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STRONG UNIQUE CONTINUATION FOR THE LAMÉ SYSTEM
WITH LIPSCHITZ COEFFICIENTS IN THREE DIMENSIONS ∗

Hang Yu1

Abstract. This paper studies the strong unique continuation property for the Lamé system of elas-
ticity with variable Lamé coefficients λ, μ in three dimensions, div(μ(∇u+∇ut))+∇(λdivu)+V u = 0
where λ and μ are Lipschitz continuous and V ∈ L∞. The method is based on the Carleman estimate
with polynomial weights for the Lamé operator.
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1. Introduction

The main purpose of this paper is to study the strong unique continuation for the Lamé system with C0,1

coefficients in three dimensions. Firstly, let us introduce the Lamé system of elasticity. Assume that Ω is a
bounded domain in R

3, the Lamé moduli μ = μ(x), λ = λ(x) are C0,1(Ω) and satisfy the strong ellipticity
conditions

μ ≥ α0 > 0, 2μ + λ ≥ β0 > 0,

and the upper bound
‖μ‖C0,1(Ω) + ‖λ‖C0,1(Ω) ≤ C,

where α0, β0 and C are given positive constants. Without loss of generality, we may assume that Ω contains
the origin and BR ⊂⊂ Ω for some R > 0 where BR is the open ball centered at the origin with radius R. The
Lamé system with a perturbation V ∈ L∞(Ω) is given by

div
(
μ(∇u + (∇u)�)

)
+ ∇(λdiv u

)
+ V u = 0, (1.1)

where u = (u1, u2, u3)� is the displacement vector and

∇u =

⎛⎝ ∂x1u1 ∂x2u1 ∂x3u1

∂x1u2 ∂x2u2 ∂x3u2

∂x1u3 ∂x2u3 ∂x3u3

⎞⎠
is the gradient matrix of u.
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We recall that a function u ∈ L2
loc(R

n) is said to vanish of infinite order at a point x0 if for any k > 0,∫
|x−x0|<r

|u|2dx = O(rk), as r → 0.

We say that (1.1) has the strong unique continuation property (SUCP) if any solution u is identically zero
whenever it vanishes of infinite order at a point of Ω.

The previous results in the literature are the following. The result of the (weak) unique continuation for
the Lamé system was first given by Dehman and Robbiano for λ, μ ∈ C∞(Rn) [3]. They proved the Carleman
estimate by pseudodifferential calculus. Then Ang et al. gave a result for λ ∈ C2(Rn), μ ∈ C3(Rn) [2]; Weck
proved a result for λ, μ ∈ C2(Rn) [12,13]. On the other hand, the result on the strong unique continuation
(SUCP) for the Lamé system was first obtained by Alessandrini and Morassi for n ≥ 2, λ, μ ∈ C1,1(Rn) [1]. Then
Lin and Wang studied the SUCP in the case of n = 2, λ, μ ∈ W 1,∞(Rn) [8]. Their proof relies on reducing the
Lamé system to a first order elliptic system and on some suitable Carleman estimates with polynomial weights.
Later, the result of [8] was improved to μ ∈ C0,1(Ω) and λ being measurable by Escauriaza [5]. Also, while
submitting this article, we became aware of the work of Lin et al. [7] which also consider SUCP for the Lamé
operator with Lipschitz coefficients.

The purpose of this paper is to consider the more general case in (1.1). Our result is as follows:

Theorem 1.1. Assume that Ω is a bounded domain in R
3, the Lamé coefficients μ, λ ∈ C0,1(Ω) satisfy the

strong elliptic conditions. Let u ∈ H2(Ω) be a solution to (1.1). If there is a point x0 ∈ Ω such that, for every
k ∈ N, ∫

|x−x0|<r

|u|2dx = O(rk), as r → 0, (1.2)

then u ≡ 0, in Ω.

As we shall see in Section 3, Theorem 1.1 is a combination of two results: first, we will show that if u
solves (1.1), then u cannot have zeros of “exponential” order, i.e., there is no point x0 ∈ Ω such that∫

|x−x0|<r

|u|2dx = O
(
e−r−1

)
, as r → 0, (1.3)

unless u is identically 0. This result can be seen in our previous work [14]. Next, we will prove if x0 is a zero of
infinite order for u, then x0 is a zero of “exponential” order, i.e. (1.2) implies (1.3). For this step we need the
Carleman estimates with polynomial weights.

