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Abstract. This paper is mainly concerned with a class of optimal control problems of systems gov-
erned by the nonlinear dynamic systems on time scales. Introducing the reasonable weak solution of
nonlinear dynamic systems, the existence of the weak solution for the nonlinear dynamic systems on
time scales and its properties are presented. Discussing L1-strong-weak lower semicontinuity of inte-
gral functional, we give sufficient conditions for the existence of optimal controls. Using integration
by parts formula and Hamiltonian function on time scales, the necessary conditions of optimality are
derived respectively. Some examples on continuous optimal control problems, discrete optimal control
problems, mathematical programming and variational problems are also presented for demonstration.
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1. Introduction

Important advancements in all the physical, life and social sciences heavily on the existence of a mathematical
framework to describe, to solve and to better understand the problems from these fields. Historically, two
separate approaches have dominated mathematical modelling: the field of differential equations and the area
of difference equation. In order to create a theory that can unify discrete and continuous analysis, the calculus
of time scales was initiated by Hilger in his Ph.D. thesis in 1988. The time scales calculus has a tremendous
potential for applications in some mathematical models of real processes and phenomena studied in physics,
chemical technology, population dynamics, biotechnology and economics, neural networks, social sciences, as is
pointed out in the monographs of Benchohra et al. [1] and Lakshmikantham et al. [7].

In recent years dynamic systems on time scales are considered for both initial value problems and bound-
ary value problems. Some results on the existence, uniqueness and properties of classical solution were ob-
tained [1,7,8,14]. In addition to, the theory of the calculus of variations on time scales is already well
developed [2,9].

The optimal control problems on time sales is a very important topic for both theory and application. In 2006,
we put forward the optimal control problem on time scales and present the existence of optimal controls, derived
the necessary conditions of optimality for LQ problem on time scales in [3,10]. Then Zhan and Wei considered
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Hamilton-Jacobi-Bellman equations on time scales and presented the existence of optimal controls, derived the
necessary conditions of optimality for the optimal control problems of system governed by a linear dynamic
systems (see [16–18]). In 2009, using Hamiltonian function and classical variation, Hilscher and Zeidan [5]
derived a weak maximum principle for some special optimal control problems of systems governed by the
semilinear dynamic equation on time scales. The optimal condition was first proved in [5] in the context of the
calculus of variations on time scales and the optimal inequality is not given. We prove it here in a more general
setting of optimal control.

In this paper, under quite weak conditions, we study the optimal systematically control problem (P σ) below:

min J(u), J(u) =
∫

[a,b)

g (x(t), xσ(t)) Δt+
∫

[a,b)

h(u(t))Δt, (1.1)

on all pairs (x, u) ∈ Crd(T, R) × L1(T, R) such that{
xΔ(t) + p(t)xσ(t) = f (t, x(t), xσ(t)) + u(t), a ≤ t < b,
x(a) = x0,

(1.2)

where p ∈ L1(T, R), T is a bounded time scale, a = inf T, b = sup T. The problem (P σ) is very difficult since
p ∈ L1(T, R) and f is dependent on xσ. Firstly, all of Gronwall inequality on time scales given before cannot
be used to obtain the a priori estimate of solutions for the nonlinear dynamic system (1.2). In addition, the
backward problems on time scales cannot be turned into the Cauchy problem by simple transformation s = b−t.

First reasonably extending the exponential function ep with p ∈ Crd(T, R) to the case that p ∈ L1
T
(T, R) we

introduce the reasonable weak solution of (1.2). Deriving a generalized Gronwall inequality associated x and
xσ on time scales to obtain the a priori estimate of solutions and fully considering the structure character of
time scales we first use the Leray-Schauder fixed theorem to present the existence of the weak solution. Then
introducing new norm ‖ · ‖β, we use the contraction mapping principle to give the uniqueness of weak solution.
The conditions are quite weak (see Thm. 3.A). Before, the classical solution of (1.2) were considered. Under
the very strong condition (such as f satisfies uniform Lipschitz condition), some authors gave the existence and
uniqueness of classical solution by the contracting mapping principle [13].

Next, the existence of optimal controls for problem (P σ) is presented (see Thm. 4.A). Finally utilizing the
integration by parts on time scales, we derive the necessary conditions of optimality containing optimal con-
trolled system, adjoint equation and optimal inequality (see Thms. 5.A and 6.C). In order to discover relation
both the optimal control problem and the variational problem on time scales we give Hamiltonian formulations
to Theorems 5.A and 6.C further (see Thms. 5.B and 6.D). Moreover, as contrast, we compare the prob-
lem (P σ) with problem (P) which are two typical optimal control problems on time scales (see Tab. 1). Some
examples on continuous optimal control problems, discrete optimal control problems and mathematical pro-
gramming are also presented for demonstration. The results obtained generalize and improve the corresponding
results [3,5,9,10,16–18].

The paper is organized as follows. In Section 2, we give some basic notations and some basic results on
time scales. In Section 3, the generalized exponential function ep with p ∈ L1(T, R) and the weak solutions
of the semilinear dynamic systems are presented. Discussing L1-strong-weak lower semicontinuity of integral
functional, sufficient conditions for the existence of optimal controls is given in Section 4. Necessary conditions
of optimality are derived in Section 5. In Section 6, we compare the problem (P σ) with problem (P) which are
two typical optimal control problems on time scales. Finally, some typical examples are given for demonstration.

