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HIGHER-ORDER PHASE TRANSITIONS WITH LINE-TENSION EFFECT

BERNARDO GALVAO-SOUSA!

Abstract. The behavior of energy minimizers at the boundary of the domain is of great importance
in the Van de Waals-Cahn-Hilliard theory for fluid-fluid phase transitions, since it describes the effect
of the container walls on the configuration of the liquid. This problem, also known as the liquid-drop
problem, was studied by Modica in [Ann. Inst. Henri Poincaré, Anal. non linéaire 4 (1987) 487-512],
and in a different form by Alberti et al. in [Arch. Rational Mech. Anal. 144 (1998) 1-46] for a first-
order perturbation model. This work shows that using a second-order perturbation Cahn-Hilliard-type
model, the boundary layer is intrinsically connected with the transition layer in the interior of the
domain. Precisely, considering the energies

1
Felu) == 53/ |D?ul® + = / W)+ e | V(Tu),
Q €Jo o0
where u is a scalar density function and W and V are double-well potentials, the exact scaling law is
2
identified in the critical regime, when e\2 ~ 1.
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1. INTRODUCTION

In this paper we seek to estimate the asymptotic behavior of the family of energies

53/ |D2u|2dz+1/ W(u)d:ch)\E/ V(Tu) dHN L,
Q € Ja o0

where u € H?(Q), Q is a bounded open set in RY of class C?, Tu is the trace of u on 92, W and V are
continuous and non-negative double-well potentials with quadratic growth at infinity, and lim+ A = 0.
0

E—
It is known that the transition layer in the interior of the domain has width of order ¢ (see [2,9,14,16,20-22]).
To formally find the order of the width of the transition layer on the boundary, it suffices to study the case N = 2.
Therefore, by focusing on a neighborhood of a point on the boundary (assuming the boundary is flat), consider
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a 2 — D energy in the half ball of radius ¢ centered at that point xy of the boundary, and changing variables
to a fixed domain, e.g. the unit ball, we obtain

3 62
2—2// |D2u|2dmdy+—/ W(u)dxder)\Eé/ V(Tu) dH.
B+ € B+ E

_1 _2
Equi-partition of energy between the first and last terms leads to § & e\; 3 which, in turn, yields g ~ReEN ®,
which vanishes with e, which seems to indicate that the middle term will not contribute for the transition on

2
the boundary. One also concludes that on the boundary, the energy will scale as ;—z ~ A0 &~ e\Z. Hence there

2
are three essential regimes for this energy depending on how the quantity e\ behaves as ¢ — 0F.
2

In this paper we study the case in which e\ converges to a finite and strictly positive value. The other two
regimes will be treated in a forthcoming paper.
Consider the functional

a0 (1.1)

1
53/ |D?u|? dx + —/ Wu)de + X [ V(Tu)dHN™! if u € H3(Q),
fg(u) = Q g Jo
00 otherwise.

Theorem 1.1 (compactness). Let Q@ C RY be a bounded open set of class C? and let W : R — [0, 00) be such
that

(H}Y) W is continuous and W~({0}) = {a, b} for some a, b€ R, a < b;

(HY) W(z) = Cl|z)* - % for all z € R and for some C > 0.

Let V : R — [0,00) be such that

(HY) 'V is continuous and V~*({0}) = {a, 8} for some a, B ER, a < 5;

(HY) V(z)>=C|z]* - % for all z € R and for some C' > 0

1
(HY) V() > zmin{lz =Bz~ al}" for all z € (@ = p.a+ p) U (B~ p. A +p)
and for some C, p > 0.

Assume that E)é — L € (0,00) ase — 0T and consider a sequence {u.} C H?*(Q) such that sup,~ o Fe(ue) < 0c.
Then there exist a subsequence {u.} (not relabeled), u € BV (Q;{a,b}), and v € BV (9 {e, B}) such that
ue — u in L*(Q) and Tu. — v in L*(09).

The next theorem concerns the critical regime where € and A\, are “balanced”, i.e. E)é ~ 1, and all terms
play an important role. Here ). is large enough to render the energy sensitive to the transition that occurs on
the boundary, but not too big as to force the value on the boundary to converge to a constant.

We define

(1) By :={z € Q:u(z) =a} for all u € BV (Q; {a,b});
(2) m is the energy density per unit area on the transition interfaces between the interior potential wells,
precisely,

R
m = mf{/ (W(f@®) + ") dt: f € HE(R), f(—t)=a, f(t) =bforallt >R, R> 0}; (1.2)
-R
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(3) o is the interaction energy on the transition interface between bulk wells and boundary wells, i.e.,

R
o(z,€) :inf{/O (W(F@®) + 1" @))dt : f € HE ((0,00)), f(0)=¢, f(t) =z forallt> R, R>O} (1.3)

(4) Fy :={z € 0Q: v(z) = a} for all v € BV (0Q; {a, 3});
(5) cis a lower bound to the energy on a transition interface between the wells of the boundary potential,

& If Ol &
c:= inf |x—y|2 dedy + —RV(f( )) dz: fe IOC(R)
fle H¥(R), f(—t)=a, f(t)=fforallt >R, R> 0} L (14)
(6) ¢is an upper bound to the energy on a transition interface between the wells of the boundary potential,
T @) - )P /‘X’
¢:=inf ¢ — —————dxdy + V(f(z))dx:
{16 /—oo /—oo |I_y|2 Y —o0 (f( ))

fEHE(R), f(—t) =a, f(t) =B forallt > R, R>0}. (15)

Theorem 1.2 (critical case). Under the same hypotheses of Theorem 1.1 the following statements hold:

(i) (Lower bound) For every u € BV (;{a,b}) and v € BV(9Q;{«, 8}) and for every sequence {u.} C
H?(Q) such that ue. — u in L?(Q), Tu. — v in L*(0), we have

liminf F.(us) > mPerq(E, Z Z (2, OHN T ({Tu = 2} N {v = €}) + cLPerpq(Fy);

0
e z=a,b&=a,B

(ii) (Upper bound) For every u € BV (Q;{a,b}) and v € BV (09 {«, 5}), there exists a sequence {us} C
H?(Q) such that ue — u in L?(Q), Tu. — v in L*(09Q), and

lim sup F (u:) < mPerq(E, Z Z o(z, HN 1 ({Tu = 2} N {v = €}) + ELPeroq(Fa).

e—07F 2—a,bt=a,B

The main results, Theorems 1.1 and 1.2, imply, in particular, that

min F.=0(1) ase— 0T,
a<fﬂudz<b
a<fyqvdHNT1<p

where we impose a mass constraint to avoid trivial solutions which yield no energy. Note that these conditions
pose no difficulties to the I'-convergence due to the strong convergence of u. and Tu.. Thus we identify the
2

precise scaling law for the minimum energy in the parameter regime e\ ~ 1.

Observe that, although Theorem 1.2 does not prove that the sequence {F.}.~o I'-converges as ¢ — 0%,
since the constants of the lower and upper bounds for the last transition term do not match, we can apply
Theorem 8.5 from [10] to prove that there exists a subsequence &, — 07 such that the corresponding subsequence
of functionals I'-converges.

Hence Theorem 1.2 shows that the limiting functional concentrates on the three different kinds of transition
layers: an interior transition layer of dimension N — 1, where the limiting value of u makes the transition
between a and b; the boundary of the domain, also of dimension N — 1, where there is the transition between
the interior phases a and b and the boundary phases a and (3; and a transition interface on the boundary, of
dimension N — 2, where the limiting value of the trace T'u makes the transition between o and f.
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The difficulties in proving a I'-convergence result arise mainly from the nature of the functional under
consideration. On one hand, the energy involves second-order derivatives, which prevents us from following the
usual techniques in phase transitions, such as truncation and rearrangement arguments to obtain monotonically
increasing test functions for the constant ¢. In [2], these techniques are crucial to find a test function that
matches both the lifting constant and the optimal profile problem for the boundary wells. On the other hand,
for the boundary term, the functionals are also nonlocal. Thus the estimates for the recovery sequence have to be
sharper, since the nonlocality extends its contribution beyond the characteristic length of the phase transition.
The usual methods for localization make use of truncation arguments, which do not apply in this setting due
to the fact that the fractional seminorm is of higher-order.

Similar difficulties can also be found in the papers [5-8] where, similarly, the I'-convergence is not established.

The difference between the constants ¢ and ¢ arises from two factors. First, from Proposition 2.9 it does not
follow that the lifting constant is independent of the value of the trace g. And second, when estimating the
upper bound for the recovery sequence, the transition between o and 3 is accomplished on a layer of thickness
0 = o(g). So we rescale the integrals by d., but because of the non-locality of the fractional energy, it obtains
a contribution from a layer of thickness €, which after rescaling becomes of thickness £/, — oo. This accounts
for the fact that the integration limits of the constant ¢ extend to infinity, while for ¢ they are bounded.

The proofs of Theorems 1.1 and 1.2 are divided through the next sections. We begin by studying two
auxiliary one-dimensional problems. More precisely, let I, J C R be two open intervals and define the following
functionals

"(x)]*d /W )daz if u e H2(I),
Fo(u /|u )|°da + — x ifu (I) (1.6)
otherwise,
and
// ‘U ‘2 dedy + A /V(v(z))d:p ifve H3(J)
Ge(v; J) J |3U—?/|2 Yo J ’ (1.7)
otherwise.

In Sections 4.1 and 4.2 we prove a compactness result and a lower bound for F. which follows the techniques
developed in [14]. In Section 4.3 we will prove a compactness result for G., while in Section 4.4 we will prove
a lower bound by finding “good points” xit such that most of the transition energy is concentrated between
z; and z; and we modify the original sequence {u,} on a small set to be admissible for c¢. In Section 5.1 we
will prove Theorem 1.1 in the critical regime using a slicing argument to reduce the compactness in the interior
to the auxiliary problem studied in Section 4.1, and analogously, we reduce the compactness on the boundary
to the one-dimensional problem for G, studied in Section 4.3. In Section 5.2 we prove the lower bound result
for Theorem 1.2 using the fact that the energy concentrates in different mutually singular sets. Finally, in

Section 5.3 we prove the upper bound for Theorem 1.2.
From Theorem 1.2, we deduce the following corollary.
Corollary 1.3. Under the same hypotheses of Theorem 1.1, and assuming that o = [3, then the sequence

{F:}es0 T-converges as e — 07 to

mPerq(Ea) + Y o(z,a)HN '({Tu=2}) ifu € BV(Q;{a,b}),
]:O(U) = z=a,b
00 otherwise,

where m is defined as in (1.2) and o is defined as in (1.3).

From the result of Theorem 1.2, we know that the I'-limit of the functionals F. as ¢ — 07 will concentrate
its energy on three surfaces: the discontinuity surface of u, the boundary 9€2, and the discontinuity surface of v.
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Moreover, we know the precise energy of the first two terms. For the last term, we expect it to be the product
of the perimeter of the surface times the value ¢ of the transition between the two boundary preferred phases
« and . Since the fractional norm on the boundary is non-local, the definition of ¢ should span the whole real
line and the lifting constant should be independent of the function g, as in the first-order case (see [2]). We
offer the following conjecture.

Conjecture 1.4. Under the same hypotheses of Theorem 1.1, then the sequence {F: }c~o [-converges as e — 07
to

mPerq(E, Z Z (2, OHN N ({Tu= 2} N {v=¢}) + cLPergq(F,)  if (u,v) €V,
fO(Ua’U) = z=a,bt=a,3
00 otherwise,

where V := BV (Q;{a,b}) x BV(0;{«, 3}), m is defined as in (1.2), o is defined as in (1.3), and c¢ is defined
by

cmi{c [~ [7 PRI ey [~ V() dos s < HLE), i g0 =0 Jim 1) =5},

and ( is defined by

ffoR+|D ulr,y | dxdy

fR fR Jg; dxdy

lz—y|?

¢ :=inf

u€ H* (R xR"), Tu(-,0)=ginR 3, (1.9)

which is independent of g € H?

1OC(]R) such that lim g(—x) = @ as ¢ — oo and limg(z) = 8 as x — oo.

2. PRELIMINARIES

2.1. Slicing

We now show a slicing argument introduced by [2] and improved in [14]. First we fix some notation. Given
a bounded open set A C RV, a unit vector e in RY, and a function u : A — R, we denote by

M the orthogonal complement of e,

A, the projection of A onto M,

Ay :={teR:y+teec A}, for all y € A,

uY the trace of u on AY, i.e., u?(t) :== Tu(y + te), for all y € A,.

e’

Definition 2.1. For every § > 0, two sequences {v.}, {w.} C L'(E) are said to be d-close if for every e > 0
||’UE - wEHLl(E) < 4.