2. Carleman estimates with polynomial weights

In [11], the authors give a result of the Carleman estimates for Dirac operators. The proof uses the fact
that Dirac squared is the Laplacian. Inspired by [6,11], one can find a way to obtain the Carleman estimates
with polynomial weights for Lamé operator directly from a corresponding estimates for the Laplacian in three
dimensions, since the Lamé operator is a composition of two first order operators, one of which is a Dirac
operator. For doing this, we need to use the semiclassical Sobolev spaces

‖u‖Hs
scl

= ‖〈hD〉su‖L2

where 〈ξ〉 = (1 + |ξ|2) 1
2 . It is easy to prove that if s is a positive integer, then

‖u‖Hs
scl

≈
∑

0≤k≤s

(‖hkDku‖L2).

Here and below ‖ · ‖ = ‖ · ‖L2(Rn) and C denoting a constant independent of h and u, may vary from line to
line.
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Firstly, we give a generalized Carleman estimate with polynomial weights for the Laplacian. Below, we will
use the conventions of semiclassical calculus. In particular we consider the usual semiclassical symbol classes Sm,
and relate to symbols a ∈ Sm operators A = Oph(a) via Weyl quantization. See [9] for more details.

Lemma 2.1. Let 0 ≤ s ≤ 1. Then for any u ∈ C∞
c (Br\{0}) where Br ⊂ R

n is a ball of radius r around the

origin 0 and for any
1
h

= k +
n + 1

2
, k ∈ N, we have the estimate

‖|x|− 1
h u‖Hs+1

scl
≤ Chr2‖|x|− 1

h Δu‖Hs−1
scl

, (2.1)

where C depends only on n.

Proof. Consider the Carleman inequality for the Laplace operator proved by Regbaoui [10],∫
|x|− 2

h−4|u|2dx + h2

∫
|x|− 2

h−2|Du|2dx + h4

∫
|x|− 2

h |D2u|2dx ≤ Ch2

∫
|x|− 2

h |Δu|2dx (2.2)

for all u ∈ C∞
c (Br\{0}), where 1

h = k + n+1
2 , k ∈ N.

Setting t = hr, we define
‖u‖Hs

scl
= ‖〈tD〉su‖L2

where 〈ξ〉 = (1 + |ξ|2) 1
2 . Let

P = |x|− 1
h ◦ (−t2Δ) ◦ |x| 1

h

and
u = |x| 1

h v ∈ C∞
c (Br\{0}).

Putting u into (2.2), one has

I1 = ‖|x|−2v‖ + h‖|x|− 1
h−1D(|x| 1

h v)‖ + h2‖|x|− 1
h D2(|x| 1

h v)‖

≤ Ch‖|x|− 1
h Δ(|x| 1

h v)‖ = Ct−1r−1‖Pv‖ = I2. (2.3)

Let 0 < η � ε � 1.

I1 ≥ ‖|x|−2v‖ + εh‖|x|−1|Dv| + 1
h
|x|−2(D|x|)v‖ + ηh2‖D2v + |x|− 1

h [D2, |x| 1
h ]v‖

≥ ‖|x|−2v‖ + εh‖|x|−1|Dv| + 1
h
|x|−2(D|x|)v‖ + ηh2‖D2v +

1
h
|x|−1D(|x|)Dv +

1
h

(
1
h
− 1
)
|x|−2v‖

≥ ‖|x|−2v‖ + ε
(
h‖|x|−1|Dv|‖ − C‖|x|−2v‖

)
+ η
(
h2‖D2v‖ − hC‖|x|−1Dv‖ − C‖|x|−2v‖

)
≥ (1 − Cε − Cη)‖|x|−2v‖ + h(ε − Cη)‖|x|−1Dv‖ + h2‖D2v‖
≥ C

(
‖|x|−2v‖ + h‖|x|−1Dv‖ + h2‖D2v‖

)
≥ C

(
r−2‖v‖ + hr−1‖Dv‖ + h2‖D2v‖

)
. (2.4)

Composing (2.3) and (2.4), we rewrite (2.2) as follows

‖v‖ + rh‖Dv‖ + r2h2‖D2v‖ ≤ Crt−1‖Pv‖. (2.5)
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Then we have
‖v‖H2

scl
≤ Crt−1‖Pv‖, for all v ∈ C∞

c (Br\{0}). (2.6)

Suppose v ∈ C∞
c (Br\{0}), then 〈tD〉jv ∈ S , ∀j ∈ R. In order to use the Carleman estimate we have to cut

〈tD〉jv off.
Let χ ∈ C∞

c (B2r\{0}) such that
(1 − χ)v = 0.

