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THE PRINCIPAL EIGENVALUE OF THE ∞-LAPLACIAN
WITH THE NEUMANN BOUNDARY CONDITION
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Abstract. We prove the existence of a principal eigenvalue associated to the ∞-Laplacian plus lower
order terms and the Neumann boundary condition in a bounded smooth domain. As an application
we get uniqueness and existence results for the Neumann problem and a decay estimate for viscosity
solutions of the Neumann evolution problem.
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1. Introduction

In this paper we study the maximum principle, the principal eigenvalue, regularity, existence and uniqueness
for viscosity solutions of the Neumann boundary value problem{

Δ∞u+ b(x) ·Du+ (c(x) + λ)u = g(x) in Ω
∂u
∂−→n = 0 on ∂Ω,

(1.1)

where Ω is a bounded smooth domain, −→n (x) is the exterior normal to the domain Ω at x, b, c and g are
continuous functions on Ω, λ ∈ R and

Δ∞u =
〈
D2u

Du

|Du| ,
Du

|Du|
〉
, (1.2)

for u ∈ C2(Ω), is the 1-homogeneous version of the ∞-Laplacian.
The ∞-Laplacian, which arises from the optimal Lipschitz extension problem, see [2], appears also in the

Monge-Kantorovich mass transfer problem, see [7], and recently, some authors have introduced a game theoretic
interpretation of it, see [18].

We define and investigate the properties of the principal eigenvalue of the operator

−(Δ∞ + b(x) ·D + c(x)),

with the Neumann boundary condition and as an application, we get existence and uniqueness results for (1.1)
and a decay estimate for the solution of the associated evolution problem.
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1 SAPIENZA Università di Roma, Dipartimento di Matematica, Piazzale A. Moro 2, 00185 Roma, Italy.
patrizi@mat.uniroma1.it

Article published by EDP Sciences c© EDP Sciences, SMAI 2010

http://dx.doi.org/10.1051/cocv/2010019
http://www.esaim-cocv.org
http://www.edpsciences.org


576 S. PATRIZI

In their famous work [3], Berestycki et al. defined the principal eigenvalue λ1 of a general linear uniformly
elliptic operator −L where

L[u] = tr(A(x)D2u) + b(x) ·Du+ c(x)u,
in a bounded domain Ω, as the supremum of those λ for which there exists a positive supersolution of L[u] +
λu = 0. In that paper, they showed that λ1 is the first eigenvalue of L, i.e., for any eigenvalue λ �= λ1,
Re(λ) > λ1; moreover λ1 can be characterized as the supremum of those λ for which the operator L + λI
satisfies the maximum principle, i.e., for any λ < λ1, if u is a subsolution of L[u] + λu = 0 and u ≤ 0 on ∂Ω
then u ≤ 0 in Ω. They established other properties of the first eigenvalue, such as simplicity and stability.

In view of its relation with the maximum and the comparison principles, the concept of principal eigenvalue
has been extended to nonlinear operators to study the associated boundary value problems. That has been done
for the variational operators, such that the p-Laplacian, through the method of minimization of the so called
nonlinear Rayleigh quotient, see e.g. [1,14]. That method uses heavily the variational structure and cannot be
applied to operators which have not this property. An important step in the study of the eigenvalue problem
for general nonlinear operators was made by Lions in [15]. In that paper, using probabilistic and analytical
methods, he showed the existence of principal eigenvalues for the uniformly elliptic Hamilton-Jacobi-Bellman
operator. Very recently, many authors, inspired by [3], have developed an eigenvalue theory for fully nonlinear
operators which are non-variational. The Pucci’s extremal operators have been treated by Quaas [19] and Busca
et al. [5]. Their results have been extended to more general fully nonlinear convex uniformly elliptic operators
in [20] by Quaas and Sirakov. See also the work of Ishii and Yoshimura [10] for non-convex operators.

Issues similar to those of this paper have been studied by Birindelli and Demengel in [4] and the author of
this note in [16] where respectively the Dirichlet and the Neumann eigenvalue problem is treated for degenerate
or singular elliptic operators F (x,Du,D2u) plus lower order terms. In these papers, among other assumptions,
F is required to satisfied

a|p|αtrN ≤ F (x, p,M +N) − F (x, p,M) ≤ A|p|αtrN, (1.3)

with α > −1, for x ∈ Ω, p ∈ R
N \ {0}, and M,N symmetric matrices with N ≥ 0. Typical examples are given

by |Du|αMa,A(D2u), α > −1, where Ma,A(D2u) is one of the Pucci’s operator, the p-Laplacian and some
non-variational generalizations of it. Because of its strong degeneracy, the ∞-Laplacian does not satisfy (1.3),
so it is not covered by [4] or [16].

The existence of a principal eigenvalue defined as in [3] for the ∞-Laplacian with the Dirichlet boundary
condition has been treated by Juutinen in [11] together with many other questions. We want to mention that
there exists also a different approach to investigate the eigenvalue problem for (1.2) which consists in studying
the asymptotic behavior, as p → ∞, of the p-Laplacian eigenvalue equation, see [8,13]. This second method
uses the variational formulation of the approximate problems and leads to a different limit eigenvalue problem,
see [11].

Following the ideas of [3], we define the principal eigenvalue as

λ := sup

{
λ ∈ R | ∃ v > 0 on Ω bounded viscosity supersolution of

Δ∞v + b(x) ·Dv + (c(x) + λ)v = 0 in Ω,
∂v

∂−→n = 0 on ∂Ω

}
. (1.4)

Here we adopt the notion of viscosity solution given in [4], in which it suffices to test with functions which have
gradient different from 0.

The quantity λ is well defined since the above set is not empty; indeed, −|c|∞ belongs to it, being v(x) ≡ 1
a corresponding supersolution. Furthermore it is an interval because if λ belongs to it then so does any λ′ < λ.

One of the scope of this work is to prove that λ is an “eigenvalue” for −(Δ∞ + b(x) · D + c(x)) which
admits a positive “eigenfunction”. As in the linear case it can be characterized as the supremum of those λ
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for which Δ∞ + b(x) ·D+ c(x) +λ with the Neumann boundary condition satisfies the maximum principle. As
a consequence, λ is the least “eigenvalue”, i.e., the least number for which there exists a non-zero solution of{

Δ∞u+ b(x) ·Du+ (c(x) + λ)u = 0 in Ω
∂u
∂−→n = 0 on ∂Ω.

These results are applied to obtain existence and uniqueness for the boundary value problem (1.1).
Remark that since Δ∞(−u) = −Δ∞u, λ can be defined also in the following way

λ = sup

{
λ ∈ R | ∃u < 0 on Ω bounded viscosity subsolution of

Δ∞u+ b(x) ·Du+ (c(x) + λ)u = 0 in Ω,
∂u

∂−→n = 0 on ∂Ω

}
. (1.5)

For a fully nonlinear operator, λ defined as in (1.4) may be different from the quantity defined as in (1.5),
see [17].

The paper is organized as follows. In the next section we give assumptions and precise the concept of solution
adopted. In Section 3 we establish a Lipschitz regularity result for viscosity solutions of (1.1). Section 4 is
devoted to the maximum principle for subsolutions of (1.1). In Section 4.1 we show that it holds (even for more
general boundary conditions) for Δ∞ + b(x) ·D+ c(x) if c(x) ≤ 0 and c �≡ 0, see Theorem 4.4. One of the main
result of the paper is that the maximum principle holds for Δ∞ + b(x) ·D+ c(x) +λ for any λ < λ, as we show
in Theorem 4.8 of Section 4.2. In particular it holds for Δ∞ + b(x) ·D + c(x) if λ > 0. Following the example
given in [16] we show that the result of Theorem 4.8 is stronger than that of Theorem 4.4, i.e., that there exist
some functions c(x) changing sign in Ω for which the principal eigenvalue of Δ∞ + b(x) · D + c(x) is positive
and then for which the maximum principle holds.

In Section 5 we show some existence and comparison theorems. In particular, we prove that the Neumann
problem (1.1) is solvable for any right-hand side if λ < λ.

Finally, in Section 6 we prove a decay estimate for solutions of the Neumann evolution problem.

2. Assumptions and definitions

We denote by S(N) the space of symmetric matrices on R
N equipped with the usual ordering and we fix the

norm ‖X‖ in S(N) by setting ‖X‖ = sup{|Xξ| | ξ ∈ R
N , |ξ| ≤ 1} = sup{|λ| : λ is an eigenvalue of X}.

Let σ : R
N → S(N) be the function defined by

σ(p) :=
p⊗ p

|p|2 ·

The ∞-Laplacian can be written as
Δ∞u = tr(σ(Du)D2u),

for any u ∈ C2(Ω).
It easy to check that σ has the following properties:

• σ(p) is homogeneous of order 0, i.e., for any α ∈ R and p ∈ R
N

σ(αp) = σ(p);

• for all p ∈ R
N

0 ≤ σ(p) ≤ I,

where I is the identity matrix in R
N ;
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• σ(p) is idempotent, i.e.,
(σ(p))2 = σ(p);

• for any p ∈ R
N \ {0} and p0 ∈ R

n with |p0| ≤ |p|
2

tr
[
(σ(p+ p0) − σ(p))2

] ≤ 8
|p0|2
|p|2 · (2.1)

The domain Ω is supposed to be bounded and of class C2. In particular, it satisfies the interior sphere
condition and the uniform exterior sphere condition, i.e.

(Ω1) For each x ∈ ∂Ω there exist R > 0 and y ∈ Ω for which |x− y| = R and B(y,R) ⊂ Ω.
(Ω2) There exists r > 0 such that B(x+ r−→n (x), r) ∩ Ω = ∅ for any x ∈ ∂Ω.