Proposition 2.2. Assume that E is a Lipschitz, bounded and open subset of RN =1, If {w.} C LY(E) is equi-
integrable and if there are N — 1 linearly independent unit vectors e; such that for every 6 > 0 and for every
fizedi=1,...,N—1, there exist a sequence {v.} (depending on i) that is 6-close to {w.} with {v¥} precompact
in LY(EY) for HN"2-a.e. y € E,,, then {w.} is precompact in L*(E).
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2.2. Fractional order Sobolev spaces

We will use the norms and seminorms of several fractional order spaces, introduced by Besov and Nikol’skii
and summarized in [1,27]. Consider the following norms and seminorms for the space W 22(.J) where J C R is
an open interval:

Jul?

_//W ‘M@
HE () Iﬂffyl2 ’

2
5 |u 72u ) +u(y)|
||Huﬂ _/:/ M*yﬁ dody,

2
Il .5, = el + Wy
2 _ 2
lal2,g ., = lulacs + lul?g,

We will need to compare the two seminorms and for that we invoke an auxiliary result (see [13,25]).

Proposition 2.3. Let r > 1 and let u : (a,b) — [0,00] be a Borel function. Then

/: (x%a) (/;“(y) dy) < /: G “(Z))H da.

Lemma 2.4. Let J C R be an open interval and let u € H?(J). Then

1
ul? s <l
a3 S8 iy

Proposition 2.5 (Gagliardo-Nirenberg-type inequality). Let J C R be an open interval. Then there exists
C =C(J) >0 such that

1 2
e < € (It ) + o))
Jor allu e H3(J).
We recall two inequalities due to Gagliardo and Nirenberg (see [15,24]).

Proposition 2.6. Let Q C RY be a bounded open set satisfying the cone property. If u € L*(Q) and V?u €
L?(Q), then u € H*(Q) and

19l 20y < CLY Q) (Il Fa oy | V20l Faoumnsny + lulli2cey )

where C' > 0 is independent of u and 2.
Proposition 2.7. Let J C R be an open bounded interval. If u € L'(J) and u” € L*(J) then u € H*(J) and

1 1
||u HLd (J) (|‘“|‘21(J)||UII|‘E2(J) + H“HLl(J)) )

for some constant C' > 0.
2.3. Lifting inequalities

We need to relate the L? norm of the Hessian with its equivalent on the boundary, i.e., the H 3 fractional
seminorm of the derivative of the trace. In this section, we estimate the ratio between these two seminorms.
We start with an auxiliary lemma from [11].
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Lemma 2.8. Let 1 < p < oo, let ECRYN and F C R™ be measurable sets and let u € LP(E x F). Then

(f, (f i) dy); <[(/ |u<x,y>|pdy)% d.

Proposition 2.9. Let g € H2(0, R) and consider the triangle TH ={(z,y) eR?:0<y< L& y<a<R-—y}
Then,
2
[+ |D*u(z,y)|” dzdy 7
< (p,g = inf T | ) cu€ HX(TR), Tu(-,0) =g in (0,R) p < —- (2.1)

2 R/ I 9 ].6
fo fo M—dxdy

Proof. We divide the proof in two steps.

ol =

Step 1. Upper bound.
Define the diamond
TR = {(x’y)eRQ:Ogach, |y|<min{x,R—x}}. (2.2)

Given a function g € H? (0, R), we lift it to the diamond T by
1 [ty
t)dt.
w@,y) =52 / 9(t)

We are only interested in the lifting on the positive part of the diamond, i.e., on the triangle TIJ{ , but observe
that wu(z,-) is even, and we will take advantage of that fact for some estimates. Since g is continuous, one
deduces immediately that u is continuous and

. du gty —glz—y)
/ _ oa _ -
T (x,0) = ylgél+ Ox (z,9) yli%l+ 2y g'(w)
Moreover,
d%u g (r+y)—g(z—y)
—Q(Z’y) - ’
ox 2y
u (2.4) = g+y +g'@—y gty —gla—y)
Ox0y 2y 2y2 ’
Oy = d@ty) gy gty tow-y) i/“yg(t)dt
8y2 ’ 2y y2 y3 T—y
2
o L2<Tg) |g |H2 . , and note that

Ou )= 505 [ Gt g5+ 0) 4@y - o+ a ) d
daay @) =g | W@ty —g o) tg@—y) (st -y) ds

Use Hardy’s inequality from Proposition 2.3 to obtain

H 9%u

- 12
920y Ig |

H2(0R)

L2(T§)

0%u 1 Y
8—y2(z’y):E/O fg(?";l‘,y)dT’

Finally, notice that
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z+y r+(z—y)
where fo(r;z,y) = / (¢ (x+y)—g'(s)) ds + / (¢'(s) — ¢'(z —y)) ds. Using Hardy’s inequality in
r+x =y
Proposition 2.3 again, we deduce that
82
H 502 < gl
Y L2(T}) 16 H? (0,R)’

We finally put the three estimates for the partial derivatives of u of second order together to obtain

2,12 L2
//T,; IVl dedy < el
Step 2. Lower Bound in (2.1).

Case 1. Assume that v € LY(T};R?) N O (T} ;R?) is such that Vv € L2(T5;R?*?).
First it is easy to prove that
2

0)—v(z—y,0 1/ !
v(z + v, )va(:c Y, )‘ <§(/ \vu(x+y—ty,ty)\dt+/ |Vu(:c—y+ty,ty)\dt)
0 0

By estimating the right-hand side using Lemma 2.8 and Minkowski inequality, we obtain

2 2
DOy o <8IV

Case 2. Assume that v € L}(T};R?) is such that Vv € L2(T%; R?*2).

First by reflection, extend the function to v € L'(Tr;R?) with Vv € L?(Tg;R**2). Let . be the stan-
dard mollifiers and consider v. := v x . defined in T5, = {(:E,y) €TgR: d((:c,y),é)TR) > 5}. Then v, — u
in L} (A;R?), Vo, — Vv in L?(A;R**?) and v.(-,0) — Tv in L' (AN (R x {0}); R?) for any open set A € Tr.
We can find a subsequence (not relabeled) such that v.(z,0) — Tw(z) for L'-a.e. 2 € AN (R x {0}). Then by
Case 1, we have

/ / ‘TU(:C) —To(y)|” Ve (2, 0) — Ve (yao) ’
ANERx{0}) JAN(Rx{0}) r—y

dzr dy

dedy < hmmf/ /
e=0" JAn®x{0}) JAN(Rx{0})

< 8 lim // |V > de dy = 8// |VU|2dxdy
e=0% JJanTi;

Let A, C Ap+1 € Tg be such that Tg = |J A,. Then one deduces that

// d dy < // |Vo|? dz dy.

Apply this result to v := Vu to deduce

/ / dxdy // |V2ul|? dz dy,

which proves the lower bound in (2.1). O

To(x Tv(
T —

gy
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2.4. Slicing on BV

We use here the same notation as in Section 2.1.

Theorem 2.10 (slicing of BV functions). Let u € L*(Q2). Then u € BV (Q) if and only if there exist N linearly
independent unit vectors e; such that u¥, € BV (QY) for LN "t-a.e. y € Qe, and

[, pusi@n)dy < o
Qy

€q

foralli=1,...,N.
We state an immediate corollary of Theorem 1.24 from [17].

Proposition 2.11. Let Q C RY be a bounded open Lipschitz set and let E C Q2 be a set of finite perimeter.
Then there are sets E,, C Q of class C? such that
LY (EAE 0
NE n =0, (2.3)
HN-LOEAOE,) — 0.

Proposition 2.12 (see Sect. 5.10 in [12]). Let A C RN be an open set, let E C A be a Borel set, let e be an
arbitrary unit vector, and E has finite perimeter in A. Then EY has finite perimeter in AY and OEY N AY =
(OENA)Y, and

/ HO(aEgmAg)dyz/ (vg,e) dHN L,
Ae AOENA

Conversely, E has finite perimeter in A if there exist N linearly independent unit vectors e;, i =1,..., N such
that

/ HO(OEY NAY ) dy < oo
foralli=1,... N.

5. Functions of bounded variation on a manifold

We consider several spaces of functions with domains A C RY which are not open. Specifically, A will be the
boundary of an open and bounded set € of class C? and so it will be a compact Riemannian manifold (without
boundary) of class C? and dimension N — 1 in RY. Such a manifold is endowed with a unit normal field v
which is continuous and defined for every x € A. In this section we give a brief definition of these spaces. For
more details see [3,12,18].

The space of integrable functions on a manifold. Let A C R be a compact Riemannian manifold (without
boundary) of class C' and dimension N — 1 and define the restriction measure HY 1| 4(E) := HN"Y(E N A).
A function v is said to be integrable on A, and we write v € L'(A;HN~1|4), if and only if v is HN 1| -
measurable and HV ! | A-summable, precisely

(J) is HN | s-measurable for every open set .J C R;

/|v ) dHN1(z) <

The space of functions of bounded variation on a manifold. We give a short introduction to the space of functions
of bounded variation on a manifold. For more details we refer to [19].
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Let T* A be the cotangent bundle of A and let T'(T*A) be the space of 1-forms on A. Then, given a function
v € L'(A), define the variation of v by

|Dv|(A) := sup{/ vdivwdHY ! w € T(T*A), |w| < 1}. (2.4)
A

Then v € L'(A) is said to be a function of bounded variation, i.e., v € BV (A) if |Dv|(A) < oo. Moreover, if
v = xg for some set E C A, then E has finite perimeter if and only if v € BV (A4), and

Pers(E) = |Dv|(A) = HN"2(EN A) < 00

Proposition 2.13. Let Q C RY be an open bounded set of class C? and let E C OS2 be a set of finite perimeter
with respect to HN 2. Then there are sets E, C 0 of class C? such that

HN-YEAE,) — 0,
HN72(83QEA339E71) — 0.

3. CHARACTERIZATION OF CONSTANTS

Lemma 3.1. Assume that V : R — [0,00) satisfies (HY ) — (HY). Then the constant c defined in (1.4) belongs
0 (0,00).

3
HZ (R) and {R,} C (0,00)

Proof. Assume by contradiction that ¢ = 0. Then there exist two sequences {f,} C H?_

satisfying
(—x)=a, fo(z ) =04 foralz>R,, (3.1)
n n f/ f/ Ry oo
/ / |x — |2( )l dzdy + /R" V(falz)) dz —= 0. (3.2)

Let 0 < 20 < 8 — a. Since fp,(—Ry) = «, fu(Ry) = 3, and f,, is continuous, there exists an interval (S, T,)
such that

fn(Sn) =a+6 < f—=0=fu(Th), fn([San]) =[a+0,8—0]. (3.3)
By (H}) and the continuity of V' we have that Cs := : mgnﬁ . V(z) > 0. Then by (3.2),
z€|a+0,8—
Rn TW,
0= lim V(fu(z))dz > lim V(fn(z))de = liminf C5(T5, — Sy),
n—oo | _p. n—oo g n— oo

and so T}, — S,, — 0. For any ¢ € [0, 1], define
Gn(t) == fu(Tpt + Sn(1 —1)).

Then g,(0) = o+ § and g(1) = § — §. Changing variables in (3.2) yields

// flz |:c—f/()| dady = g _S //llgn |3:t|2 O a0,

’
% — 0, and so, up to a subsequence (not relabeled) In— — constant
To=5 | 1% (0.1) ’ v ' T,-5,

in L2(0,1). Since T}, — S,, — 0, this implies that g/, — 0 in L?(0,1).

This implies that
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On the other hand,
1
0<A—5=(a+8) =00~ 0:0) = [ a0t
Letting n — oo, we obtain a contradiction. This shows that ¢ > 0.
To prove that ¢ < oo, take any function f € C? such that f(t) < a for t < —1and f(t) = B fort > 1. It is

easy to verify that the energy is finite. O

Remark 3.2. From the proof of the previous lemma, it follows that for every 0 < ¢ < Boa , the constant

mf{ / / |x_y|2 )|2dzdy+/;v(f( ))dz: f € 1OC(JR),

F(S) = a8, F(T) = B—06, fu((SuTw)) = [+, 5 — ], for some S, T € R} (3.4)

also belongs to (0, c0).

Lemma 3.3. Define the constant ¢ as before by
T[T @) - )P =
feH! (R), f(—t)=a, f(t) =B, forallt>R, R> 0},

where V' satisfies the properties of Theorem 1.1.
Then ¢ € (0, 00).

Proposition 3.4. Under the conditions of Theorem 1.1, ¢ = c., where ¢, is defined by

ool (L5 ”*wdy)é(/_11V<g<x>>df)§:

Hl?)c(R)v g € H%(R)a g(—t) =a, g(t) =0 forallt > 1}.

Proof. First we prove that ¢ > ¢,. Let n > 0, and f € HEC (R), R > 0 be such that
freH*R),  f(-t)=a, f(t)=0, forallt >R,

1 R R f/ 7,]” 2 R

Then

/ /1| (R U 410,18 [ V(s s

|3U —yl? 1

852// g |x— ()IdedymR/l V(gn(e) di > .