Note that supp(1 − χ) ∩ suppv = ∅, and this yields the estimate

‖(1 − χ)〈tD〉jv‖Hl
scl

≤ CM tM‖v‖Hk
scl

, for any l, k, j, M. (2.7)

This and (2.6) imply

‖v‖Hs+1
scl

= ‖〈tD〉s−1v‖H2
scl

≤ ‖χ〈tD〉s−1v‖H2
scl

+ ‖(1 − χ)〈tD〉s−1v‖H2
scl

≤ C
(
rt−1‖P (χ〈tD〉s−1v)‖ + t‖v‖Hs+1

scl

)
≤ Ct−1

(
r‖χ〈tD〉s−1Pv‖ + r‖χ[P, 〈tD〉s−1]v‖ + r‖[P, χ]〈tD〉s−1v‖ + t2‖v‖Hs+1

scl

)
. (2.8)

By the property (2.7) we have

‖[P, χ]〈tD〉s−1v‖ ≤ CM tM‖v‖Hs+1
scl

, for any M. (2.9)

Noting that |ξ|2 and 〈t|ξ|〉s−1 are main symbols of differential operator P and pseudo differential operator
〈tD〉s−1 respectively, we have χ[P, 〈tD〉s−1] ∈ tOpt(Ss−1), since {|ξ|2, 〈t|ξ|〉s−1} vanishes identically, where
{a, b} denotes the Poisson bracket of a and b, defined by

{a, b} =
∂a

∂ξ

∂b

∂x
− ∂a

∂x

∂b

∂ξ
·

Hence
‖χ[P, 〈tD〉s−1]v‖ ≤ Ct‖〈tD〉s−1v‖ (2.10)

where C depends only on the dimension. Then by (2.8), (2.9), (2.10) and choosing 0 < t � r � 1, we have

t‖v‖Hs+1
scl

≤ Cr‖Pv‖Hs−1
scl

.

Noting that v = |x|− 1
h u, we conclude (2.1). �

From [4] we know that in three dimensions the Lamé operator L can be written as a composition of two first
order operators. Indeed, consider the elliptic operator A : H1(Ω; R4) → L2(Ω; R4) defined by

A(∂)(u, v) = (∇× u + ∇v,−∇ · u),

and its perturbation Aα : H1(Ω; R4) → L2(Ω; R4) defined by

Aα(x, ∂)(u, v) = (∇× u + α∇v,−∇ · u),
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where u is a vector-valued function with three components, v and α are scalar-valued functions. A(∂) is a Dirac
operator since A2 = −ΔI4. We refer [11] for Carleman estimates for general Dirac operators.

Now we turn to the Lamé system (1.1). Assume u : Ω ⊂ R
3 → R

3 denoting the displacement vector. Let L
be the Lamé operator

Lu := μΔu + (λ + μ)∇divu.

It is easy to check that

Lu := μΔu + (λ + μ)∇divu = (2μ + λ)∇∇ · u − μ∇×∇× u.

Then we have (
Lu, 0

)
=
(
μΔu + (λ + μ)∇divu, 0

)
= −μAα(x, ∂)A(∂)(u, 0), (2.11)

where we choose α =
(2μ + λ)

μ
.

Firstly we give the Carleman estimates for A and Aα by using our generalized Carleman estimate for Laplace
operator.

Lemma 2.2. For any v ∈ C∞
c (Br\{0}; R4) where Br ⊂ R

3 is a ball of radius r around the origin 0 and for
any 1

h = k + n+1
2 , k ∈ N, we have the estimates

‖v‖H1
scl

≤ C1r‖|x|− 1
h A(|x| 1

h u)‖, (2.12)

‖v‖H1
scl

≤ C2r‖|x|− 1
h Aα(|x| 1

h v)‖, (2.13)

where C1 and C2 are two positive constants depending only on α.