From the property (Ω2) it follows that

〈y − x,−→n (x)〉 ≤ 1
2r

|y − x|2 for x ∈ ∂Ω and y ∈ Ω. (2.2)

Moreover, the C2-regularity of Ω implies the existence of a neighborhood of ∂Ω in Ω on which the distance from
the boundary

d(x) := inf{|x− y|, y ∈ ∂Ω}, x ∈ Ω

is of class C2. We still denote by d a C2 extension of the distance function to the whole Ω. Without loss of
generality we can assume that |Dd(x)| ≤ 1 on Ω.

We adopt the notion of viscosity solution for (1.1) given in [4] for singular elliptic operators, in which is
required to test only with test functions which have gradient different from zero.

We denote by USC(Ω) the set of upper semicontinuous functions on Ω and by LSC(Ω) the set of lower
semicontinuous functions on Ω. Let g : Ω → R and B : ∂Ω × R × R

N → R.

Definition 2.1. Any function u ∈ USC(Ω) (resp., u ∈ LSC(Ω)) is called viscosity subsolution (resp., superso-
lution) of {

Δ∞u+ b(x) ·Du+ c(x)u = g(x) in Ω
B(x, u,Du) = 0 on ∂Ω,

if the following conditions hold:
(i) For every x0 ∈ Ω, for all ϕ ∈ C2(Ω), such that u− ϕ has a local maximum (resp., minimum) at x0 and

Dϕ(x0) �= 0, one has

Δ∞ϕ(x0) + b(x0) ·Dϕ(x0) + c(x0)u(x0) ≥ (resp., ≤ ) g(x0).

If u ≡ k = const. in a neighborhood of x0, then

c(x0)k ≥ (resp., ≤ ) g(x0).

(ii) For every x0 ∈ ∂Ω, for all ϕ ∈ C2(Ω), such that u − ϕ has a local maximum (resp., minimum) at x0

and Dϕ(x0) �= 0, one has

(−Δ∞ϕ(x0) − b(x0) ·Dϕ(x0) − c(x0)u(x0) + g(x0)) ∧B(x0, u(x0), Dϕ(x0)) ≤ 0

(resp.,

(−Δ∞ϕ(x0) − b(x0) ·Dϕ(x0) − c(x0)u(x0) + g(x0)) ∨B(x0, u(x0), Dϕ(x0)) ≥ 0).
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If u ≡ k = const. in a neighborhood of x0 in Ω, then

(−c(x0)k + g(x0)) ∧B(x0, k, 0) ≤ 0

(resp.,
(−c(x0)k + g(x0)) ∨B(x0, k, 0) ≥ 0).

It is possible to define sub and supersolutions of the ∞-Laplace equation also using the semicontinuous
extensions of the function (p,X) → tr(σ(p)X) as done in [11,12]. In Definition 2.1 it is remarkable that nothing
is required in the case Dϕ(x0) = 0 if u is not constant.

For a detailed presentation of the theory of viscosity solutions and of the boundary conditions in the viscosity
sense, we refer the reader to e.g. [6].

We call strong viscosity subsolutions (resp., supersolutions) the viscosity subsolutions (resp., supersolutions)
that satisfy B(x, u,Du) ≤ (resp., ≥) 0 in the viscosity sense for all x ∈ ∂Ω. If λ → B(x, r, p − λ−→n ) is non-
increasing in λ ≥ 0, then classical subsolutions (resp., supersolutions) are strong viscosity subsolutions (resp.,
supersolutions), see [6], Proposition 7.2.

In the above definition the test functions can be substituted by the elements of the semijets J
2,+
u(x0) when

u is a subsolution and J
2,−

u(x0) when u is a supersolution, see [6].

3. Lipschitz continuity of viscosity solutions

It is known that the ∞-harmonic functions, i.e., the solution of Δ∞u = 0 are locally Lipschitz continuous,
see e.g. [2]. We now show the Lipschitz regularity in the whole Ω of the solutions of the Neumann problem
associated to the ∞-Laplacian plus lower order terms.

Theorem 3.1. Assume that Ω is a bounded domain of class C2 and that b, c, g are bounded in Ω. If u ∈ C(Ω)
is a viscosity solution of {

Δ∞u+ b(x) ·Du+ c(x)u = g(x) in Ω
∂u
∂−→n = 0 on ∂Ω,

then
|u(x) − u(y)| ≤ C0|x− y| ∀x, y ∈ Ω,

where C0 depends on Ω, N, |b|∞, |c|∞, |g|∞, and |u|∞.

The theorem is an immediate consequence of the next lemma, the proof of which, though following the line of
Proposition III.1 of [9], introduces new test functions that, in particular, depend on the distance function d(x).

The lemma will be used also in the proof of Theorem 4.8 in the next section.

Lemma 3.2. Assume the hypothesis of Theorem 3.1 and suppose that g and h are bounded functions. Let
u ∈ USC(Ω) be a viscosity subsolution of{

Δ∞u+ b(x) ·Du+ c(x)u = g(x) in Ω
∂u
∂−→n = 0 on ∂Ω,

and v ∈ LSC(Ω) a viscosity supersolution of{
Δ∞v + b(x) ·Dv + c(x)v = h(x) in Ω
∂v
∂−→n = 0 on ∂Ω,

with u and v bounded, or v ≥ 0 and bounded. If m = maxΩ(u− v) ≥ 0, then there exists C0 > 0 such that

u(x) − v(y) ≤ m+ C0|x− y| ∀x, y ∈ Ω, (3.1)

where C0 depends on Ω, N, |b|∞, |c|∞, |g|∞, |h|∞, |v|∞, m and |u|∞ or supΩ u.
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Proof. We set

Φ(x) = MK|x| −M(K|x|)2,
and

ϕ(x, y) = m+ e−L(d(x)+d(y))Φ(x− y),

where L is a fixed number greater than 2/(3r) with r the radius in the condition (Ω2) and where K and M are
two positive constants to be chosen later. If K|x| ≤ 1

4 , then

Φ(x) ≥ 3
4
MK|x|. (3.2)

We define

ΔK :=
{

(x, y) ∈ R
N × R

N | |x− y| ≤ 1
4K

}
·

We fix M such that

max
Ω

2
(u(x) − v(y)) ≤ m+ e−2Ld0

M

8
, (3.3)

where d0 = maxx∈Ω d(x). To prove (3.1) it is enough to show that taking K large enough, one has

u(x) − v(y) − ϕ(x, y) ≤ 0 for (x, y) ∈ ΔK ∩ Ω
2
.

Suppose by contradiction that for each K there is some point (x, y) ∈ ΔK ∩ Ω
2

such that

u(x) − v(y) − ϕ(x, y) = max
ΔK∩Ω 2

(u(x) − v(y) − ϕ(x, y)) > 0.

Here we have dropped the dependence of x, y on K for simplicity of notations.
Observe that if v ≥ 0, since from (3.2) Φ(x− y) is non-negative in ΔK and m ≥ 0, one has u(x) > 0.
Clearly x �= y. Moreover the point (x, y) belongs to int(ΔK)∩Ω

2
. Indeed, if |x− y| = 1

4K , by (3.3) and (3.2)
we have

u(x) − v(y) ≤ m+ e−2Ld0
M

8
≤ m+ e−L(d(x)+d(y))1

2
MK|x− y| ≤ ϕ(x, y).

Since x �= y we can compute the derivatives of ϕ at (x, y) obtaining

Dxϕ(x, y) = e−L(d(x)+d(y))MK

{
−L|x− y|(1 −K|x− y|)Dd(x) + (1 − 2K|x− y|)(x− y)

|x− y|
}
,

Dyϕ(x, y) = e−L(d(x)+d(y))MK

{
−L|x− y|(1 −K|x− y|)Dd(y) − (1 − 2K|x− y|) (x− y)

|x− y|
}
·

Observe that for large K

0 < e−L(d(x)+d(y))MK

(
1
2
− L|x− y|

)
≤ |Dxϕ(x, y)|, |Dyϕ(x, y)| ≤ 2MK. (3.4)
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Using (2.2), if x ∈ ∂Ω we have

〈Dxϕ(x, y),−→n (x)〉 = e−Ld(y)MK

{
L|x− y|(1 −K|x− y|) + (1 − 2K|x− y|)

〈
(x− y)
|x− y| ,

−→n (x)
〉}

≥ e−Ld(y)MK

{
3
4
L|x− y| − (1 − 2K|x− y|) |x− y|

2r

}
≥ 1

2
e−Ld(y)MK|x− y|

(
3
2
L− 1

r

)
> 0,

since x �= y and L > 2/(3r). Similarly, if y ∈ ∂Ω

〈−Dyϕ(x, y),−→n (y)〉 ≤ 1
2
e−Ld(x)MK|x− y|

(
−3

2
L+

1
r

)
< 0.

In view of definition of sub and supersolution, we conclude that

tr(σ(Dxϕ(x, y))X) + b(x) ·Dxϕ(x, y) + c(x)u(x) ≥ g(x) if (Dxϕ(x, y), X) ∈ J
2,+
u(x),

tr(σ(Dyϕ(x, y))Y ) − b(y) ·Dyϕ(x, y) + c(y)v(y) ≤ h(y) if (−Dyϕ(x, y), Y ) ∈ J
2,−

v(y).

Then the previous inequalities holds for any maximum point (x, y) ∈ ΔK ∩ Ω 2, provided K is large enough.
Since (x, y) ∈ intΔK ∩Ω 2, it is a local maximum of u(x)−v(y)−ϕ(x, y) in Ω 2. Applying Theorem 3.2 in [6],

for every ε > 0 there exist X,Y ∈ S(N) such that (Dxϕ(x, y), X) ∈ J 2,+u(x), (−Dyϕ(x, y), Y ) ∈ J 2,−v(y) and(
X 0
0 −Y

)
≤ D2(ϕ(x, y)) + ε(D2(ϕ(x, y)))2. (3.5)

Now we want to estimate the matrix on the right-hand side of the last inequality:

D2ϕ(x, y) = Φ(x− y)D2(e−L(d(x)+d(y))) +D(e−L(d(x)+d(y))) ⊗D(Φ(x− y))

+D(Φ(x− y)) ⊗D(e−L(d(x)+d(y))) + e−L(d(x)+d(y))D2(Φ(x− y)).