-1
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where gr(x) = f(Rx) which is admissible for ¢,, and
SRargmin{ / /1 |gR Ir(v)” d:cderS/1 V(gR(x)) dx}
§>0 852 |$ - y|2 1

/ / shle) 80 o,

/1 V(gr(z)) dz

wl=

Let n — 07 to deduce that ¢ > c,. The converse inequality follows trivially from following the first part of the
proof from the end to the beginning. O

Proposition 3.5. Under the conditions of Theorem 1.1, ¢ = ¢*, where ¢* is defined by

oL R ) (L

Hl?)c(R) g(it) = Q, g(t) = 6; fOT’ all t = 1} .

@i

4. TWO AUXILIARY ONE-DIMENSIONAL PROBLEMS

4.1. Compactness for F.

Theorem 4.1. Assume that W : R — [0, 00) satisfies (H}V) — (HY). Let I C R be an open, bounded interval,
let {e,} be a positive sequence converging to 0, and let {u,}y C H*(I) be such that

sup F, (un; I) < oo. (4.1)

Then there exist a subsequence (not relabeled) of {u,} and a function u € BV (I;{a,b}) such that u, — u
in L*(I).

Proof. Given a sequence {u,} C H?(I) satisfying (4.1), by the compactness result in [14] and (H3"), we obtain
a subsequence {u,} (not relabeled) and a function u € BV (I;{a,b}) such that u,, — u in L*(I). O

4.2. Lower bound for F.

Theorem 4.2 (lower bound estimate for F.). Let I C R be an open and bounded interval and let W : R — [0, 00)
satisfy (H{") — (H3"). Let w € BV (I;{a,b}), let v € BV (dI;{c,8}), and let {u.} C H*(I) be such that
sup Fr(ug; I) =: C < o0, ue — u in L2(I) and Tu. — v in H°(OI). Then

€

liminf F.(us; I) > mH°(S(u)) + / o(Tu(z),v(z)) dH(z),

e—0+ oI
where m and o are defined in (1.2) and (1.3), respectively.

Proof. Passing to a subsequence (not relabeled), we can assume that

liminf F. (us; I) = lim F.(ug; I).

e—0* e—0t

Since ue — w in LY(I) and |[W(ue)| 111y < Ce, by the growth condition (H3"), we have that, up to a
subsequence (not relabeled), u. — w in L*(I), and sup, |luc|| 2y < C.
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In turn, by Proposition 2.6 and the fact that |[u[|2() < Ce~2, we deduce that lulllz2(ry < Ce™1, and so

lim /|€u’€(x)|2d:ﬂ =0.
I

6*}0+
Thus, up to a subsequence (not relabeled), we may assume that
euL(z) — 0, and wu.(z) — u(x) (4.2)

for £'-a.e. x € I. Since u € BV (I;{a,b}), its jump set is a finite set, so we can write S(u) := {s1,...,50},
where
so:=1iInfl < s1 < -+ <sp<Spqp1:=supl.
Fix0<n< B_TO‘, and 0 < &g := %min {sit1 —8i:1=0,...,¢}. Using (4.2), for every i = 1,...,¢, we may find
:L'Zi € (s; — 9o, $i + 0p) such that
luc(zf) bl <n,  Jue(z;) —al <, and  |eul(a)] <. (4.3)

Moreover, since u is a constant in (sp, s1), we assume that u(x) = a in this interval (the case u(x) = b is
analogous), and we have that Tu(so) = a. Using (4.2) once more, we may find a point x such that

lue(zg) —al <n, and |eul(zg)| <n (4.4)

for all e sufficiently small.
On the other hand, Tu.(so) — wv(so), and so [Tuc(so) — v(so)| < 3 for all e sufficiently small. Since

lim__ & uc(x) = Tuc(so), there is 0 < p. < 2§ < so such that |u.(z) — v(so)| < n for all z € (sg, so + p-)-

T8
There are now two cases. If u.(x.) = v(sg) for some z. € (so, 7 ), then take Toe = Te. If uc(xe) # v(s0)
for all x. € (sg,2{), then we claim that there exists Ty . € (S0, x7) such that

u;(xae)(ue(xae) —v(sp)) > 0.
Indeed, if say uc(x) > v(so) in (so, 2 ), then for n > 0 such that |v(so) — a| > 27, we have that
|uc(zq) — v(s0)| = [v(s0) — af — |ue(zg) —al >,
and so there exists a first point z. € (so, 2§ ) such that
ue () = v(s0) + 1.
Hence, by the mean value theorem, there is ;. € (s0, <) such that

e\Le =T € +n— -3
(o) = el ZTuelso)  wlso) bz wlo) 75
Te — So Te — S0

Thus, we have found zg . € (so, :E(J{) such that

lue(zg) —v(so)l <n and  ul(wg,)(us(zq,) — v(s0)) >0, (4.5)
for all ¢ sufficiently small. For simplicity of notation, we write z; := z; . and z,,, := x,,, .. From the facts
that the intervals [x;, xj'] are disjoint for ¢ = 0,...,¢+ 1, and that W is nonnegative, we have that

£+1

rn >y " (bl + 2oy ) a m
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We claim that
+

/x <53|u'€'(x)‘2 + éW(ue(m))) dz = ml—0(n) — Oe) (4.7)
foralli=1,...,¢, that 1
/xo (EB‘u'E'(x)‘Q + %W(ue(m))) doe > J(Tu(so),v(so)) —0(n) — O(e), (4.8)
and that )
/f+1 (g3|ulel(x)‘2 + éW(uE(x))) dz > o(Tu(se+1),v(se41)) — O(n) — O(e). (4.9)

41

If (4.7), (4.8), and (4.9) hold, then from (4.6) we deduce that

liminf F, (ue; I) = ml + o (Tu(so),v(s0)) + o (Tu(se+1),v(se1)) — O(n).

e—0t

Letting n — 07 yields
lim(i)gf F.(ug; 1) > m€+/ o(Tu(z),v(z)) dH(z).
e— or

The remaining of the proof is devoted to the proof of (4.7), (4.8) and (4.9).

Step 1. Proof of (4.7).
Define the functions

G(w,z) = inf{/o W (g(x)) + |¢" (@) dt : g € C2([0,1];R), g(0) = w, g(1) =b, ¢'(0) = z, ¢'(1) = 0},

H(w,z) = mf{/o W (h(z)) + |h"(x)\2dt :h e C*([0,1];R), h(0) = a, k(1) =w, K'(0) =0, K'(1) = z}

(4.11)
Note that, considering third-order polynomials, one deduces that these functions satisfy
lim G(w,z) =0, lim H(w,z)=0. (4.12)
(w,2)—(b,0) (w,2)—(a,0)

From (4.3), for ¢ sufficiently small, we have G(uc(z]),eul(z})), H (uc(z; ), cul(z;)) < n. By (4.10)
D) eul(zf)) and H (ue(z; ), cul(z;)), re-

i

and (4.11), we can find admissible functions g; and hi for G (ue(x
spectively, such that

/0 15" (@)[2 + W (5 () dz < G (ue(a), eul (=) +1 < 20, (4.13)
; ‘i?i”(x)f + W(l?l(x)) dz < H(uc(z; ), eul(z;)) +n < 2n. (4.14)

We now rescale and translate these functions, precisely,

+

gi(@) :=g§(:c—%'), hi(z) ::i@-(x—£+1).
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Define
N
b ifx > % +1,
+ +
gi(t) i T <w < T4,
— +
We i () = uc(ex) if z; <z < %,
hit) i TR -1<a <
a ifo <f—1.

g
zF

By construction w, ; € HQ(%: -1, =%+ 1) and w, ; is admissible for the constant m given in (1.2). Hence
for all e sufficiently small,

/:f (EB‘ug(x)‘Q + %W(ue(:v))) dz :/L_ (‘wg"i(y)f + W(waﬂ-(y))) dy

= [ (Rt W) au- [ (160 + W@ 6)) a

where we used (4.13) and (4.14).

Step 2. Proof of (4.8).
Define the functions

L(w, z) == inf{/o W (f(2)) + |f"(x)|" dt : f € C*([0,11R), £(0) =w, f(1)=a, f(0) =z, f'(1) 0},
(4.15)

J(w, z) = inf{/rW(j(x)) + ‘j"(ac)|2dt :j € C*([0,7];R), 4(0) = v(0), j(r) = w, j'(r) = z, for some r > 0}.
’ (4.16)

Analogously to (4.10), lim L(w,z) = 0, and from (4.4), for all ¢ sufficiently small we have

(w,2)—(a,0)

L(ue(zg),eul(zg)) < n. Hence we can find an admissible function Jo for L(ue(zg), eul(zy)) such that
! = ORNE + s
/ W (fo(2)) + [fo ()] do < Lue(ag), eul(zg)) +1 < 2. (4.17)
0
We now prove that
hH(l : J(w, z) = 0. (4.18)
w—v(sg

z(w—v(s0))=0
Fix > 0 and let w, 2 € R be such that |w — v(0)| < 1 and z(w — v(0)) > 0. If [z] < /7, then take
Jj@) i =w+z(x—1) + (”(O);#(m — )2, which is admissible for J(w, z), to obtain

J(w,z) < C|r+

_ 2 2
@O —wtrz] [, 7 1]
73 o

Choosing r = /1, we deduce that J(w, z) = O(\/7).
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If |z| > /7, then let r := w_TU(O) > 0, which satisfies 0 < r < /5. Then, let j(z) := w + z(z — r), which is
admissible for J(w, z) because j(0) = w — zr = v(0) and j”(z) = 0, so J(w, z) = O(\/n). This proves (4.18).
By (4.18) and (4.5), we may find a function j admissible for J (uc(xg ), cul(2g,)) such that

T
) . 2 _ _

| W) + 15O at < I (utap). el 5.) + 0 < 20, (419)

0

forsomer*rn)>0
Set fo(x fo( ) and define
a if x > 1—|—r+77,
wn(a) = | @) it S5 <o g

ug(s(zfr)Jr:Ea’E) fr<z<r +%,
j(z) fo<e<r

By construction we o belongs to H?2

loc

for all e sufficiently small, we have that

(0,00) and is admissible for (Tu(so),v(so)) as defined in (1.3). Hence

+ —
Tg —®g

/;g (EB‘ug(I)f + %W(ua(x))) da :/TH ) (|w;’70(y)|2 + W(w570(y))) dy

0

+_,
0 ~%o

/OHHw E (|wé’,o(y)|2 +W(ws,o(y))) dy
ij%@W+W@@Mdy
- [ (G + W) v > o (Tutso) ofoo)) — 41

where we have used (4.17) and (4.19). This proves (4.8). The proof of (4.9) is analogous. O

4.3. Compactness for G,

To prove compactness for the functional G. defined in (1.7), we begin with an auxiliary result.

Lemma 4.3. Let 6 € L'(J;[0,1]) and let

X = {:c cJ :][ 0(s)ds € (0,1) for all 0 < & < &g, for some 6y = do(z) > 0}
JNB(z;0)

be a finite set. Then 6 € BV (J;{0,1}) and S(0) C X

Theorem 4.4 (compactness for G.). Assume that V : R — [0,00) satisfies (HY ) — (HY). Let J C R be an
2 .

open, bounded interval, let {e,} be such that e, 3 — L € (0,00), and let {v,} C H2(J) be such that

sup Ge, (vp; J) < 0. (4.20)

n

Then there exist a subsequence (not relabeled) of {va,} and a function v € BV (J;{a,3}) such that v, — v
in L?(J).
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Proof. Since A, — 00, by (4.20) we have that
Cy = Sup/JV(vn)d:E < 0.
By condition (HY') and the fact that J is bounded, we have that
%LI(J) +C/J v, |* da < /JV(vn)dz <O,

and so {v,} is bounded in L?(J). Thus by the fundamental theorem of Young measures (for a comprehensive
exposition on Young measures, see [4,13,23,26]), there exists a subsequence (not relabeled) generating a Young
measure {vy }zcs. Letting f(z) := min{V(z),1}, since A, — oo, we have that

Ozlirrln/]f(vn)dm:/J/Rf(z)dl/z(z)d:c.

