply Thm. 3.2 to the adjoint
equation).

5.1. Failure of existing results

Let us first explain why existing results in the literature do not permit to characterize Π as the weak solution
to an algebraic Riccati with tests functions (in the definition of weak solutions) belonging to D(A) (for existing
results to algebraic Riccati equations, we refer to [9–12,15]). Using the dynamic programming principle, as
in [11] it can be shown that the family of operators (S(t))t∈R+ , defined by

S(t)z0 = z(t),

where (z(t), p(t))t∈R+ is the solution of (5.1), is a strongly continuous semigroup exponentially stable on Z. Let
us denote by (AΠ, D(AΠ)) its infinitesimal generator (formally AΠ = A−B(�γB

∗Π)). Let s belong to (0,∞).
We denote by (zs, ps) the solution of the system⎧⎪⎨⎪⎩

dzs

dt
= Azs −B(�γB

∗ps) in (s,∞), zs(s) = z(s),

−dps

dt
= A∗ps + C∗Czs in (s,∞), ps(∞) = 0.

(5.3)

It is clear that
ps(s) = Πzs(s).

Moreover, from the dynamic programming principle, it follows that ps(s) = p(s). Thus we have extended the
identity (5.2) by showing that

p(t) = Πz(t) for all t ∈ [0,∞).
Therefore we have proved that the optimal solution of (Pz0) obeys the feedback law

ū(t) = −�γB
∗Πz(t).

Moreover, with (5.3) we can show that

inf(Pz0) =
1
2
(
p(0), z0

)
Z

=
1
2
(
Πz0, z0

)
Z
.

We can also show that Π obeys the following integral equation (see [11]):

Π =
∫ ∞

0

e−A∗tC∗CeAΠt dt. (5.4)

However since Π is involved in the definition of the operator AΠ, the above equation is not really useful for the
computation of the operator Π.
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Following [1], it can be shown that Π obeys the following formulation of the A.R.E.(Az,Πζ)
Z

+
(
Πz,A∗ζ

)
Z
− (

�γB
∗Πz,�γB

∗Πζ
)

Z
+
(
C∗Cz, ζ

)
Z

= 0, ∀z, ζ ∈ D(AΠ). (5.5)

Unfortunately the characterization ofD(AΠ) is not obvious because it depends on Π which is precisely unknown,
and in general this variational formulation is not satisfied for z ∈ D(A), and it cannot be used to characterize
the operator Π (see [17–19]).

Here taking advantage of the regularizing properties of the operator C, we look for Π in the form of a
Hilbert-Schmidt operator, and we are able to study the partial differential equation satisfied by the kernel of the
operator Π. We show that this partial differential equation admits a unique solution π in L2

s(Ω×Ω)∩L2
+(Ω×Ω)

(see the definition of these spaces in Sect. 5.2). Showing in Section 6 that this unique solution π obeys

inf(Pz0) =
1
2

∫
Ω×Ω

π z0 ⊗ z0,

we can conclude that Π is a Hilbert-Schmidt operator and that π is the kernel of Π.
Since we want to characterize the operator Π ∈ L(L2(Ω)) by a kernel π ∈ L2(Ω×Ω), for notational simplicity

we write Ω × Ω in the form ΩX × ΩΞ. The current point (X,Ξ) ∈ ΩX × ΩΞ corresponds to X = (x, y) ∈ ΩX

and Ξ = (ξ, η) ∈ ΩΞ. With this notation Π and π – if it exists in L2(ΩX × ΩΞ) – are related by the identity

Πz(X) =
∫

Ω

π(X,Ξ)z(Ξ)dΞ. (5.6)

Similarly, A∗
X (resp. A∗

Ξ) corresponds to the operator A∗ written in X-variable (resp. in Ξ-variable), that is:

A∗
Xp = a(y)

∂p

∂x
+
∂2(b(x, y)p)

∂y2
− c(x, y) p

(resp. A∗
Ξp = a(η)∂p

∂ξ + ∂2(b(ξ,η)p)
∂η2 − c(ξ, η) p). To write the equation satisfied by π, let us introduce some new

operators. Let us set O = ΩX × ΩΞ. If z ∈ L2(Ω) and ζ ∈ L2(Ω), we denote by z ⊗ ζ the function belonging
to L2(O) defined by

z ⊗ ζ : (X,Ξ) 	−→ z(X)ζ(Ξ).
We denote by L2

s(O) the space of functions π ∈ L2(O) satisfying:

π(X,Ξ) = π(Ξ, X) for almost all (X,Ξ) ∈ ΩX × ΩΞ.

We are going to see that

D(A∗
X,Ξ) =

{
ϕ =

∫ ∞

0

etA∗
X etA∗

Ξ ψ dt | ψ ∈ L2(O)
}
,

is the domain of the infinitesimal generator of a strongly continuous exponentially stable semigroup on L2(O).
We also set

D(A s ∗
X,Ξ) = D(A∗

X,Ξ) ∩ L2
s(O).

In Section 6, we show that the operator Π defined by (5.2) may be written in the form (5.6), where π is the
unique solution to the algebraic Riccati equation

π ∈ D(A s ∗
X,Ξ), A∗

Xπ + A∗
Ξπ −

∫
γ

|b(s, 0)|2π(s, 0,Ξ)π(X, s, 0) ds + Φ = 0, (5.7)

and Φ ∈ L2
s(O) is the function defined by

Φ(X,Ξ) =
∫

Ω

φ(·, X)φ(·,Ξ). (5.8)
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The function φ ∈ L2(O) is the one defining the observation operator C (see (1.8)). Observe that by Cauchy-
Schwarz inequality, we have

‖Φ‖L2
s(O) ≤ ‖φ‖2

L2(O).

The existence of at least one solution to equation (5.7) is established in Theorem 5.8. The uniqueness is proved
in Theorem 6.2.

To study equation (5.7) we first study the differential Riccati equation⎧⎨⎩ π′ = A∗
Xπ + A∗

Ξπ −
∫

γ

|b(s, 0)|2π(t, s, 0,Ξ)π(t,X, s, 0) ds+ Φ in (0,∞),

π(0, ·) = π0 ∈ L2
s(O).

(5.9)

Even if we prove that the solution of (5.7) is the limit when t tends to infinity of the solution to equation (5.9)
when π0 = 0, we need to study equation (5.9) with π0 �= 0 (see the proofs of Thm. 5.8 and Lem. 5.9).

5.2. Semigroup generated by A∗
X + A∗

Ξ

Lemma 5.1. For every z ∈ L2(ΩX), and ζ ∈ L2(ΩΞ), we have

etAX
(
z ⊗ etAΞζ

)
= etAX z ⊗ etAΞζ = etAΞ

(
etAX z ⊗ ζ

)
.

Proof. The result is a direct consequence of the definition of the tensor product. �
Lemma 5.2. For all t ≥ 0, τ ≥ 0, ψ ∈ L2(O), we have

etA∗
X eτA∗

Ξ ψ = eτA∗
Ξ etA∗

X ψ.

Proof. The result can be deduced from Lemma 5.1 by using the density of L2(Ω) ⊗ L2(Ω) into L2(O). �
With Lemma 5.2 we can prove the following result.

Lemma 5.3. For t ≥ 0, let S∗(t) ∈ L(L2(O)) be defined by

S∗(t) : ψ 	−→ etA∗
X etA∗

Ξψ.

The family (S∗(t))t≥0 is a strongly continuous exponentially stable semigroup on L2(O).

Proof. We have S∗(0) = I. Since etA∗
Ξ eτA∗

X = eτA∗
X etA∗

Ξ , it is easy to show that S∗(t)S∗(τ) = S∗(t+ τ).
Let us show that the semigroup (S∗(t))t≥0 is weakly continuous on L2(O). First we write:∫

O
ψ etAX z ⊗ etAΞζ −

∫
O
ψ z ⊗ ζ =

∫
ΩΞ

∫
ΩX

(
(etAX z − z)ψ(·,Ξ)

)
etAΞζ +

∫
O
ψ z

(
etAΞζ − ζ

)
.

We know that
lim
t↘0

∫
O
ψ z

(
etAΞζ − ζ

)
= 0.

Moreover, for almost all Ξ ∈ ΩΞ, we have

lim
t↘0

etAΞζ

∫
ΩX

(etAX z − z)ψ(·,Ξ) dX = 0,

and ∥∥∥∥etAΞζ

∫
ΩX

(etAX z − z)ψ(·,Ξ)
∥∥∥∥

L2(ΩΞ)

≤ C‖z‖L2(ΩX )‖ζ‖L2(ΩΞ)‖ψ‖L2(O).
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Therefore with the dominated convergence theorem we have:

lim
t↘0

∫
ΩΞ

∫
ΩX

(
(etAX z − z)ψ(·,Ξ)

)
etAΞζ = 0.

Thus the semigroup (S∗(t))t≥0 is weakly continuous on L2(O). It is also strongly measurable on L2(O). Thus
it is also strongly continuous on L2(O). Let us show that it is exponentially stable. Using the exponential
stability of the semigroups (etA∗

X )t≥0 and (etA∗
Ξ)t≥0, we can write

‖S∗(t)ψ‖L2(O) ≤ Cωe−ωt‖etA∗
Ξψ‖L2(O) ≤ C2

ωe−2ωt‖ψ‖L2(O).

The proof is complete. �

Let us denote by (A∗
X,Ξ, D(A∗

X,Ξ)) the infinitesimal generator of (S∗(t))t≥0 in L2(O). From the exponential
stability of the semigroup (S∗(t))t≥0, it follows that

(−A∗
X,Ξ)−1ψ =

∫ ∞

0

etA∗
X etA∗

Ξ ψ dt and D(A∗
X,Ξ) =

{∫ ∞

0

etA∗
X etA∗

Ξ ψ dt | ψ ∈ L2(O)
}
.

We cannot give a more precise characterization of D(A∗
X,Ξ). However, setting

H = L2(ΩX ;D(A∗
Ξ)) ∩ L2(ΩΞ;D(A∗

X)),

we can show that H ⊂ D(A∗
X,Ξ). Indeed if ψ ∈ H , we can write

limt↘0

∫
O

etA∗
X etA∗

Ξψ − ψ

t
z ⊗ ζ = limt↘0

∫
O

etA∗
Ξψ − ψ

t
z ⊗ ζ + limt↘0

∫
O

etA∗
X etA∗

Ξψ − etA∗
Ξψ

t
z ⊗ ζ

= limt↘0

∫
O
ψ z

etAΞζ − ζ

t
+ limt↘0

∫
O
ψ etAΞζ

etAX z − z

t

=
∫
O
ψ
(AXz ⊗ ζ + z ⊗AΞζ

)
=
∫
O

(A∗
Xψ + A∗

Ξψ
)
z ⊗ ζ,

for all z ∈ D(A) and all ζ ∈ D(A). By a density argument we deduce that

limt↘0

∫
O

etA∗
X etA∗

Ξψ − ψ

t
z ⊗ ζ =

∫
O

(A∗
Xψ + A∗

Ξψ
)
z ⊗ ζ,

for all z ∈ L2(Ω) and all ζ ∈ L2(Ω). Thus, if ψ ∈ H , A∗
Ξψ + A∗

Xψ belongs to L2(O) and

A∗
X,Ξψ = A∗

Xψ + A∗
Ξψ. (5.10)

It is the reason why we shall often write A∗
Xψ + A∗

Ξψ in place of A∗
X,Ξψ, and et(A∗

X+A∗
Ξ) in place of etA∗

X etA∗
Ξ

or of etA∗
X,Ξ , even if it is an abuse of notation.

We also introduce the operators A∗
k,X and A∗

k,Ξ defined by D(A∗
k,X ) = D(A∗

X), D(A∗
k,Ξ) = D(A∗

Ξ),

A∗
k,Xζ = A∗

Xζ − k a(y)ζ and A∗
k,Ξζ = A∗

Ξζ − k a(η)ζ,

where the parameter k > 0 is the one in Lemma 2.1.
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Theorem 5.1. (i) The adjoint of the operator etA∗
X etA∗

Ξ ∈ L(L2(O)) is the operator etAX etAΞ ∈ L(L2(O)).
The family of operators (S(t))t≥0, where S(t) = etAX etAΞ , is the adjoint semigroup of (S∗(t))t≥0.
(ii) The infinitesimal generator of (S(t))t≥0 in L2(O) is (AX,Ξ, D(AX,Ξ)), the adjoint of (A∗

X,Ξ,

D(A∗
X,Ξ)).

(iii) The space L2(ΩX ;D(AΞ)) ∩ L2(ΩΞ;D(AX)) is included in D(AX,Ξ), and

AX,Ξψ = AΞψ + AXψ if ψ ∈ L2(ΩX ;D(AΞ)) ∩ L2(ΩΞ;D(AX)).

(iv) The family of operators (S∗
k(t))t≥0, where S∗

k(t) = etA∗
k,X etA∗

k,Ξ is a strongly continuous exponentially stable
semigroup on L2(O). Its infinitesimal generator (A∗

k,X,Ξ, D(A∗
k,X,Ξ)) satisfies H ⊂ D(A∗

k,X,Ξ) and

A∗
k,X,Ξψ = A∗

k,Ξψ + A∗
k,Xψ if ψ ∈ L2(ΩX ;D(A∗

Ξ)) ∩ L2(ΩΞ;D(A∗
X)).

Proof. The first, the second and the fourth statements are obvious. The third one can be proved as above,
when we have shown that H ⊂ D(A∗

X,Ξ). �

We make the same kind of abuse of notation as above: we shall often write AΞψ + AXψ in place of AX,Ξψ,
A∗

k,Ξψ+A∗
k,Xψ in place of A∗

k,X,Ξψ, et(AX+AΞ) in place of etAX etAΞ or of etAX,Ξ , and et(A∗
k,X+A∗

k,Ξ) in place of
etA∗

k,X etA∗
k,Ξ or of etA∗

k,X,Ξ .