We set

A1 := Φ(x− y)D2(e−L(d(x)+d(y))),

A2 := D(e−L(d(x)+d(y))) ⊗D(Φ(x − y)) +D(Φ(x− y)) ⊗D(e−L(d(x)+d(y))),

A3 := e−L(d(x)+d(y))D2(Φ(x− y)).

Observe that

A1 ≤ CK|x− y|
(
I 0
0 I

)
. (3.6)

Here and henceforth C denotes various positive constants independent of K.
For A2 we have the following estimate

A2 ≤ CK

(
I 0
0 I

)
+ CK

(
I −I
−I I

)
. (3.7)
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Indeed for ξ, η ∈ R
N we compute

〈A2(ξ, η), (ξ, η)〉 = 2Le−L(d(x)+d(y)){〈Dd(x) ⊗DΦ(x − y)(η − ξ), ξ〉
+ 〈Dd(y) ⊗DΦ(x− y)(η − ξ), η〉} ≤ CK(|ξ| + |η|)|η − ξ|

≤ CK(|ξ|2 + |η|2) + CK|η − ξ|2.

Now we consider A3. The matrix D2(Φ(x− y)) has the form

D2(Φ(x − y)) =
(

D2Φ(x− y) −D2Φ(x− y)
−D2Φ(x− y) D2Φ(x− y)

)
,

and the Hessian matrix of Φ(x) is

D2Φ(x) =
MK

|x|
(
I − x⊗ x

|x|2
)
− 2MK2I. (3.8)

If we choose

ε =
|x− y|

2MKe−L(d(x)+d(y))
, (3.9)

then we have the following estimates

εA2
1 ≤ CK|x− y|3I2N , εA2

2 ≤ CK|x− y|I2N ,

ε(A1A2 +A2A1) ≤ CK|x− y|2I2N , (3.10)

ε(A1A3 +A3A1) ≤ CK|x− y|I2N , ε(A2A3 +A3A2) ≤ CKI2N ,

where I2N :=
(
I 0
0 I

)
. Then using (3.6), (3.7), (3.10) and observing that

(D2(Φ(x − y)))2 =
(

2(D2Φ(x− y))2 −2(D2Φ(x− y))2

−2(D2Φ(x − y))2 2(D2Φ(x − y))2

)
,

from (3.5) we conclude that (
X 0
0 −Y

)
≤ O(K)

(
I 0
0 I

)
+
(

B −B
−B B

)
,

where

B = CKI + e−L(d(x)+d(y))

[
D2Φ(x− y) +

|x− y|
MK

(D2Φ(x− y))2
]
.

The last inequality can be rewritten as follows(
X̃ 0
0 −Ỹ

)
≤
(

B −B
−B B

)
,

with X̃ = X −O(K)I and Ỹ = Y +O(K)I. Multiplying on the left the previous inequality by the non-negative
symmetric matrix (

σ(Dxϕ(x, y)) 0
0 σ(Dyϕ(x, y))

)
,
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and taking traces we get

tr(σ(Dxϕ(x, y))X̃) − tr(σ(Dyϕ(x, y))Ỹ ) ≤ tr(σ(Dxϕ(x, y))B) + tr(σ(Dyϕ(x, y))B). (3.11)

We want to get a good estimate for the matrix on the right-hand side above. For that aim let

0 ≤ P :=
(x− y) ⊗ (x− y)

|x− y|2 ≤ I,

and let us compute tr(PB). From (3.8), since the matrix (1/|x|2)x⊗ x is idempotent, we get

(D2Φ(x))2 =
M2K2

|x|2 (1 − 4K|x|)
(
I − x⊗ x

|x|2
)

+ 4M2K4I.

Then, using that trP = 1 and 4K|x− y| ≤ 1, we have

tr(PB) = CK + e−L(d(x)+d(y))(−2MK2 + 4MK3|x− y|)
≤ CK − e−L(d(x)+d(y))MK2 ≤ −CK2,

for large K. The vector Dxϕ(x, y) can be written in the following way

Dxϕ(x, y) = e−L(d(x)+d(y))MK(v1 + v2),

where

v1 = −L|x− y|(1 −K|x− y|)Dd(x), v2 = (1 − 2K|x− y|) (x − y)
|x − y| ,

and so
σ(Dxϕ(x, y)) =

v1 ⊗ v1
|v1 + v2|2 +

v1 ⊗ v2 + v2 ⊗ v1
|v1 + v2|2 +

v2 ⊗ v2
|v1 + v2|2 ·

Since K|x− y| ≤ 1
4 , for large K we have

1
4

=
1
2
− 1

4
≤ |v2| − |v1| ≤ |v1 + v2| ≤ |v1| + |v2| ≤ 2,

and
‖B‖ ≤ CK

|x− y| ·
Then ∣∣∣∣tr( v1 ⊗ v1

|v1 + v2|2B
)∣∣∣∣ ≤ C|x− y|2‖B‖ ≤ CK|x− y|,∣∣∣∣tr(v1 ⊗ v2 + v2 ⊗ v1

|v1 + v2|2 B

)∣∣∣∣ ≤ C|x− y|‖B‖ ≤ CK

and

tr
(

v2 ⊗ v2
|v1 + v2|2B

)
=

1
|v1 + v2|2 tr(PB) ≤ −CK2.

In conclusion
tr(σ(Dxϕ(x, y)B)) ≤ O(K) − CK2.

The same estimate holds for tr(σ(Dyϕ(x, y))B). Hence, from (3.11) we conclude that

tr(σ(Dxϕ(x, y))X̃) − tr(σ(Dyϕ(x, y))Ỹ ) ≤ O(K) − CK2.
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Now, using the previous estimate, the definition of X̃ and Ỹ and the fact that u and v are respectively sub-
and supersolution we compute

g(x) − c(x)u(x) ≤ tr(σ(Dxϕ)X) + b(x) ·Dxϕ

≤ tr(σ(Dxϕ)X̃) +O(K) + b(x) ·Dxϕ

≤ tr(σ(Dyϕ)Y ) +O(K) − CK2 + b(x) ·Dxϕ

≤ b(y) ·Dyϕ− c(y)v(y) + h(y) +O(K) − CK2 + b(x) ·Dxϕ.

From this inequalities, using (3.4) we get

g(x) − h(y) − c(x)u(x) + c(y)v(y) ≤ O(K) − CK2.

If both u and v are bounded, then the member on the left-hand side of the last inequality is bounded from below
by −|g|∞ − |h|∞ − |c|∞(|u|∞ + |v|∞). Otherwise, if v is non-negative and bounded, then u(x) ≥ 0 and that
quantity is greater than −|g|∞ − |h|∞ − |c|∞(supu+ |v|∞). On the other hand, the member on the right-hand
side goes to −∞ as K → +∞, hence taking K large enough we obtain a contradiction and this concludes the
proof. �
Remark 3.3. If u is a subsolution of Δ∞u+ b(x) ·Du+ c(x)u = g, v is a supersolution of Δ∞v + b(x) ·Dv +
c(x)v = h in Ω, u ≤ v on ∂Ω and m > 0 then the estimate (3.1) still holds for any x, y ∈ Ω. To prove this define
ϕ = m+MK|x| −M(K|x|)2 and follow the proof of Lemma 3.2.

Since the Lipschitz estimate depends only on the bounds of the solution of g and on the structural constants,
an immediate consequence of Theorem 3.1 is the following compactness criterion that will be useful in the next
sections.

Corollary 3.4. Assume the hypothesis of Theorem 3.1 on Ω, F and b. Suppose that (gn)n is a sequence of
continuous and uniformly bounded functions and (un)n is a sequence of uniformly bounded viscosity solutions of{

Δ∞un + b(x) ·Dun = gn(x) in Ω
∂un

∂−→n = 0 on ∂Ω.

Then the sequence (un)n is relatively compact in C(Ω).

4. The Maximum principle and the principal eigenvalues

We say that the operator Δ∞ + b(x) ·D+ c(x) with the Neumann boundary condition satisfies the maximum
principle if whenever u ∈ USC(Ω) is a viscosity subsolution of{

Δ∞u+ b(x) ·Du+ c(x)u = 0 in Ω
∂u
∂−→n = 0 on ∂Ω,

then u ≤ 0 on Ω.
We first prove that the maximum principle holds under the classical assumption c ≤ 0, also for domain

which are not of class C2 and with more general boundary conditions. Then we show that the operator
Δ∞ + b(x) ·D+ c(x)+λ with the Neumann boundary condition satisfies the maximum principle for any λ < λ.
This is the best result that one can expect, indeed, as we will see, λ admits a positive eigenfunction which
provides a counterexample to the maximum principle for λ ≥ λ.

Finally, we give an example of class of functions c(x) which change sign in Ω and such that the associated
principal eigenvalue λ is positive.
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4.1. The case c(x) ≤ 0

In this subsection we assume that Ω is of class C1 and satisfies the interior sphere condition (Ω1). We
need the comparison principle between sub- and supersolutions of the Dirichlet problem when c < 0 in Ω.
This result is known for the operator Δ∞u + b(x) · Du + c(x)u when b is Lipschitz continuous or b satisfies
〈b(x) − b(y), x− y〉 ≤ 0, see e.g. [6]. Actually, we can remove these conditions.

Theorem 4.1. Let Ω be bounded. Assume that b, c and g are continuous and bounded in Ω and c < 0 on Ω.
If u ∈ USC(Ω) and v ∈ LSC(Ω) are respectively sub- and supersolution of

Δ∞u+ b(x) ·Du+ c(x)u = g(x) in Ω,

and u ≤ v on ∂Ω then u ≤ v in Ω.