Since f(z) = 0 if and only if z € {«, 8}, we have that for L'-a.e. z € J,
Ve =0(x)00 + (1 —0(2))ds (4.21)

for some 6 € L>(J;[0,1]). Define
X = {x cJ :][ 0(s)ds € (0,1) for all 0 < § < &y, for some Jy = dp(x) > O} . (4.22)
B(x;0)

We claim that X is finite. To establish this, let s1,...,s; be distinct points of X and let 0 < dy <
%min{|si —s;|lti#7g,1,7=1,...,£}. Since s; € X, we may find d; > 0 so small that d; < dy and

][ 0(s)ds > 0, ][ (1—46(s))ds > 0. (4.23)
B(sid;) B(si;di)

Define d := min{ds,...,d¢}. Let 0 <n < B;QQ, let ¢, € C® (R; [0, 1]) be such that supp ¢, C B(a;7) and
¢n(@) =1, and let v, € C°(R; [0, 1]) be such that supp v, C B(8;n) and v, (a) = 1.
Using the fundamental theorem of Young measures with

f(ma Z) = XB(s7,;d)(93)80n(Z)7

we obtain
lim on(vn(z)) dz = / / f(z,2)dvg(z)de = / O(z)dz > 0. (4.24)
00 JB(sisds) R JR B(siidi)
Similarly,
lim Y (vn(2)) dz = / (1—6(z))dz > 0. (4.25)
o B(si;di) B(sizdi)

In view of (4.24) and (4.25), we may find xfz € (s; — d, s; +d) such that

|U"(I;,i) —al<mn, and |Un($:;,z) — Bl <.
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_1
Let wy(x) := v, (gn)\n 3x), which is admissible for the constant ¢, defined in (3.4). Then by (4.20),
‘

oo > C = liminf Ge, (vp; J) > lim infz Ge, (vn; (z

=1

n,is :L';Li_z))

+

¢
.. 2 T i Tni
= hrr%mf g enin G1 <wn; (F, —1)> > c,LL.

i=1 An S EnAn3

We conclude that

C
0 < —
H(X)\an<oo'

By Lemma 4.3, this implies that 6 € BV(J; {0, 1}) In particular, we may write 0 = g, and 50 vz = 0y(a),
where
a ifzekFE,
v(z) = _
g ifzeJ\E.

It follows that {v,, } converges in measure to v. By condition (HY), there are C, T > 0 such that V (2) > C|z|?
for all |z| > T, and so
/o Ci 1

1
vp (2! de’g—/anx’ do' < =——-
/EO{WT“ (') & [ v < Gy

This implies that {v,} is 2-equi-integrable. Apply Vitali’s convergence theorem to deduce that v,, — v in L?(J).
O

4.4. Lower bound for G.
In this section we prove the following theorem.
Theorem 4.5 (lower bound for G.). Let J C R be an open and bounded interval and let V : R — [0, 00) satisfy
2
(HY) — (HY). Assume that e — L € (0,00). Let v € BV (J;{a,3}) and let {v-} C H%(J) be such that

sup Ge (ve; J) =: C' < o0 (4.26)
e>0

and ve — v in L*(J) as e — 0F. Then

liminf G (ve; J) = cLHY(S(v)),

e—0t

where ¢ € (0,00) is the constant defined in (1.4).
We begin with some preliminary results.

Lemma 4.6. Let V : R — [0,00) satisfy (HY) — (HY), and let v € H?(c,d) be such that Tv(c) = w and
TV (¢) = z, for some ¢, d, z, w € R, with c < d and |z| + |w — o] < 1. Let

where p is the polynomial given by

p(x) == a+ Bw—3a—2)(x —c+1)2 + (2 + 2a — 2w)(z — c + 1)3.
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Then f € H2(c—1,d),

/cdl/cdlwd”dy/d/d%—v/gwdxdy
/61/6 1Ip |m7 dxdy+2/c 1/ |:E7 )Idedy

C(lz| + o — w|) + 2Sv(c), (4.27)
and
d c 9
/ v dx—/ V(o)) de :/ Vip(a)) de < C(12] + |a — w])?, (4.28)
c—1
for some constant C = C'(V,a) > 0, and where
S()._/dwd (4.29)
v(c) == ; P x. :
Moreover,
A GOl 2
< - ) 4.
/C_l P dz < C(Jz] + o — w)) (4.30)
¢ @) 2
—_— < — . .
/671 S o < O(f + fo =) (4.31)

Proof. Since V € C%(R), and V() = V’'(a) = 0, by Taylor’s formula, for any ¢ € R, there exists ¢y between «
and t such that V(t) = VT(tO)(t —a)?.
On the other hand, we have that
Ip(z) —a| < 3w —3a—z|(x—c+1)* + |z 4+ 2a — 2w||z — c + 1> < 5(|2] + |o — wl)

for all x € [¢c — 1, ¢], and so

/_1 Vip(z))de < % (ge[max |v"(g)|> /;(p(x) —a)de < C(I12] + |a — w])?.

a—5,a+5]
To estimate the first integral in (4.27), write p’(z) in the following form
p'(x) = 2+ 2(22 + 3a — 3w)(z — ¢) + 3(2 + 20 — 2w)(z — ¢)?,
for all € [¢c — 1,¢]. Then, for z € [c —1,¢],
/(@) — 21 < 12(|2] + | - wl) |z - (432)

while for z, y € [c—1,¢],
P’ (x) — p' ()] < 18(|2] + |a — w]) |z — yl, (4.33)

/Cl/C 1 |:c— )| dzdy < (|z|+|a_w|)2.

and so
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To estimate the second integral in (4.27), we have that

/_1 Vcdwo@] dy<2/ci1 Uf%dx

where we have used the fact that v'(c) = z.
By Fubini’s theorem,

e - W) @R
/V PR d]d“/c FETEE

c d |/ 722 c / 722 C ,

This concludes the first part of the proof. To estimate (4.30), we write p'(z) = 23w — 3o — 2)(z —c+ 1) +
3(2 + 2a — 2w)(z — ¢+ 1), so for € (¢ — 1,¢) we have

c d |,/ S22
dy+2/ /de dy,
c—1 c |l‘7y|

while

' (2)]? < C (2] + o — w])* (@ — e+ 1)%.

Hence . ()2
p'(x 2
—————dax < C — ,
/c_l L da < Ol + o~ wl)
while )
c / 2 c
p'(2)| 2/ z—(c—1) 9
————dx <C(lz]| + |la—w ——— | de < C(|z| + |laa —w])".
/c—l |z —d—1J? (2] +| ) ez (d+1) (2l + 1 )
The estimate for (4.31) is analogous. This completes the proof. (I

Corollary 4.7. Let V : R — [0,00) satisfy (HY) — (HY) and let v € H3(c,d) be such that Tv(c) = wy and
Tv'(¢) = z1, Tv(d) = wa and TV'(d) = z2, for some ¢, d, z1, z2, w1, wa € R, with ¢ < d and |z1]|+ |w1 — ] <1
and |za] + |we — B < 1. Let

p2(z) ifd<z<d+1,
fx):=<v(x) ife<x<d, (4.34)
pi(x) ife—1<z<e,

where p1 and ps are the polynomials given by

p1(x) := a+ Bw; —3a— 21)(x — c+ 1) + (21 + 20 — 2wy ) (x — ¢+ 1),

p2(z) := B+ (Bwy — 36+ 22)(d +1 — 2)* + (20 — 2wy — 22)(d + 1 — ). (4.35)

Then f € H2(c—1,d+1),

d pd . / 2 d+1 d+1 | pr / 2
V' (z) — ' (y)] | () = f'(y)|
/c / v — P dxdy?/c / dedy

-1 -1 |$ —y|2

— C(|21] + 22| + | — wi| + 8 — wa))® = CQu(c, d) — 25v(c) — 29v(d), (4.36)

and

d d+1 9
[ ve@)des [ V(@) de - Clal+ fal +la - wl +15 - wal)” (437)
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d+1.
d

Sa

c
i .

c—1 c d d+1

FIGURE 1. Scheme for the estimates.

where C = C(V,a,3) > 0
[v'(c) —v'(d)?

Qu(e,d) := o dp , (4.38)

and Sv(-) is defined in (4.29).
Proof. The estimate (4.37) follows by applying twice (4.28) in Lemma 4.6.
To obtain (4.36), by Figure 1, it suffices to estimate the double integrals over the sets Sp, S2, and Sy.

The estimates on S; and S5 are a direct consequence of Lemma 4.6. To estimate the integral over Sy, we
observe that

ph () = 21 +2(221 + 3 — 3wy (z — ¢) + 3(21 + 2a — 2wy ) (z — ¢)?,
Py () = 20 + 2(—229 4+ 308 — 3wa) (x — d) + 3(22 — 28 + 2wy (x — d)?,

so for z € (¢ —1,¢) and y € (d,d + 1), we deduce that
p1(2) = Pa ()] < [z — 22 + C(Jza] + 22| + | — wi| + 18 — wa) |z — y].
This implies that

d+1 9 )
zZ1 — 2 9
/ / |$_y|2(y)| dmdy<0ﬁ+0(|zl|+|22|+|aw1|+|ﬂw2|) ) 0

Corollary 4.8. Let V : R — [0,00) satisfy (HY) — (HY) and let v € H%(c,d) be such that Tv(c) = wy,
TV (¢) = 21, Tv(d) = wa, and TV (d) = 23, for some ¢, d, z1, 22, w1, wy € R, with ¢ < d, |z1| + |w1 — o] < 1,
and |za| + |wy — B < 1. Let

1] if x>d+1,
pa(x) if d<xz<d+1,
f(z) == < v(x) if c¢<x<d, (4.39)
pi(z) if c—1<z<e,
« if x<c—1,

where p1 and pa are the polynomials defined in (4.35).
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Then f € H2(c—1,d+1), f' € Hz(R), and

d pd . 7(00)|2 0o poo | g1 1oNI2
[v'(z) —v'(y)] (@) = f'(y)] B B S
L] et [ R a0l fal o w418 - wa)

z —yl?
— CQu(c,d) —2(1+d—c)(Sv(c) — 2Sv(d)) — 2log(1 + d — ¢)(|z1]* + |22]*), (4.40)

where C' = C(V, o, 8) > 0, Qu(-,-) is defined in (4.38), and Sv(-) is defined in (4.29).
Proof. By Corollary 4.7, we know that

c+1 d+1 / / d
1 (@) = f'WI? V' (z) —v'(y)|? )|
[ ] g - // et
(|Z1| + |zo| + o —wi| + |6 — wg|)2 + CQu(c,d) 4+ 2Sv(c) 4+ 2Sv(d),

so to prove estimate (4.40), it suffices to estimate

(=) = f')I* /°+1 /d+1 |f'(z) = f'(y)]? £k gk
d d dzdy = 2(1 1 1,
/ / |x_y|2 ray — . |fL‘_y|2 Y ( 4 + 5 + 6 )7

where the I;’s are defined by

— c 2 2
c—1 |=’E*y|2 7 * d+1 |=’E*
c—1 d+1
d4+1Je—1 |3U - y|2 |3U - |2
c—1 d | / d |U
/ / d:cdy, / / d dy.
d+1 |z —

To estimate I, , we compute

c / 2
I[:/ de<0(|zl|+|a—w1|)2

ee1T—c+1

by (4.33) (with p replaced by p1), and analogously, I” < C(|z2| + |8 — w2|)2.
For I, we have that

i Mdm/c W@ G, 1 < o]+ - wr))?
° 671d+171‘ A c71x76+1 P 7

and analogously I < C(|z2| + |8 — w2|)2.
To estimate I , we write

I_/d |v’(z)iv’(0)|2dm<2/d v(z) — (e )’ de/d UG (4.41)
6 . z—c+1 ST c+1 . x—c+1 '
d 2
[v'(z) = v'(c)] (fE c)’ 2
<2 2021 log(1 + d —
/c w—o? Jr1d30—i— |z1]*log(1+d —¢)

< 2(d - ¢)Sv(c) + 2|21|2 log(1+d —c¢).

Analogously, I} < 2(d — ¢)Sv(d) + 2|22|?log(1 + d — ¢). This completes the proof. O
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Proposition 4.9. Let J C R be an open and bounded interval and let V : R — [0,00) satisfy (HY) — (HY).
2
Assume that eN2 — L € (0,00), and consider a sequence {v.} C H3(J) such that squ (ve; (7, 2T)) < o0,

for some x* € J, with
|evl (x )} C,
’ % Sv-(2F)| < C, (4.42)
|£°Que(2™,2M)| < €,
where C' >0, n >0, and Sv(-) and Qu(-,-) are defined in (4.29) and (4.38), respectively.
Then

liminf G, (UE; (x_,x"')) > cL, (4.43)

e—0t

where ¢ € (0,00) is the constant defined in (1.4).

_1 _1 _1
Proof. Define w,(t) := v (E)\E 3 t) for x € J. By the change of variables x = e); °t, y = e\c ® s, we have

Ge(ve; (2~ / / |my|2( )‘dedy—i-)\/ (ve(2)) dz

w’( )‘2 w+1
|t75|2 dtds+/ TV (we (1)) di | (4.44)
E)\;% 5)‘/5 é

—5)\3

Let f. be the function given in (4.39) with the choice of parameters

v i= w;,
x~ xt

C = — dii 1
el 8 EXe °

2
By Corollary 4.7, (4.44), and the fact that e\ — L, we have that

CuE | / z+1+1
Ge(ve; (7, 27)) > (L+o(1 e ? e®) = fe()7 i dtds +/ <2 V(f(b)de

It* s|?