2. Terminology and preliminaries

In this section we collect some important concepts and results on time scales which are very useful in sequel.
A time scale T is a nonempty closed subset of R. The two most popular examples are T = R and T = Z.

Define the forward and backward jump operators σ, ρ : T −→ T by

σ(t) = inf{s ∈ T | s > t}, ρ(t) = sup{s ∈ T | s < t}, t ∈ T,
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where, in this definition, we write sup ∅ = inf T ≡ a and inf ∅ = supT ≡ b. A point t ∈ T is said to be left-dense,
left-scattered, right-dense, right-scattered if ρ(t) = t, ρ(t) < t, σ(t) = t, σ(t) > t, respectively. The forward
graininess μ : T −→ [0,+∞) and the backward graininess ν : T −→ [0,+∞) are defined by μ(t) = σ(t) − t and
ν(t) = t− ρ(t), respectively.

Definition 2.1. A function f : T −→ R is Δ-differentiable at t ∈ T, if there exists a number fΔ(t), with the
following property: for any ε > 0 there exists δ > 0 such that

|f(σ(t)) − f(s) − fΔ(t)(σ(t) − s)| ≤ ε|σ(t) − s| for s ∈ T and |s− t| < δ.

If f is Δ-differentiable for every t ∈ T, we say that f is Δ-differentiable on T.

In the definition, if T = R this definition coincides with classical derivative definition and if T = Z it coincides
with forward difference.

The Lebesgue Δ-measure μΔ was defined as the Caratheodory extension of a set function on time scale T

in [4,11]. In particular, for each t0 in T the single-point set {t0} is Δ-measurable and its Δ-measure is given by

μΔ({t0}) = σ(t0) − t0. (2.1)

It is clear that the Lebesgue Δ-measure of single-point set on T may not be equal to zero. We note that, if t0
is right-scattered,

μΔ

(
[t0, c)

⋂
T

)
= μ(t0) = σ(t0) − t0 > 0 for any c ∈ (t0, σ(t0)]

(see proof of Thm. 3.A). In addition, the Lebesgue Δ-measure μΔ has closed association with Lebesgue mea-
sure μ. Let E be a subset of T, define Ẽ = E

⋃
ti∈E

(ti, σ(ti)), where σ(ti)− ti > 0. Ẽ is called the extension of E.

E is Lebesgue Δ-measurable if and only if Ẽ is Lebesgue measurable and

μΔ(E) = μ(Ẽ) = μ(E) +
∑
ti∈E

(σ(ti) − ti). (2.2)

It is obvious that μΔ(E) = μ(E) if and only if E has no right-scattered points.
As a straightforward consequence of equality (2.2), one can deduce the simple formula to calculate the

Lebesgue Δ-integral. For a function f : T −→ R, define the step function interpolation f̃ : [a, b] −→ R as

f̃(t) =
{
f(ti), t ∈ (ti, σ(ti)),
f(t), t ∈ T.

Let E ⊂ T ⊆ [a, b] be Δ-measurable set such that b /∈ E. Now we say that f is Lebesgue Δ-integrable on E if
and only if f̃ is Lebesgue integrable on Ẽ, in which case the equality holds:∫

E

f(s)Δs =
∫

Ẽ

f̃(s)ds.

The right side of the equality above is the classical Lebesgue integral over the real interval Ẽ ⊂ [a, b]. We can
obtain a formula for calculating the Lebesgue Δ-integral. For all s, t ∈ T with s ≤ t, the following expression
holds: ∫

[s,t)

f(τ)Δτ =
∫

[s,t)
⋂

T

f(τ)dτ +
∑

s≤ti<t,ti∈T

μ(ti)f(ti),

∫
[t,σ(t))

f(τ)Δτ = μ(t)f(t),
∫

[t,t)

f(τ)Δτ = 0.
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Now define

L1(T, R) = {f : T −→ R | f is Lebesgue Δ-integrable on T},
Lr(T, R) =

{
f ∈ L1(T, R) | |f |r ∈ L1(T, R)

}
(r ≥ 1).

Endowed with norm

‖f‖Lr =
(∫

T

|f(τ)|rΔτ
) 1

r

,

the spaces Lr(T, R)(r ≥ 1) is a Banach space (see [11]).
Let e ⊂ T, e is called Δ-null set if μΔ(e) = 0. Say that a property Q holds Δ-a.e. on E if there is a Δ-null

set e ⊂ E such that Q holds for all t ∈ E \ e.
Guseinov [4] and Rynne [11] given the Newton-Leibniz formula and integration by parts formula in C1

rd(T, R),
H1(T, R), respectively. For our purpose, we extend their results to the weaker case.

Theorem 2.1. (1) Let f ∈ L1(T, R), define

F (t) =
∫

[a,t)

f(τ)Δτ for t ∈ T.

Then F ∈ Crd(T, R) is differentiable Δ-a.e. on T and

F (t) − F (s) =
∫

[s,t)

f(τ)Δτ for s, t ∈ T.

(2) If f and g are differentiable Δ-a.e. on T, then∫
[s,t)

[
fΔ(τ)g(τ) + fσ(τ)gΔ(τ)

]
Δτ = f(t)g(t) − f(s)g(s) for s, t ∈ T. (2.3)

Proof. (1) Obviously, we have F ∈ Crd(T, R) (see Lem. 3.2 of [11]).
If t is right-scattered i.e. t < σ(t), then we have

F (σ(t)) − F (t)
σ(t) − t

=
1

σ(t) − t

∫
[t,σ(t))

f(τ)Δτ = f(t).