For convenience of the reader the proof of the theorem will be sketched at the end of the next subsection.
The previous comparison result allows us to establish the strong minimum and maximum principles, for sub-

and supersolutions of the Neumann problem even with the following more general boundary condition

f(x, u) +
∂u

∂−→n = 0 x ∈ ∂Ω,

for some f : ∂Ω × R → R.

Proposition 4.2. Let Ω be a C1 domain satisfying (Ω1). Suppose that b and c are bounded and continuous
in Ω and that f(x, 0) ≤ 0 for all x ∈ ∂Ω. If v ∈ LSC(Ω) is a non-negative viscosity supersolution of{

Δ∞v + b(x) ·Dv + c(x)v = 0 in Ω
f(x, v) + ∂v

∂−→n = 0 on ∂Ω,
(4.1)

then either v ≡ 0 or v > 0 on Ω.

Proof. Since v is non-negative, it is supersolution in Ω of the equation

Δ∞v + b(x) ·Dv − |c|∞v = 0. (4.2)

Without loss of generality we can assume |c|∞ > 0. Suppose by contradiction that v �≡ 0 vanishes somewhere
in Ω. Then we can find x1, x0 ∈ Ω and R > 0 such that B(x1,

3
2R) ⊂ Ω, v > 0 in B(x1, R), |x1 − x0| = R and

v(x0) = 0. Let us construct a subsolution of (4.2) in the annulus R
2 < |x− x1| = r < 3

2R.

Let us consider the function φ(x) = e−kr − e−kR, where k is a positive constant to be determined. It easy to
see that for radial functions g(x) = ϕ(r), Δ∞g(x) = ϕ

′′
(r). Then

Δ∞φ+ b(x) ·Dφ− |c|∞φ = k2e−kr − ke−krb(x) · (x− y)
r

− |c|∞(e−kr − e−kR)

≥ e−kr
(
k2 − |b|∞k − |c|∞

)
.

Take k such that
k2 − |b|∞k − |c|∞ > 0,

then φ is a strict subsolution of the equation (4.2). Now choose m > 0 such that

m(e−k R
2 − e−kR) = v1 := inf|x−x1|= R

2
v(x) > 0,

and define w(x) = m(e−kr − e−kR). By homogeneity w is still a subsolution of (4.2) in the annulus R
2 <

|x− x1| < 3
2R, moreover w = v1 ≤ v if |x− x1| = R

2 and w < 0 ≤ v if |x− x1| = 3
2R. Then by the comparison

principle, Theorem 4.1, w ≤ v in the entire annulus.
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Since v(x0) = w(x0) = 0, w is a test function for v at x0 with Dw(x0) �= 0. But

Δ∞w(x0) + b(x0) ·Dw(x0) − |c|∞v(x0) > 0,

and this contradicts the definition of v. Then v > 0 in Ω.
Now suppose by contradiction that x0 is some point in ∂Ω on which v(x0) = 0. The interior sphere condition

(Ω1) implies that there exist R > 0 and y ∈ Ω such that the ball centered in y and of radius R, B(y,R),
is contained in Ω and x0 ∈ ∂B(y,R). Fixed 0 < ρ < R, as before the function w(x) = m(e−kr − e−kR) is
a strict subsolution of (4.2) in the annulus ρ < |x − y| = r < R, where m is such that m(e−kρ − e−kR) =
v1 := inf|x−y|=ρv(x) > 0. Since w ≤ v on the boundary of the annulus then again by the comparison principle,
Theorem 4.1, w ≤ v in the entire annulus.

Now let δ be a positive number smaller than R − ρ. In B(x0, δ) ∩ Ω still w ≤ v, since for |x − y| > R,
w < 0 ≤ v; moreover w(x0) = v(x0) = 0. Then w is a test function for v at x0. But

Δ∞w(x0) + b(x0) ·Dw(x0) − |c|∞v(x0) > 0,

and
f(x0, v(x0)) +

∂w

∂−→n (x0) = f(x0, 0) − kme−kR < 0.

This contradicts the definition of v. Finally v cannot be zero on Ω. �
Similarly we can prove:

Proposition 4.3. Let Ω be a C1 domain satisfying (Ω1). Assume that b and c are bounded and continuous
in Ω and that f(x, 0) ≥ 0 for all x ∈ ∂Ω. If u ∈ USC(Ω) is a non-positive viscosity subsolution of (4.1) then
either u ≡ 0 or u < 0 on Ω.

For x ∈ ∂Ω, let us introduce S(x), the symmetric operator corresponding to the second fundamental form
of ∂Ω in x oriented with the exterior normal to Ω.

Theorem 4.4 (maximum principle for c ≤ 0). Assume the hypothesis of Proposition 4.3. In addition suppose
that Ω is bounded, c ≤ 0, c �≡ 0 and r → f(x, r) is non-decreasing on R. If u ∈ USC(Ω) is a viscosity subsolution
of (4.1) then u ≤ 0 on Ω. The same conclusion holds also if c ≡ 0 in the following two cases:

(i) Ω is a C2 domain and for any r > 0 there exists x ∈ ∂Ω such that f(x, r) > 0, S(x) ≤ 0 and
〈b(x),−→n (x)〉 > 0;

(ii) maxx∈∂Ω f(x, r) > 0 for any r > 0 and u is a strong subsolution.

Proof. Let u be a subsolution of (4.1) and c �≡ 0. First let us suppose u ≡ k = const. By definition

c(x)k ≥ 0 in Ω,

which implies k ≤ 0.
Now we assume that u is not a constant. We argue by contradiction; suppose that maxΩ u = u(x0) > 0, for

some x0 ∈ Ω. Define ũ(x) := u(x)− u(x0). Since c ≤ 0 and f is non-decreasing, ũ is a non-positive subsolution
of (4.1). Then, from Proposition 4.3, either u ≡ u(x0) or u < u(x0) on Ω. In both cases we get a contradiction.

Let us turn to the case c ≡ 0. We have to prove that u cannot be a positive constant. Suppose by contradiction
that u ≡ k. Suppose that Ω is a C2 domain and let x ∈ ∂Ω be such that S(x) ≤ 0, 〈b(x),−→n (x)〉 > 0 and
f(x, k) > 0. In general, if φ is a C2 function, x ∈ ∂Ω and S(x) ≤ 0, then (Dφ(x)−λ−→n (x), D2φ(x)) ∈ J2,+φ(x),
for λ ≥ 0 (see [6], Rem. 2.7). Hence (−λ−→n (x), 0) ∈ J2,+u(x). But

f(x, k) − λ〈−→n (x),−→n (x)〉 = f(x, k) − λ > 0,

for λ > 0 small enough, and
−λ〈b(x),−→n (x)〉 < 0.

This contradicts the definition of u.
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Finally if u is a strong subsolution, u ≡ k > 0 and f(x, k) > 0 for some x ∈ ∂Ω, then the boundary condition
is not satisfied at x for p = 0. �
Remark 4.5. Under the same assumptions of Theorem 4.4, but now with f satisfying f(x, 0) ≤ 0 for all x ∈ ∂Ω
and with f(x, r) < 0 for r < 0 in (i) and minx∈∂Ω f(x, r) < 0 for r < 0 in (ii), using Proposition 4.2 we can
prove the minimum principle, i.e., if u ∈ LSC(Ω) is a viscosity supersolution of (4.1) then u ≥ 0 on Ω.

Remark 4.6. C2 convex sets satisfy the condition S ≤ 0 in every point of the boundary.

Remark 4.7. If c ≡ 0 and f ≡ 0 a counterexample to the maximum principle is given by the positive constants.

4.2. The threshold for the maximum principle

In this subsection and in the rest of the paper we always assume that Ω is bounded and of class C2 and that
b and c are continuous on Ω.

Theorem 4.8 (maximum principle for λ < λ). Let λ < λ and let u ∈ USC(Ω) be a viscosity subsolution of⎧⎨⎩Δ∞u+ b(x) ·Du+ (c(x) + λ)u = 0 in Ω
∂u

∂−→n = 0 on ∂Ω,
(4.3)

then u ≤ 0 on Ω.

Corollary 4.9. The quantity λ is finite.

Proof. It suffices to observe that λ ≤ |c|∞, since when the zero order coefficient is c(x) + |c|∞ the maximum
principle does not hold. A counterexample is given by the positive constants. �

In the proof of Theorem 4.8 we need the following result which is an adaptation of Lemma 1 of [4] for
supersolutions of the Neumann boundary value problem.

Lemma 4.10. Let v ∈ LSC(Ω) be a viscosity supersolution of⎧⎨⎩Δ∞v + b(x) ·Dv − β(v(x)) = g(x) in Ω
∂v

∂−→n = 0 on ∂Ω,

for some functions g, β ∈ USC(Ω). Suppose that x ∈ Ω is a strict local minimum of v(x) + C|x − x|qe−kd(x),
k > q

2r , where r is the radius in the condition (Ω2) and q > 2. Moreover suppose that v is not locally constant
around x. Then

−β(v(x)) ≤ g(x).

Remark 4.11. Similarly, if β, g ∈ LSC(Ω), u ∈ USC(Ω) is a supersolution, x is a strict local maximum of
u(x) − C|x− x|qe−kd(x), k > q

2r , q > 2 and u is not locally constant around x, it can be proved that

−β(u(x)) ≥ g(x).