EA;% (@) + ) + o= ve(a™)] + 18 = ve(a®)]

- + - +
+ Quw. :cil’ :cil + 25w, :cil + 25w, mil .
EXe 3 EX S EXe ° EXe °

-C
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L >05w6< -
el 8
(4.45

626

+

- >05w6< —
EX ®

T

1

)

We claim that f. € H B (R). If the claim holds, since f. is admissible for the constant ¢ defined in (1.4), and
xt )

1 _1
3 5)\5 3

by (4.42), we have that
EXe

1
Ge(ve; (z7,27)) = (L+o0(1))e— C(2A ° +2n)* — CQu. (
Since A; — o0, to conclude that the first part of the proof, it remains to estimate the last three terms on the

right-hand side of (4.45). By (4.42),
2
w(25) ()
— + £ -1 € ~1 4
QU}E < x_la x_l ) = 6)\5;; e eXe * < Cele 37 (446>
EXe ? e P T — 1
el 3 eXe 3
while
RNE
. o ot~ ut (25
1 3
Sw, < _1> = /axj 5 A dt < ONH, (4.47)
E)\E ) a)\i% ‘t_ x:ia
< eXe 3
and similarly
at .
Swe — | <CX] (4.48)
el ®

(L—o(1))e — C(2AZF 4+ 20)2 — Cenl® — A1,

Thus, by (4.45)—(4.48),
Ge(ve; (27, 2T)) >
Letting first ¢ — 0% and then  — 0" we obtain (4.43). To complete the proof, we show that
11 <C.
SUP| el 4 (g

/ / 2
|f€(ﬁi_£|€2(s dtds

Starting again from (4.44), but using Corollary 4.8 in place of Corollary 4.7, we obtain
)|

C > Ge(vs (2 ,ah)) > (L + "(1)% /,OO /jo
(4.49)

(2@ + R@)]) +la = ve(a7)[ + 18 — ve(a™)]
&)

x >+Sw6< —
EXe 8

—Cleal® (o
EXe® X B el ® e ®
+ _ —
u) (Jol (7)) + |v;<x+>|2)] .

+e2afl (
eXe?log |1+
EAe
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By (4.42), and (4.45)—(4.48), we have

€2 Ge(vsi (@) 2 (Lt o(W)IFI2, , — O +2m)? = Can?

+ g ) + g
_ ¢ <1+%> — O P log <1+%>- (4.50)
Ae eXe ® gle °

2
Since e\ — L, it follows that for all £ > 0 sufficiently small, we have

o /2
(L= o(WIfLy g < O+ L) +Cn,

where C' depends also on xt — z~. This proves that f. € Hz (R), which completes the proof. O

Proof of Theorem 4.5. Passing to a subsequence (not relabeled), we can assume that

liminf G (ve; J) = lim Ge(ve; J).

e—0t+ e—0t

This will allow us to take further subsequences (not relabeled). By Proposition 2.5, (4.26) and the growth
condition (HJ'), we know that ||ve||z1(s) < Ce™!
Since v € BV(J; {a, 6}), its jump set S(v) is finite, and we write
S(U) = {817 ceey Sg},

where s1 < --- < sp. Let 0 < d < %min{si —si—1:1=2,...,¢}, and assume that v = o in (s2j, S2j+1) for
j=0,..., where sg, s¢41 are the endpoints of J. Then

S1 / 2
lim 1iminf/ lkz|va( —al+ 5|v (2)] + _/ wdyl dz = 0.
517

k—oo e—0t y|2

Hence, we may find kg € N such that for all k£ > kg,

s1 / 2
lim inf klve(z) — af + 5|v( |+— wdy de < d.
517 |x_

e—0*t y|2

By Fatou’s lemma, we have that for k > ko,

! 811 £k CACRTAC) W P
a dlslg(lﬁ |ve (@) — a|—|——e|v |+— W?J T <

Fix kp > max{ko, %} By the mean value theorem, there exists 27 € (s; — d, s1) such that

2

1 vl(xy) —vl(y)

lim inf [m(ml) of + el (e + 5 / el ;__ B | dy] <.
1 1Y
So, up to a subsequence (not relabeled),
/ 2 |[vi(zy) y)‘Q 2

) —al<n eblEn)i <o, and @ [POZERLa <t s

lzy —y
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Analogously, considering

sitd 1 e [ |vi(x) —v’(y)|2 &% vl (z) —v’(ac_)|2
. .. Lo € 2 € e\l =
klgg()hgm(gr&f/ﬁ [k|ve(x)a|+ k€|va(x)|+ 3 /] P—E dy + 3 P dz =0,

we may find x € (s1, 51 + d) such that (up to a further subsequence)

at) — oLy’

dy < nk3, 4.52

,U/
e(@t) — Bl <nm  ell@h) <nk2,  and 53/J‘6(

and )
g [vl (@) = vl(a7)]

ot =y |?

< nk3. (4.53)

We now repeat the process to find points x;t in (s; — d, s; + d) with the properties (4.51)—(4.53).
By Proposition 4.9, we deduce that

14

liminf G.(ve; J) > lim inf G, (1)5; (z
e—0t = e—0+

EL

[}

I

i)
™~
g
o
n
=
OJ

]

5. THE N-DIMENSIONAL CASE
In this section we prove Theorems 1.1 and 1.2.

5.1. Compactness

In this subsection we prove Theorem 1.1. We follow the argument of [14], which we reproduce for the
convenience of the reader.

Theorem 5.1 (compactness in the interior). Let Q, W, and V satisfy the hypotheses of Theorem 1.1, and let
2
e — L € (0,00). Consider a sequence {u.} C H?(Q) such that
Cy :=sup Fe(ue) < 00,

where F is the functional defined in (1.1). Then there exist a subsequence of {uc} (not relabeled) and a function
u € BV (Q;{a,b}) such that u. — u in L*(Q).

Proof. For simplicity of notation, we suppose N = 2. The higher dimensional case is treated analogously.

Step 1. Assume that Q = I x J, where I, J C R are open bounded intervals.

For x € Q, we write z = (y,z), with y € I, z € J. For every function u defined on 2 and every y € I we
denote by u¥ the function on J defined by u¥(z) := u(y, z), and for every z € J we denote by u* the function
on I defined by u*(y) := u(y, z). The functions u?¥ and u* are called one-dimensional slices of u.

We recall that by slicing, if u € H?(f2), then w¥ € H?(J) for L'-a.e. y € I, u* € H?(I) for L'-a.e. z € J, and

62 d2 Yy 62 d2 z
a—;;(y, 2) = d—ZuQ(,z)7 a—yZ(y7 2) = d—gj;(y)’ for L'-a.e. y € I and for L'-a.e. z € J.
Since |V2u|? > max{ 227% , giylf }, we immediately obtain that
Cy > Fe(u) > /Fe(uy;J) dy, Cy 2 Felu) > / F.(u*;I)dz, (5.1)
I J

where F; is the functional defined in (1.6).
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Consider a family {u.} € H?*(Q) such that F.(u.) < C; < co. Then we have that W(u:) — 0 in L'(€).
From condition (H3"), we have the existence of C, T' > 0 such that for all |z| > T, W(z) > C|z|%. This implies
that {u.} is 2-equi-integrable and, in particular, it is equi-integrable. Therefore, fix 6 > 0 and let 7 > 0 be such
that for any measurable set £ C R, with £L2(E) < n,

sup/E(|uE(:c)| + |b]) dz < 6. (5.2)

e>0

For € > 0 we define v, : 2 — R by

ve(y, z) == 1

ul(z) ifyel, zeJ, and F.(u¥;J) < M,
b otherwise.

We claim that {v.} and {uc} are d-close, i.e., ||uc —ve|[L1(q) < 0.
Indeed, let Z; :={y € I : u¥ #v?¥}. By (5.1), we have

C1 >/Fs(uy;J)dy,
I

and so

ElZE <£1 I:Fg y.J M gL/FE y'Jdg n .
(Z) < £ ({ye I+ Rt ) > @50Y) < s | R ) dy < s

It follows that £2(Z. x J) < n. Thus, by (5.2),

e — vl </

Z-xJ

|ue(x) — b de < / (Jue(2)] + |b]) dz < 6.
Z-xJ
Moreover, for every y € I we have F.(v¥;J) < %1(‘]), where we have used the face that F.(b;J) = 0,

and therefore Theorem 4.1, yields L?(.J) precompactness of {v?}. Similarly, we can construct a sequence {w,}
-close to {u.} so that {w?} is precompact in L?(I) for every z € J.
Using Proposition 2.2 we conclude that the sequence {u.} is precompact in L?().

Step 2. General case.

This case can be proved by decomposing €2 into a countable union of closed rectangles with disjoint interiors.
The fact that the limit « belongs to BV (£; {a,b}) is a direct consequence of Theorem 2.10. O
Theorem 5.2 (compactness at the boundary). Let 2, W, and V satisfy the hypotheses of Theorem 1.1, and

let 5)\5'% — L € (0,00). Consider a sequence {u.} C H*(Q) such that
C :=sup Fe(ue) < 00,
€

where F is the functional defined in (1.1). Then there exist a subsequence of {uc} (not relabeled) and a function
v € BV (0Q;{a, B}) such that Tu. — v in L*(052).

To prove this theorem we introduce the localization of the functionals F.: for every open set A C 2 with
boundary of class C?, for every Borel set E C A, and for every u € H?(A), we set

F.(u; A, E) ;:/ <52|V2u|2+§W(u)) dx+>\5/ V(Tu) dHN .
A E

Note that for u € H?(Q), F.(u) = F.(u;,99Q). We begin by proving compactness on the boundary in the
special case in which A = QN B, where B is a ball centered on 092 and F = BN 9JN is a flat disk. Later on we
will show that this flatness assumption can be dropped when B is sufficiently small.
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Proposition 5.3. For every r > 0, let D, be the open half-ball
D, :={zx=(2,xy) €RY : |z| < r, zy > 0}
and let
E,:={z=(2,0) e RN : |2| < r}.

2
Let W and V satisfy the hypotheses of Theorem 1.1, and let eNé — L € (0,00). Consider a sequence {uz} C
H?(D,) such that

Cy :=sup F(ue; D,y Ey) < 0.
e>0

Then there exist a subsequence of {uc} (nor relabeled) and a function v € BV (E,;{«, 8}) such that Tv. — v
in L*(E,.).

Proof. To simplify the notation, we write D and F in place of D, and E,.
The idea of the proof is to reduce to the statement of Theorem 4.4 via a suitable slicing argument.
Fixi=1,...,N —1and let E., :== {y € R¥N=2: (y,2;,0) € E for some z; € R}. For every y € E,,, define
the sets

DY := {(z;,zn) € R?: (y,z;,xN) € D},
EY :={z; e R: (y,2;,0) € F}.

For every y € E,, and every function u : D — R, let «¥ : DY — R be the function defined by
w(z;,2n) = u(y, i, TN), (xi,zn) € DY,
and for every function v : E — R, let v¥ : EY — R be defined by
v/ (x;) = v(y, ;), x; € EY.

If u € H%(D), then by the slicing theorem in [27] for LN 2-a.e. y € E,,, the function u¥ belongs to H2(DY),
for £L2-a.e. (x;,zy) € D,

Y
%(yami;zN):g—zk(miaxN)a fOI'k?:’i, Na
and
0%u o*uY
a. o (2] = 3. . Wiy ) f ka j = 'a N7
Fendz, W0 TN) = g (T an) ork, =t

and the trace of u¥ on EY agrees L'-a.e. in EY with (T'u)?. Taking into account these facts and Fubini’s theorem,
for every € > 0 we get

F-(u; D, E) > 53/ | D?u(z)|? dx—l—)\e/ V(Tu(z',0)) da’
D B

2/ {53/ |Dii7mNuy(aci,xN)|2dxide—l—)\a V(TuY(x;,0))dz; | dy.
E. Dv Ev

We apply the trace inequality (2.1) to each function u¥ to obtain

Fo(w; D,E) > / Go(Tu¥; EY) dy, (5.3)
E.,
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where G, is the functional defined in (1.7). To prove that the sequence {Tu.} is precompact in L?(E), it is
enough to show that it satisfies the conditions of Proposition 2.2. Since

Cy =sup F-(ue; D, E) < o0, (5.4)
e>0

we have that
sup Ao V(Tua(ac', O)) da’ < Cy.
e>0 E
From condition (HY), we may find C, T' > 0 such that for all |z| > T, V(z) > C|z|?, and so

2 2C7 1
Tu.(z',0 2d:c’<—/VTu€ 2/,0))dr’ < ——-
/Eﬁ{|Tu5>t}| («",0) CJE (Tue(a',0)) C A

This implies that {T'u.} is 2-equi-integrable. In particular, it is equi-integrable. Thus to apply Proposition 2.2,
it remains to show that for every § > 0 there is a sequence {v.} C L!(E) that is d-close to T'u., in the sense of
Definition 2.1, and such that {v¢} is precompact in L(EY) for LN 2-a.e. y € E,,.
Fix 0 > 0, let n > 0 be a constant that will be fixed later, and let
TuY(x;) ifyeE.,, € EY, and Go(Tu?; BY) < &,
V= (y, z;) = { ub(w) iy € B, @ and Ge(Tut; 1Y) < 5 (5.5)

« otherwise.