Since L2
s(O) is a closed subspace in L2(O), we can show that A s ∗

X,Ξ, the restriction of A∗
X,Ξ to L2

s(O), is an
unbounded operator in L2

s(O) whose domain is defined by D(A s ∗
X,Ξ) = D(A∗

X,Ξ) ∩ L2
s(O).

Theorem 5.2. The operator (A s ∗
X,Ξ, D(A s ∗

X,Ξ)) is the infinitesimal generator of an exponentially stable semigroup
on L2

s(O).

We denote by L2
+(O) the cone in L2

s(O) of functions π satisfying:∫
O
π z ⊗ z ≥ 0 for all z ∈ L2(Ω).

Let us notice that if f ∈ L2(Ω) and f ≥ 0, then f ⊗ f belongs to L2
+(O). If π1 ∈ L2

s(O) and π2 ∈ L2
s(O), we

shall write π1 ≥ π2 if ∫
O

(
π1 − π2

)
z ⊗ z ≥ 0 for all z ∈ L2(Ω).

We are going to prove that the optimal pair (ū, z̄) obeys the feedback law

ū(t) = �γb(s, 0)
∫

Ω

π(s, 0,Ξ)z̄(t,Ξ) dΞ, (5.11)

where π is solution to the algebraic Riccati equation (5.7).

5.3. Lyapunov equation

To prove the existence of a solution to system (5.9), we study the following differential Lyapunov equation:

π′ = A∗
Xπ + A∗

Ξπ + ψ(t,X,Ξ) in (0,∞), π(0, ·) = π0. (5.12)

Weak solutions to equation (5.12) are defined as weak solutions for evolution equations.
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Theorem 5.3. Let ψ be in L1
loc([0,∞);L2

s(O)) and π0 ∈ L2
s(O). The system (5.12) admits a unique weak

solution π in L1
loc([0,∞);L2

s(O)) defined by

π(t) = et(A∗
X+A∗

Ξ)π0 +
∫ t

0

e(t−τ)(A∗
X+A∗

Ξ)ψ(τ) dτ.

(i) If ψ belongs to L1(0,∞;L2
s(O)), then

‖π‖L1(0,∞;L2
s(O)) + ‖π‖L∞(0,∞;L2

s(O)) ≤ C
(‖π0‖L2

s(O) + ‖ψ‖L1(0,∞;L2
s(O))

)
.

(ii) If ψ belongs to L∞(0,∞;L2
s(O)), then

‖π‖L∞(0,∞;L2
s(O)) ≤ C

(‖π0‖L2
s(O) + ‖ψ‖L∞(0,∞;L2

s(O))

)
.

(iii) If in addition π0 belongs to L2
+(O) and ψ ∈ L1

loc([0,∞);L2
+(O)), then π in L1

loc([0,∞);L2
+(O)).

Proof. The first statement follows from Theorem 5.2. Assertions (i) and (ii) follows from Young inequality for
convolutions, and from the exponential stability of the semigroup (et(A∗

X+A∗
Ξ))t≥0 on L2

s(O). To prove the third
assertion, we observe that∫

O

(
et(A∗

X+A∗
Ξ)π0

)
z ⊗ z =

∫
O
π0

(
et(AX+AΞ)z ⊗ z

)
=
∫
O
π0 etAz ⊗ etAz ≥ 0.

The same kind of calculation can be made for the term∫
O

(∫ t

0

e(t−τ)(A∗
X+A∗

Ξ)ψ(τ) dτ
)
z ⊗ z.

The proof is complete. �
Let k > 0 be the constant in Lemma 2.1, then π is a weak solution of equation (5.12) if and only if the

function
π̂(t,X,Ξ) = e−kxe−kξπ(t,X,Ξ) (5.13)

is the solution of equation

π̂′ = A∗
k,X π̂ + A∗

k,Ξπ̂ + e−kxe−kξψ(t,X,Ξ) in (0,∞), π̂(0, ·) = e−kxe−kξπ0. (5.14)

Lemma 5.4. If ψ(t, ·) = z(t, ·) ⊗ ζ(t, ·), with z ∈ L2(0, T ;D(A∗
X)), ζ ∈ L2(0, T ;D(A∗

Ξ)), and π0 = z0 ⊗ ζ0,
with z0 ∈ D(A∗) and ζ0 ∈ D(A∗), then the solution π̂ of equation (5.14) belongs to W 1,1(0, T ;L2(O)) ∩
L∞(0, T ;L2(ΩΞ;D(A∗

X))) ∩ L∞(0, T ;L2(ΩX ;D(A∗
Ξ))).

Proof. We have

π̂(t) = etA∗
k,X e−kxz0 ⊗ etA∗

k,Ξe−kξζ0 +
∫ t

0

e(t−τ)A∗
k,X e−kxz(τ) ⊗ e(t−τ)A∗

k,Ξe−kξζ(τ) dτ,

which gives

A∗
k,X π̂(t) = etA∗

k,XA∗
k,Xe−kxz0 ⊗ etA∗

k,Ξe−kξζ0 +
∫ t

0

e(t−τ)A∗
k,XA∗

k,Xe−kxz(τ) ⊗ e(t−τ)A∗
k,Ξe−kξζ(τ) dτ,

and

A∗
k,Ξπ̂(t) = etA∗

k,X e−kxz0 ⊗ etA∗
k,ΞA∗

k,Ξe−kξζ0 +
∫ t

0

e(t−τ)A∗
k,X e−kxz(τ) ⊗ e(t−τ)A∗

k,ΞA∗
k,Ξe−kξζ(τ) dτ.



STABILIZATION OF A BOUNDARY LAYER 525

Thus π̂ ∈ L∞(0, T ;L2(ΩΞ;D(A∗
X))) ∩ L∞(0, T ;L2(ΩX ;D(A∗

Ξ))). Due to (5.10), we have

π̂′ = A∗
k,X,Ξπ̂ + ψ = A∗

k,X π̂ + A∗
k,Ξπ̂ + ψ ∈ L1(0, T ;L2(O)).

Since A∗
k,X π̂ ∈ L2(0, T ;L2(O)), A∗

k,Ξπ̂ ∈ L2(0, T ;L2(O)), and ψ ∈ L1(0, T ;L2(O)), we have
π̂ ∈ W 1,1(0, T ;L2(O)) and the proof is complete. �

Theorem 5.4. The weak solution π of system (5.12) satisfies the estimate

2‖π(t)‖2
L2

s(O) + ‖π‖2
L2(0,t;L2(ΩX ;L2(0,L;H1(0,1;d)))) ≤ C6

(∣∣∣∣∫ t

0

∫
O
π ψ dXdΞdτ

∣∣∣∣+ ‖π0‖2
L2

s(O)

)
, (5.15)

for all t ∈ [0,∞) (for some C6 > 0).

Observe that estimate (5.15) is more precise than estimate (i) in Theorem 5.3. It is needed in the proof of
Theorem 5.5.

Proof. Let k > 0 be the parameter in Lemma 2.1. Let π be the solution of system (5.12). First assume that
ψ(t) = z(t) ⊗ ζ(t), with z ∈ L2(0, T ;D(A∗

X)), ζ ∈ L2(0, T ;D(A∗
Ξ)), and π0 = z0 ⊗ ζ0, with z0 ∈ D(A∗

X) and
ζ0 ∈ D(A∗

Ξ). Let us set π̂(t,X,Ξ) = e−kxe−kξπ(t,X,Ξ). It is clear that π̂ is the solution of system (5.14). We
can apply Lemma 5.4, and we can rewrite equation (5.14) in the form

π̂′ = A∗
k,X π̂ + Ψ, π̂(0) = e−kxe−kξπ0 = π̂0,

with Ψ = A∗
k,Ξπ̂ + e−kxe−kξψ. This equation is considered as an evolution equation in L2(ΩX), the variable Ξ

being considered as a parameter. Thus applying [6], Theorem 6.2, we can write:

1
2

∫
O
π̂(t)2 dX dΞ − 1

2

∫
O
π̂2

0 dX dΞ +
1
2

∫ t

0

∫
ΩΞ

∫ 1

0

a(y) π̂(τ, L, y,Ξ)2 dy dΞdτ

+
∫ t

0

∫
O

(
b(X)

∣∣∣∣∂π̂∂y
∣∣∣∣2 +

∂b

∂y

∂π̂

∂y
π̂ + (c+ ka)(X)π̂2

)
dX dΞdτ

≤
∫ t

0

∫
O

Ψ π̂ dX dΞdτ ≤
∫ t

0

∫
O

e−kxe−kξψ π̂ dX dΞdτ, (5.16)

for all t > 0. Since A∗
k,Ξ is dissipative (see [6]) and π̂ ∈ L∞(0, T ;L2(ΩX ;D(A∗

Ξ))), we have

∫ t

0

∫
O
A∗

k,Ξπ̂ π̂ dX dΞdτ ≤ 0.

This explains the last inequality in (5.16). In a similar way, we can prove that π̂ satisfies the inequality

1
2

∫
O
π̂(t)2 dX dΞ − 1

2

∫
O
π̂2

0 dX dΞ +
1
2

∫ t

0

∫
ΩX

∫ 1

0

a(η) π̂(τ,X, L, η)2 dη dX dτ

+
∫ t

0

∫
O

(
b(Ξ)

∣∣∣∣∂π̂∂η
∣∣∣∣2 +

∂b

∂η

∂π̂

∂η
π̂ + (c+ ka)(Ξ)π̂2

)
dX dΞdτ≤

∫ t

0

∫
O

e−kxe−kξψ π̂ dX dΞdτ, (5.17)
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for all t > 0. Thus, we have∫
O
π̂(t)2 dX dΞ −

∫
O
π̂2

0 dX dΞ +
1
2

∫ t

0

∫
ΩΞ

∫ 1

0

a(y) π̂(τ, L, y,Ξ)2 dy dΞdτ

+
1
2

∫ t

0

∫
ΩX

∫ 1

0

a(η) π̂(τ,X, L, η)2 dη dX dτ

+
∫ t

0

∫
O

(
b(X)

∣∣∣∣∂π̂∂y
∣∣∣∣2 +

∂b

∂y

∂π̂

∂y
π̂ + (c+ ka)(X)π̂2

)
dX dΞdτ

+
∫ t

0

∫
O

(
b(Ξ)

∣∣∣∣∂π̂∂η
∣∣∣∣2 +

∂b

∂η

∂π̂

∂η
π̂ + (c+ ka)(Ξ)π̂2

)
dX dΞdτ

≤ 2
∫ t

0

∫
O

e−kxe−kξψ π̂ dX dΞdτ,

(5.18)

for all t > 0. With Lemma 2.1, we obtain

‖π̂(t)‖2
L2

s(O) − ‖π̂0‖2
L2

s(O) +
C1

2
‖π̂‖2

L2(0,t;L2(ΩX ;L2(0,L;H1(0,1;d))))

+
C1

2
‖π̂‖2

L2(0,t;L2(ΩΞ;L2(0,L;H1(0,1;d)))) ≤ 2
∫ t

0

∫
O

e−kxe−kξψ π̂ dX dΞdτ,
(5.19)

for all t > 0. By a density argument, we can show that this inequality also holds if ψ(t) = z(t) ⊗ ζ(t), with
z ∈ L2(0, T ;L2(Ω)), ζ ∈ L2(0, T ;L2(Ω)), and π0 = z0 ⊗ ζ0, with z0 ∈ L2(Ω) and ζ0 ∈ L2(Ω). Finally, still
with a density argument we can establish inequality (5.19) for all ψ ∈ L1(0, T ;L2

s(O)) and all π0 ∈ L2
s(O). The

theorem clearly follows from (5.19) and (5.13). �

5.4. Differential Riccati equation

Now, we define weak solutions to equation (5.9).

Definition 5.1. A function π ∈ L2(0, T ;L2
s(O)) ∩ L2(0, T ;L2(ΩX ;L2(0, L;H1(0, 1; d)))) is a weak solution to

equation (5.9) if it is a weak solution of system (5.12) in (0, T ) with

ψ(t,X,Ξ) = −
∫

γ

|b(s, 0)|2π(t, s, 0,Ξ)π(t,X, s, 0) ds+ Φ(X,Ξ),

where Φ is defined in (5.8).

Theorem 5.5. Let π0 be in L2
s(O). There exists t̄ > 0, depending on ‖Φ‖L2

s(O) and ‖π0‖L2
s(O), such that

system (5.9) admits a unique weak solution π that belongs to the space

L2(0, t̄;L2(ΩX ;L2(0, L;H1(0, 1; d)))) ∩ C([0, t̄];L2
s(O)).

Proof. Let M > 0 be a constant such that ‖Φ‖L2
s(O) ≤M and ‖π0‖L2

s(O) ≤M2/(2C6)1/2. Let t̄ be the constant
defined by

max

(
9M4C2

γC
2
I ‖b‖2

∞|t̄| 2−ε
4−ε + C6t̄M

2,
3 + 3

√
2√

2
C6C

2
IC

2
γM

2 ‖b‖2
∞|t̄| 2−ε

4−ε

)
= min

(
2
√

2 − 1
1 +

√
2
M2,

1
2

)
,
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where CI and Cγ are the constants appearing in (5.21) and (5.22). Let us set

EM =
{
π ∈ C([0, t̄];L2

s(O)) ∩ L2(0, t̄;L2(ΩX ;L2(0, L;H1(0, 1; d)))),

‖π‖L∞(0,t̄;L2
s(O)) + ‖π‖L2(0,t̄;L2(ΩX ;L2(0,L;H1(0,1;d)))) ≤ 3M2

}
.