Proof of Theorem 4.8. Let τ ∈ ]λ, λ[, then by definition there exists v > 0 on Ω bounded viscosity supersolu-
tion of ⎧⎨⎩Δ∞v + b(x) ·Dv + (c(x) + τ)v = 0 in Ω

∂v

∂−→n = 0 on ∂Ω.
(4.4)

We argue by contradiction and suppose that u has a positive maximum in Ω. As in [4], we define γ′ :=
supΩ(u/v) > 0 and w = γv, with γ ∈ (0, γ′) to be determined. By homogeneity, w is still a supersolution
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of (4.4). Let y ∈ Ω be such that u(y)/v(y) = γ′. Since u(y) −w(y) = (γ′ − γ)v(y) > 0, the supremum of u−w
is strictly positive, then by upper semicontinuity there exists x ∈ Ω such that

u(x) − w(x) = max
Ω

(u− w) = m > 0.

Clearly u(x) > w(x) > 0, moreover u(x) ≤ γ′v(x) = γ′

γ w(x), from which

w(x) ≥ γ

γ′
u(x). (4.5)

Fix q > 2 and k > q/(2r), where r is the radius in the condition (Ω2), and define for j ∈ N the functions
φ ∈ C2(Ω × Ω) and ψ ∈ USC(Ω × Ω) by

φ(x, y) =
j

q
|x− y|qe−k(d(x)+d(y)), ψ(x, y) = u(x) − w(y) − φ(x, y).

Let (xj , yj) ∈ Ω × Ω be a maximum point of ψ, then m = ψ(x, x) ≤ u(xj) − w(yj) − φ(xj , yj), from which

j

q
|xj − yj |q ≤ (u(xj) − w(yj) −m)ek(d(xj)+d(yj)) ≤ C, (4.6)

where C is independent of j. The last relation implies that, up to subsequence, xj and yj converge to some
z ∈ Ω as j → +∞. Classical arguments show that

lim
j→+∞

j

q
|xj − yj|q = 0, lim

j→+∞
u(xj) = u(z), lim

j→+∞
w(yj) = w(z),

and
u(z) − w(z) = m.

Claim 4.12. For j large enough, there exist xj and yj such that (xj , yj) is a maximum point of ψ and xj �= yj .

Indeed if xj = yj we have

ψ(xj , x) = u(xj) − w(x) − j

q
|x− xj |qe−k(d(xj)+d(x)) ≤ ψ(xj , xj) = u(xj) − w(xj),

and
ψ(x, xj) = u(x) − w(xj) − j

q
|x− xj |qe−k(d(x)+d(xj)) ≤ ψ(xj , xj) = u(xj) − w(xj).

Then xj is a minimum point for

W (x) := w(x) +
j

q
e−kd(xj)|x− xj |qe−kd(x),

and a maximum point for

U(x) := u(x) − j

q
e−kd(xj)|x− xj |qe−kd(x).

We first exclude that xj is both a strict local minimum and a strict local maximum. Indeed in that case, if u
and w are not locally constant around xj , by Lemma 4.10

(c(xj) + τ)w(xj) ≤ (c(xj) + λ)u(xj).
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The same result holds if u or w are locally constant by definition of sub- and supersolution. The last inequality
leads to a contradiction, as we will see at the end of the proof. Hence xj cannot be both a strict local minimum
and a strict local maximum. In the first case there exist δ > 0 and R > δ such that

w(xj) = min
δ≤|x−xj |≤R

x∈Ω

(
w(x) +

j

q
|x− xj |qe−k(d(xj)+d(x))

)

= w(yj) +
j

q
|yj − xj |qe−k(d(xj)+d(yj)),

for some yj �= xj , so that (xj , yj) is still a maximum point for ψ. In the other case, similarly, one can replace
xj by a point yj �= xj such that (yj , xj) is a maximum for ψ. This concludes the Claim 4.12.

Now computing the derivatives of φ we get

Dxφ(x, y) = j|x− y|q−2e−k(d(x)+d(y))(x− y) − k
j

q
|x− y|qe−k(d(x)+d(y))Dd(x),

and
Dyφ(x, y) = −j|x− y|q−2e−k(d(x)+d(y))(x− y) − k

j

q
|x− y|qe−k(d(x)+d(y))Dd(y).

Denote pj := Dxφ(xj , yj) and rj := −Dyφ(xj , yj). Since xj �= yj, pj and rj are different from 0 for j large
enough. Indeed

0 <
j

2
|xj − yj|q−1e−2kd0 ≤ |pj|, |rj | ≤ 2j|xj − yj |q−1, (4.7)

for large j, where d0 = maxΩ d(x). Using (2.2), if xj ∈ ∂Ω then

〈pj ,
−→n (xj)〉 ≥ j|xj − yj |qe−kd(yj)

(
− 1

2r
+
k

q

)
> 0,

and if yj ∈ ∂Ω then

〈rj ,−→n (yj)〉 ≤ j|xj − yj|qe−kd(xj)

(
1
2r

− k

q

)
< 0,

since k > q/(2r) and xj �= yj . In view of definition of sub- and supersolution we conclude that

tr(σ(pj)X) + b(xj) · pj + (c(xj) + λ)u(xj) ≥ 0 if (pj , X) ∈ J
2,+
u(xj),

tr(σ(rj)Y ) + b(yj) · rj + (c(yj) + τ)w(yj) ≤ 0 if (rj , Y ) ∈ J
2,−

w(yj).

Applying Theorem 3.2 of [6] for any ε > 0 there exist Xj , Yj ∈ S(N) such that (pj , Xj) ∈ J
2,+
u(xj),

(rj , Yj) ∈ J
2,−
w(yj) and

−
(

1
ε

+ ‖D2φ(xj , yj)‖
)(

I 0
0 I

)
≤
(
Xj 0
0 −Yj

)
≤ D2φ(xj , yj) + ε(D2φ(xj , yj))2. (4.8)

Claim 4.13. Xj and Yj satisfy (
Xj − X̃j 0

0 −Yj + Ỹj

)
≤ ζj

(
I −I
−I I

)
, (4.9)

where ζj = Cj|xj −yj|q−2, for some positive constant C independent of j and some matrices X̃j , Ỹj = O(j|xj −
yj |q).
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To prove the claim we need to estimate D2φ(xj , yj):

D2φ(xj , yj) =
j

q
|xj − yj|qD2(e−k(d(xj)+d(yj))) +D(e−k(d(xj)+d(yj))) ⊗ j

q
D(|xj − yj |q)

+
j

q
D(|xj − yj |q) ⊗D(e−k(d(xj)+d(yj))) + e−k(d(xj)+d(yj))

j

q
D2(|xj − yj |q).

We denote

A1 :=
j

q
|xj − yj|qD2(e−k(d(xj)+d(yj))),

A2 := De−k(d(xj)+d(yj)) ⊗ j

q
D(|xj − yj |q) +

j

q
D(|xj − yj|q) ⊗D(e−k(d(xj)+d(yj))),

A3 := e−k(d(xj)+d(yj))
j

q
D2(|xj − yj |q).

For A1 and A3 we have

A1 ≤ Cj|xj − yj |q
(
I 0
0 I

)
,

A3 ≤ (q − 1)j|xj − yj |q−2

(
I −I
−I I

)
.

Here and henceforth, as usual, the letter C denotes various constants independent of j. Now we consider the
quantity 〈A2(ξ, η), (ξ, η)〉 for ξ, η ∈ R

N . We have

〈A2(ξ, η), (ξ, η)〉 = 2kj|xj − yj|q−2e−k(d(xj)+d(yj))[〈Dd(xj) ⊗ (xj − yj)(η − ξ), ξ〉
+ 〈Dd(yj) ⊗ (xj − yj)(η − ξ), η〉]

≤ Cj|xj − yj |q−1|ξ − η|(|ξ| + |η|)

≤ Cj|xj − yj |q−1

( |ξ − η|2
|xj − yj| +

(|ξ| + |η|)2
4

|xj − yj|
)

≤ C
[
j|xj − yj |q−2|ξ − η|2 + j|xj − yj |q(|ξ|2 + |η|2)] .

The last inequality can be rewritten equivalently in this way

A2 ≤ Cj|xj − yj |q−2

(
I −I
−I I

)
+ Cj|xj − yj |q

(
I 0
0 I

)
.

Finally if we choose

ε =
1

j|xj − yj |q−2
,

we get the same estimates for the matrix ε(D2φ(xj , yj))2. In conclusion we have

D2φ(xj , yj) + ε(D2φ(xj , yj))2 ≤ Cj|xj − yj |q−2

(
I −I
−I I

)
+ Cj|xj − yj|q

(
I 0
0 I

)
,

and (4.8) implies (4.9). The Claim 4.13 is proved.
Now, multiplying the inequality (4.9) on the left for the non-negative symmetric matrix(

σ(pj)σ(pj) σ(pj)σ(rj)
σ(rj)σ(pj) σ(rj)σ(rj)

)
=
(

σ(pj) σ(pj)σ(rj)
σ(rj)σ(pj) σ(rj)

)
,
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taking traces and using (2.1) and (4.7), we get

tr(σ(pj)(Xj − X̃j)) − tr(σ(rj)(Yj − Ỹj)) ≤ ζjtr[(σ(pj) − σ(rj))2] ≤ 8ζj
|pj |2 |pj − rj |2

≤ C
j|xj − yj |q−2j2|xj − yj|2q

j2|xj − yj |2(q−1)

= Cj|xj − yj |q.

Now using that u and w are respectively sub- and supersolution we compute

−(λ+ c(xj))u(xj) ≤ tr(σ(pj)Xj) + b(xj) · pj

≤ tr(σ(pj)(Xj − X̃j)) + b(xj) · pj +O (j|xj − yj|q)
≤ tr(σ(rj)(Yj − Ỹj)) + b(xj) · pj +O (j|xj − yj |q)
≤ −(τ + c(yj))w(yj) + b(xj) · pj − b(yj) · rj + O (j|xj − yj |q) .