Note that, if t is right-dense i.e. t = σ(t), in addition to s �= t, then

F (σ(t)) − F (s)
σ(t) − s

=
1

t− s

∫
[s,t)

f(τ)Δτ.

By Lebesgue integral theory, we have

lim
s→t

F (σ(t)) − F (s)
σ(t) − s

= f(t) a.e. on T \ {t ∈ T | t < σ(t)}.

Hence, F is differentiable Δ-a.e. on T and

FΔ(t) = f(t) Δ-a.e. on T.

Further, we obtain that Newton-Leibniz formula is hold, that is,

F (t) − F (s) =
∫

[s,t)

f(τ)Δτ for s, t ∈ T.
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(2) By conclusion (1), since f and g are differentiable Δ-a.e. on T, f , g ∈ Crd(T, R). If t is right-scattered
i.e. t < σ(t), then we have

f(σ(t))g(σ(t)) − f(t)g(t)
σ(t) − t

= fΔ(t)g(t) + fσ(t)gΔ(t).

If t is right-dense i.e. t = σ(t), in addition to s �= t, then

f(σ(t))g(σ(t)) − f(s)g(s)
σ(t) − s

= g(s)
f(σ(t)) − f(s)

σ(t) − s
+ fσ(t)

g(σ(t)) − g(s)
σ(t) − s

·

By assumption on functions f and g, fg is differentiable Δ-a.e. on T, and

(fg)Δ(t) = fΔ(t)g(t) + fσ(t)gΔ(t).

Integrating from s to t, we obtain the integration by parts formula (2.3). �

3. Weak solution of dynamic systems

In this section, we extend the exponential function ep with p ∈ Crd(T, R) on time scales to the case that
p ∈ L1(T, R) and discuss the weak solution of the nonlinear dynamic equation (1.2).

The exponential function on time scales plays a very important role for discussing dynamic equations on
time scales. The exponential function ep on time scales is defined as the unique solution y(t) = ep(t, a) of the
Cauchy problem yΔ(t) = p(t)y(t), y(a) = 1, where p ∈ ΓC(T) = {p ∈ Crd(T, R) | 1 + μ(t)p(t) �= 0}. An explicit
formula for ep(t, a) is given by

ep(t, s) = exp
{∫ t

s

ξμ(τ)(p(τ))Δτ
}

with ξμ(t)(p(t)) =

{
ln(1+μ(t)p(t))

μ(t) , if μ(t) > 0,
p(t), if μ(t) = 0.

Define Γ1(T) =
{
p ∈ L1

loc(T, R)|1 + μ(t)p(t) �= 0
}
. Using the proof by contradiction and Lebesgue Δ-integral

we can show that for any p ∈ Γ1(T) and a, b ∈ R but fixed, there are positive number m and M such that

m ≤ |1 + μ(t)p(t)| ≤M for all t ∈ [a, b]
⋂

T (3.1)

and the set {t ∈ T | 1 + μ(t)p(t) < 0} ⊆ T is a finite set. Starting with the explicit formula of exponential
function ep on time scales, we can prove that the so-called cylinder transformation given by

ξμ(t)(p(t)) =

{
ln(1+μ(t)p(t))

μ(t) if μ(t) �= 0,
p(t) if μ(t) = 0,

with p ∈ Γ1(T),

is meaningful and ξμ(·)(p(·)) ∈ L1
loc(T, R).

Definition 3.1. For p ∈ Γ1(T), define the generalized exponential function as follows:

ep(t, s) = exp

{∫
[s,t)

ξμ(τ)(p(τ))Δτ

}
.

For p, q ∈ Γ1(T), we still define

p⊕ q = p+ q + μpq, � p = − p

1 + μp
, p� q =

p− q

1 + μq
·
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Further, we can also show that p ⊕ q, p � q, �p ∈ Γ1(T). Furthermore, we can show the following some
fundamental properties (operation and analytic properties) of the generalized exponential function on time
scales.

Theorem 3.1. Assume that p, q ∈ Γ1(T), then the following hold:

(1) e0(t, s) ≡ 1, ep(t, t) ≡ 1, ep(t, s)ep(s, r) = ep(t, r);

(2) ep(σ(t), s) = [1 + μ(t)p(t)]ep(t, s), ep(t, s) =
1

ep(s, t)
= e�p(s, t);

(3) ep(t, s)eq(t, s) = ep⊕q(t, s),
ep(t, s)
eq(t, s)

= ep�q(t, s);

(4) ep(·, s) ∈ Crd(T, R);

(5) (ep(·, s))Δ = p(·)ep(·, s), (ep(s, ·))Δ = −p(·)ep(s, σ(·)) Δ-a.e. on T.

In order to derive a priori estimates on solutions of the nonlinear dynamic system (1.2), we need the following
generalized Gronwall inequality on time scales.

Proposition 3.1. Let x ∈ Crd (T, R), p ∈ L1 (T, R+) with R+ = [0,+∞), f ∈ L1 (T, R). Then

xΔ(t) ≤ p(t)x(t) + f(t), Δ-a.e. on T, (3.2)

implies

x(t) ≤ ep(t, a)x(a) +
∫

[a,t)

ep(t, σ(τ))f(τ)Δτ for all t ∈ T.