Note that although v. is no longer in H? (E), for every y € E,, , either v¥ = TuY € H%(EY), or v¥ = a, and
so v¥ always belongs to H? (EY). We claim that {v.} is 6-close to {Tu.}. Indeed, by Fubini’s theorem,

[Tue— vl < [ [ 1Tute) ~aldsdy< [ [ (o) + jal) doidy,
Z., JEv Z., JBY

where Z, :={y € E., : Tu! #v¥} = {y € E,, : G(TuY; EY) > %} Since {Tu.} is equi-integrable, to prove
that the right-hand side of the previous inequality is less than §, it suffices to show that the £N~! measure of
the set H := {(y,2;) : y € Z.,, x; € EY} can be made arbitrarily small. Again by Fubini’s theorem and the
definition of Z.,,

LYNYHH) :/Z LYEY)dy < 2rLN%(Z,,) < Cil/z Go(Tu?; EY)dy < n,

where we have used (5.4) and the fact that £}(EY) < 2r <1 for r <
we have that {v.} is d-close to {Tu.}.

To prove that {v?} if precompact for LN 2-ae. y € E,,, it suffices to consider only those y € E., such
that G¢(Tu¥; EY) < % (since otherwise v¥(z;) = « and there is nothing to prove). For these y € E.,, the
precompactness follows from Theorem 4.4.

Hence we are in a position to apply Proposition 2.2 to conclude that {Tu.} is precompact in L!(E). Thus,
up to a subsequence (not relabeled), we may assume that there exists a function v € L!(E) such that Tu. — v
in L'(E). Note that since {Tu.} is 2-equi-integrable, it follows by Vitali’s convergence theorem that Tu. — v
in L2(E).

It remains to show that v € BV (E;{a, 8}). Indeed, replacing u by u. in (5.3), and passing to the limit as
e — 0T, by Fatou’s lemma we deduce that

%. Thus if n is chosen sufficiently small,

0o > limigffg(ue;D,E) > / hmirlf Ge(Tu?; EY) dy,
E

e—0 e—0
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which implies that lim inf G:(Tu?; EY) is finite for £LN2-ae. y € E,,. Since Tu. — v in L*(E), up to a
e—0

subsequence (not relabeled), we have that Tu? — v in L?(E) for LN "2-a.e. y € E.,. Then Proposition 2.12
yields v¥ € BV (EY;{«, 5}) and

lim inf . (uz; D, E) > / cLH?(SvY) dy. (5.6)
e—0 Eei

The right-hand side of (5.6) is finite, so Proposition 2.12 implies that v € BV (E; {«a, §}), and that Sv¥ agrees
with SvNEY for a.e. y € E,,. O

To prove compactness in the general case, i.e., where €2 is not flat, we introduce the notion of isometry defect
following [2].

Definition 5.4 (isometiy defect). Given A;, A, C RY open sets and a bi-Lipschitz homeomorphism
P Ap — Aj of class C%(A;; RY), the isometry defect d(v)) of ¢ is the smallest constant § such that

esseiup {dist (Dy(z),O(N)) +dist (D*y(x),0)} <4,

where O(N) := {A : RN — RY linear mappings, AAT = HN}.

Proposition 5.5. Let 2, W, and V_satisfy the hypotheses of Theorem 1.1. Given Ay, Ay C RN open sets and
a bi-Lipschitz homeomorphism 1 : A] — Ay of class C?(A;; RYN) such that + has finite isometry defect and
maps a set A} C DAy onto Ay C DAy. Then for every u € H?(As) there holds

Folu; Ag, Ay) > (1= () " Fa(uo vy Ay, AL) — (1) (1 — 5(¢))253/A (|D2u|\Du| + 5(¢)|Du\2) da. (5.7)

Proposition 5.6. Let Q C RY be an open and bounded set of class C? and let D, := {x € RN : |z| < r, x5 > 0}.
Then for every x € OS2, there exists r, > 0 such that for every 0 < r < vy, there exists a bi-Lipschitz
homeomorphism 1, : D, — QN B(x;7) such that

(i) ¥ maps D, onto QN B(x;r) and E, := B, N{xzy = 0} onto 0QN B(z;r);
(ii) . is of class C? in D, and |D¢, — Iy||oo + | D*¥y |00 < &y, where 6, 0T

For a proof of Propositions 5.5 and 5.6 we refer to [2]. We now turn to the proof of Theorem 5.2.

Proof of Theorem 5.2. In view of Proposition 5.6 and a simple compactness argument we can cover 92 with
finitely many balls B’ centered on 02 so that QN B* is the image of a half-ball under a map * with isometry
defect smaller than 1. Hence it suffices to show that the sequence {Tw.} is precompact in L?(9Q N B?) for
every i.

Fix i and let %, := u. o 9*. Since the isometry defect of ¢’ is smaller than 1, Proposition 5.5 implies that
sup, F-(te; Dy, E,.) < co. Hence the precompactness of the traces Tu. in L?(92 N B*) is a consequence of the
precompactness of the traces T, in L?(E,.), which follows from Proposition 5.3. This completes the proof. [

We are finally ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let {u.} C H?(Q)) be a sequence such that C' := sup. F.(u:) < oo. Then, by Theo-
rem 5.1, we may find a subsequence u., € H?(Q2) and a function u € BV (; {a, b}) such that u., — u in L*(Q).

On the other hand, by applying Theorem 5.2 to the sequences {e,} and {u.,}, which still satisfy C =
sup,, Fe, (ue,) < oo, we may find a further subsequence {u., } of {u.,} and a function v € BV(9¢; {a, 8})

n

such that Tu., — v in L*(9Q). Note that we still have u., — u in L*(2). This completes the proof. O
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5.2. Lower bound in RY

Before proving the lower bound estimate in the general N-dimensional case, we state an auxiliary result.

Lemma 5.7. Let i, pt, and p? be nonnegative finite Radon measures on RY , such that p* and p? are mutually
singular, and p(B) > p*(B) for i = 1,2, and for any open ball B such that u(0B) = 0.
Then for any Borel set E, u(E) > u*(E) + p2(E).

Proof of Theorem 1.2(i). We now have all the necessary auxiliary results to prove the lower bound estimate for
the critical regime.

Consider a sequence {u.} C H?(Q) and two functions u € BV (Q; {a,b}) and v € BV (99; {«, 8}) such that
ue — u in L*(Q) and Tu. — v in L?(99).

We claim that

lim inf F. (u-; Q) > mPerq(E, Z Z (2, OHN " ({Tu = 2} N {v = &}) + cLPergq(Fy). (5.8)

=0t z=a,bé=a,B
Without loss of generality, we may assume that

oo > liminf F. (ug; Q) = lim Fe(ue; Q). (5.9)

e—0+ e—0

For every € > 0 we define a measure . for all Borel sets £ C RY by

W(ue)d:ch)\E/ V(Tu.) dHN 1

- 1
we(E) = 53/ |D?u.|? dz +
QNE 9QNE

QNE

Since pe = Fo(ue), it follows by (5.9) that by taking a subsequence (not relabeled), we obtain a finite

* .
measure p such that pu. — p in the sense of measures.
For every Borel set £ C RY define the measures:

pr(E) := mPerang(E,);
2(E) Z Z (2, OHN T ({Tu=2}n{v=¢NE);
z=a,b&=a,3
u3(E) := cLPerponp(Fu)-

These three measures are mutually singular and so, by Lemma 5.7, (5.8) is a consequence of u(B) > u‘(B)
for i =1, 2, 3 for any ball B with u(0B) = 0, which we prove next.

Take B an open ball such that u(9B) = 0.

Using a slicing argument as in Theorem 5.1 (see (5.1) for N = 2) and Fatou’s lemma, we have

w(B) = lim p.(B) 2/9 liminf F. (u?; BY) dHN ~1(y)

e—0+ nB €—07t

g /Q "B {mHO(Sug nE+ /aBy o (Tu? (s), 0¥ (s))dH () | dHV ()

> mPerons (Fa) + /8  olTu(s).o(s)AH N (5) = 1 (B) + (B,

where we have used Theorem 4.2 and Proposition 2.12.
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FIGURE 2. Partition of €2 for the construction of the recovery sequence.

By Section 2.5, the jump set of v, Sv, is (IN — 2)-rectifiable. Hence by the Lebesgue decomposition theorem,
the Radon-Nikodym theorem, and the Besicovitch derivation theorem, for HN ~2-a.e. = € Sv,

dp (2) = lim 1(B(z;7))
dHN =25, " r=0t HN=2(B(x;7) N Sv)

eR. (5.10)

Fix a point x € Sv for which (5.10) holds and that has density 1 for Sv with respect to the H" =2 measure.
Take r > 0 such that u(@B(:E; r)) = 0. Find ¢, as in Proposition 5.6 and set u; := u. 0, and v := vot,. Then
v € BV(E;{c, 8}) and Tu. — U in L?(E,), where E, is defined in Proposition 5.6. Since p(0B(z;7)) = 0, we
have

w(B(x;r)) = lign pe (B(x;7)) = lign]-} (us; 2N B(z;r), 00N B(w; 7))

€

> (1 - 6(,)™** lim inf / G (Tul; BY) dHV = (y)
(Er)e

> cL(1—6())V T HO(Sv N EY)dHN 2 (y).
(Er)e
Hence,
dp : ,u(B(x; T)) . 0 Y N-2/ 1\ _
TRV, ) 2 1 s 2 el i g RSN B R ) = el
and so d
w(B) = / dHNii(x) dHN=2(x) > cLPerponp(Fy) = p°(B).
SvNB LSW
This concludes the proof of the theorem. ([

5.3. Upper bound

In this subsection we will obtain an estimate for the upper bound.

First we prove the result on a smooth setting, i.e., assuming that both Su and Sv are of class C2. We
define a recovery sequence separately in the different regions of Figure 2. In Proposition 5.8, we define it on A,
then we construct the recovery sequence on A; in Proposition 5.9 and in Corollary 5.10 we glue the last two
sequences together to make {u},. Then in Proposition 5.11, on the setting of a flat domain where Sv has also
been flattened, we first construct the recovery sequence on T; and then glue it to the previously constructed
sequence {u,} on Ty. In Proposition 5.12 we adapt the sequence of Proposition 5.11 to a general domain, but
still under smooth assumptions.

Finally, using a diagonalization argument, we prove the upper bound result without regularity conditions.

In what follows, given a set E C RY and p > 0 we denote by E, the set E, := {z € RV : dist (x, E) < p}.
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Proposition 5.8. Let W : R — [0, 00) satisfy (H{")— (H3V), let &, — 0T, let n > 0, and let u € BV (Q; {a,b})
be such that Su is an N — 1 dimensional manifold of class C?. Then there exists a sequence {z,} C H%(Q) such
that z, — u in L*(2),

Zn = u in Q\(Su)ce,, s (5.11)
C C
[znllee < C; Vznlloo < P HVQZTLHOO < 22 (5.12)
and
Fe, (2n;,0) < (m—l—n)HN_l(Su) + o(1), (5.13)

where m is the constant defined in (1.2) and C > 0.

Proof. By the definition of m, we may find R > 0 and a function f € HZ (R) such that f(—t) = a and f(t) =
for all t > R, and

R
|1 wr+ W) a < m an

-R

Since Su is a manifold of class C? in RY, there exists §y > 0 such that for all 0 < § < dp the points in the
tubular neighborhood Us := {x € RY : dist (x, Su) < §} of the manifold Su admit a unique smooth projection
onto Su. Define the function z, : 2 — R by

f (du@’)) if £ € Upe, NQ,

En
zn(z) =< ¢ if v € E,\Uge,,,
b ifx € Q\(Ea U UREn);

where d,, : RN — R is the signed distance to Su, negative in E, and positive outside F, and where we recall
that E, := {z € Q: u(x) = a}.
We then have

]:en(zn§97®):/ [Ez .
O &

2

(455 Viu () x Vdu(@) + - f( <) H ()

En

L (s ;f”))] i,

where H, is the Hessian matrix of d,. Change variable via the diffeomorphism x := 1 (y,t), where ¥ :
Su x (=09, 00) — Us, is defined by 11 (y,t) := y+ tvu(y), with v, (y) the normal vector to Su at y pointing away
from E,. Let J,(y,t) denote the Jacobian of this map. Then

Ren,,
Pt — [ [ [
Su Ren
Ren

+5n//

Su
Ren

“f L.

en

|Vd (1/11(% ))|2 + W (f(%n)>:| Ju(y,t) dthN—l(y)

W1 (y, )P Ty, t) dtdHN  (y)

’(ﬁ)\ V(8 (g D)2 (61 (3, 0) | T (3, 8) At dHN (),
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which reduces to

Re,
‘7:67,, (Zrm ) @ / / |:
€n JSu Ren

1) +W(f<i>)} Iyt )

Rep,
o f Lo ol
Su Ren,

where we took into account the facts that the gradient of the distance is 1, and the Jacobian J, and the
Hessian H,, of the distance are uniformly bounded. We have

I < ( s ) /Su /Z { (%) +W(f(£))] dt dHV 1 (y)

te(—Ren,Ren)

~ o) [ [ (i e w ] asan ),
< (1 + o1)) (m + mHY (),

2 2
f/(ﬁ)‘ ] dtdHN N (y) =: I + I,

where we used (5.14) and the fact that since Su is a compact manifold, J,(y,t) converges to 1 uniformly as
t— 0.
On the other hand, by (5.14),

R 2
12<C€n[R [5n|f’(s)| + 1) f (8)|]| ds < Cey.