Equipped with the metric corresponding to the norm:

‖ · ‖L∞(0,t̄;L2
s(O)) + ‖ · ‖L2(0,t̄;L2(ΩX ;L2(0,L;H1(0,1;d)))),

EM is a complete metric space. Let v be in EM , then

ψ(t,X,Ξ) = −
∫

γ

|b(s, 0)|2v(t, s, 0,Ξ)v(t,X, s, 0) ds+ Φ(X,Ξ)

belongs to L1(0, t̄;L2
s(O)). Due to Theorem 5.3, the equation⎧⎨⎩ π′ = A∗

Xπ + A∗
Ξπ −

∫
γ

|b(s, 0)|2v(t,X, s, 0) v(t, s, 0,Ξ) ds+ Φ(X,Ξ) in (0, T ),

π(0, ·) = π0,

(5.20)

admits a unique weak solution πv in L∞(0, t̄;L2
s(O)). Due to Theorem 5.4, this solution also belongs to

L2(0, t̄;L2(ΩX ;L2(0, L;H1(0, 1; d)))). Let us show that the mapping Ψ : v 	→ πv is a contraction in EM . The
proof is divided into two steps.
Step 1. Let us show that Ψ is a mapping from EM into EM . With Theorem 5.4, we can write

2‖πv(t)‖2
L2

s(O) + ‖πv‖2
L2(0,t;L2(ΩX ;L2(0,L;H1(0,1;d)))) ≤ C6

∣∣∣∣∫ t

0

∫
O
πv(τ,X,Ξ)Φ(X,Ξ) dXdΞdτ

∣∣∣∣
+C6‖π0‖2

L2
s(O) + C6

∣∣∣∣∫ t

0

∫
O
πv

[∫
γ

|b(s, 0)|2v(τ,X, s, 0)v(τ, s, 0,Ξ) ds
]

dXdΞdτ
∣∣∣∣ ,

for all t ∈ [0, t̄]. With Hölder’s inequality, and due to assumptions on Φ and π0, we have C6‖π0‖2
L2

s(O) ≤M4/2
and

C6

∣∣∣∣∫ t

0

∫
O
πv(τ,X,Ξ)Φ(X,Ξ) dX dΞdτ

∣∣∣∣ ≤ C6t̄‖πv‖L∞(0,t̄;L2
s(O))‖Φ‖L2

s(O)

≤ C6t̄‖πv‖L∞(0,t̄;L2
s(O))M

2 ≤ 1
2
C2

6 t̄
2M4 +

1
2
‖πv‖2

L∞(0,t̄;L2
s(O)).

With a trace theorem we have∫
γ

|b(s, 0)|2|v(τ,X, s, 0)| |v(τ, s, 0,Ξ)| ds ≤ C2
γ‖b‖2

∞‖v(τ, ·,Ξ)‖L2(0,L;H1/2+ε′ (0,1;d))‖v(τ,X, ·)‖L2(0,L;H1/2+ε′ (0,1;d)),

(5.21)

for all ε′ > 0. (The constant Cγ depends on ε′ > 0.) Thus we can write∥∥∥∥∫
γ

|b(s, 0)|2|v(·, ·, s, 0, ·)| |v(·, s, 0, ·)| ds
∥∥∥∥

L1(0,t̄;L2
s(O))

≤ C2
γ‖b‖2

∞‖v‖2
L2(0,t̄;L2(ΩX ;L2(0,L;H1/2+ε′(0,1;d))))

.
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With the interpolation identity

[
L2(0, t̄;L2(ΩX ;L2(0, L;H1(0, 1; d)))), L∞(0, t̄;L2(ΩX ;L2(0, L;L2(0, 1))))

]
(2−ε)/(4−ε)

= L4−ε(0, t̄;L2(ΩX ;L2(0, L;H1/2+ε/(8−2ε)(0, 1; d))), 0 < ε < 1,

we have

‖ ·‖L4−ε(0,t̄;L2(ΩX ;L2(0,L;H1/2+ε/(8−2ε)(0,1;d)))) ≤ CI‖ ·‖2/(4−ε)
L2(0,t̄;L2(ΩX ;L2(0,L;H1(0,1;d))))‖ ·‖(2−ε)/(4−ε)

L∞(0,t̄;L2(ΩX ;L2(0,L;L2(0,1)))).

(5.22)

Setting ε′ = ε/(8 − 2ε), from Hölder’s inequality it follows that

‖v‖L2(0,t̄;L2(ΩX ;L2(0,L;H1/2+ε′ (0,1;d)))) ≤ |t̄| 2−ε
2(4−ε) ‖v‖L4−ε(0,t̄;L2(ΩX ;L2(0,L;H1/2+ε/(8−2ε)(0,1;d)))).

Thus, we obtain

∥∥∥∥∫
γ

|b(s, 0)|2|v(·, ·, s, 0, ·)| |v(·, s, 0, ·)| ds
∥∥∥∥

L1(0,t̄;L2
s(O))

≤ C2
γ‖b‖2

∞C
2
I |t̄|

2−ε
4−ε ‖v‖4/(4−ε)

L2(0,t̄;L2(ΩX ;L2(0,L;H1(0,1;d))))

× ‖v‖(4−2ε)/(4−ε)
L∞(0,t̄;L2(ΩX ;L2(0,L;L2(0,1)))) ≤ 9M4C2

γ‖b‖2
∞C

2
I |t̄|

2−ε
4−ε .

From the previous inequality, it yields

C6

∣∣∣∣∫ t

0

∫
O
πv

[∫
γ

|b(s, 0)|2v(τ,X, s, 0)v(τ, s, 0,Ξ) ds
]

dXdΞdτ
∣∣∣∣

≤ C6

∥∥∥∥∫
γ

|b(s, 0)|2v(s, 0, ·)v(s, 0, ·) ds
∥∥∥∥

L1(0,t̄;L2
s(O))

‖πv‖L∞(0,t̄;L2
s(O))

≤ 9M4C2
γ‖b‖2

∞C
2
IC6|t̄|

2−ε
4−ε ‖πv‖L∞(0,t̄;L2

s(O)) ≤ 1
2
81M8C4

γ‖b‖4
∞C

4
IC

2
6 |t̄|

4−2ε
4−ε +

1
2
‖πv‖2

L∞(0,t̄;L2
s(O)). (5.23)

Collecting together the previous estimates we arrive at

2‖πv(t)‖2
L2

s(O) + ‖πv‖2
L2(0,t;L2(ΩX ;L2(0,L;H1(0,1;d)))) ≤

1
2
C2

6 t̄
2M4 +

M4

2

+
1
2
81M8C4

γ‖b‖4
∞C

4
IC

2
6 |t̄|

4−2ε
4−ε + ‖πv‖2

L∞(0,t̄;L2
s(O)).

Therefore we have

‖π‖2
L∞(0,t̄;L2

s(O)) ≤
(

1
2
C2

6 t̄
2M4 +

M4

2
+

1
2
81M8C4

γ‖b‖4
∞C

4
IC

2
6 |t̄|

4−2ε
4−ε

)
,

‖π‖2
L2(0,t̄;L2(ΩX ;L2(0,L;H1(0,1;d)))) ≤

(
C2

6 t̄
2M4 +M4 + 81M8C4

γ‖b‖4
∞C

4
IC

2
6 |t̄|

4−2ε
4−ε

)
,
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and

‖π‖L∞(0,t̄;L2
s(O)) + ‖π‖L2(0,t̄;L2(ΩX ;L2(0,L;H1(0,1;d)))) ≤ 1 +

√
2√

2

(
C2

6 t̄
2M4 +M4 + 81M8C4

γ‖b‖4
∞C

4
IC

2
6 |t̄|

4−2ε
4−ε

)1/2

≤ 1 +
√

2√
2

(
C6t̄M

2 +M2 + 9M4C2
γ‖b‖2

∞C
2
IC6|t̄|

2−ε
4−ε

)
≤ 3M2,

provided that t̄ obey the condition:

(
9M4C2

γC
2
I ‖b‖2

∞|t̄| 2−ε
4−ε + C6t̄M

2
)
≤ 2

√
2 − 1

1 +
√

2
M2.

Thus we have proved that πv belongs to EM .

Step 2. Let π1 and π2 be two solutions to system (5.20) respectively associated with v1 ∈ EM and v2 ∈ EM .
The function (π1 − π2) is the solution of

π′
1 − π′

2 = A∗
X(π1 − π2) + A∗

Ξ(π1 − π2) + ψ in (0, t̄), (π1 − π2)(0) = 0, (5.24)

where

ψ(t,X,Ξ) = −
∫

γ

|b(s, 0)|2v1(t, s, 0,Ξ)
(
v1(t,X, s, 0)− v2(t,X, s, 0)

)
ds

+
∫

γ

|b(s, 0)|2(v2(t, s, 0,Ξ) − v1(t, s, 0,Ξ)
)
v2(t,X, s, 0) ds.

With the same estimates as in Step 1, we obtain∥∥∥∥∫
γ

b2v1 (v1 − v2) ds
∥∥∥∥

L1(0,t̄;L2(O))

+
∥∥∥∥∫

γ

b2(v2 − v1)v2 ds
∥∥∥∥

L1(0,t̄;L2(O))

≤ 3C2
IC

2
γM

2|t̄| 2−ε
4−ε ‖b‖2

∞(‖v1 − v2‖L∞(0,t̄;L2(O)) + ‖v1 − v2‖L2(0,t̄;L2(ΩX×(0,L);H1(0,1;d)))).

With Cauchy-Schwarz inequality and with Theorem 5.4, we get

2‖(π1−π2)(t)‖2
L2

s(O)+‖π1−π2‖2
L2(0,t;L2(ΩX×(0,L);H1(0,1;d))) ≤

1
4
9C2

6C
4
IC

4
γM

4‖b‖4
∞|t̄| 4−2ε

4−ε
(‖v1 − v2‖L∞(0,t̄;L2(O))

+ ‖v1 − v2‖L2(0,t̄;L2(ΩX×(0,L);H1(0,1;d)))

)2 + ‖π1 − π2‖2
L∞(0,t̄;L2

s(O)),

for all t ∈ [0, t̄]. Thus, we have

‖π1 − π2‖2
L∞(0,t̄;L2

s(O)) ≤ 1
4
9C2

6C
4
IC

4
γM

4‖b‖4
∞|t̄| 4−2ε

4−ε
(‖v1 − v2‖L∞(0,t̄;L2(O))

+ ‖v1 − v2‖L2(0,t̄;L2(ΩX×(0,L);H1(0,1;d)))

)2
,

‖π1 − π2‖2
L2(0,t̄;L2(ΩX×(0,L);H1(0,1;d))) ≤ 1

2
9C2

6C
4
IC

4
γM

4‖b‖4
∞|t̄| 4−2ε

4−ε

(‖v1 − v2‖L∞(0,t̄;L2(O))

+ ‖v1 − v2‖L2(0,t̄;L2(ΩX×(0,L);H1(0,1;d)))

)2
,
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and

‖π1 − π2‖L∞(0,t̄;L2
s(O)) + ‖π1 − π2‖L2(0,t̄;L2(ΩX×(0,L);H1(0,1;d)))

≤ 3 + 3
√

2
2

C6C
2
IC

2
γM

2‖b‖2
∞|t̄| 2−ε

4−ε
(‖v1 − v2‖L∞(0,t̄;L2(O)) + ‖v1 − v2‖L2(0,t̄;L2(ΩX×(0,L);H1(0,1;d)))

)
.

By definition of t̄, we have

3 + 3
√

2
2

C6C
2
IC

2
γM

2 ‖b‖2
∞|t̄| 2−ε

4−ε ≤ 3 + 3
√

2√
2

C6C
2
IC

2
γM

2 ‖b‖2
∞|t̄| 2−ε

4−ε ≤ 1
2
,

therefore, it yields

‖π1 − π2‖L∞(0,t̄;L2
s(O)) + ‖π1 − π2‖L2(0,t̄;L2(ΩX×(0,L);H1(0,1;d))) ≤ 1

2
(‖v1 − v2‖L∞(0,t̄;L2(O))

+ ‖v1 − v2‖L2(0,t̄;L2(ΩX×(0,L);H1(0,1;d)))

)
.

Thus the mapping Ψ : v 	→ πv is a contraction in the complete metric space EM , and equation (5.24) admits a
unique weak solution π in EM . �

Theorem 5.6. In addition to assumptions in Theorem 5.5 we assume that π0 in L2
+(O). Then the solution π

of equation (5.9) belongs to C([0, t̄];L2
+(O)).

To prove this theorem, we have to establish different lemmas.

Lemma 5.5. Let τ be in [0, t̄), and u ∈ C1([τ, t̄];L2(0, L)). There exists a sequence (fn)n in C1([τ, t̄];
L2(Ω)) such that

∣∣∣∣∣
∫ t̄

τ

∫
Ω

b fn ϕ−
∫ t̄

τ

∫
γ

b u ϕ

∣∣∣∣∣ ≤ C

n1/2
‖ϕ‖L2(τ,t̄;L2(0,L;H1(0,1;d)))‖u‖L2(τ,t̄;L2(γ)),

for all ϕ ∈ L2(τ, t̄;L2(0, L;H1(0, 1; d))).