Proof. Note that p ∈ L1 (T, R+) implies p ∈ Γ1(T) and 1 + μ(t)p(t) > 0 for all t ∈ T. Further, for any t, s ∈ T,
we have e�p(t, s) > 0. Now

[x(t)e�p(t, a)]
Δ = xΔ(t)e�p(σ(t), a) + x(t)(�p)(t)e�p(t, a) Δ-a.e. on T

=
xΔ(t)

1 + μ(t)p(t)
e�p(t, a) − p(t)x(t)

1 + μ(t)p(t)
e�p(t, a)

=
[
xΔ(t) − p(t)x(t)

]
e�p(σ(t), a) Δ-a.e. on T.

Therefore,

x(t)e�p(t, a) − x(a) =
∫

[a,t)

[
xΔ(τ) − p(τ)x(τ)

]
e�p(σ(τ), a)Δτ

≤
∫

[a,t)

f(τ)e�p(σ(τ), a)Δτ,

that is,

x(t) ≤ ep(t, a)x(a) +
∫

[a,t)

ep(t, σ(τ))f(τ)Δτ for all t ∈ T.

The proof is completed. �
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Theorem 3.2. Let x ∈ Crd (T, R+) satisfies the following inequality

x(t) ≤ α+
∫

[a,t)

p(τ)x(τ)Δτ +
∫

[a,t)

g(τ)xλ(σ(τ))Δτ for all t ∈ T, (3.3)

where p, g ∈ L1(T, R+) and α ≥ 0, 0 < λ < 1, then there exists a constant M > 0 such that

x(t) ≤M for all t ∈ T.

Proof. Define

y(t) = α+
∫

[a,t)

p(τ)x(τ)Δτ +
∫

[a,t)

g(τ)xλ(σ(τ))Δτ, for all t ∈ T.

By Theorem 2.1, y is differentiable Δ-a.e. on T and y(a) = α,

yΔ(t) = p(t)x(t) + g(t)xλ(σ(t)) ≤ p(t)y(t) + g(t)yλ(σ(t)) Δ-a.e. on T.

It follows from Proposition 3.1 that

y(t) ≤ αep(b, a) + ep(b, a)
∫

[a,b)

g(τ)yλ(σ(τ))Δτ for all t ∈ T.

Define

q(t) = αep(b, a) + ep(b, a)
∫

[a,t)

g(τ)yλ(σ(τ))Δτ + ep(b, a)
∫

[a,b)

g(τ)yλ(σ(τ))Δτ

for all t ∈ T, then q is monotone increasing function and q(b) = 2q(a) − αep(b, a),

qΔ(t) = ep(b, a)g(t)yλ(σ(t)) ≤ ep(b, a)g(t)qλ(t) Δ-a.e. on T.

Δ-integrating from a to t, we obtain

q1−λ(t) − q1−λ(a) ≤ (1 − λ)ep(b, a)
∫

[a,t)

g(τ)Δτ for all t ∈ T.

Now, we observe that

(2q(a) − αep(b, a))
1−λ − q1−λ(a) ≤ (1 − λ)ep(b, a)

∫
[a,b)

g(τ)Δτ.

Let
Γ(z) = (2z − αep(b, a))

1−λ − z1−λ,

we have Γ ∈ C
([

αep(b,a)
2 ,+∞

)
, R
)

and

lim
z→+∞Γ(z) = lim

z→+∞
Γ(z)
z1−λ

z1−λ = lim
z→+∞

[(
2 − αep(b, a)

z

)1−λ

− 1

]
z1−λ = +∞.

Using the proof by contraction, we can show that there exists a constant M > 0 such that q(a) < M . Thus

x(t) ≤M for all t ∈ T.

The proof is completed. �
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First consider the following Cauchy problem{
xΔ(t) + p(t)xσ(t) = f(t),
x(a) = x0,

(3.4)

where p ∈ Γ1(T). For f ∈ L1(T, R), the integral function∫
[a,·)

e�p(·, τ)f(τ)Δτ

is well-defined. The function x ∈ Crd (T, R) given by

x(t) = e�p(t, a)x0 +
∫

[a,t)

e�p(t, τ)f(τ)Δτ, t ∈ T

is said to be the weak solution of (3.4). By Theorem 2.1, we have the following result.

Lemma 3.1. Let p ∈ Γ1(T), f ∈ L1(T, R), the weak solution x of (3.4) satisfies

xΔ(t) + p(t)xσ(t) = f(t) Δ-a.e. on T.

Now, consider the following semilinear dynamic system on time scale{
xΔ(t) + p(t)xσ(t) = f (t, x(t), xσ(t)) , a ≤ t < b,
x(a) = x0.

(3.5)

Definition 3.2. A function x ∈ Crd(T, R) is said to be a weak solution of the dynamic system (3.5), if x
satisfies the following integral equation

x(t) = e�p(t, a)x0 +
∫

[a,t)

e�p(t, τ)f (τ, x(τ), xσ(τ)) Δτ, t ∈ T. (3.6)

Suppose that:
[F] (1) f : T ×R×R −→ R is Δ-measurable in t ∈ T and locally Lipschitz continuous, i.e. for all x1, y1, x2,

y2 ∈ R, satisfying |x1|, |y1|, |x2|, |y2| ≤ ρ, we have

|f (t, x1, y1) − f (t, x2, y2)| ≤ L(ρ) (|x1 − x12| + |y1 − y2|) for all t ∈ T.