We conclude that F., (2,32, 0) < (m + n)HY~1(Su) + o(1). This completes the proof. O

Proposition 5.9. Let W : R — [0,00) satisfy (H{V) — (H}V), let V : R — [0,00) satisfy (HY) — (HY). Let
2

en — 0T be such that e, A — L € (0,00), let 7 > 0, let Q5 := {x € Q : dist(z,0Q) < 6} for § > 0, and let

u € BV (;{a,b}) andv € BV (0Q;{c, 3}), with Su an N —1 manifold of class C* such that HN ~1(0QNSu) = 0

and Sv an N — 2 manifold of class C* . Then there exist R = R(n) > 0 and a sequence {v,} C H*(Qge, ) such

that T, — v in L*(09),

LN ({:E € QREH\Q% s () # U(:L')}) < Ce2, (5.15)
e N | e | 592 (5.16)
and
FenWni Qren s 0) < D > (02,8 +mHY T ({z € 00 : Tu(z) = 2, v(@) = £}) + (1), (5.17)
z=a,bt=a,3

where o(z,&) is the constant defined in (1.3).

Proof. By the definition of o(-,-), for every z € {a, b} and ¢ € {a, 8} there exist R.e > 0 and g.¢ € HE (R)
such that g.¢(0) = z, g.e(x) =€ for all x > R.¢, and

Rzg
/0 [lg7e(@)? + W (gs¢ ()] dz < o(z,€) + 1. (5.18)
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Define R := max{R, Ruo, Rpo, Rap, Rupl}, where R is the number R given in the previous proposition. Since
99 is an N — 1 manifold of class C?, there exists 6y > 0 such that every point x € Qs, admits a unique projection
7(x) onto IQ and the map x € Qs, +— 7(x) is of class C2. Hence we may partition (25, as follows

Qs = Ubguﬁflzg USuUr (Sv),

where A.¢ := {z € Q5,\ (SuUT(Sv)) : (Tw)(7(z)) = z, v(w(z)) = £}. Let n be so large that Re, < o and
define gy, : Qr.,, — R as follows

() G¢ (@) if € Ase NQpe., for some z € {a, b} and £ € {«, 5},
gn(z) := n
" 0 if 7 € (SuUr1(Sv)) N Qe

where, as before, d : Q — [0, 0¢) is the distance to 9.

Note that the functions g,, are discontinuous across (SuUm~!(Sv)) N Qxe,, and so they are not admissible
for F., . To solve this problem, let ¢ € C*° ((0,0); [0, 1]) be such that ¢ =0 in (0, %) and ¢ = 11in (%, oo)7 and
let d,, : Qs, — [0,00) and d,, : 5, — [0,00) denote the distance to Su and to 7~ (Sv), respectively. Since Su is
an N — 1 manifold of class C?, it follows that d, is of class C? in a neighborhood P; := {z € Qs, : dy(z) < 61}
of Su. Similarly, since Sv is an N — 2 manifold of class C? by taking &, smaller, if necessary, we may assume
that m=1(Sv) is an N — 1 dimensional manifold of class C? and thus d, is of class C? in a neighborhood
Py = {x € Qs, : dy(x) < 62} of 71 (Sv). Let n be so large that Re,, < $ min{d1, 62} and for € Q. define

i) = o (52 ) ¢ (52

Since ¢ = 0 in (0, 1), it follows that v, () = 0 for all z € Q. such that dy(z) < $Re, or dy(z) < $Re,. As

gn is regular away from Su U7 ~1(Swv), it follows that v, € HQ(QR_%).
We claim that T, — v in L?(992). Indeed, since HN~1(9Q N Su) = 0, we know that

1

HNL ({:E € 0N :dy,(x) < iRsn}) < Cep, (5.19)
and similarly, since Sv is an N — 2 manifold contained in 0%,
1

HN1 ({:E € 0N : dy(x) < iRsn}) < Cgy,. (5.20)

Re,,, then v,, = g, in a neighborhood

On the other hand, if x € 99 is such that d, (z) > %an and d,(z) >
= z, it follows that v, (z) = v(z). Hence

of z, and so by the definition of the sets A.¢ and the fact that g.¢(0)
by (5.19) and (5.20), ||v, — v|[z2(s0) — 0, which proves the claim.
It remains to prove (5.17). Let

L, :={z € Qg., 1 du(z) < 3Rz, }, M, = {z € Qp., : dy(z) < $Re,}.

w NI

Step 1. We begin by estimating F. in the set Qg. \(L, U M,,). Since in this set v, = g, we have that

]:fsn (Un§ Q\(Ln U Mn); Q]) < Z Z ]:fsn (gn§ Azf N QREW)Q) .
z=a,b&=a,3

Thus it suffices to estimate F., (gn; Aze N Qre,).
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Let AL, := ALe N 0K, which satisfies A ={2 € 0Q: Tu(r) =z, v(z) =E}. We have

2

1 1 .
Feo(gni Aze, 0) :/A [53 22 gzﬁ( en )Vd( ) x Vd(z) + _926( e(n))H(x)
=t

n

+ iW (gzs( s(n)))] dz,

where H is the Hessian matrix of d. Change variable via the diffeomorphism x := 1(y,t), where 15 : 90 x
(0, 51) — Qs,, defined by ¥ (y,t) := y + tv(y), with v(y) the normal vector to 92 at y pointing to the inside
of Q. We write J(y,t) the Jacobian of this map. Then

Ren,
Faloni e 0 < [ / = o) 90l 00 + 2 (e () + et ()] M Cvato )
+C g2 (E) | |9he (E) | V(2 (y, t )IQIH(w(w))I}J(y7t)dthN‘1(y)7
which reduces to
REW 2
fsn(gn; ZE; {En/’ / |:gz§ En JrW(sz(i))] J(y;t)dthN—l(y)

92&(5%)‘

2
ggg(ain)‘ + ghe(E )H dtdHN " (y )} = I+ I,

Re,
+C / / {sn
Le /0

where we took into account the facts that the gradient of the distance is 1, and the Jacobian J and the Hessian H
of the distance are uniformly bounded. We have

Rep,
ne( s o) L[ [
yEAIZ§7 En ’

te(0,Ren)

< (L+o(1)(o(z,8) +mMHN ' {Tu =2, v=_¢}),

gre(& ‘ +W(gzg(£))] dt dHY " (y)

where we used the fact that since 02 is a compact manifold, J(y,t) converges to 1 uniformly as ¢ — 0. On the
other hand

R
I < Can/o {sn |9;§(s)‘2 + |9/zlg(5)‘2 |9;5(S)ﬂ ds < Ce,.

We conclude that e, (gn; Aze, 0) < (0(2,€) + )HY 1 {Tu =z, v=£}) + o(1).

Step 2. We estimate the energy in L,, U M,.
We have

Fo (on: L\ My, 0) = / [gi
L, \M,,
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Lo

F1cURE 3. Scheme for the gluing of the discontinuity set of v to the boundary 92 when there
is no discontinuity in v.

where H, is the Hessian matrix of d,,. Then

1
Fe (Un; Ln\ My, 0) < C/ €2|9Z(!E)|2 + €n|g;(l‘)|2 + 51 |5n(x)|2
L.\ M, Rie,

+ lim sup iW (Sﬁ(dﬁei))gn(!ﬂ))} dz < C’EL|LH| < Cey,

n n

where we took into account the facts that the Hessmn H, is uniformly bounded, and that v, is uniformly
bounded, g/, is bounded by %, and g/ is bounded by

We conclude that F., (vn; Ly \My,,0) = o(1). Slmllarly, we may prove that F. (v,; M,,0) = o(1). This
concludes the proof. O

Corollary 5.10. Let W : R — [0,00) satisfy (H}V) — (HY), let V : R — [0,00) satisfy (HY) — (HY). Let
2
— 0% be such that ep\i — L € (0,00), let n > 0, and let uw € BV (Q;{a,b}) and v € BV (9Q;{«, 8}), with

Su an N — 1 manifold of class C? such that HN~1(0Q2N Su) = 0 and Sv an N —2 manifold of class C* . Then
there ezists a sequence {u,} C H?(Q) such that W, — u in L*(Q), Tu, — v in L*(09Q),

_ _ C C
n o < C, Vi |lo < —, ||V2un||oo <

En g2

(5.21)

and

Fe(@n; ,0) < (mAm)HY " (Su)+ > > (02, +nHY T ({2 € 09 : Tu(z) = 2, v(z) = £})+o(1) (5.22)

z=a,b&=a,B

where m and o(z,€) are the constant defined, respectively, in (1.2) and (1.3).

Proof. We define the function , as in Figure 3. Let ¢ € C°°((0,00);[0,1]) be such that ¢ = 0 in (0,1) and
¢ =11in (1,00) and let

Ta(2) = o (H) 20(2) + (1= ¢ (H2) ) vala),

for z € Q, where the functions z,, and v,, are defined, respectively, in Propositions 5.8 and 5.9, R is the number
given in the previous proposition, and d is the distance to the boundary.
Since T, = Tvy, it follows that T, — v in L?(99).
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On the other hand, since ||v, |l < C, LY ({z € Q:d(x) < Re,}) — 0, and z, — u in L?(Q), we have that
U, — u in L?(Q). Moreover, by (5.13) and (5.17),

fen(ﬂn;ﬂiw)<}—€ (Zn;Q\Q2Rsn;®)Jrfsn(”n;QRe,LE@)Jr}—s (ﬂnipn;(b)
<Sm+mHY T Su)+ > D (02, + HY T ({o € 02 : Tu(z) = 2, v(z) = £})

z=a,bf=a,f
+ lim sup F., (Uy; Pn; 0) + o(1),
n

where P, := {2 € Q: $Re, < d(z) < 2Rz, }.
To estimate the last term, note that by (5.13) and (5.15), LY ({z € P, : un(z) # u(x)}) < Ce2, and so by
the continuity of W,

1 _ 1 v
il n = — P, :u, < W — 0,
€n Jp, W (@) de En (Jg(loa}f) W) L ({x = Up(z) # U(I)}) Ce 0

where L := sup,, |[Un || oo-
On the other hand, we have that Vi, (z) = 0 and V?u, () = 0 for LN-a.e. 2 € E,, := {x € P, : Uy (v) =
u(zx)}, while for x € P,\Ey,

_ 1 1 c
V2T, (@)? < c[€—4|(|zn<m>|2 Flon@P) + (2@ + [Foa @) + (V2@ + [T (@)P) | < o,
n n n
where we used the bounds on z, and v,, given in (5.12) and (5.16). Hence
3 2 |2 3 — |2 C N
s |V, |dz =€), [V, |*de < —LY (P \Ey) < Cey,
Py Py\En, En

which completes the proof. O

Proposition 5.11. Let W : R — [0,00) satisfy (H]V) — (HY), let V : R — [0,00) satisfy (HY) — (HY).
2

Let e, — 0% be such that e,\i — L € (0,00), let n > 0, let D, :== {z € RN : |z| < r, xy > 0}, and let

E,. = {(z/,0) € RN"IL xR : |z| < r}. Also let w € BV(Dy;{a,b}) and v € BV (Ey;{a,B}), with Su an

N — 1 manifold of class C? such that HN"Y(E, NSu) =0 and Sv = {z € E, : zy_1 = 0}. Then there exists

{un,} C H*(D,) such that u, — u in L*(D,.), Tu, — v in L*(E,), and

limsup e, (un; Dy, E) < (m4n)HY 1 (Su)+ Z Z (2, &)+ HN Y {Tu = 2,0 = €})+(T+n) LHN 2(Sv),
" z=a,bé=a,B

where m, o, and ¢ are the constants defined in (1.2), (1.3), and (1.5), respectively.

Proof. First we prove the result for N = 2 and then treat the N-dimensional case.
Step 1. Assume that N = 2.

3
Substep 1la. By the definition of € there exists R > 0 and a function h € H?_(R) satisfying h(—t) = « and
h(t) = S for all t > R and

T rO-rer :
6//]1%2 s atd +/RV(h(t))dt< + 1. (5.23)
Define
t+s
it e) = %/t_ Wr) dr. (5.24)
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(b)

FIGURE 4. (a) Close-up view of Tog., and Tap,,; (b) domain of integration after change of
variables and divided in regions.