Proof. Let
Â = |x|− 1

h ◦ (tA) ◦ |x| 1
h .

Then we have
Â2 = |x|− 1

h ◦ (−t2ΔI4) ◦ |x| 1
h .

We recall the composition formula for semiclassical symbols p and q: the operator PQ has symbol

σ(PQ) ∼
∑
α,β

h|α+β|(−1)|α|

(2i)|α|α!β!
(∂α

x ∂β
ξ p(x, ξ))(∂α

ξ ∂β
x q(x, ξ)). (2.14)

Denoting b(x, ξ) the symbol of 〈hD〉−1Â, we have by (2.14)

b(x, ξ) ∼
∑
α,β

h|α|

(i)|α||α|! (∂
α
ξ (1 + |hξ|2)− 1

2 )(∂α
x ar(x, ξ)) = 1 + O(h), in S0.

Now Lemma 2.1 implies, for any v ∈ C∞
c (Br\{0}; R4)

t‖v‖H1
scl

≤ Cr‖|x|− 1
h ◦ (−t2Δ) ◦ |x| 1

h v‖H−1
scl

= Cr‖Â2v‖H−1
scl

= Cr‖〈tD〉−1ÂÂv‖

≤ Cr‖Âv‖ (2.15)

since 〈hrD〉−1Â is of order 0.
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Substituting |x|− 1
h v for v in (2.15), we have

‖|x|− 1
h v‖H1

scl
≤ Cr‖|x|− 1

h Av‖. (2.16)

By regularizing, we know (2.16) is valid if we suppose v ∈ H1(R3) with compact support in Br\{0} that is
a three dimensional ball of radius r centered at 0 but removing the center 0.

Next, with

Iα =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 α

⎞⎟⎟⎠
we have

Aα(x, ∂) = A(∂)Iα.

Noting that C0,1(Ω) is equivalent to W 1,∞(Ω), we have

α =
(2μ + λ)

μ
∈ W 1,∞(Ω).

Thus ṽ ∈ H1(R3) has compact support in Br\{0}. Hence by putting ṽ into (2.16), we have

‖|x|− 1
h Iαv‖H1

scl
≤ Cr‖|x|− 1

h A(Iαv)‖
≤ Cr‖|x|− 1

h Aαv‖ + Cr‖|x|− 1
h (AIα)v‖

≤ Cr‖|x|− 1
h Aαv‖ + Cαr‖|x|− 1

h v‖,

where Cα is a constant depending on α. Noting that the second term of the right hand side can be absorbed
by the left hand side, we have (2.13). �

The Carleman estimate for the Lamé operator follows immediately by (2.11), (2.12) and (2.13). Indeed,
noticing that |x|− 1

h ◦A ◦ |x| 1
h is a differential operator, we have

|x|− 1
h A(|x| 1

h v) ∈ C∞
c (R3\{0}; R4),

for any u ∈ C∞
c (R3\{0}; R3), let

v = (u, 0) ∈ C∞
c (R3\{0}; R4),

we have

‖|x|− 1
h A(|x| 1

h v)‖ ≤ ‖|x|− 1
h A(|x| 1

h v)‖H1
scl

≤ Cr‖|x|− 1
h AαA(|x| 1

h v)‖
= Cr‖|x|− 1

h L(|x| 1
h u)‖. (2.17)

With (2.12) and (2.17), we have a key theorem as follows.

Theorem 2.1. There exists C depending only on n and Lamé coefficients such that for any u ∈ C∞
c (Br\{0})

where Br ⊂ R
3 is a ball of radius r around the origin 0 and for any

1
h

= k+
n + 1

2
, k ∈ N, we have the estimate

‖u‖ + rh‖Du‖ ≤ Cr2‖|x|− 1
h L(|x| 1

h u)‖. (2.18)
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Remark 2.1. The estimate (2.18) remains valid if we suppose u ∈ H2
loc(R

3) with compact support and satisfying
for all |α| ≤ 2 and all N > 0,

∫
Br

|Dαu|2dx = O(rN ) as r → 0. We can easily see this by cutting u off for
small r and regularizing.

3. Proof of the main result

We need the following auxiliary lemma.

Lemma 3.1. Suppose u ∈ H2
loc(R

3) and u vanishes of infinite order at x0. Then |x|− 1
h u also vanishes of

infinite order at x0.