(2) There exist a constant 0 < λ < 1 and a function q ∈ L1 (T, R+) such that

|f(t, x, y)| ≤ q(t)
(
1 + |x| + |y|λ) for all x, y ∈ R, t ∈ T.

Theorem 3.3. Let p ∈ Γ1(T). Under the assumption [F], the dynamic system (3.5) has a unique weak solution
x ∈ Crd(T, R) and

xΔ(t) + p(t)xσ(t) = f (t, x(t), xσ(t)) Δ-a.e. on T.

Proof. Step I. Existence of weak solution. Define the operator Q on Crd(T, R) given by

(Qx)(t) = e�p(t, a)x0 +
∫

[a,t)

e�p(t, τ)f (τ, x(τ), xσ(τ)) Δτ. (3.7)

For any x ∈ Crd(T, R) but fixed, it can be seen from assumption [F] that f (·, x(·), xσ(·)) ∈ L1(T, R). By the
properties of generalized exponential function on time scales, we can verify that Qx ∈ Crd (T, R).
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For x, y ∈ Crd(T, R) and ‖x‖Crd
, ‖y‖Crd

≤ ρ, where ρ is a constant, using assumption [F](1), we have

‖Qx−Qy‖Crd
≤ 2ML(ρ)(b− a)‖x− y‖Crd

,

where M = sup{|e�p(t, s)| |t, s ∈ T}. Hence Q : Crd(T, R) −→ Crd(T, R) is a continuous operator.
Next, we show that Q is a compact operator. Let ρ > 0, set W = {x ∈ Crd(T, R)|‖x‖Crd

≤ ρ}. For x ∈ W,
we have

|f (t, x(t), xσ(t))| ≤ q(t)
[
1 + ρ+ ρλ

]
= ωq(t),

where ω = 1 + ρ+ ρλ. It is easy to see that QW ⊆ Crd(T, R) is bounded. Let t1, t2 ∈ T with t1 ≤ t2, we have

|(Qx) (t2) − (Qx) (t1)| ≤ β(M + 1)2 |e�p (t2, t1) − 1| +Mω

∫
[t1,t2)

q(τ)Δτ,

where β = |x0|+ω‖q‖L1. This implies that QW is rd-equicontinuous. By Arzela-Ascoli theorem on time scales
(see [3]), Q is a compact operator in Crd(T, R).

Define Υ = {x ∈ Crd(T, R)|x = δQx, δ ∈ [0, 1]}. Let y = 1
δx for δ �= 0, otherwise y = 0 for x ∈ Υ. Note that

|y(t)| = |(Q(δy))(t)|
≤ |e�p(t, a)| |x0| +

∫
[a,t)

|e�p(t, τ)| |f (τ, δy(τ), δyσ(τ))|Δτ

≤ M |x0| +M

∫
[a,t)

q(τ)Δτ + δ

∫
[a,t)

q(τ)|y(τ)|Δτ +Mδλ

∫
[a,t)

q(τ) |yσ(τ)|λ Δτ,

by virtue of generalized Gronwall inequality on time scales (see Thm. 3.2), there is a constant r > 0 such that

|y(t)| ≤ r for all t ∈ T.

Thus Υ is a bounded set. According to Leray-Schauder fixed point theorem, Q has a fixed point in Crd(T, R).
That is, the dynamic system (3.5) has a weak solution x ∈ Crd(T, R), given by

x(t) = e�p(t, a)x0 +
∫

[a,t)

e�p(t, τ)f (τ, x(τ), xσ(τ)) Δτ, t ∈ T.

Step II. Uniqueness of weak solution. Define

‖x‖β = sup
t∈T

|x(t)|
eβ(t, a)

,

where β > 0 is a constant, x ∈ Crd(T, R). Then we have the following results (see Lem. 3.3 of [13]):
(i) ‖ · ‖β is a norm and is equivalent to the sup-norm ‖ · ‖Crd

;

(ii) (Crd(T, R), ‖ · ‖β) is a Banach space.
If x ∈ Crd(T, R) is a weak solution of the dynamic system (3.5), there is a constant r > 0 which is depend only
on x0, p, q and λ such that

‖x‖Crd
≤ r.

In addition to we can show that there exists a constant β > 0 such that∫
[a,b)

Δτ
eβ(b, τ)

<
1

4L(r)M
· (3.8)
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Define
B = {x ∈ Crd (T, R) |‖x‖Crd

≤ r},
(B, ‖ · ‖β) is a Banach space. Define a map H on B which is given by

(Hx)(t) = e�p(t, a)x0 +
∫

[a,t)

e�p(t, τ)f (τ, x(τ), xσ(τ)) Δτ.

Obviously, HB ⊆ B. By assumption [F](1) and (3.8), for any x, y ∈ B, we have

‖Hx−Hy‖β = sup
t∈T

1
eβ(t, a)

∣∣∣∣∣
∫

[a,t)

e�p(t, τ) [f (τ, x(τ), xσ(τ)) − f (τ, y(τ), yσ(τ))] Δτ

∣∣∣∣∣
≤ sup

t∈T

ML(r)
eβ(t, a)

∫
[a,t)

[|x(τ) − y(τ)| + |xσ(τ) − yσ(τ)|] Δτ

≤ ‖x− y‖β

[
ML(r) sup

t∈T

1
eβ(t, a)

∫
[a,t)

(eβ(τ, a) + eβ(σ(τ), a)) Δτ

]

= ‖x− y‖β

[
ML(r) sup

t∈T

∫
[a,t)

(
1

eβ(t, τ)
+

1
eβ(t, σ(τ))

)
Δτ

]

= ‖x− y‖β

[
ML(r) sup

t∈T

∫
[a,t)

1
eβ(t, σ(τ))

(
1 +

1
1 + βμ(τ)

)
Δτ

]

≤ ‖x− y‖β

[
2ML(r) sup

t∈T

∫
[a,t)

Δτ
eβ(b, τ)

]

≤ 1
2
‖x− y‖β.