By Proposition 2.9, we have that w € HZ (R x (0,00)), Tw = h, and

/ /
// }D2 (t,s ’ dtds < / / |h — } dtds,
AR 16 |t_ |2

where Ag := Ty — (R,0) and Ty := {(t,s) ER*: 0 < s < R, s <t < 2R—s}. For (z,y) € Agy, define

1
wp(z,y) =W (pn py ) where p, = epAn 2.
Then

Fe(wn, Agp,, (—Rpn, Rpn) x {0})
//ARM [ el Viz.yywn (@, y)? + 2 W(wn(a: y))} dedy + A\, /an V(Tw,(z)) dx

Rpn
Rpn

://Aﬁpn [ ol ‘V%t,s)w(p%7p%)‘ + an( (%,p%))] dzdy + A\, / Tw( - p%)) dz

://AR En)\EW%t,s)@(t,s)P+€n>\ﬁﬁw(w(t,s))} dt ds + e KRV(Tw(t))dt

R / R
< (L+o(1) lw/ / |h |t—s|2 } dtds+/_RV(Th(t))dt

where we used the fact that W is continuous and |||/ < C. Thus

’hl hl ’ dtd RVTh t)) dt
16// B — S+/_R( n(D)dt)

Substep 1b. To complete this step, we need to match the function w, to the function @, given in Corol-

lary 5.10 (with N =2 and Q := D,).
Consider the function u,(z,y) = ¥n(z,y)wn(2,y) + (1 — Yn(z,y))Un(z,y) for (z,y) € R?, where 1, €

C*(R x (0,00);[0,1]) satisfies ¢, =1 in T}'{pn, ¥, =0in RN\TJFEE”, and

+ Ce2,

o(1). (5.25)

Fe (wna Aana (—an, an) {O}

C C
IVénlloo < —  and V2 oo < = (5.26)

n n
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Since Twy, = Ty, = v in (Ag. \Agp,) N E,, we have that T4, = von (Ag. \Agp,) NE,. Hence V (T4,) =0
in (ZREn\ARp") N L. Thus, it suffices to estimate

1
Pl L) = [ | + W )] dad (527)
Ly, n

where L,, := AR, \Zan-
By Young’s inequality and (5.26), for (z,y) € L,, we have

(V2 (2, y)* < (14 0)| Vw2, y)* + Cy | [V (2, )]

+ [V ) + (Ve ) ] + = [[wa e ) + mn(x,y)m], (529)

n

and, so

// V2, (2, y)* dzdy < (1 +1)e // wy (z,y IdederC// [EnIan(w I + Iwn(fc,y)l2

VI )P + 20l Vi) + E—mn(x,yn?] dr dy,
n
:le +IQ :I3. (529)

To estimate I7, note that

2
// (o) Wn (T )2 dedy = // ‘V(t S)wn ,i)‘ dezdy = En)é // |V2w(t, s)[* dt ds. (5.30)
o 7L
Pn

Extend w to Tgza using (5.24). Since wW(t',-) is even, by Proposition 2.9 and (5.30), we have

// |V(x ) Wn (T y)[?dedy = e\ // |V(t »W(t, s)|>dtds

7 2 W(s+t)—h(s—t)|

< —&pi

X 16571)\ //1 L o dsdt
7 .2 W(s+t)—h'(s—t)|

< 3

S 32571)%// 1 o dsdt

B (w) = 1 (2) |

w—z

dz dw.

“RAF ,R)\3 —R,R]?

The integral we are estimating is the integral over the the “square annulus” in Figure 4(b). Note that on all
four corner squares of Figure 4(b), we have h'(z) = h/(w) = 0, so the integral reduces to

R R/\,%L 2 R ,—R
/ / dzdw+/ / .
_RJR —RJ—RM\3
/
l (L+o(1 l/ / ‘h dzdw+/ /
3 w—z

b (w)

w—z

2
dzdw (5.31)

w—z

dz dw] .
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To estimate I3, note that since ||wy || < C, we have

L |w (t,5)|? dt ds < Cep,

En JL

and by Holder inequality, Proposition 2.6 and (5.31), we obtain that

En // |an(t, S)|2 dtds < C¢, (”wn”L?(Ln)||v2wnHL2(Ln) + ||wn||%2(Ln))
L,

_1 3
<C (e lwallzen ) (s21V2wallz2e,) ) + enllnlfa,)]
S C(Ven +6€3).

Combining (5.32) and (5.33) yields
I, < Cy/ey.

We estimate I3 using (5.21). Precisely,

Is < EQEQ(Ln) < Cep.

Finally, using the fact that @, is bounded in L*°(L,,), we have

// un x,y) dacdy < EEEQ(Ln) < Ce,,.

n

Using (5.27), (5.29), (5.31), (5.34), (5.35), and (5.36), we obtain that

//‘ ) dzdw—i—//

Combine (5.25) and (5.37) to obtain

Fe(tp, L, 0) < dzdw

+o(1).

Fe(tin, Age,,, (—Ren, Ren) x {0})

ANNEES

On the other hand, from Corollary 5.10 we know that

dzdw + /OO V(h(z))dz

—00

fE(ﬂnaDr\T}—{i_gnv@):f(ﬂmD \T}—{i_ )
<(m+n)H + > D (=) +nH {Tu=2v=_¢})+o0(1)

z=a,b&=a,3

The result follows by combining (5.38) and (5.39).

+o(1) <e+n+o(1).

643

(5.32)

(5.33)

(5.34)

(5.35)

(5.36)

(5.37)

(5.38)

(5.39)
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FIGURE 5. Scheme for the flattening of the boundary and of Swv.

Step 2. General N-dimensional problem.
In this case, we define u,(z) := Uy (xn_1,2n) for 2 = (2", 2n_1,2N) € D,. By Fubini’s theorem and Step 1,
we deduce that

fe(un,Bj,E,n):/ Fe (un,D E” )d
BN72

< [ sun oy B2

+ Y Y (0= FH {Tu=2v=£n({a"} xR?)

z=a,b&=a,3

+ (€ + 1) LH°(Svn ({2} x RQ))} dz" 4 o(1).
Using Theorem 2.12, we then deduce that

lim sup Fe (un, B, E,) < (m+n)HY 71 (Su)+ Z Z (2, ) +HN Y {Tu = 2, v = €})+(c+n) LHY ~2(Sv).
n—oeo z=a,bl=a,3
This completes the proof. O
Proposition 5.12. Let W : R — [0,00) satisfy (H{V) — (HYV), let V : R — [0, 00) satisfy (HY) — (HY). Let
2
en — 0 with e, A3 — L € (0,00), let n > 0, and let u € BV (Q;{a,b}) and v € BV (0Q; {«, B}), with Su an

N — 1 manifold of class C? such that HN=1(0Q2 N Su) = 0 and Sv an N — 2 manifold of class C* . Then there
exists {un} C H*(Q) such that u, — u in L*(Q), Tu, — v in L*(09), and

limsup F., (u,) < (m 4+ n)HV "1 (Su) + Z Z (2,8) + NHN Y {Tu = 2,0 =¢€}) + @+ n)LHY2(Sv),
" z=a,b&=a,3

where m, o, and ¢ are the constants defined in (1.2), (1.3), and (1.5), respectively.
Proof. From Corollary 5.10, it suffices to prove that

limsup F., (un; QN B(xo; 1), 00 N B(zo;r)) < (m +n)HY"1(Sun B(zg; 1))

+ Zbgzﬁ o(2,6) +HN Y{Tu =z, v =€} N B(xo; 1)) + (€ + 1) LHY ~2(Sv N B(xo; 7)), (5.40)

for each point zy € Sv and for some neighborhood A of xg.

The idea of the proof is to change variables suitably to be in the conditions of Proposition 5.11, i.e., when
00 N B(xo;r) is flat and ST N B(xp;r) is a line, as in Figure 5. First we fix a point xzy € Sv. Since the domain
is of class C2, we can find ¥ > 0 such that, up to a rotation,

90N B(z;7) = {z € RN 1 zy = 11(2')}, (5.41)
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for some function v, € C?(RN~1). So we define ¥y(z) := (z/,zn — 711 (2')), Uly) = (uo ¥7")(y), and
T(y) = (vo Uy )(y).

Moreover, ST is also of class C?, so we can find 0 < r < 7 such that, up to a “horizontal rotation”, i.e.,

R0\ ..
R= T , with R" € SO(N — 1), we have

STN Blao;r) = {y € RN 1 x {0} 1 ynv_1 = 12(y") },

for some function v, € C2(RN=2). Let Us(y) = (v, ynv—1 — 12¥").yn), Uz) = (o U;')(2) =
(wo (Ua0Wy)~1) (2), 0(2) := (vo (¥a0 W)t (2).

Let ® := Wy 0¥, : RY — RY, which is a bi-Lipschitz homeomorphism. Moreover, its isometry defect 6,
vanishes as r — 0 due to the regularity of both 02 and Swv.

Let 29 := ®(z0) € Szo. Note that D, := <I>(Q N B(:Eo;r)) is a neighborhood of zy, and set E, := <I>(8Q N
B(zo;7)). Let {u,} C H?(D,) be defined as in Proposition 5.11 with @ and T. Then from Proposition 5.5, we
have that

Fer (0 ®: Q0 Blxo; 1), 00N Blxo; 1)) < (1 —6,)"NDE. (upn; Dy, Ey)

+ (YRS g:)NHEi /DT (|V2un(z)| [Vu,(2)| + 6,.|Vun(z)|2) dz.

On the other hand, by Holder and Propositions 2.6 and 5.11, we have that
sfl/ (IV2un (2)| |Vun(2)] + 0| Vu,(2)?) dz < Cey,
B+ (z0;7)
and that

Fe. (un; Dy, Ep) < (m 4+ n)HYN"Y(STN D,) Z Z (2, +nHN Y {Tu=2 =6 NE,)
z=a,b&=a,p

+ (@ +n)LHN2(ST N E,) + o(1).
Moreover,
HNY(STN D) = HY " (S(uo @) N D,) = HYH (®(Su) N (2N Blao;7)))
<HNH(®(Sun B(zo;r))) < Lip(@)N 'HY 1 (Sun B(wo; 7))
= HN"1(Sun B(wo; 7)),
because ® is an isomorphism. Analogously, we deduce that
HYN ' ({Ta=20=6nD,) <HY ' ({Tu=2, v=_ENB(ao;r)),
HN2(SoN D,) < HYN 2 (Svn B(xo; Rey))

:,27

Hence
limsup Fe,, (un 0 ®;Q N BT (2o;7); 0Q N B(wo; 7)) < (1 — 5) WD (m + )HN Y (Sun B(xo; 7))

+ Zbgzﬁ o(2,&) + mMHN L ({Tu = 2, v =€} N B(xo; 7)) + (€+ 1) LHY 72 (Sv N B(wo; 7)) |-

This proves the result. O
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Proof of Theorem 1.2(ii). Since u € BV (Q; {a,b}), we may write u as

a ifxekFE,,
u(z) = .
b if x € Q\E,,

where E, is a set of finite perimeter in 2. Similarly, since v € BV (99Q;{«, 5}), we may write v as

a ifz e F,,
v(z) = .
g if x € 00\ Fy,,

where Fy, is a set of finite perimeter in 0€2. Apply Proposition 2.11 to the set E, to obtain a sequence of
sets B}, of class C? such that LY (E,AE) — 0 and HY Y (0E, N 0E})) — 0. By slightly modifying each Ej,
we may assume that HN~1(9Q N OEy) = 0. Similarly, by Proposition 2.13 applied to the set F,, we may find
a sequence of sets Fj, C 9 of class C? such that HN_I(FQAFk) — 0 and HN_2(859FQA859F;€) — 0. Define
the sequences of functions

e (z) = a ifxeQn kB, o) = a ifzedn Fy,
T b ifx e Q\By, MU it e € 00\ Fy.

Apply Proposition 5.12 to find {uy,,} C H*(2) such that ug,, 2wy, in L2(9), Tug,p 2 vy, in L2(09), and

limsup]—'&n (’U/k,n) NS (m—i— PerQ Ek + Z Z % HN 1({T’U,k — Z}m{’l)k — g}) ( )LPGI‘@Q(Fk).
" z=a,bE=a,p

Since uy — u in L?(2) and vy — v in L?(952), we have

liin lim ||ug,n — UHL2(Q) =0, lim lim | Twgn — U||L2(39) =0,

lim sup limsup F¢, (uk.n) < mPerq(E, Z Z o(z, HN 1 ({Tu = 2} N {v = €}) + ELPeroq(Fa).
k n 2—a,bt=—a,f

Diagonalize to get a subsequence k,, — oo and obtain u, = uy, , — u in L%(Q), Tu, — v in L*(99), and

limsup F,, (un) < mPerq(E Z Z o(z, HN 1 ({Tu = 2} N {v = €}) + cLPerpo(F,).
n z=a,b&=a,p

This completes the proof. ([
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