Proof. Let θ ∈ C2
c ([0, 1)) be such that 0 ≤ θ and

∫ 1

0
θ(y)dy = 1. Let us set

fn(t, x, y) = nθ(ny)u(t, x)�γ(x).
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For n ≥ 2, we have

∣∣∣∣∣
∫ t̄

τ

∫
Ω

b fn ϕ−
∫ t̄

τ

∫
γ

b(·, 0)uϕ

∣∣∣∣∣ =

∣∣∣∣∣
∫ t̄

τ

∫
γ

(
u

∫ 1

0

nθ(ny)
(
b(x, y)ϕ(t, x, y) − b(·, 0)ϕ(t, x, 0)

)
dy

)
dxdt

∣∣∣∣∣
≤
∣∣∣∣∣
∫ t̄

τ

∫
γ

(
|u|

∫ 1
n

0

nθ(ny)

(∫ y

0

∣∣∣∣∂(b ϕ)
∂y

(t, x, ζ)
∣∣∣∣ dζ

)
dy

)
dxdt

∣∣∣∣∣
≤

∣∣∣∣∣
∫ t̄

τ

∫
γ

(
|u|

∫ 1

0

θ(η)

(∫ η
n

0

∣∣∣∣∂(b ϕ)
∂y

(t, x, ζ)
∣∣∣∣ dζ

)
dη

)
dxdt

∣∣∣∣∣
≤
∣∣∣∣∣∣
∫ t̄

τ

∫
γ

(
|u|

∫ 1

0

∣∣∣η
n

∣∣∣ 1
2
θ(η)

(∫ 1
2

0

∣∣∣∣∂(b ϕ)
∂y

(t, x, ζ)
∣∣∣∣2 dζ

) 1
2

dη

)
dxdt

∣∣∣∣∣∣
≤ C

n1/2
‖ϕ‖L2(τ,t̄;L2(0,L;H1(0,1;d)))‖u‖L2(τ,t̄;L2(γ)). �

Lemma 5.6. Let ψ be in C([τ, t̄];D(A s ∗
X,Ξ)), π0 ∈ D(A s ∗

X,Ξ), and π be the solution of

−π′ = A∗
Xπ + A∗

Ξπ + ψ in (τ, t̄), π(t̄) = π0,

where τ ∈ [0, t̄). Let u be in L2(τ, t̄;U), z0 ∈ L2(Ω), and z be the solution to equation

z′ = Az +B(�γu) in (τ, t̄), z(τ) = z0. (5.25)

Then π and z obeys the following identity:

∫ t̄

τ

∫
O

(
π′(t,X,Ξ) + A∗

X,Ξπ(t,X,Ξ)
)
z(t) ⊗ z(t) =

∫
O
π0 z(t̄) ⊗ z(t̄) −

∫
O
π(τ) z0 ⊗ z0

+ 2
∫ t̄

τ

∫
γ

b(s, 0)u(t, s)
∫

Ω

π(t, s, 0,Ξ)z(t,Ξ) dΞds dt. (5.26)

Proof. We first prove the identity when u belongs to C1([τ, t̄];L2(0, L)). Let (fn)n be the sequence in
C1([τ, t̄];L2(Ω)) defined in Lemma 5.5, and (z0,n)n be a sequence in D(A) converging to z0 in L2(Ω). Let
us denote by zn the solution to

z′ = Az − bfn, z(0) = z0,n.

As in Lemma 6.2 we can show that the sequence (zn)n is bounded in L∞(τ, t̄;L2(Ω)) and in L2(τ, t̄;
L2(0, L;H1(0, 1; d))), the sequence (

√
azn)n is bounded in L∞(0, L;L2(τ, t̄;L2(0, 1))), and all the sequence

(zn)n converges to the solution z of equation (5.25) for the weak-star topology of L∞(τ, t̄;L2(Ω)) and the weak
topology of L2(τ, t̄;L2(0, L;H1(0, 1; d))). Moreover, z belongs to C([τ, t̄];L2(Ω)), we can show that, for every
t ∈ (τ, t̄], (zn(t))n converges to z(t) for the weak topology of L2(Ω). Since bfn belongs to C1([τ, t̄];L2(Ω)),
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we have zn ∈ C([τ, t̄];D(A)) ∩ C1([τ, t̄];L2(Ω)), and π ∈ C([τ, t̄];D(A∗
X,Ξ)) ∩ C1([τ, t̄];L2

s(O)), we can write

∫ t̄

τ

∫
O

(
π′(t,X,Ξ) + A∗

X,Ξπ(t,X,Ξ)
)
zn(t) ⊗ zn(t) =

∫ t̄

τ

∫
O
π′(t) zn(t) ⊗ zn(t) +

∫ t̄

τ

∫
O
π(t)AXzn(t) ⊗ zn(t)

+
∫ t̄

τ

∫
O
π(t) zn(t) ⊗AΞzn(t)

=
∫ t̄

τ

∫
O
π′(t,X,Ξ) zn(t) ⊗ zn(t) +

∫ t̄

τ

∫
O
π(t,X,Ξ) z′n(t) ⊗ zn(t)

+
∫ t̄

τ

∫
O
π(t,X,Ξ) zn(t) ⊗ z′n(t)

+
∫ t̄

τ

∫
O
bfn(t,X)π(t,X,Ξ)zn(t,Ξ) +

∫ t̄

τ

∫
O
bfn(t,Ξ)π(t,X,Ξ)zn(t,X)

=
∫
O
π0 zn(t̄) ⊗ zn(t̄) −

∫
O
π(τ) z0,n ⊗ z0,n + 2

∫ t̄

τ

∫
O
bfn(t,X)π(t,X,Ξ)zn(t,Ξ).

Let us pass to the limit when n tends to infinity in the above identity. For every t ∈ (τ, t̄], (zn(t))n converges
z(t) for the weak topology of L2(Ω). Thus

lim
n→∞

∫
O

(
zn(t) ⊗ zn(t)

)(
ϕ⊗ ζ

)
=
∫
O

(
z(t) ⊗ z(t)

)(
ϕ⊗ ζ

)
,

for all ϕ ∈ L2(ΩX), and all ζ ∈ L2(ΩΞ). Since L2(ΩX) ⊗ L2(ΩΞ) is dense in L2(O), we obtain

lim
n→∞

∫
O

(
zn(t) ⊗ zn(t)

)
ϕ =

∫
O

(
z(t) ⊗ z(t)

)
ϕ

for all ϕ ∈ L2(O). In particular we have

lim
n→∞

∫
O

(
π′(t) + A∗

X,Ξπ(t)
)
zn(t) ⊗ zn(t) =

∫
O

(
π′(t) + A∗

X,Ξπ(t)
)
z(t) ⊗ z(t)

for almost all t ∈ (τ, t̄). Moreover

∣∣∣∣∫O (
π′(t) + A∗

X,Ξπ(t)
)
zn(t) ⊗ zn(t)

∣∣∣∣ ≤ ‖ψ(t, ·)‖L2
s(O)‖zn‖2

L∞(τ,t̄;L2(Ω)) ≤ C‖ψ(t, ·)‖L2
s(O).

With the dominated convergence theorem we can write

lim
n→∞

∫ t̄

τ

(∫
O

(
π′(t) + A∗

X,Ξπ(t)
)
zn(t) ⊗ zn(t)

)
dt =

∫ t̄

τ

(∫
O

(
π′(t) + A∗

X,Ξπ(t)
)
z(t) ⊗ z(t)

)
dt.
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From Lemma 5.5 it follows that

∣∣∣∣∣
∫ t̄

τ

∫
Ω

bfn(t,X)
∫

Ω

π(t,X,Ξ)zn(t,Ξ)dΞdXdt−
∫ t̄

τ

∫
γ

b(s, 0)u(t, s)
∫

Ω

π(t, s, 0,Ξ)zn(t,Ξ)dΞdsdt

∣∣∣∣∣
≤ C

n1/2
‖u‖L2(τ,t̄;L2(γ))

∥∥∥∥∫
Ω

π(·, ·,Ξ)zn(·,Ξ)dΞ
∥∥∥∥

L2(τ,t̄;L2(0,L;H1(0,1;d)))

≤ C

n1/2
‖u‖L2(τ,t̄;L2(γ))‖π‖L2(τ,t̄;L2(ΩΞ;L2(0,L;H1(0,1;d))))‖zn‖L∞(τ,t̄;L2(ΩΞ)).

Therefore identity (5.26) is established when u belongs to C1([τ, t̄];L2(0, L)). When u belongs to L2(τ, t̄;L2(0, L))
we recover identity (5.26) by a density argument. �

Lemma 5.7. Let π be the solution to equation

⎧⎨⎩ −π′ = A∗
Xπ + A∗

Ξπ −
∫

γ

|b(s, 0)|2π(t, s, 0,Ξ)π(t,X, s, 0) ds+ Φ in (τ, t̄),

π(t̄) = π0,

(5.27)

where τ ∈ [0, t̄) and π0 ∈ L2
s(O). For all u ∈ L2(0,∞;U), z0 ∈ L2(Ω), we have

1
2

∫ t̄

τ

∫
O

Φ(X,Ξ)z(t,X) z(t,Ξ) dXdΞdt+
1
2

∫ t̄

τ

∫
γ

|u|2ds dt+
1
2

∫
O
π0 z(t̄) ⊗ z(t̄)

=
1
2

∫
O
π(τ) z0 ⊗ z0 +

1
2

∫ t̄

τ

∫
γ

∣∣∣∣u(t, s) − b(s, 0)
∫

Ω

π(t, s, 0,Ξ) z(t,Ξ)
∣∣∣∣2 ds dt,

(5.28)

where z is the solution to equation (5.25).

Proof. Let π̂ be the solution to equation (5.9). Setting π(t) = π̂(t̄−t), we can verify that π is the solution to equa-
tion (5.27). Let (ψ�)� be a sequence in C([τ, t̄];D(A s ∗

X,Ξ)), converging to −∫
γ
|b(s, 0)|2π(t, s, 0,Ξ)π(t,X, s, 0)ds+Φ

in L2(τ, t̄;L2
s(O)), and (π0,�)� be a sequence in D(A s ∗

X,Ξ), converging to π0 in L2
s(O). Let π� be the solution to

− π′
� = A∗

Xπ� + A∗
Ξπ� + ψ� in (τ, t̄), π�(t̄) = π0,�. (5.29)

With Lemma 5.6 applied to π�, we can write

∫
O
π0,� z(t̄) ⊗ z(t̄) −

∫
O
π�(τ) z0 ⊗ z0 + 2

∫ t̄

τ

∫
γ

b(s, 0)u(t, s)
∫

Ω

π�(s, 0,Ξ)z(t,Ξ) dΞds dt

=
∫ t̄

τ

∫
O

(
π′

�(t,X,Ξ) + A∗
X,Ξπ�(t,X,Ξ)

)
z(t) ⊗ z(t) dXdΞdt

= −
∫ t̄

τ

∫
O
ψ�(t,X,Ξ) z(t) ⊗ z(t) dXdΞdt.
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By passing to the limit when � tends to infinity, we obtain:

∫
O
π0 z(t̄) ⊗ z(t̄) −

∫
O
π(τ) z0 ⊗ z0 + 2

∫ t̄

τ

∫
γ

b(s, 0)u(t, s)
∫

Ω

π(s, 0,Ξ)z(t,Ξ) dΞds dt

=
∫ t̄

τ

∫
γ

∣∣∣∣b(s, 0)
∫

Ω

π(s, 0, X)z(t,X)dX
∣∣∣∣2 ds dt−

∫ t̄

τ

∫
O

Φ(X,Ξ)z(t,X) z(t,Ξ) dXdΞdt.

Thus we have

1
2

∫ t̄

τ

∫
O

Φ(X,Ξ)z(t,X) z(t,Ξ) dXdΞdt+
1
2

∫ t̄

τ

∫
γ

|u|2ds dt+
1
2

∫
O
π0 z(t̄) ⊗ z(t̄) dXdΞ

=
1
2

∫
O
π(τ) z0 ⊗ z0 +

∫ t̄

τ

∫
γ

|u(t, s)|2 ds dt−
∫ t̄

τ

∫
γ

b(s, 0)u(t, s)
∫

Ω

π(s, 0,Ξ)z(t,Ξ) dΞds dt

+
1
2

∫ t̄

τ

∫
γ

∣∣∣∣b(s, 0)
∫

Ω

π(s, 0, X)z(t,X)dX
∣∣∣∣2 ds dt

=
1
2

∫
O
π(τ) z0 ⊗ z0 +

1
2

∫ t̄

τ

∫
γ

∣∣∣∣u(t, s) − b(s, 0)
∫

Ω

π(t, s, 0,Ξ) z(t,Ξ)
∣∣∣∣2 ds dt.

The proof is complete. �
Let π be the solution of equation (5.27), and consider the evolution equation

z′ = Az −B(�γB
∗Πz) in (τ, t̄), z(τ) = z0, (5.30)

where
B∗Πz(s, t) = −b(s, 0)

∫
Ω

π(t, s, 0,Ξ)z(t,Ξ)dΞ for s ∈ (0, L), t ∈ (τ, t̄).

Weak solutions to equation (5.30) are defined as weak solutions to equation

z′ = Az +B(�γu) in (τ, t̄), z(τ) = z0, (5.31)

when u = −B∗Πz. This is meaningful because if z ∈ L2(τ, t̄;L2(Ω)), then �γB
∗Πz ∈ L2(τ, t̄;L2(0, L)).

Lemma 5.8. Equation (5.30) admits a unique weak solution in L∞(τ, t̄;L2(Ω)). Moreover this solution also
belongs to L2(τ, t̄;L2(0, L;H1(0, 1; d))).