Thus H is a contractive map on (B, ‖ · ‖β), that is, H has a unique fixed point x on (B, ‖ · ‖β). This mean that
the dynamic system (3.5) has a weak solution x ∈ Crd(T, R), given by

x(t) = e�p(t, a)x0 +
∫

[a,t)

e�p(t, τ)f (τ, x(τ), xσ(τ)) Δτ, t ∈ T.

Step III. Property of weak solution. By Lemma 3.1, we can verify that x is Δ-differential Δ-a.e. on T and

xΔ(t) + p(t)xσ(t) = f (t, x(t), xσ(t)) Δ-a.e. on T.

The proof is completed. �

4. Existence of optimal controls

In order to study the existence of optimal control, we discus L1-strong-weak lower semicontinuity of integral
functional first. In the following, we say that the function sequence {fn|fn : T −→ R} converges to f in Lebesgue
Δ-measure, if for any ε > 0,

lim
n→∞μΔ ({t ∈ T| |fn(t) − f(t)| > ε}) = 0.

Theorem 4.1. Suppose that function f : R×R −→ R
⋃{+∞} satisfies:

(1) f(·, ·) is lower semicontinuous on R×R;
(2) f ≥ 0 and f(ξ, ·) is convex on R for every ξ ∈ R.
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Set
J(x, u) =

∫
[a,b)

f(x(t), u(t))Δt,

if {xn}, {un} ⊆ L1(T, R) and xn
s−→ x, un

w−→ u in L1(T, R), then

J(x, u) ≤ lim
n→∞

J (xn, un) .

Proof. Suppose that xn
s−→ x, un

w−→ u in L1(T, R) and there exists a number c ≥ 0 such that J (xn, un) ≤ c
for all n ∈ N . Set αn(t) = f (xn(t), un(t)) for all t ∈ T, the function sequence {αn} is bounded in L1(T, R). By
Dunford-Pettis theorem and Mazur theorem, there are λn

i ≥ 0, i = 1, 2, . . . , kn, n ∈ N , and α ∈ L1(T, R) such
that

kn∑
i=1

λn
i = 1, α′

n(t) ≡
kn∑
i=1

λn
i αn+i(t) −→ α(t) Δ-a.e. on T. (4.1)

If the following inequality

f(x(t), u(t)) ≤ α(t) Δ-a.e. on T (4.2)

holds, by Fatou lemma, it is easy to get

J(x, u) ≤
∫

[a,b)

α(t)Δt =
∫

[a,b)

lim
n→∞

α′
n(t)Δt

≤ lim
n→∞

∫
[a,b)

α′
n(t)Δt = lim

n→∞

∫
[a,b)

αn(t)Δt = lim
n→∞

J(xn, un).

This implies that the theorem is true.
By the ideal of Theorem 2 in [12] and Lebesgue Δ-measure theory, we can show that the inequality (4.2)

holds. Here we only give an outline.
From xn −→ x in L1(T, R) as n→ ∞, it follows that there exists a subsequence, relabeled as {xn} such that

xn(t) −→ x(t) as n→ ∞ Δ-a.e. on T. For y ∈ R but fixed, define the measurable function βn, dy
n(t) : T −→ R

as follows:

βn(t) = max {0,min{f(x(t), v) | v ∈ R} − αn(t)} , t ∈ T,

dy
n(t) = max {0, yun(t) − sup {yv | v ∈W (f, x, αn + βn) (t)}} , t ∈ T,

where W (f, x, αn + βn) (t) = {v ∈ R | f(x(t), v) ≤ αn(t) + βn(t)} , t ∈ T. Using Lebesgue Δ-integral, Lebesgue
Δ-measure, Banach-Steinhaus theorem and the convexity and lower semicontinuity of f (x, ·) on R, one can
show that the sequences {βn} and {dy

n} converges to 0 in Lebesgue Δ-measure. By Riese theorem, there are
subsequences, relabeled as {βn} and {dy

n}, respectively, such that

βn(t) −→ 0, dy
n(t) −→ 0 Δ-a.e. on T. (4.3)

By the definition of the functions αn, βn, dy
n, n ∈ N , we have

un(t) ∈ By (W (f, x, αn + βn) (t), dy
n(t)) Δ-a.e. on T, (4.4)

where
By (W (f, x, αn + βn) (t), dy

n(t)) = {v ∈ R | dy (v,W (f, x, αn + βn) (t)) ≤ dy
n(t)} .
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Therefore, (4.3) and (4.4) and convexity of the function f(ξ, ·) yield that

u′n(t) ∈ By (W (f, x, α′
n + β′

n) (t), d′yn (t)) Δ-a.e. on T, (4.5)

u′n −→ ū, β′
n(t) −→ 0, d′yn (t) −→ 0 Δ-a.e. on T, (4.6)

where

u′n =
kn∑
i=1

λn
i un+i, β′

n =
kn∑
i=1

λn
i βn+i, d′yn =

kn∑
i=1

λn
i d

y
n+i.