The quantity b(xj) · pj − b(yj) · rj goes to 0 as j → +∞. Indeed, since m > 0 and w is positive and bounded,
the estimate (3.1) of Lemma 3.2 holds for u and w; using it in (4.6) and dividing by |xj − yj| �= 0 we obtain

j

q
|xj − yj|q−1 ≤ C0ek(d(xj)+d(yj)) ≤ C.

Then by (4.7) we conclude that the sequences {pj} and {rj} are bounded, so that, since in addition |pj − rj | ≤
Cj|xj − yj |q → 0 as j → +∞, up to subsequence pj, rj → p0 as j → +∞.

Hence, sending j → +∞ we obtain

−(λ+ c(z))u(z) ≤ −(τ + c(z))w(z).

If τ + c(z) > 0, using (4.5) we get

−(λ+ c(z))u(z) ≤ −(τ + c(z))
γ

γ′
u(z),

and taking γ sufficiently close to γ′ in order that
τ γ

γ′ −λ

1− γ

γ′
> |c|∞, we obtain a contradiction. Finally if τ+c(z) ≤ 0

we have
−(λ+ c(z))u(z) ≤ −(τ + c(z))w(z) ≤ −(τ + c(z))u(z),

once more a contradiction since λ < τ . �
Proof of Lemma 4.10. Without loss of generality we can assume that x = 0.

Since the minimum is strict there exists a small δ > 0 such that

v(0) < v(x) + C|x|qe−kd(x) for any x ∈ Ω, 0 < |x| ≤ δ.

Since v is not locally constant and q > 1 for any n > δ−1 there exists (tn, zn) ∈ B(0, 1
n )2 ∩ Ω

2
such that

v(tn) > v(zn) + C|zn − tn|qe−kd(zn).

Consequently, for n > δ−1 the minimum of the function v(x) +C|x− tn|qe−kd(x) in B(0, δ) ∩ Ω is not achieved
on tn. Indeed

min
|x|≤δ, x∈Ω

(v(x) + C|x− tn|qe−kd(x)) ≤ v(zn) + C|zn − tn|qe−kd(zn) < v(tn).
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Let yn �= tn be some point in B(0, δ) ∩ Ω on which the minimum is achieved. Passing to the limit as n goes to
infinity, tn goes to 0 and, up to subsequence, yn converges to some y ∈ B(0, δ)∩Ω. By the lower semicontinuity
of v and the fact that 0 is a local minimum of v(x) + C|x|qe−kd(x) we have

v(0) ≤ v(y) + C|y|qe−kd(y) ≤ lim inf
n→+∞(v(yn) + C|yn|qe−kd(yn)),

and using that v(0) + C|tn|qe−kd(0) ≥ v(yn) + C|yn − tn|qe−kd(yn), one has

v(0) ≥ lim sup
n→+∞

(v(yn) + C|yn|qe−kd(yn)).

Then
v(0) = v(y) + C|y|qe−kd(y) = lim

n→+∞(v(yn) + C|yn|qe−kd(yn)).

Since 0 is a strict local minimum of v(x) + C|x|qe−kd(x), the last equalities imply that y = 0 and v(yn) goes to
v(0) as n→ +∞. Then for large n, yn is an interior point of B(0, δ) so that the function

ϕ(x) = v(yn) + C|yn − tn|qe−kd(yn) − C|x− tn|qe−kd(x)

is a test function for v at yn. Moreover, the gradient of ϕ

Dϕ(x) = −Cq|x− tn|q−2e−kd(x)(x− tn) + kC|x− tn|qe−kd(x)Dd(x)

is different from 0 at x = yn for small δ, indeed

|Dϕ(yn)| ≥ C|yn − tn|q−1e−kd(yn)(q − k|yn − tn|) ≥ C|yn − tn|q−1e−kd(yn)(q − 2kδ) > 0.

Using (2.2), if yn ∈ ∂Ω we have

〈Dϕ(yn),−→n (yn)〉 ≤ C|yn − tn|q
( q

2r
− k
)
< 0,

since k > q/(2r). Then we conclude that

tr
(
σ(Dϕ(yn))D2ϕ(yn)

)
+ b(yn) ·Dϕ(yn) − β(v(yn)) ≤ g(yn).

Observe that D2ϕ(yn) = |yn − tn|q−2M, where M is a bounded matrix. Hence, from the last inequality we get

C0|yn − tn|q−2 − β(v(yn)) ≤ g(yn),

for some constant C0. Passing to the limit, since β and g are upper semicontinuous we obtain

−β(v(0)) ≤ g(0),

which is the desired conclusion. �
We conclude sketching the proof of Theorem 4.1.

Proof of Theorem 4.1. Suppose by contradiction that maxΩ(u− v) = m > 0. Since u ≤ v on the boundary, the
supremum is achieved inside Ω. Let us define for j ∈ N and some q > 2

ψ(x, y) = u(x) − v(y) − j

q
|x− y|q.
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Suppose that (xj , yj) is a maximum point for ψ in Ω
2
. Then |xj − yj| → 0 as j → +∞ and up to subsequence

xj , yj → x, u(xj) → u(x), v(yj) → v(x) and j|xj−yj |q → 0 as j → +∞. Moreover, x is such that u(x)−v(x) = m
and we can choose xj �= yj . Recalling by Remark 3.3 that the estimate (3.1) holds in Ω, we can proceed as in
the proof of Theorem 4.8 to get

−c(x)u(x) ≤ −c(x)v(x).
This is a contradiction since c(x) < 0. �

4.3. The maximum principle for c(x) changing sign: an example

In the previous subsections we have proved that Δ∞ + b(x) ·D+ c(x) with the Neumann boundary condition
satisfies the maximum principle if c(x) ≤ 0 or without condition on the sign of c(x) provided λ > 0. In this
subsection we want to show that these two cases do not coincide, i.e., that there exists some c(x) which changes
sign in Ω such that the associated principal eigenvalue λ is positive. To prove this, by definition of λ, it suffices
to find a function c(x) changing sign for which there exists a bounded positive supersolution of⎧⎨⎩Δ∞v + b(x) ·Dv + (c(x) + λ)v = 0 in Ω

∂v

∂−→n = 0 on ∂Ω,
(4.10)

for some λ > 0. For simplicity, let us suppose that b ≡ 0 and Ω is the ball of center 0 and radius R. We will
look for c such that: ⎧⎪⎨⎪⎩

c(x) < 0 if R− ε < |x| ≤ R

c(x) ≤ −β1 if ρ < |x| ≤ R− ε

c(x) ≤ β2 if |x| ≤ ρ,

(4.11)

where 0 < ρ < R− ε and ε, β1, β2 are positive constants. Remark that in the ball of radius ρ, c(x) may assume
positive values. Following [16], it is possible to construct a supersolution of (4.10) if ε is small enough and

β2 <
k2e−kρ

k
4 (R − ρ) + 2k

β1(R−ρ) + 1 − e−kρ
,

for some k > 0. From the last relation we can see that choosing k = 1
ρ the term on the right-hand side goes

to +∞ as ρ → 0+, that is, if the set where c0(x) is positive becomes smaller then the values of c0(x) in this
set can be very large. On the contrary, for any value of k, if ρ → R− then β2 goes to 0. Finally for any k if
β1 → 0+, then again β2 goes to 0.

5. Some existence results

This section is devoted to the problem of the existence of a solution of⎧⎨⎩Δ∞u+ b(x) ·Du+ (c(x) + λ)u = g(x) in Ω
∂u

∂−→n = 0 on ∂Ω.
(5.1)

The first existence result for (5.1) is obtained when λ = 0 and c < 0, via Perron’s method. Then, we will prove
the existence of a positive solution of (5.1) when g is non-positive and λ < λ (without condition on the sign
of c). These two results will allow us to prove that the Neumann problem (5.1) is solvable for any right-hand
side if λ < λ. Finally, we will prove the existence of a positive principal eigenfunction corresponding to λ, that
is a solution of (5.1) when g ≡ 0 and λ = λ.
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Comparison results guarantee for (5.1) the uniqueness of the solution when c < 0 and when λ < λ and g < 0
or g > 0.

Theorem 5.1. Suppose that c < 0 and g is continuous on Ω. If u ∈ USC(Ω) and v ∈ LSC(Ω) are respectively
viscosity sub- and supersolution of⎧⎨⎩Δ∞u+ b(x) ·Du+ c(x)u = g(x) in Ω

∂u

∂−→n = 0 on ∂Ω,
(5.2)

with u and v bounded or v ≥ 0 and bounded, then u ≤ v on Ω. Moreover (5.2) has a unique viscosity solution.

Proof. We suppose by contradiction that maxΩ(u − v) = m > 0. Repeating the proof of Theorem 4.8 taking v
as w, we arrive to the following inequality

−c(z)u(z) ≤ −c(z)v(z),

where z ∈ Ω is such that u(z) − v(z) = m > 0. This is a contradiction since c(z) < 0.
The existence of a solution follows from Perron’s method of Ishii, see e.g. [6], and the comparison result just

proved, provided there is a bounded subsolution and a bounded supersolution of (5.2). Since c is negative and
continuous on Ω, there exists c0 > 0 such that c(x) ≤ −c0 for every x ∈ Ω. Then

u1 := −|g|∞
c0

, u2 :=
|g|∞
c0

are respectively a bounded sub- and supersolution of (5.2).
Define

u(x) := sup{ϕ(x)|u1 ≤ ϕ ≤ u2 and ϕ is a subsolution of (5.2)},
we claim that u is a solution of (5.2). We first show that the upper semicontinuous envelope of u defined as

u∗(x) := lim
ρ↓0

sup{u(y) : y ∈ Ω and |y − x| ≤ ρ}

is a subsolution of (5.2). Indeed if (p,X) ∈ J2,+u(x0) and p �= 0 then by the standard arguments of the
Perron’s method it can be proved that tr(σ(p)X) + b(x0) · p+ c(x0)u(x0) ≥ g(x0) if x0 ∈ Ω and (−tr(σ(p)X)−
b(x0) · p− c(x0)u(x0) + g(x0)) ∧ 〈p,−→n (x0)〉 ≤ 0 if x0 ∈ ∂Ω.