Proof. We first show that equation (5.30) admits a unique weak solution in L∞(τ, t̂;L2(Ω)), for some t̂ > τ ,
by using a fixed point argument. We need an estimate of the solution z of equation (5.31) in the case when
u ∈ L2−ε′

(τ, t̄;L2(0, L)) for some ε′ > 0.

Step 1. Estimate for the solution to equation (5.31). We use the technique in [6], Proof of Theorem 6.6,
and an approximation process. Set fn(t, x, y) = n�(0, 1

n )(y)u(t, x)�γ , where �(0, 1
n ) is the characteristic function

of (0, 1
n ). Let us denote by zn the solution to

z′ = Az − b fn, z(τ) = z0,

and ζn = e−kxzn be the solution to

ζ′ = Akζ − e−kxb fn, ζ(τ) = e−kxz0.
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From [6], Inequality 6.4, it follows that

1
2

∫ 1

0

∫ x

0

ζn(ξ, y, t)2 dξ dy − 1
2

∫ 1

0

∫ x

0

e−kξz0(ξ, y)2 dξ dy +
1
2

∫ t

τ

∫ 1

0

a ζn(x, y, θ)2 dy dθ

+
∫ t

τ

∫ 1

0

∫ x

0

(
b

∣∣∣∣∂ζn∂y
∣∣∣∣2 +

∂b

∂y

∂ζn
∂y

ζn + (c+ ka)ζ2
n

)
dξ dy dθ ≤

∫ t

τ

∫ 1

0

∫ x

0

e−kξb fn ζn dξ dy dθ, (5.32)

for all t ∈ (τ, t̄) and all x ∈ [0, L]. We have

∣∣∣∣∫ t

τ

∫ 1

0

∫ x

0

e−kξb fn ζn dξ dy dθ
∣∣∣∣ =

∣∣∣∣∣
∫ t

τ

∫ x

0

e−kξu(x, θ)n
∫ 1/n

0

b ζn dy dξ dθ

∣∣∣∣∣
≤ ‖u‖

L
4−ε
3−ε (τ,t̄;L2(0,L))

‖b ζn‖L4−ε(τ,t̄;L2(0,L;L∞(0,1/2)))

≤ C‖u‖
L

4−ε
3−ε (τ,t̄;L2(0,L))

‖b ζn‖
L4−ε(τ,t̄;L2(0,L;H

1
2+ ε

8−2ε (0,1;d)))

≤ C‖u‖
L

4−ε
3−ε (τ,t̄;L2(0,L))

‖b ζn‖2/(4−ε)
L2(τ,t̄;L2(0,L;H1(0,1;d)))‖b ζn‖(2−ε)/(4−ε)

L∞(τ,t̄;L2(0,L;L2(0,1)))

≤ C2

α
‖u‖2

L
4−ε
3−ε (τ,t̄;L2(0,L))

+
α

2
‖ζn‖2

L2(τ,t̄;L2(0,L;H1(0,1;d)))

+
α

2
‖ζn‖2

L∞(τ,t̄;L2(0,L;L2(0,1))),

for all α > 0 and 0 < ε < 1. With (5.32) and with Lemma 2.1, we obtain

1
2
‖ζn‖2

L∞(τ,t̄;L2(Ω)) +
1
2
‖√aζn‖L∞(0,L;L2(τ,t̄;L2(0,1))) +

C1

2
‖ζn‖L2(τ,t̄;L2(0,L;H1(0,1;d))) ≤ 3C2

α
‖u‖2

L
4−ε
3−ε (τ,t̄;L2(0,L))

+
3α
2
‖ζn‖2

L2(τ,t̄;L2(0,L;H1(0,1;d))) +
3α
2
‖ζn‖2

L∞(τ,t̄;L2(0,L;L2(0,1))) +
3
2

∫ 1

0

∫ x

0

e−kξz0(ξ, y)2dξdy.

Thus, choosing α suitablely, we prove that there exists a constant C > 0 such that

‖ζn‖L∞(τ,t̄;L2(Ω))+‖√aζn‖L∞(0,L;L2(τ,t̄;L2(0,1)))+‖ζn‖L2(τ,t̄;L2(0,L;H1(0,1;d))) ≤ C
(
‖u‖

L
4−ε
3−ε (τ,t̄;L2(0,L))

+‖z0‖L2(Ω)

)
.

By passing to the limit when n tends to infinity, we recover the same estimate for ζ, and next for z. Thus we
have

‖z‖L∞(τ,t̄;L2(Ω)) + ‖√az‖L∞(0,L;L2(τ,t̄;L2(0,1))) + ‖z‖L2(τ,t̄;L2(0,L;H1(0,1;d))) ≤ C7

(
‖u‖L2−ε′(τ,t̄;L2(0,L))+‖z0‖L2(Ω)

)
,

(5.33)
for some ε′ > 0, and where C7 is independent of τ and t̄.

Step 2. Existence of solution to equation (5.30). If v belongs to L∞(τ, t̄;L2(Ω)), then from calculations in the
proof of Theorem 5.5 it follows that

‖B∗Πv‖L2−ε′(τ,t̄;L2(0,L)) ≤ C8|t̄− τ | ε′
2−ε′ ‖v‖L∞(τ,t̄;L2(Ω)), (5.34)
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for some constant C8 depending on ‖φ‖L2(Ω), but independent of τ and t̄. We choose t̂ > 0 such that

C7 C8|t̂− τ | ε′
2−ε′ ≤ 1/2. Let v be in L∞(τ, t̂;L2(Ω)) and zv ∈ L∞(τ, t̂;L2(Ω)) be the solution to

z′ = Az −B(�γB
∗Πv) in (τ, t̂), z(0) = z0.

Let us denote by Ψ the mapping v 	→ zv. Let v1 and v2 be in L∞(τ, t̂;L2(Ω)). With (5.33) and (5.34) we have

‖zv1 − zv2‖L∞(τ,t̂;L2(Ω)) ≤ C7 C8|t̂− τ | ε′
2−ε′ ‖v1 − v2‖L∞(τ,t̄;L2(Ω)).

Since C7C8|t̂ − τ | ε′
2−ε′ ≤ 1/2, Ψ is a contraction in L∞(τ, t̂;L2(Ω)). Thus equation (5.30) admits a unique

solution z ∈ L∞(τ, t̂;L2(Ω)). If z ∈ L∞(τ, t̂;L2(Ω)), with (5.33) and (5.34) it follows that z belongs to
L2(τ, t̂;L2(0, L;H1(0, 1; d))). We can repeat the fixed point argument on (τ, 2t̂ − τ) in the following way.
Let us set

E =
{
v ∈ L∞(τ, 2t̂− τ ;L2(Ω)) | v|(τ,t̂) = z

}
,

where z is the solution of (5.30) in (τ, t̂). Step by step, we prove that equation (5.30) admits a unique solution
in L∞(τ, t̄;L2(Ω)). Observe that �γB

∗πz belongs not only to L2−ε′
(τ, t̄;L2(0, L)), but also to L2(τ, t̄;L2(0, L)).

�

Proof of Theorem 5.6. Let π be the solution to equation (5.9). Let us show that π ≥ 0. Let us set π̂(t) =
π(t̄ − t). We verify that π̂ is the solution to equation (5.27). Denote by Π̂ the operator whose kernel
is π̂. Let z be the solution to equation (5.30). We can apply Lemma 5.7 to z with u(t) = −�γB

∗Π̂z(t) =
�γ b(s, 0)

∫
ΩX

π̂(X, s, 0)z(X, t) dX , and we get

1
2

∫
O
π̂(τ) z0 ⊗ z0 − 1

2

∫
O
π0 z(t̄) ⊗ z(t̄) =

1
2

∫ t̄

τ

∫
O

Φ(X,Ξ)z(t,X) z(t,Ξ) dXdΞdt+
1
2

∫ t̄

τ

∫
γ

|B∗π̂ z|2ds dt.

Since π0 ∈ L2
+(O) we have∫

O
π(t̄− τ) z0 ⊗ z0 =

∫
O
π̂(τ) z0 ⊗ z0 ≥

∫
O
π0 z(t̄) ⊗ z(t̄) ≥ 0,

for all τ ∈ [0, t̄). The proof is complete. �

Theorem 5.7. The solution π to equation (5.9) exists over the time interval (0,∞) and satisfies

‖π‖L∞(0,∞;L2
s(O)) ≤ C

(‖Φ‖L2
s(O) + ‖π0‖L2

s(O)

)
.

Moreover, there exist two constants C9 and C10, independent of T > 0, such that

‖π‖2
L2(0,T ;L2(ΩX ;L2(0,L;H1(0,1;d)))) ≤ C9 T

(
‖Φ‖3

L2
s(O) + ‖π0‖3

L2
s(O) + ‖Φ‖

8−3ε
2−ε

L2
s(O) + ‖π0‖

8−3ε
2−ε

L2
s(O)

)
+ C10‖π0‖2

L2
s(O)

(5.35)
for all T > 0 and all ε > 0. (C9 depends on ε > 0.)

Proof. We argue by contradiction, we suppose that there exists a maximal solution which is not a global one.
Let [0, Tmax[ be the maximal interval such that, for all t̄ ∈ [0, Tmax[ equation (5.9) admits a solution π in
L∞(0, t̄;L2

s(O)) ∩ L2(0, t̄;L2(ΩX ;L2(0, L;H1(0, 1; d)))) and

limt̄→Tmax

(‖π‖L∞(0,t̄;L2
s(O)) + ‖π‖L2(0,t̄;L2(ΩX ;L2(0,L;H1(0,1;d))))

)
= ∞. (5.36)
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Let π� be the solution to the Lyapunov equation (5.12) corresponding to

ψ(t,X,Ξ) = Φ(X,Ξ).

We can verify that π� − π is the solution to Lyapunov equation (5.12) corresponding to

ψ(t,X,Ξ) =
∫

γ

|b(s, 0)|2π(t, s, 0,Ξ)π(t,X, s, 0) ds ≥ 0.

From assertion (iii) in Theorem 5.3 it follows that π�(t) ≥ π(t) for all t ∈ [0, Tmax[. We have

‖π‖L2(ΩX ;L2(ΩΞ)) = sup
{∫

ΩX

sup
{∫

ΩΞ

π ζdΞ | ‖ζ‖L2(ΩΞ) = 1
}
z dX | ‖z‖L2(ΩX ) = 1

}
= sup

{∫
O
π z ⊗ ζ dXdΞ | ‖ζ‖L2(ΩΞ) = 1, ‖z‖L2(ΩΞ) = 1

}
,

and

∣∣∣∣∫O π z ⊗ ζ

∣∣∣∣ ≤ 1
4

∫
O
π (z + ζ) ⊗ (z + ζ) +

1
4

∫
O
π (z − ζ) ⊗ (z − ζ)

≤ 1
4

∫
O
π� (z + ζ) ⊗ (z + ζ) +

1
4

∫
O
π� (z − ζ) ⊗ (z − ζ)

≤ 3
2
‖π�‖L∞(0,∞;L2

s(O))

(
‖z‖2

L2(ΩX ) + ‖ζ‖2
L2(ΩΞ)

)
.

Thus

‖π‖L∞(0,Tmax;L2
s(O)) ≤ C‖π�‖L∞(0,∞;L2

s(O)) ≤ C
(‖Φ‖L2

s(O) + ‖π0‖L2
s(O)

)
. (5.37)

Therefore we have

‖π‖L∞(0,Tmax;L2
s(O)) <∞ (5.38)

and

limt̄→Tmax‖π‖L2(0,t̄;L2(ΩX ;L2(0,L;H1(0,1;d)))) = ∞.

Now, as in the proof of Theorem 5.5, we can write

2‖π(T )‖2
L2

s(O) + ‖π‖2
L2(0,T ;L2(ΩX ;L2(0,L;H1(0,1;d)))) ≤ C6 T ‖π‖2

L∞(0,T ;L2
s(O))‖Φ‖L2

s(O) + C6‖π0‖2
L2

s(O)

+ C6 ‖π‖2
L∞(0,T ;L2

s(O))

[
C2

γC
2
I ‖b‖2

∞|T | 2−ε
4−ε ‖π‖

4−2ε
4−ε

L∞(0,∞;L2
s(O))‖π‖

4
4−ε

L2(0,T ;L2(ΩX ;L2(0,L;H1(0,1;d))))

]
,
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for all 0 < T < Tmax. With Young’s inequality and with (5.37), we obtain

‖π‖2
L2(0,T ;L2(ΩX ;L2(0,L;H1(0,1;d)))) ≤ C6 T ‖π‖2

L∞(0,T ;L2
s(O))‖Φ‖L2

s(O) + C6‖π0‖2
L2

s(O)

+
[
C6 C

2
γC

2
I ‖b‖2

∞|T | 2−ε
4−ε ‖π‖

8−3ε
4−ε

L∞(0,∞;L2
s(O))‖π‖

4
4−ε

L2(0,T ;L2(ΩX ;L2(0,L;H1(0,1;d))))

]
≤ C6 T ‖π‖2

L∞(0,T ;L2
s(O))‖Φ‖L2

s(O) + C6‖π0‖2
L2

s(O)

+
4(4 − ε)
(4 − ε)2

[
C6 C

2
γC

2
I ‖b‖2

∞|T | 2−ε
4−ε ‖π‖

8−3ε
4−ε

L∞(0,∞;L2
s(O))

] 4−ε
2−ε

+
1
2
‖π‖2

L2(0,T ;L2(ΩX ;L2(0,L;H1(0,1;d)))).

Thus with (5.37) we obtain

‖π‖2
L2(0,T ;L2(ΩX ;L2(0,L;H1(0,1;d)))) ≤ C9 T

(
‖Φ‖3

L2
s(O) + ‖π0‖3

L2
s(O) + ‖Φ‖

8−3ε
2−ε

L2
s(O) + ‖π0‖

8−3ε
2−ε

L2
s(O)

)
+ C10‖π0‖2

L2
s(O).