In view of (4.1), (4.6), Egorov theorem and Lebesgue Δ-measure theory, we can infer for (4.6) that

u(t) ∈ By (W (f, x, α) (t), 0) Δ-a.e. on T. (4.7)

Suppose that a sequence {yn} is dense in R. Then, from assumption (2) we can obtain

W (f, x, α)(t) =
⋂

n∈N

Byn (W (f, x, α)(t), 0) Δ-a.e. on T.

In view of (4.7) and arbitrariness of y ∈ R, this implies u(t) ∈ W (f, x, α)(t) Δ-a.e. on T. Moreover, the
inequality (4.2) holds. �

In fact, it is easy to see that the condition f ≥ 0 is not essential in Theorem 4.1.
Let Uad be a nonempty closed convex subset of L1(T, R), consider the controlled system⎧⎨

⎩
xΔ(t) + p(t)xσ(t) = f (t, x(t), xσ(t)) + u(t), t > a,
x(a) = x0,
u ∈ Uad,

(4.8)

where p ∈ Γ1(T). By Theorem 3.A, we have the following theorem.

Theorem 4.2. Assume that p ∈ Γ1(T). Under the assumption of Theorem 3.A, the controlled system (4.8) has
a unique weak solution x ∈ Crd(T, R) corresponding to the control u ∈ Uad.

We consider the Lagrange problem (P σ): find u0 ∈ Uad such that

J
(
u0
) ≤ J(u) for all u ∈ Uad,

where
J(u) =

∫
[a,b)

g (x(τ), xσ(τ)) Δτ +
∫

[a,b)

h(u(τ))Δτ,

x is a weak solution of controlled system (4.8) corresponding to the control u ∈ Uad.
We introduce the following assumptions on g and h.
[G] (1) The function g : R×R −→ R is lower semicontinuous.
(2) There is a constant c ∈ R such that

g(x, y) ≥ c for all x, y ∈ R.

[H] (1) The function h : R −→ R is convex.
(2)

lim
|u|→+∞

h(u)
|u| = +∞. (4.9)

We study the Lagrange problems (P σ).



666 Y. PENG ET AL.

Theorem 4.3. Let p ∈ Γ1(T). Under the assumptions [F], [G] and [H], the problem (P σ) has at least one
solution.

Proof. If inf
u∈Uad

J(u) = +∞, there is nothing to prove.

Assume that inf
u∈Uad

J(u) = c < +∞. By the assumptions [G](2) and [H](2), we have c > −∞. There exists a

minimizing sequence {un} ⊆ Uad such that

c ≤ J (un) =
∫

[a,b)

g (xn(τ), xσ
n(τ)) Δτ +

∫
[a,b)

h (un(τ)) Δτ ≤ c+
1
n
, (4.10)

for n ≥ N , where N is a natural number, xn is the weak solution of the controlled system (4.8) corresponding
to un.

Next, we show that {un} is weakly compact in L1(T, R). By assumption (4.9), for any δ > 0, there exists
θ = θ(δ) such that

h(u) ≥ θ(δ)|u| for all |u| ≥ δ,

where lim
δ→+∞

θ(δ) −→ +∞. Then, for every measurable subset E ⊆ T, we have

∫
E

|un(τ)|Δτ =
∫

Ẽ
⋂{s∈T||ũn(s)|<δ}

|ũn(τ)| dτ +
∫

Ẽ
⋂{s∈T||ũn(s)|≥δ}

|ũn(τ)| dτ

≤ δμΔ (E) +
1
θ(δ)

∫
E

|h (ũn(τ))|Δτ

≤ δμΔ (E) +
C

θ(δ)
,

where C > 0 is independent of δ. Note that

lim
δ→+∞

θ(δ) = +∞,

we infer that

lim
δ→+∞

sup
un

∫
{s∈T||un(s)|≥δ}

|un(τ)|Δτ ≤ lim
δ→+∞

C

θ(δ)
= 0.

This means that {un} ⊆ L1(T, R) is uniformly integrable (see p. 907, Prop. A.2.52 of [6]). By the Dunford-Pettis
theorem (see p. 918, Thm. A.3.102 of [6]), {un} is weakly compact in L1(T, R). Since Uad ⊆ L1(T, R) is closed
and convex, from the Mazur lemma, there is a subsequence, relabeled as {un}, ū ∈ Uad such that

un
w−→ ū in L1(T, R).

Since xn is the weak solution of the controlled system (4.8) corresponding to control un. Then there is a
constant r > 0 such that

‖xn‖Crd
≤ r. (4.11)

Let
Fn(t) = f (t, xn(t), xσ

n(t)) for all t ∈ T,

by assumption [F](2), we have
|Fn(t)| ≤ (1 + 2r)q(t) for all t ∈ T.
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Moreover, using the Dunford-Pettis theorem, there is a subsequence, relabeled as {Fn}, and F ∈ L1(T, R) such
that

Fn
w−→ F in L1(T, R).

Define
ηn(t) =

∫
[a,t)

e�p(t, τ) [Fn(τ) + un(τ)] Δτ, η̄(t) =
∫

[a,t)

e�p(t, τ)
[
F (τ) + ū(τ)

]
Δτ

for all t ∈ T. By Ascoli-Arzela theorem on time scales, we can show that

‖ηn − η̄‖Crd(T,R) −→ 0 as n→ +∞.