Now suppose u∗ ≡ k in a neighborhood of x0 ∈ Ω. If x0 ∈ ∂Ω clearly u∗ is subsolution at x0. Assume
that x0 is an interior point of Ω. We may choose a sequence of subsolutions (ϕn)n and a sequence of points
(xn)n in Ω such that xn → x0 and ϕn(xn) → k. Suppose that |xn − x0| < an with an decreasing to 0 as
n→ +∞. If, up to subsequence, ϕn is constant in B(x0, an) for any n, then passing to the limit in the relation
c(xn)ϕn(xn) ≥ g(xn) we get c(x0)k ≥ g(x0) as desired. Otherwise, suppose that for any n ϕn is not constant
in B(x0, an). Repeating the argument of Lemma 4.10 we find a sequence {(tn, yn)}n∈N ⊂ Ω2 and a small δ > 0
such that |tn − x0| < an, |yn − x0| ≤ δ, tn �= yn, ϕn(x) − |x − tn|q ≤ ϕn(yn) − |yn − tn|q for any x ∈ B(x0, δ),
with q > 2 and u∗ ≡ k in B(x0, δ). Up to subsequence yn → y ∈ B(x0, δ) as n→ +∞. We have

k = lim
n→+∞(ϕn(xn) − |xn − tn|q) ≤ lim inf

n→+∞(ϕn(yn) − |yn − tn|q)
≤ lim sup

n→+∞
(ϕn(yn) − |yn − tn|q) ≤ k − |y − x0|q.

The last inequalities imply that y = x0 and ϕn(yn) → k. Then, for large n, yn is an interior point of B(x0, δ)
and φn(x) := ϕn(yn) − |yn − tn|q + |x − tn|q is a test function for ϕn at yn. Passing to the limit as n → +∞
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in the relation Δ∞φn(yn) + b(yn) ·Dφn(yn) + c(yn)ϕn(yn) ≥ g(yn), we get again c(x0)k ≥ g(x0). In conclusion
u∗ is a subsolution of (5.2). Since u∗ ≤ u2, it follows from the definition of u that u = u∗.

Finally the lower semicontinuous envelope of u defined as

u∗(x) := lim
ρ↓0

inf{u(y) : y ∈ Ω and |y − x| ≤ ρ}

is a supersolution. Indeed, if it is not, the Perron’s method provides a viscosity subsolution of (5.2) greater
than u, contradicting the definition of u. If u∗ ≡ k in a neighborhood of x0 ∈ Ω and c(x0)k > g(x0) then for
small δ and ρ, the subsolution is

uδ,ρ(x) :=

{
max{u(x), k + δρ2

8 − δ|x− x0|2} if |x− x0| < ρ,

u(x) otherwise.

Hence u∗ is a supersolution of (5.2) and then, by comparison, u∗ = u ≤ u∗, showing that u is continuous and
is a solution.

The uniqueness of the solution is an immediate consequence of the comparison principle just proved. �
Theorem 5.2. Suppose g ∈ LSC(Ω), h ∈ USC(Ω), h ≤ 0, h ≤ g and g(x) > 0 if h(x) = 0. Let u ∈ USC(Ω)
be a viscosity subsolution of (5.1) and v ∈ LSC(Ω) be a bounded positive viscosity supersolution of (5.1) with
g replaced by h. Then u ≤ v on Ω.

Remark 5.3. The existence of a such v implies λ ≤ λ.

Proof. It suffices to prove the theorem for h < g. Indeed, for l > 1 the function lv is a supersolution of (5.1)
with right-hand side lh(x) and by the assumptions on h and g, lh < g. If u ≤ lv for any l > 1, passing to the
limit as l → 1+, one obtains u ≤ v as desired.

Hence we can assume h < g. By upper semicontinuity maxΩ(h − g) = −M < 0. Suppose by contradiction
that u > v somewhere in Ω. Then there exists y ∈ Ω such that

γ′ :=
u(y)
v(y)

= max
x∈Ω

u(x)
v(x)

> 1.

Define w = γv for some 1 ≤ γ < γ′. Since h ≤ 0 and γ ≥ 1, γh ≤ h and then w is still a supersolution of (5.1)
with right-hand side h. The supremum of u− w is strictly positive then, by upper semicontinuity, there exists
x ∈ Ω such that u(x) − w(x) = maxΩ(u − w) > 0. We have u(x) > w(x) and w(x) ≥ γ

γ′u(x). Repeating the
proof of Theorem 4.8, we get

g(z) − (λ+ c(z))u(z) ≤ h(z) − (λ+ c(z))w(z),

where z is some point in Ω where the maximum of u− w is attained. If λ+ c(z) ≤ 0, then

−(λ+ c(z))u(z) ≤ h(z) − g(z) − (λ+ c(z))w(z) < −(λ+ c(z))u(z),

which is a contradiction. If λ+ c(z) > 0, then

−(λ+ c(z))u(z) ≤ h(z) − g(z) − (λ+ c(z))
γ

γ′
u(z).

If we choose γ sufficiently close to γ′ in order that

|λ+ c|∞
(
γ

γ′
− 1
)

max
Ω

u ≥ −M
2
,

we get once more a contradiction. �
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Theorem 5.4. Suppose that λ < λ, g ≤ 0, g �≡ 0 and g is continuous on Ω, then there exists a positive viscosity
solution of (5.1). If g < 0, the solution is unique.

Proof. We follow the proof of Theorem 7 of [4].
If λ < −|c|∞ then the existence of the solution is guaranteed by Theorem 5.1. Let us suppose λ ≥ −|c|∞

and define by induction the sequence (un)n by u1 = 0 and un+1 as the solution of⎧⎨⎩Δ∞un+1 + b(x) ·Dun+1 + (c(x) − |c|∞ − 1)un+1 = g − (λ+ |c|∞ + 1)un in Ω
∂un+1

∂−→n = 0 on ∂Ω,

which exists by Theorem 5.1. By the comparison principle, since g ≤ 0 and g �≡ 0 the sequence is positive and
increasing.

We claim that (un)n is also bounded. Suppose that it is not, then dividing by |un+1|∞ and defining vn :=
un

|un|∞ one gets that vn+1 is a solution of⎧⎪⎪⎨⎪⎪⎩
Δ∞vn+1 + b(x) ·Dvn+1 + (c(x) − |c|∞ − 1)vn+1

= g
|un+1|∞ − (λ+ |c|∞ + 1) un

|un+1|∞ in Ω
∂vn+1

∂−→n = 0 on ∂Ω.

By Corollary 3.4, (vn)n converges to a positive function v with |v|∞ = 1, which satisfies⎧⎪⎪⎨⎪⎪⎩
Δ∞v + b(x) ·Dv + (c(x) + λ)v

= (λ+ |c|∞ + 1)(1 − k)v ≥ 0 in Ω
∂vn+1

∂−→n = 0 on ∂Ω,

where k := limn→+∞
|un|∞

|un+1|∞ ≤ 1. This contradicts the maximum principle, Theorem 4.8.
Then (un)n is bounded and letting n go to infinity, by the compactness result, the sequence converges to

a function u which is a solution. Moreover, the solution is positive on Ω by the strong minimum principle,
Proposition 4.2.

If g < 0, the uniqueness of the solution follows from Theorem 5.2. �
Remark 5.5. Clearly, since the operator Δ∞ is odd, by Theorem 5.4, there exists a negative solution of (5.1)
for λ < λ and g ≥ 0, g �≡ 0, which is unique if g > 0.

Theorem 5.6. Suppose that λ < λ and g is continuous on Ω, then there exists a viscosity solution of (5.1).

Proof. If g ≡ 0, by the maximum principle the only solution is u ≡ 0. Let us suppose g �≡ 0. Since λ < λ
by Theorem 5.4 there exist v0 positive viscosity solution of (5.1) with right-hand side −|g|∞ and u0 negative
viscosity solution of (5.1) with right-hand side |g|∞.

Let us suppose λ + |c|∞ ≥ 0. Let (un)n be the sequence defined in the proof of Theorem 5.4 with u1 = u0,
then by comparison Theorem 5.1 we have u0 = u1 ≤ u2 ≤ . . . ≤ v0. Hence, by the compactness Corollary 3.4
the sequence converges to a continuous function which is the desired solution. �
Theorem 5.7 (existence of principal eigenfunctions). There exists φ > 0 on Ω viscosity solution of⎧⎨⎩Δ∞φ+ b(x) ·Dφ+ (c(x) + λ)φ = 0 in Ω

∂φ

∂−→n = 0 on ∂Ω.

Moreover φ is Lipschitz continuous on Ω.
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Proof. Let λn be an increasing sequence which converges to λ. Let un be the positive solution of (5.1) with
λ = λn and g ≡ −1. By Theorem 5.4 the sequence (un)n is well defined. Following the argument of the proof
of Theorem 8 of [4], it can proved that it is unbounded, otherwise one would contradict the definition of λ.
Then, up to subsequence |un|∞ → +∞ as n → +∞ and defining vn := un

|un|∞ one gets that vn satisfies (5.1)
with λ = λn and g ≡ − 1

|un|∞ . Then by Corollary 3.4, we can extract a subsequence converging to a positive
function φ with |φ|∞ = 1 which is the desired solution. By Theorem 3.1 the solution is also Lipschitz continuous
on Ω. �

6. A decay estimate for solutions of the evolution problem

In this section we want to study the asymptotic behavior as t→ +∞ of the solution h(t, x) of the evolution
problem ⎧⎪⎪⎨⎪⎪⎩

ht = Δ∞h+ c(x)h in (0,+∞) × Ω
∂h

∂−→n = 0 on [0,+∞) × ∂Ω

h(0, x) = h0(x) for x ∈ Ω,

(6.1)

where h0 is a continuous function on Ω. As in [11,12] we use the semicontinuous extensions of the function
(p,X) → tr(σ(p)X) to define the viscosity solutions of (6.1). For X ∈ S(N), let us denote its smaller and larger
eigenvalue respectively by m(X) and M(X), that is

m(X) := min
|ξ|=1

〈Xξ, ξ〉,

M(X) := max
|ξ|=1

〈Xξ, ξ〉.