By passing to the limit when T tends to Tmax, we obtain a contradiction with (5.36). Thus we obtain the
existence of solution for all T > 0, and the estimates in the theorem are already proved. �

5.5. Algebraic Riccati equation

By studying the asymptotic behaviour of the solution to the differential Riccati equation (5.9), we prove the
existence of a solution to the algebraic Riccati equation (5.9). Let ψ be in L2

s(O), the solution to equation

π ∈ D(A s ∗
X,Ξ), A∗

Xπ + A∗
Ξπ + ψ = 0, (5.39)

is explicitly defined by

π =
∫ ∞

0

etA∗
X etA∗

Ξψ dt.

Moreover to give a meaning to the nonlinear term in the Riccati equation (5.7), we have to look for solutions π
such that the trace of π on γ × {0} × ΩΞ and on ΩX × γ × {0} are well defined. Thus it is natural to define
solutions to equation (5.7) as follows.

Definition 5.2. A function π ∈ D(A s ∗
X,Ξ) ∩L2(ΩX ;L2(0, L;H1(0, 1; d))) is a weak solution to equation (5.7) if

it is solution of equation (5.39) with

ψ(X,Ξ) = −
∫

γ

|b(s, 0)|2π(s, 0,Ξ)π(X, s, 0) ds+ Φ(X,Ξ).

Remark 5.1. Observe that if π ∈ D(A s ∗
X,Ξ)∩L2(ΩX ;L2(0, L;H1(0, 1; d))), then π ∈ L2(ΩΞ;L2(0, 1;H1(0, 1; d)).

Moreover, if π ∈ L2(ΩX ;L2(0, L;H1(0, 1; d))) ∩ L2(ΩΞ;L2(0, L;H1(0, 1; d))), then the term∫
γ
|b(s, 0)|2π(s, 0,Ξ)π(X, s, 0) ds belongs to L2

s(O). Thus Definition 5.2 is meaningful.

Lemma 5.9. Let (π0,n)n be a sequence in L2
s(O) and let π0,∞ belong to L2

s(O). We assume that, for all n,
m ≥ n, π0,n ≤ π0,m ≤ π0,∞ and that, for all ζ ∈ L2(Ω), (

∫
ΩX

π0,nζ)n converges to
∫
ΩX

π0ζ in L2(ΩΞ).
Let πn (respectively π∞) be the solution to equation (5.9) corresponding to the initial condition π0,n (respectively

π0,∞). Then, for all T > 0 and all z0 ∈ L2(Ω), the sequence (
∫
O πn(T )z0 ⊗ z0)n converges to

∫
O π(T )z0 ⊗ z0.

Let us notice that if (
∫
ΩX

π0,nζ)n converges to
∫
ΩX

π0ζ in L2(ΩΞ), then (
∫
ΩΞ
π0,nζ)n converges to

∫
ΩΞ
π0ζ in

L2(ΩX) because π0,n and π0 belong to L2
s(O).
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Proof. Let π be the solution to (5.27) with (τ, t̄) = (0, T ) and π(T ) = π0, and let πn be the solution to (5.27)
in (τ, t̄) = (0, T ) corresponding to the terminal condition πn(T ) = π0,n. To prove the lemma it is sufficient to
establish that

lim
n→∞

∫
O
πn(0) z0 ⊗ z0 =

∫
O
π(0) z0 ⊗ z0.

Let us introduce the control problem

(QT
0,z0

) inf
{
IT
0 (z, u) | (z, u) ∈ L2(0, T ;Z)× L2(0, T ;U), (z, u) satisfies (5.40)

}
,

where

IT
0 (z, u) =

1
2

∫ T

0

∫
O

Φ(X,Ξ)z(τ,X) z(τ,Ξ) dXdΞdτ +
1
2

∫ T

0

∫
γ

|u|2 +
1
2

∫
O
π0z(T )⊗ z(T ),

and
z′ = Az +B(�γu), z(0) = z0, (5.40)

and let us consider the family of control problems

(QT
0,n,z0

) inf
{
IT
0,n(z, u) | (z, u) ∈ L2(0, T ;Z)× L2(0, T ;U), (z, u) satisfies (5.40)

}
,

where

IT
0,n(z, u) =

1
2

∫ T

0

∫
O

Φ(X,Ξ)z(τ,X) z(τ,Ξ) dXdΞdτ +
1
2

∫ T

0

∫
γ

|u|2 +
1
2

∫
O
π0,nz(T )⊗ z(T ).

Let us denote by ϕ(T, z0) the value function of (QT
0,z0

) and by (z, u) its optimal pair. Similarly, we denote by
ϕn(T, z0) the value function of (QT

0,n,z0
) and by (zn, un) its optimal pair. From Lemma 5.7, it follows that (z, u)

and (zn, un) obey the feedback formulas

u(t, s) = b(s, 0)
∫

ΩΞ

π(t, s, 0,Ξ) z(t,Ξ) dΞ and un(t, s) = b(s, 0)
∫

ΩΞ

πn(t, s, 0,Ξ) zn(t,Ξ) dΞ,

and the value functions satisfy

ϕ(T, z0) =
1
2

∫
O
π(0) z0 ⊗ z0 and ϕn(T, z0) =

1
2

∫
O
πn(0) z0 ⊗ z0.

We are going to show that (un)n converges to u in L2(0, T ;U). First, since we have

IT
0,n(zn, un) ≤ IT

0,n(z, u),

we notice that the sequence (un)n is bounded in L2(0, T ;U) and that, from any subsequence, we can extract
another subsequence, still indexed by n to simplify the notation, weakly converging in L2(0, T ;U) to some ū.
Let us denote by z̄ the solution to (5.40) corresponding to ū. We can easily see that (zn)n converges to z̄ for the
weak topology in L2(0, T ;Z) and that zn(T ) converges to z̄(T ) for the weak topology of Z. Thus, by passing
to the inferior limit when n tends to infinity, we obtain

IT
0,n0

(z̄, ū) ≤ lim inf
n→∞ IT

0,n0
(zn, un) ≤ lim inf

n→∞ IT
0,n(zn, un) ≤ lim

n→∞ IT
0,n(z, u) = IT

0 (z, u),
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where n0 ∈ N is given fixed (here we have used that π0,n0 ≤ π0,n when n0 ≤ n). Next by passing to the limit
when n0 tends to infinity, we obtain

IT
0 (z̄, ū) = lim

n→∞ IT
0,n0

(z̄, ū) ≤ IT
0 (z, u).

Thus IT
0 (z̄, ū) = IT

0 (z, u), ū = u, z̄ = z, (un)n converges to u in L2(0, T ;U) and (zn)n converges to z
in C([0, T ];Z). Therefore

lim
n→∞ϕn(T, z0) = lim

n→∞
1
2

∫
O
πn(0) z0 ⊗ z0 = ϕ(T, z0) =

1
2

∫
O
π(0) z0 ⊗ z0.

The proof is complete. �
Theorem 5.8. The algebraic Riccati equation (5.7) admits at least one solution π in the sense of Definition 5.2,
and it satisfies:

‖π‖2
L2(ΩX ;L2(0,L;H1(0,1;d))) ≤ C

(
‖Φ‖2

L2
s(O) + ‖Φ‖3

L2
s(O) + ‖Φ‖

8−3ε
2−ε

L2
s(O)

)
. (5.41)

Proof. Step 1. Let π be the solution to equation (5.9) corresponding to π0 = 0, and πε be the solution to
equation (5.9) corresponding to πε(0) = π(ε), ε > 0. For all t > 0 and z0 ∈ L2(Ω), let us introduce the control
problem

(Pt
0,z0

) inf
{
J t

0(z, u) | (z, u) ∈ L2(0, t;Z) × L2(0, t;U), (z, u) satisfies (5.42)
}
,

where

J t
0(z, u) =

1
2

∫ t

0

∫
O

Φ(X,Ξ)z(τ,X) z(τ,Ξ) dXdΞdτ +
1
2

∫ t

0

∫
γ

|u|2,
and

z′ = Az +B(�γu), z(0) = z0. (5.42)
Let us denote by ϕ(t, z0) the value function of (Pt

0,z0
). From Lemma 5.7 it follows that

ϕ(t, z0) =
1
2

∫
O
π(t) z0 ⊗ z0.

Since ϕ(t+ ε, z0) ≥ ϕ(t, z0), we have∫
O
π(t+ ε) z0 ⊗ z0 =

∫
O
πε(t) z0 ⊗ z0 ≥

∫
O
π(t) z0 ⊗ z0.

Thus the mapping t → ∫
O π(t) z0 ⊗ z0 is nondecreasing. We denote by Π(t) ∈ L(L2(Ω)) the operator defined

by:

(Π(t)z)(X) =
∫

Ω

π(t,X,Ξ)z(Ξ) dΞ.

Since ‖π‖L∞(0,∞;L2
s(O)) <∞, and

(
Π(t)z, ζ

)
L2(Ω)

=
1
4
(
Π(t)(z + ζ), (z + ζ)

)
L2(Ω)

− 1
4
(
Π(t)(z − ζ), (z − ζ)

)
L2(Ω)

, (5.43)

we have
sup
t≥0

|(Π(t)z, ζ
)
L2(Ω)

| <∞,
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for all t ≥ 0, z ∈ L2(Ω), and all ζ ∈ L2(Ω). Applying the Banach-Steinhaus Theorem, we deduce
that sup

t≥0

∥∥(Π(t)z, ·)
L2

∥∥
L(L2(Ω))

< ∞. Applying another time the Banach-Steinhaus Theorem, we obtain

sup
t≥0

∥∥(Π(t)·, ·)
L2

∥∥
L(L2(Ω)×L2(Ω))

<∞. Therefore there exists Πmin ∈ L(L2(Ω)) such that

lim
t→∞

(
Π(t)z, ζ

)
L2(Ω)

=
(
Πminz, ζ

)
L2(Ω)

. (5.44)

Since Π(t) = Π∗(t) ≥ 0, it follows that Πmin = Π∗
min ≥ 0. Let us notice that ‖(Πmin − Π(t))1/2‖L(L2(Ω)) is

bounded uniformly with respect to t ∈ R
+, thus we have

‖(Πmin − Π(t))ζ‖L2(Ω) ≤ C‖(Πmin − Π(t))1/2ζ‖L2(Ω),

and with (5.44) we deduce

lim
t→∞‖(Πmin − Π(t))ζ‖L2(Ω)

≤ C lim
t→∞‖(Πmin − Π(t))1/2ζ‖L2(Ω) = lim

t→∞
(
(Πmin − Π(t))ζ, ζ

)
L2(Ω)

= 0.
(5.45)

Besides the sequence (π(n))n is bounded in L2
+(O). Without loss of generality, we can suppose that (π(n))n

converges to some πmin ∈ L2
+(O) weakly in L2

s(O). Thus we also have

lim
n→∞

∫
O
π(n)z ⊗ ζ =

∫
O
πminz ⊗ ζ.

By uniqueness of the limit, we have ∫
O
πminz ⊗ ζ =

(
Πminz, ζ

)
L2(Ω)

.

From (5.45) it follows that
lim

n→∞ ‖(πmin − π(n))ζ‖L2(Ω) = 0.

Therefore the assumptions of Lemma 5.9 are satisfied by the sequence (π(n))n and the limit πmin.

Step 2. We show that πmin is solution to the algebraic Riccati equation (5.7). Let π̂ be the solution to (5.9)
corresponding to π0 = πmin. Let π̄ be the solution to (5.9) corresponding to π0 = 0, and π̄n the solution to
(5.9) corresponding to π0 = π̄(n). By using the dynamic programming principle, we have

π̄n(t) = π̄(t+ n), t > 0.

Due to the first step, we have

lim
n→∞

∫
O
π̄(n)z ⊗ z = lim

n→∞

∫
O
π̄n(0)z ⊗ z =

∫
O
πminz ⊗ z,

for all z ∈ L2(Ω). Due to Lemma 5.9, we can write∫
O
π̂(t)z ⊗ z = lim

n→∞

∫
O
π̄n(t)z ⊗ z.

Therefore ∫
O
π̂(t)z ⊗ z = lim

n→∞

∫
O
π̄n(t)z ⊗ z = lim

n→∞

∫
O
π̄(t+ n)z ⊗ z =

∫
O
πminz ⊗ z
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for all t > 0 and all z ∈ L2(Ω). Thus, π̂ is constant and equal to πmin. This implies that
πmin ∈ L2(ΩX ;L2(0, L;H1(0, 1; d))), and that

0 =
d
dt

∫
O
π̂(t)z ⊗ z

=
(AXz, π̂(t)z

)
+
(
π̂(t)z,AΞz

)− ∫
γ

∫
O

(bπ̂(t)z) ⊗ (bπ̂(t)z) ds+
∫
O

Φ(X,Ξ)z(X) z(Ξ) dXdΞ

=
(AXz, πminz

)
+
(
πminz,AΞz

)− ∫
γ

∫
O

(bπminz) ⊗ (bπminz) ds+
∫
O

Φ(X,Ξ)z(X) z(Ξ) dXdΞ.

Consequently, πmin is a solution to the algebraic Riccati equation (5.7).
Let us prove estimate (5.41). With estimate (5.35) for π̂ and the fact that π̂ is constant with respect to t,

we have

T ‖π‖2
L2(ΩX ;L2(0,L;H1(0,1;d))) = ‖π‖2

L2(0,T ;L2(ΩX ;L2(0,L;H1(0,1;d))))

≤ C T

(
‖Φ‖3

L2
s(O) + ‖πmin‖3

L2
s(O) + ‖Φ‖

8−3ε
2−ε

L2
s(O) + ‖πmin‖

8−3ε
2−ε

L2
s(O)

)
+ C‖πmin‖2

L2
s(O).