Proof. u vanishes of infinite order at x0, then∫
Br

|u|2dx = O(rk), ∀k > 0 r → 0.

We have ∫
Br

|x|− 2
h |u|2dx =

∑
n≥0

∫
B r

2n
\B r

2n+1

|x|− 2
h |u|2dx

≤
∑
n≥0

( r

2n+1

)− 2
h
( r

2n

)k

= r−
2
h +k

∑
n≥0

1
2nk−(n+1) 2

h

≤ r−
2
h +k. (3.1)

That is ∫
Br

|x|− 2
h |u|2dx = O(rk− 2

h ), ∀k > 0 as r → 0.

This is the conclusion of the lemma. �

By Lemma 3.1, we have another version of Theorem 2.1.

Corollary 3.1. Assume u ∈ C∞
c (Br\{0}) and u vanishes of infinite order at x0. There exists C depending on

the Lamé coefficients, such that for all
1
h

= k +
n + 1

2
, k ∈ N, it holds

‖|x|− 1
h u‖ + rh‖|x|− 1

h Du‖ ≤ Cr2‖|x|− 1
h Lu‖. (3.2)

Proof. We need only to prove

‖|x|− 1
h u‖ + rh‖D(|x|− 1

h u)‖ ≥ C
(
‖|x|− 1

h u‖ + rh‖|x|− 1
h Du‖

)
. (3.3)

Indeed, there exists c > 1, such that

‖|x|− 1
h u‖2 + r2h2‖D(|x|− 1

h u)‖2 ≥ ‖|x|− 1
h u‖2 +

(
1 − 1

c

)
r2h2‖|x|− 1

h Du‖2 + (1 − c)r2‖|x|− 1
h−1u‖2

= ‖|x|− 1
h u‖2 + (1 − c)r2‖|x|− 1

h−1u‖2 +
(

1 − 1
c

)
r2h2‖|x|− 1

h Du‖2. (3.4)
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Noting that u vanishes of infinite order at x0, we set w = |x|− 1
h u. Then by the proof of Lemma 3.1, we know∫

Br

|w|2dx = O(rk− 2
h ), ∀k > 0 as r → 0.

Similarly to (3.1),

r2

∫
Br

|x|−2|w|2dx = r2O(rk− 2
h−2) = O(rk− 2

h ), ∀k > 0 as r → 0. (3.5)

Since 1 − c < 0, then we have∫
Br

|w|2dx + (1 − c)r2

∫
Br

|x|−2|w|2dx ≥
∫

Br

|w|2dx + (1 − c)
∫

Br

|w|2dx

= (2 − c)
∫

Br

|w|2dx. (3.6)

Choosing 1 < c < 2, we have (3.3) by (3.4) and (3.6). �

Now we show that if x0 is a zero of infinite order for u which is a solution of system (1.1), then x0 is a zero
of “exponential” order. Without loss of generality, we suppose x0 = 0.

By Remark 2.1 and Lemma 3.1, we have:

Theorem 3.1. Suppose that u ∈ H2
loc(R

3), and satisfies (1.2). Then∫
Br

|u|2dx = O
(
e−r−1

)
, as r → 0,

Proof. Suppose u ∈ H2
loc(R

3) is a solution (1.1), and satisfies (1.2). We can obtain that for all |α| ≤ 2∫
Br

|Dαu|2dx = O(rk), ∀k > 0 as r → 0. (3.7)

Assume that h satisfies the conditions of Lemma 2.1. Choose k sufficiently larger than
h

2
and a cut-off

function χ̃ ∈ C∞
c (R3) such that {

χ̃(x) = 1 as |x| < r,
χ̃(x) = 0 as |x| > 2r.

It is easy to check that χ̃ satisfies

|Dαχ̃(x)| ≤ Cr−|α|. (3.8)

χ̃u ∈ H2 has a compact support, then by Remark 2.1, (2.18) also holds for χ̃u. Thus by Corollary 3.1, we
have ∫

χ̃|x|− 2
h |u|2dx + h2r2

∫ ∣∣∣|x|− 1
h Dχ̃u

∣∣∣2dx ≤ Cr4

∫
|x|− 2

h

∣∣∣L(χ̃u)
∣∣∣2dx. (3.9)
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Noting that

0 = div
(
μ(∇u + (∇u)�)

)
+ ∇(λdiv u

)
+ V u

= Lu +
(∇u + (∇u)�

)∇μ + (div u)∇λ + V u.