Definition 6.1. Any function u ∈ USC([0,+∞) × Ω) (resp., u ∈ LSC([0,+∞) × Ω)) is called viscosity
subsolution (resp., supersolution) of (6.1) if for any x ∈ Ω, u(0, x) ≤ h0(x) (resp., u(0, x) ≥ h0(x)) and if the
following conditions hold:

(i) For every (t0, x0) ∈ (0,+∞) × Ω, for all ϕ ∈ C2([0,+∞) × Ω), such that u − ϕ has a local maximum
(resp., minimum) at (t0, x0), one has⎧⎪⎨⎪⎩

ϕt(t0, x0) ≤ Δ∞ϕ(t0, x0) + c(x0)u(t0, x0) (resp., ≥) if Dϕ(t0, x0) �= 0,
ϕt(t0, x0) ≤M(D2ϕ(t0, x0)) + c(x0)u(t0, x0) if Dϕ(t0, x0) = 0
(resp., ϕt(t0, x0) ≥ m(D2ϕ(t0, x0)) + c(x0)u(t0, x0)).

(ii) For every (t0, x0) ∈ (0,+∞) × ∂Ω, for all ϕ ∈ C2([0,+∞) × Ω), such that u − ϕ has a local maximum
(resp., minimum) at (t0, x0) and Dϕ(t0, x0) �= 0, one has

(ϕt(t0, x0) − Δ∞ϕ(t0, x0) − c(x0)u(t0, x0)) ∧ 〈Dϕ(t0, x0),−→n (x0)〉 ≤ 0

(resp.,
(ϕt(t0, x0) − Δ∞ϕ(t0, x0) − c(x0)u(t0, x0)) ∨ 〈Dϕ(t0, x0),−→n (x0)〉 ≥ 0).

Remark that if (t0, x0) ∈ (0,+∞) × ∂Ω and Dϕ(t0, x0) = 0, then the boundary condition is satisfied.
We will show that if the principal eigenvalue of the stationary operator associated to (6.1) is positive, then

h decays to zero exponentially and that the rate of the decay depends on it. Let λ and v be respectively the
principal eigenvalue and a principal eigenfunction, i.e., v is a positive solution of⎧⎨⎩Δ∞v + (c(x) + λ)v = 0 in Ω

∂v

∂−→n = 0 on ∂Ω.
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Proposition 6.2. Let h ∈ C(Ω × [0,+∞)) be a solution of (6.1) then

sup
Ω×[0,+∞)

h(t, x)eλt

v(x)
≤ sup

Ω

h+
0 (x)
v(x)

, (6.2)

where h+
0 = max{h0, 0} denotes the positive part of h0.

Proof. It suffices to prove that, fixed λ < λ

sup
[0,T )×Ω

h(t, x)eλt

v(x)
≤ sup

Ω

h+
0 (x)
v(x)

,

for any T > 0. This implies that

sup
[0,T )×Ω

h(t, x)eλt

v(x)
≤ sup

Ω

h+
0 (x)
v(x)

,

for any T > 0 and consequently (6.2). Let us denote H(t, x) = h(t, x)eλt, it is easy to see that H(t, x) satisfies⎧⎪⎪⎨⎪⎪⎩
Ht = Δ∞H + (c(x) + λ)H in [0,+∞)× Ω
∂H

∂−→n = 0 on [0,+∞) × ∂Ω

H(0, x) = h0(x) for x ∈ Ω.

(6.3)

Suppose by contradiction that there exists T > 0 such that

γ′ := sup
[0,T )×Ω

h(t, x)eλt

v(x)
> sup

Ω

h+
0 (x)
v(x)

=: h ≥ 0. (6.4)

Let us denote w = γv, where
h < γ < γ′

and γ is sufficiently close to γ′ in order that

λ γ
γ′ − λ

1 − γ
γ′

> |c|∞. (6.5)

Since γ < γ′, the function H − w has a positive maximum on [0, T ]× Ω.
Fix q > 2, k > q

2r and ε > 0 small, for j ∈ N we define the function

φ(t, x, s, y) =
(
j

q
|x− y|q +

j

2
|t− s|2

)
e−k(d(x)+d(y)) +

ε

T − t
,

and we consider the supremum of
H(t, x) − w(y) − φ(t, x, s, y)

over ([0, T )× Ω)2. Let (tj , xj , sj , yj) be a point in (Ω × [0, T ))2 where the maximum is attained. From

H(tj , xj) − w(yj) − φ(tj , xj , tj , yj) ≤ H(tj , xj) − w(yj) − φ(tj , xj , sj , yj)

we deduce that
tj = sj .
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Let (t̂, x̂) ∈ [0, T [ × Ω be such that H(t̂, x̂) − w(x̂) = l > 0, then for ε small enough we have

l

2
≤ H(t̂, x̂) − w(x̂) − ε

T − t̂
≤ H(tj , xj) − w(yj) − ε

T − tj
− j

q
|xj − yj |qe−k(d(xj)+d(yj)).

Since ε
T−t → +∞ as t ↑ T , the previous inequality implies that, up to subsequence (tj , xj , yj) → (t, x, x) as

j → +∞ with t < T and that
H(t, x) − w(x) > 0. (6.6)

Moreover
lim

j→+∞
j

q
|xj − yj |q = 0,

and from (6.4) we deduce that
w(x) ≥ γ

γ′
H(t, x). (6.7)

Finally, since γ > h, it is t > 0. Hence for j large enough, 0 < tj < T .
As in Theorem 4.8 the following holds true.

Claim 6.3. For j large enough, we can choose xj �= yj .

Indeed, suppose that xj = yj, then (tj , xj) is a maximum point for

U(t, x) := H(t, x) − ε

T − t
− e−kd(xj)

(
j

q
|x− xj |q +

j

2
|t− tj |2

)
e−kd(x),

and a minimum point for

W (t, x) := w(x) + e−kd(xj)

(
j

q
|x− xj |q +

j

2
|t− tj |2

)
e−kd(x).

We prove that (tj , xj) is not both a strict local maximum and a strict local minimum. Indeed, in that case,
if H(t, x) − ε

T−t is not locally constant around (tj , xj), following the proof of Lemma 4.10, we can construct
sequences (tn, xn)n, (sn, yn)n converging to (tj , xj) as n→ +∞, such that (tn, xn) �= (sn, yn) and

ϕ(t, x) := C

( |x− xn|q
q

+
|t− tn|2

2

)
e−kd(x) +

ε

T − t
+H(sn, yn)

− ε

T − sn
− C

( |yn − xn|q
q

+
|sn − tn|2

2

)
e−kd(yn)

is a test function for H(t, x) at (sn, yn), where C = je−kd(xj). If yn ∈ ∂Ω, then

〈Dϕ(sn, yn),−→n (yn)〉 ≥ C

[(
k

q
− 1

2r

)
|xn − yn|q +

k

2
|sn − tn|2

]
> 0.

Then Dϕ(sn, yn) �= 0 and by definition of subsolution

ε

(T − sn)2
+ Ce−kd(yn)(sn − tn) ≤ Δ∞(ϕ(sn, yn)) + (c(yn) + λ)H(sn, yn).

If yn is an interior point and Dϕ(sn, yn) �= 0, then again the previous inequality holds true, otherwise if
Dϕ(sn, yn) = 0, we have

ε

(T − sn)2
+ Ce−kd(yn)(sn − tn) ≤M(D2ϕ(sn, yn)) + (c(yn) + λ)H(sn, yn).
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Passing to the limit as n→ +∞, from both the previous relations we get

ε

(T − tj)2
≤ (c(xj) + λ)H(tj , xj).

By definition of subsolution, we get the same inequality if H(t, x) − ε
T−t is locally constant around (tj , xj).

Proceeding in the same way, if either w is locally constant around xj or not, since (tj , xj) is a strict local
minimum of W (t, x), we get

(c(xj) + λ)w(xj) ≤ 0.
Then, passing to the limit as j → +∞, we finally obtain

(c(x) + λ)w(x) <
ε

(T − t)2
≤ (c(x) + λ)H(t, x), (6.8)

which contradicts (6.5), (6.6) and (6.7).
Hence (tj , xj) cannot be both a strict local maximum and a strict local minimum. In the first case, there

exists (sj , yj) �= (tj , xj) such that

H(sj , yj) − w(xj) − ε

T − sj
−
(
j

q
|xj − yj |q +

j

2
|tj − sj |2

)
e−k(d(xj)+d(yj)) = H(tj , xj) − w(xj) − ε

T − tj

= sup
([0,T )×Ω)2

(H(t, x) − w(y) − φ(t, x, s, y)).

As before we get that sj = tj , then xj �= yj and this concludes the claim.
From the claim we deduce that Dxφ(tj , xj , tj , yj) and Dyφ(tj , xj , tj , yj) are different from 0. Moreover

there exist Xj, Yj ∈ S(N) satisfying (4.9) such that
(

ε
(T−tj)2

, Dxφ(tj , xj , tj , yj), Xj

)
∈ P2,+H(tj , xj) and

(−Dyφ(tj , xj , tj , yj), Yj) ∈ J2,−w(yj). Now we can proceed as in the proof of Theorem 4.8 to obtain (6.8) and
hence to reach a contradiction. �
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