Choosing T = 1 and using ‖πmin‖L2
s(O) ≤ C‖Φ‖L2

s(O), the proof is complete. �

6. Feedback control law

The main objective of this section is to prove that the algebraic Riccati equation (5.7) admits a unique
solution π and that (z̄, ū), the optimal solution to (Pz0), obeys the feedback formula

ū(s, τ) = �γ(s) b(s, 0)
(∫

Ω

π(s, 0,Ξ)z̄(τ,Ξ) dΞ
)
, s ∈ (0, L), τ ∈ R

+.

To prove this result we first show that if π is a solution to equation (5.7), and if Π is the Hilbert-Schmidt
operator of kernel π, then the equation

z′ = Az −B(�γB
∗Πz) in (0, T ), z(0) = z0,

admits a unique solution (Thm. 6.1). Next we show that if

z′ = Az +B(�γu), z(0) = z0,

then we have (see Lem. 6.4):

J(z, u) =
1
2

∫
O
π z0 ⊗ z0 +

∫ ∞

0

∫
γ

∣∣∣∣u(τ, s) − b(s, 0)
∫

ΩΞ

π(s, 0,Ξ) z(τ,Ξ)
∣∣∣∣2 ds dτ.
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Combining these results we prove that any solution π to the algebraic Riccati equation (5.7) obeys

1
2

∫
O
π z0 ⊗ z0 = inf(Pz0).

The uniqueness follows.
To establish such results we have to justify some integration by parts. We do it by using a regularization

argument which is developed in the two following lemmas.

Lemma 6.1. Let u belong to C1
c ([0,∞);L2(0, L)). There exists a sequence (fn)n in C1

c ([0,∞);L2(Ω)) such that∣∣∣∣∫ t

0

∫
Ω

b fn ϕ−
∫ t

0

∫
γ

b u ϕ

∣∣∣∣ ≤ C

n1/2
‖ϕ‖L2(0,t;L2(0,L;H1(0,1;d)))‖u‖L2(0,t;L2(0,L)) ,

for all t > 0 and all ϕ ∈ L2(0,∞;L2(0, L;H1(0, 1; d))).

Proof. The proof is similar to that of Lemma 5.5, where C is independent of t. �
Remark 6.1. If we identify B(�γu) with the functional defined in L2(0,∞;L2(0, L;H1(0, 1; d))) by

ϕ 	−→
∫ ∞

0

∫
γ

b(s, 0)u(t, s)ϕ(t, s, 0) ds dt,

the sequence (b fn)n can be considered as an approximation of B(�γu) ∈ L2(0,∞;L2(0, L; (H1(0, 1; d))′)).

Lemma 6.2. Let u be in C1
c ([0,∞);L2(0, L)), (fn)n be the sequence in C1

c ([0,∞);L2(Ω)) defined in Lemma 6.1,
z be the solution to equation

z′ = Az +B(�γu), z(0) = z0,

and zn be the solution to equation
z′ = Az − b fn, z(0) = z0.

Then (zn)n converges to z for the weak topology of L2(0,∞;L2(0, L;H1(0, 1; d))) and for the weak-star topology
of L∞(0,∞;L2(Ω)).

Proof. Let k > 0 be the parameter defined in Lemma 2.1. We set ζ = e−kxz and ζn = e−kxzn. To prove the
lemma it is sufficient to show that (ζn)n converges to ζ for the weak topology of L2(0,∞;L2(0, L;H1(0, 1; d)))
and the weak-star topology of L∞(0,∞;L2(Ω)). The functions ζ and ζn are respectively the solutions to

ζ′ = Akζ +B(�γ e−kxu), ζ(0) = e−kxz0,

and
ζ′n = Akζ − e−kxb fn, ζn(0) = e−kxz0.

With [6], Theorem 6.2, we can write

1
2

∫
Ω

|ζn(t)|2 +
1
2

∫ t

0

∫ 1

0

a ζn(L, y, τ)2 dy dτ − 1
2

∫
Ω

|e−kxz0|2 +
∫ t

0

∫ 1

0

∫ L

0

(
b

∣∣∣∣∂ζn∂y
∣∣∣∣2 +

∂b

∂y

∂ζn
∂y

ζn

+ (c+ ka)ζ2
n

)
dxdy dτ ≤ −

∫ t

0

∫ 1

0

∫ L

0

e−kxb fn ζn dxdy dτ.

From Lemma 6.1, it follows that∣∣∣∣∫ t

0

∫
Ω

e−kxb fn ζn

∣∣∣∣ ≤ ‖u‖L2(0,t;L2(0,L))‖bζn‖L2(0,t;L2(0,L;H1(0,1;d)))

(
1 +

C

n1/2

)
·
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Combining the two previous inequalities, with Lemma 2.1, we obtain:

1
2

∫
Ω

|ζn(t)|2 +
1
2

∫ t

0

∫ 1

0

a ζn(L, y, τ)2 dy dτ − 1
2

∫
Ω

|e−kxz0|2 +
C1

2
‖ζn‖2

L2(0,t;L2(0,L;H1(0,1;d)))

≤ 1
2ε

(
1 +

C

n1/2

)2

‖u‖2
L2(0,t;L2(0,L)) +

ε

2
‖bζn‖2

L2(0,t;L2(0,L;H1(0,1;d))),

for all ε > 0. Thus, we can choose ε > 0 to obtain:

‖ζn‖2
L∞(0,∞;L2(Ω)) +

∫ ∞

0

∫ 1

0

a ζn(L, y, τ)2 dy dτ + ‖ζn‖2
L2(0,∞;L2(0,L;H1(0,1;d)))

≤ C

(
‖u‖2

L2(0,∞;L2(0,L)) +
∫

Ω

|e−kxz0|2
)
.

The sequence (ζn)n being bounded in L2(0,∞;L2(0, L;H1(0, 1; d))) and in L∞(0,∞;L2(Ω)), we can easily prove
that (ζn)n converges to ζ for the weak topology of L2(0,∞;L2(0, L;H1(0, 1; d))) and the weak-star topology of
L∞(0,∞;L2(Ω)). �

Lemma 6.3. Let π be a solution to the Riccati equation (5.7), u ∈ L2(0,∞;L2(0, L)), z0 ∈ L2(Ω), and z be the
solution to equation

z′ = Az +B(�γu), z(0) = z0.

Then z satisfies the following identity:∫ ∞

0

∫
O

((A∗
X + A∗

Ξ)π) z(t) ⊗ z(t) dX dΞdt = −
∫
O
π z0 ⊗ z0 dX dΞ

+ 2
∫ ∞

0

∫
γ

b(s, 0)u(t, s)
∫

Ω

π(s, 0,Ξ)z(t,Ξ) dΞds dt. (6.1)

Proof. We first prove the identity when u belong to C1
c ([0,∞);L2(0, L)). Let (fn)n be the sequence in

C1
c ([0,∞);L2(Ω)) defined in Lemma 6.1, and (z0,n)n be a sequence in D(A) converging to z0 in L2(Ω). Let us

denote by zn the solution to

z′ = Az − b fn, z(0) = z0,n.

Since zn ∈ C([0,∞);D(A)) ∩ C1([0,∞);L2(Ω)), we can write

∫ T

0

∫
O

((A∗
X + A∗

Ξ)π) zn(t) ⊗ zn(t) dX dΞdt =
∫ T

0

∫
O
πAXzn(t) ⊗ zn(t) dX dΞdt

+
∫ T

0

∫
O
π zn(t) ⊗AΞzn(t) dX dΞdt

=
∫ T

0

∫
O
π z′n(t) ⊗ zn(t) dX dΞdt+

∫ T

0

∫
O
π zn(t) ⊗ z′n(t) dX dΞdt

+
∫ T

0

∫
O
b fn(t,X)π(X,Ξ)zn(t,Ξ) dX dΞdt+

∫ T

0

∫
O
b fn(t,Ξ)π(X,Ξ)zn(t,X) dX dΞdt

=
∫
O
π zn(T ) ⊗ zn(T ) dX dΞ −

∫
O
π z0,n(Ξ) z0,n(X) dX dΞ + 2

∫ T

0

∫
O
b fn(t,X)π(X,Ξ)zn(t,Ξ) dX dΞdt.
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We first pass to the limit when n tends to infinity. As in the proof of Lemma 5.6, we can show that

lim
n→∞

∫ T

0

∫
O

((A∗
X + A∗

Ξ)π) zn(t) ⊗ zn(t) dX dΞdt =
∫ T

0

∫
O

((A∗
X + A∗

Ξ)π) z(t) ⊗ z(t) dX dΞdt.

Due to Lemma 6.2, (zn)n is bounded in L2(0,∞;L2(0, L;H1(0, 1; d))), and (zn)n converges to z weakly in
L2(0,∞;L2(0, L;H1(0, 1; d))). Moreover, with Lemma 6.1, we have∣∣∣∣∣
∫ T

0

∫
ΩX

b fn

∫
ΩΞ

π(X,Ξ)zn(t,Ξ) dΞdX dt−
∫ T

0

∫
γ

b u

∫
ΩΞ

π(s, 0,Ξ)zn(t,Ξ) dΞds dt

∣∣∣∣∣
≤ C

n1/2

∥∥∥∥∫
ΩΞ

π(·,Ξ)zn(·,Ξ) dΞ
∥∥∥∥

L2(0,T ;L2(0,L;H1(0,1;d)))

‖u‖L2(0,T ;L2(0,L)) .

Since ‖ ∫
ΩΞ
π(·,Ξ)zn(·,Ξ)‖L2(0,T ;L2(0,L;H1(0,1;d))) is bounded, passing to the limit when n tends to infinity, we

obtain ∫ T

0

∫
O

((A∗
X + A∗

Ξ)π) z(t) ⊗ z(t) dX dΞdt =
∫
O
π z(T )⊗ z(T )−

∫
O
π z0 ⊗ z0

− 2
∫ T

0

∫
γ

b(s, 0)u(t, s)
∫

Ω

π(s, 0,Ξ)z(t,Ξ) dΞds dt,

when u belongs to C1
c ([0,∞);L2(0, L)). Since u ∈ C1

c ([0,∞);L2(0, L)), due to the exponential stability on L2(Ω)
of the semigroup (eAt)t≥0, it follows that

lim
T→∞

∫
O
π z(T )⊗ z(T ) = 0.

Passing to the limit when T tends to infinity, we finally obtain∫ ∞

0

∫
O

((A∗
X + A∗

Ξ)π) z⊗zdX dΞ = −
∫
O
πz0(Ξ)z0(X)dXdΞ + 2

∫ ∞

0

∫
γ

b(s, 0)u(t, s)
∫

Ω

π(s, 0,Ξ)z(t,Ξ)dΞdsdt,

(6.2)
when u belongs to C1

c ([0,∞);L2(0, L)). Let us now consider the case where u ∈ L2(0,∞;L2(0, L)). Since
C1

c ([0,∞);L2(0, L)) is dense in L2(0,∞;L2(0, L)), there exists a sequence (un)n in C1
c ([0,∞);L2(0, L))

converging to u in L2(0,∞;L2(0, L)). The solution zn of equation

z′n = Azn +B(�γun), zn(0) = z0,

converges to z in L2(0,∞;L2(0, L;H1(0, 1; d))). Thus we can write the identity (6.1) for zn, and we establish
(6.1) for z by passing to the limit when n tends to infinity. �
Lemma 6.4. Let π be a solution to the system (5.7), u ∈ L2(0,∞;U), z0 ∈ L2(Ω), and z be the solution to
equation

z′ = Az +B(�γu), z(0) = z0.

Then the cost function satisfies

J(z, u) =
1
2

∫
O
π z0 ⊗ z0 +

∫ ∞

0

∫
γ

∣∣∣∣u(τ, s) − b(s, 0)
∫

Ω

π(s, 0,Ξ) z(τ,Ξ) dΞ
∣∣∣∣2 ds dτ. (6.3)
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Proof. With Lemma 6.3 and equation (5.7), we can write

−
∫
O
π z0 ⊗ z0 +2

∫ ∞

0

∫
γ

b(s, 0)u(t, s)
∫

Ω

π(s, 0,Ξ)z(t,Ξ) dΞds dt =
∫ ∞

0

∫
O

((A∗
X + A∗

Ξ)π) z(t)⊗ z(t) dX dΞdt

=
∫ ∞

0

∫
γ

∣∣∣∣b(s, 0)
∫

Ω

π(s, 0,Ξ)z(t,Ξ) dΞ
∣∣∣∣2 ds dt−

∫ ∞

0

∫
O

Φ(X,Ξ)z(t,X) z(t,Ξ) dX dΞdt.

Thus we have

J(z, u) =
1
2

∫ ∞

0

∫
O

Φ(X,Ξ)z(t,X) z(t,Ξ) dXdΞdt+
1
2

∫ ∞

0

∫
γ

|u|2ds dt

=
1
2

∫
O
π z0 ⊗ z0 +

1
2

∫ ∞

0

∫
γ

|u|2ds dt−
∫ ∞

0

∫
γ

b(s, 0)u(t, s)
(∫

Ω

π(s, 0,Ξ)z(t,Ξ) dΞ
)

dsdt

+
1
2

∫ ∞

0

∫
γ

∣∣∣∣b(s, 0)
∫

Ω

π(s, 0,Ξ)z(t,Ξ) dΞ
∣∣∣∣2 ds dt

=
1
2

∫
O
π z0 ⊗ z0 +

1
2

∫ ∞

0

∫
γ

∣∣∣∣u(t, s) − b(s, 0)
∫

Ω

π(s, 0, X)z(t,Ξ) dΞ
∣∣∣∣2 ds dt.