It means ∫
χ̃|x|− 2

h |u|2dx + h2r2

∫ ∣∣∣|x|− 1
h Dχ̃u

∣∣∣2dx ≤ Cr4

∫
|x|− 2

h

∣∣∣L(χ̃u)
∣∣∣2dx

≤ Cr4

∫
χ̃|x|− 2

h |Lu|2 + |x|− 2
h

∣∣∣[L, χ̃]u
∣∣∣2dx

≤ Cr4

(∫
|x|<r

|x|− 2
h |Du|2dx +

∫
|x|<r

|x|− 2
h |V u|2dx

+
∫

r<|x|<2r

|x|− 2
h |u|2dx +

∫
r<|x|<2r

|x|− 2
h |Du|2dx

)
. (3.10)

Recall that V ∈ L∞(Ω), we have

∫
χ̃|x|− 2

h |u|2dx + h2r2

∫ ∣∣∣|x|− 1
h Dχ̃u

∣∣∣2dx ≤ C0r
4

(∫
|x|<r

|x|− 2
h |Du|2dx +

∫
|x|<r

|x|− 2
h |u|2dx

+
∫

r<|x|<2r

|x|− 2
h |u|2dx +

∫
r<|x|<2r

|x|− 2
h |Du|2dx

)
. (3.11)

After some calculations, we have

(1 − C0r
4)
∫
|x|<r

|x|− 2
h |u|2dx + (h2r2 − C0r

4)
∫ ∣∣∣|x|− 1

h Dχ̃u
∣∣∣2dx

≤ C0r
4

(∫
r<|x|<2r

|x|− 2
h |u|2dx +

∫
r<|x|<2r

|x|− 2
h |Du|2dx

)
. (3.12)

Noting r is sufficiently small, as long as 0 � r � h � 1, we have

(h2r2 − C0r
4)
∫ ∣∣∣|x|− 1

h Dχ̃u
∣∣∣2dx ≥ r4

∫ ∣∣∣∣∣|x|− 1
h Dχ̃u

∣∣∣2dx

≥ r4

∫
|x|<r

|x|− 2
h |Du|2dx − r4

∫
r<|x|<2r

|x|− 2
h |u|2dx. (3.13)

Summing up, we have∫
|x|<r

|x|− 2
h |u|2dx ≤ Cr4

∫
|x|>r

|x|− 2
h |u|2dx + Cr4

∫
|x|>r

|x|− 2
h |Du|2dx. (3.14)

That is (r

2

)− 2
h

∫
|x|<r

|u|2dx ≤ Cr−
2
h +4

∫
|x|>r

|u|2dx + Cr−
2
h +4

∫
|x|>r

|Du|2dx.
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It implies ∫
Br

|u|2dx ≤ Cr−22−
2
h ‖u‖2

H1 . (3.15)

Choosing h = (1 + C0)r, we note that h has to satisfy h−1 ∈ A = {m + 2, m ∈ N}. Then [(1 + C0)r]−1 must
be in A. But but one can check without difficulty that (3.15) is available for all r > 0. Thus∫

Br

|u|2dx = O
(
e−r−1

)
, r → 0.

Then we complete the proof the theorem. �
In our previous work [14], we gave a quantitative estimate of unique continuation for a three-dimensional Lamé

system with C1 coefficients in the form of three spheres inequalities. The property of the non faster than expo-
nential vanishing of nonzero local solutions is also given as an application of the three spheres inequality (1.1).

Theorem 3.2. Assume that Ω is a bounded domain in R
3, the Lamé moduli μ, λ ∈ C0,1(Ω) satisfy the strong

elliptic conditions. Let u ∈ H2(Ω) be a solution to (1.1). If there is a point x0 ∈ Ω and k > 0 such that,∫
|x−x0|<r

|u|2dx = O
(
e−r−k

)
, as r → 0+.

Then u ≡ 0, in Ω.

Then the SUCP follows immediately by Theorems 3.1 and 3.2.

Acknowledgements. The author wants to show his great gratitude to Professor Hongwei Lou and Professor Xu Zhang for
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