The proof is complete. �

For a given solution π to equation (5.7), we consider the evolution equation

z′ = Az −B(�γB
∗Πz) in (0,∞), z(0) = z0, (6.4)

where

B∗Πz(t, s) = −b(s, 0)
∫

Ω

π(s, 0,Ξ)z(t,Ξ) dΞ, s ∈ (0, L), t ∈ (0,∞).

Weak solutions to equation (6.4) are defined as weak solutions to equation

z′ = Az +B(�γu) in (0, T ), z(0) = z0, (6.5)

with u = −B∗Πz. This is meaningful because if z ∈ L2(0, T ;L2(Ω)), then B∗Πz ∈ L2(0, T ;L2(0, L)).

Lemma 6.5. For a given solution π to equation (5.7), equation (6.4) admits a unique weak solution in
L∞(0, T ;L2(Ω)). Moreover this solution also belongs to L2(0, T ;L2(0, L;H1(0, 1; d))).

Proof. We first show, by using a fixed point argument, that equation (6.4) admits a unique weak solution
in L∞(0, t̄;L2(Ω)), for some 0 < t̄ ≤ T . In (3.5), it is stated that the weak solution z of equation (6.5) obeys

‖z‖L∞(0,T ;L2(Ω)) +‖√az‖L∞(0,L;L2(0,T ;L2(0,1))) +‖z‖L2(0,T ;L2(0,L;H1(0,1;d))) ≤ C5

(
‖u‖L2(0,T ;L2(0,L)) +‖z0‖L2(Ω)

)
,

(6.6)

where C5 is independent of T . If v belongs to L∞(0, T ;L2(Ω)), then from Theorem 5.8 it follows that

‖�γB
∗Πv‖L2(0,T ;L2(0,L)) ≤ C11T

1/2‖v‖L∞(0,T ;L2(Ω)), (6.7)
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for some constant C11 depending on ‖φ‖L2(Ω), but independent of T . We choose t̄ > 0 such that C5 C11|t̄|1/2 ≤
1/2. Let v be in L∞(0, t̄;L2(Ω)) and zv ∈ L∞(0, t̄;L2(Ω)) be the solution to

z′ = Az −B(�γB
∗Πv) in (0, t̄), z(0) = z0.

Let us denote Ψ the mapping v 	→ zv. Let v1 and v2 be in L∞(0, t̄;L2(Ω)). With (6.6) and (6.7) we have

‖zv1 − zv2‖L∞(0,t̄;L2(Ω)) ≤ C5 C11|t̄|1/2‖v1 − v2‖L∞(0,t̄;L2(Ω)).

Since C5C11|t̄|1/2 ≤ 1/2, Ψ is a contraction in L∞(0, t̄;L2(Ω)). Thus equation (6.4) admits a unique solution
in L∞(0, t̄;L2(Ω)). If v ∈ L2(0, t̄;L2(Ω)), with (6.6) and (6.7) it follows that z belongs to L2(0, T ;L2(0, L;
H1(0, 1; d))). We can repeat the fixed point argument on (t̄, 2t̄) in the following way. Let us set

E =
{
v ∈ L∞(0, 2t̄;L2(Ω)) | v|(0,t̄) = z

}
,

where z is the solution of (6.4) in (0, t̄). Step by step, we prove that for all T > 0 equation (6.4) admits a
unique solution in L∞(0, T ;L2(Ω)) for all T > 0. �
Theorem 6.1. For a given solution π to equation (5.7), equation (6.4) admits a unique weak solution in
Cb([0,∞);L2(Ω)). Moreover this solution also belongs to L2(0,∞;L2(0, L;H1(0, 1; d))) and

‖z‖L∞(0,∞;L2(Ω)) + ‖√az‖L∞(0,L;L2(0,∞;L2(0,1))) + ‖z‖L2(0,∞;L2(0,L;H1(0,1;d))) ≤ C6‖z0‖L2(Ω). (6.8)

Proof. Let u be in L2(0,∞;L2(0, L)), z0 ∈ L2(Ω), and z be the solution to equation

z′ = Az +B(�γu), z(0) = z0.

As in the proof of Lemma 6.3, we can show that∫ T

0

∫
O

((A∗
X + A∗

Ξ)π) z(t) ⊗ z(t) dX dΞdt =
∫
O
π z(T )⊗ z(T )−

∫
O
π z0 ⊗ z0

− 2
∫ T

0

∫
γ

b(s, 0)u(t, s)
∫

Ω

π(s, 0,Ξ)z(t,Ξ) dΞds dt.

Next, as in the proof of Lemma 6.4, we can establish the identity

1
2

∫ T

0

∫
O

Φ(X,Ξ)z(t,X) z(t,Ξ) dX dΞdt+
1
2

∫ T

0

∫
γ

|u|2ds dt+
1
2

∫
O
π z(T )⊗ z(T )

=
1
2

∫
O
π z0 ⊗ z0 +

1
2

∫ T

0

∫
γ

∣∣∣∣u(t, s) − b(s, 0)
∫

Ω

π(s, 0,Ξ)z(t,Ξ) dΞ
∣∣∣∣2 ds dt.

In particular, if u(t, s) = b(s, 0)
∫
Ω π(s, 0,Ξ)z(t,Ξ) dΞ, we obtain∫ T

0

∫
γ

∣∣∣∣b(s, 0)
∫

Ω

π(s, 0, X)z(t,X) dX
∣∣∣∣2 ds dt ≤

∫
O
π z0 ⊗ z0.

This means that the solution to equation (6.4) is such that the mapping (t, s) 	→
�γb(s, 0)

∫
Ω
π(s, 0,Ξ)z(t,Ξ)dΞ belongs to L2(0,∞;L2(0, L)). Estimate (6.8) follows from (6.6) for T = ∞. �

Theorem 6.2. The algebraic Riccati equation (5.7) admits a unique solution.
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Proof. Let (z̄, ū) be the solution to problem (Pz0). Let π be a solution to equation (5.7), and let z be the
solution to equation (6.4) corresponding to π. From Theorem 6.1 we deduce that −�γB

∗πz is an admissible
control. Due to Lemma 6.4 we have:

J(z, u) =
1
2

∫
O
π z0 ⊗ z0,

and

J(z̄, ū) =
1
2

∫
O
π z0 ⊗ z0 +

∫ ∞

0

∫
γ

∣∣∣∣ū(τ, s) − b(s, 0)
∫

ΩΞ

π(s, 0,Ξ) z̄(τ,Ξ) dΞ
∣∣∣∣2 ds dτ.

Thus

J(z, u) = J(z̄, ū) =
1
2

∫
O
π z0 ⊗ z0,

and

ū(τ, s) = b(s, 0)
∫

ΩΞ

π(s, 0,Ξ) z̄(τ,Ξ) dΞ.

Henceforth, there is a unique operator π such that

1
2

∫
O
π z0 ⊗ z0 = inf(Pz0),

for all z0 ∈ L2(Ω). The proof is complete. �

Theorem 6.3. Let (z̄, ū) be the optimal solution to problem (Pz0). The optimal control ū obeys the feedback
formula

ū(τ, s) = �γ(s) b(s, 0)
(∫

Ω

π(s, 0,Ξ)z̄(τ,Ξ) dΞ
)

s ∈ (0, L), τ ∈ (0,∞), (6.9)

where π is the solution to the algebraic Riccati equation (5.7). The optimal cost is given by

J(z̄, ū) =
1
2

∫
O
πz0 ⊗ z0.

Proof. Theorem 6.3 is a direct consequence of Theorem 6.1 and Lemma 6.4. �

We finish this section by introducing the infinitesimal generator of the semigroup associated with the optimal
solution of problem (P ). For every z0 ∈ L2(Ω), let us denote by zz0 the solution to equation (6.4). According
to Theorem 6.1, the family of operators (

z0 	−→ zz0(t)
)

t≥0

is an exponentially stable semigroup on L2(Ω). The exponential stability follows from (6.8) and from Datko’s
Theorem [21], Theorem 3.1(i), Part IV. Let us denote it by (etAπ )t≥0 and by (Aπ , D(Aπ)) its infinitesimal
generator. Since (etAπ )t≥0 is an exponentially stable semigroup on L2(Ω), the domain D(Aπ) is defined by

D(Aπ) =

{∫ ∞

0

eτAπ ψ dτ | ψ ∈ L2(Ω)

}
.

Moreover,
z ∈ D(Aπ) and Aπz = ψ,

if and only if

z = −
∫ ∞

0

eτAπ ψ dτ.

We are now going to give another characterization of D(Aπ).
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Theorem 6.4. A function z ∈ L2(Ω) belongs to D(Aπ) if and only if z is the solution to the variational problem

z ∈ L2(0, L;H1(0, 1; d)),

Az, calculated in the sense of distributions in Ω, belongs to L2(Ω),

Az = ψ in Ω, T0

(
az,−b∂z

∂y

)
= −�γ(s) b(s, 0)2

∫
Ω

π(s, 0,Ξ) z(Ξ) dΞ.

(6.10)

Proof. Let z ∈ D(Aπ) be the unique solution to the equation Aπz = ψ, that is to say

z = −
∫ ∞

0

eτAπ ψ dτ.

Thus z is the limit in L2(Ω), when t tends to infinity, of the function ζ(t) defined by

ζ(t) = −
∫ t

0

eτAπψ dτ = −
∫ t

0

e(t−s)Aπψ ds.

Observe that ζ is the solution to the equation

ζ′ = Aζ −B(�γB
∗Πζ) − ψ, ζ(0) = 0.

Therefore ζ obeys the following boundary condition

T0

(
aζ(t),−b∂ζ(t)

∂y

)
= −�γ b(s, 0)2

∫
Ω

π(s, 0,Ξ) ζ(t,Ξ) dΞ.

We can pass to the limit when t tends to infinity in the above identity, and we obtain the same one for z.
To prove that Az, calculated in the sense of distributions in Ω, is equal to ψ, we notice that, for all ϕ ∈ D(Ω),

we have
d
dt

∫
Ω

ζ(t)ϕ =
∫

Ω

ζ(t)A∗ϕ−
∫

Ω

ψϕ.

Thus the mapping

t 	−→
∫

Ω

ζ(t)ϕ

belongs to C1([0,∞)), it admits a limit and together with its derivative when t tends to infinity. Thus the limit
of

∫
Ω
ζ(t)A∗ϕ− ∫

Ω
ψϕ, when t tends to infinity, is equal to zero, i.e.:∫

Ω

zA∗ϕ−
∫

Ω

ψϕ = 0 for all ϕ ∈ D(Ω).

This means that Az = ψ in D′(Ω).
Now we want to show that z ∈ L2(0, L;H1(0, 1; d)). Observe that

‖z‖L2(Ω) ≤ C‖ψ‖L2(Ω),

and that ζ belongs to L2
loc([0,∞);L2(0, L;H1(0, 1; d))). Thus we have

d
dt

∫
Ω

ζ(t)ϕ =
∫

Ω

(
a ζ(t)

∂ϕ

∂x
− b

∂ζ(t)
∂y

∂ϕ

∂y
− ∂b

∂y

∂ζ(t)
∂y

ϕ− cζ(t)ϕ
)

dxdy

−
∫

Ω

ψϕ+
∫

γ

ϕ(s, 0)
∫

Ω

π(s, 0, X)ζ(t,X) dX ds,
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for all ϕ ∈ F , where

F =
{
ϕ ∈ L2(0, L;H1(0, 1; d)) ∩H1(0, L;L2(0, 1)) | ϕ(L, ·) = 0

}
.

As previously we can show that, if ϕ ∈ F , the mapping

t 	−→ d
dt

∫
Ω

ζ(t)ϕ

tends to zero when t tends to infinity. Thus z is also the solution of the variational equation∫
Ω

(
a z

∂ϕ

∂x
− b

∂z

∂y

∂ϕ

∂y
− ∂b

∂y

∂z

∂y
ϕ− czϕ

)
dxdy −

∫
Ω

ψϕ+
∫

γ

ϕ(s, 0)
∫

Ω

π(s, 0,Ξ)z(Ξ) dΞds = 0,

for all ϕ ∈ F . With the estimate of z in L2(Ω), and with the estimates obtained in [6] we can show that

‖z‖L2(0,L;H1(0,1;d)) ≤ C‖ψ‖L2(Ω).

Let us give a short explanation. Setting Z = e−kxz, with k > 0, we can show that Z is the solution of the
variational equation∫

Ω

(
aZ

∂ϕ

∂x
− b

∂z

∂y

∂ϕ

∂y
− ∂b

∂y

∂Z

∂y
ϕ− (c+ ka)Zϕ

)
dxdy −

∫
Ω

e−kxψϕ+
∫

γ

φ(s, 0)e−ksg(s) ds = 0,

for all ϕ ∈ F , where

g(s) =
∫

Ω

π(s, 0, X)z(Ξ) dΞ.

We can verify that
‖g‖L2(0,L) ≤ C‖z‖L2(Ω).

Next using the techniques in [6], the following estimate can be shown

‖Z‖L2(0,L;H1(0,1;d)) ≤ C‖g‖L2(0,L),

from which we can deduce the corresponding estimate for z.
Conversely, if z is a solution to the variational problem (6.10), with the results in [6], Section 5, we can

show that z is the limit in L2(Ω), when t tends to infinity of the function ζ introduced above. The proof is
complete. �
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