Consider the following dynamic equation{
yΔ(t) + p(t)yσ(t) = F (t) + ū(t), a ≤ t < b,
y(a) = x0.

(4.12)

By Lemma 3.1, the dynamic equation (4.12) has a unique weak solution x̄ ∈ Crd(T, R) given by

x̄(t) = e�p(t, a)x0 +
∫

[a,t)

e�p(t, τ)
[
F (τ) + ū(τ)

]
Δτ.

By Proposition 3.1
xn −→ x̄, xσ

n −→ x̄σ in Crd(T, R).
Using assumption [F](1), we have

|f (t, xn(t), xσ
n(t)) − f (t, x̄(t), x̄σ(t))| ≤ L(ρ) [|xn(t) − x̄(t)| + |xσ

n(t) − x̄σ(t)(t)|] , ∀t ∈ T,

for some constant ρ > 0. So
Fn −→ f (·, x̄(·), x̄σ(·)) in L1(T, R).

By the uniqueness of limit, we have
F (·) = f (·, x̄(·), x̄σ(·)) .

Furthermore,

x̄(t) = e�p(t, a)x0 +
∫

[a,t)

e�p(t, τ) [f (τ, x̄(τ), x̄σ(τ)) + ū(τ)] Δτ.

Thus x̄ is a weak solution of the controlled system (4.8) corresponding to control ū. By Theorem 4.1, we have

c ≤ J (ū) ≤ lim
n→+∞J (un) = c.

This implies that ū is an optimal control of the problem (P σ). �

5. Necessary conditions of optimality

In this section, we derive the necessary conditions of optimality containing optimal controlled system, adjoint
equation and optimal inequality.

For this purpose, we must study the backward problem for dynamic equations on time scales which can not
be directly obtained from the Cauchy problem by simple transformation s = T − t. Particularly, we need to
deal with the following backward problem of dynamic equations with term ϕσ and term ϕ in the right side{

ϕΔ(t) = p(t)ϕ(t) + ω(t)ϕ(t) + q(t)ϕσ(t) + ν(t), a ≤ t < b,
ϕ(b) = 0.
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Here we consider more general backward problem{
ϕΔ(t) + p(t)ϕσ(t) = w (t, ϕ(t), ϕσ(t)) , a ≤ t < b,
ϕ(b) = ϕ1.

(5.1)

First, in order to obtain the existence of weak solution of (5.1), we give a backward generalized Gronwall
inequality on time scales which can not be directly obtained from Gronwall inequality.

Theorem 5.1. Suppose that the function ϕ ∈ Crd (T, R+) satisfies the following inequality

ϕ(t) ≤ α+
∫

[t,b)

q(τ)ϕλ(τ)Δτ +
∫

[t,b)

g(τ)ϕσ(τ)Δτ (5.2)

where q, g ∈ L1 (T, R+), α ≥ 0, 0 < λ < 1. There exists a constant M > 0 such that

ϕ(t) ≤M for t ∈ T.

Proof. Step I. We show that if the function x ∈ Crd (T, R+) satisfies the following inequality

ϕ(t) ≤ f(t) +
∫

[t,b)

q(τ)ϕσ(τ)Δτ, (5.3)

where q ∈ L1 (T, R+), f ∈ Crd (T, R), then

ϕ(t) ≤ f(t) +
∫

[t,b)

eq(τ, t)q(τ)fσ(τ)Δτ for t ∈ T. (5.4)

Define
ψ(t) =

∫
[t,b)

q(τ)ϕσ(τ)Δτ for t ∈ T.

Then ψ(b) = 0 and
ψΔ(t) = −q(t)ϕσ(t) ≥ −q(t)ψσ(t) − q(t)fσ(t) Δ − a.e. on T.

Note that,

[ψ(t)eq(t, b)]
Δ =

[
ψΔ(t) + q(t)ψσ(t)

]
eq(t, b) Δ − a.e. on T,

therefore

−ψ(t)eq(t, b) ≥ −
∫

[t,b)

q(τ)fσ(τ)eq(τ, b)Δτ.

Moreover, we obtain

ϕ(t) ≤ f(t) +
∫

[t,b)

eq(τ, t)q(τ)fσ(τ)Δτ for t ∈ T.

Step II. By the inequality (5.2) and Step I, we have

ϕ(t) ≤ α+
∫

[t,b)

q(τ)ϕλ(τ)Δτ + α

∫
[t,b)

eg(τ, t)g(τ)Δτ

+
∫

[t,b)

eg(τ, t)g(τ)
∫

[τ,b)

q(ν)ϕλ(ν)ΔνΔτ (5.5)

≤ γ + γ

∫
[a,b)

q(τ)ϕλ(τ)Δτ,
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where

γ = (α+ 1)(β + 1), β =
∫

[a,b)

eg(τ, a)g(τ)Δτ.

Define

h(t) = γ + γ

∫
[t,b)

q(τ)ϕλ(τ)Δτ + γ

∫
[a,b)

q(τ)ϕλ(τ)Δτ,

where t ∈ T, then h is monotone decreasing function and

hΔ(t) ≥ −γq(t)hλ(t).

Δ-integrating from t to b, we obtain

h1−λ(t) − h1−λ(b) ≤ (1 − λ)γ
∫

[t,b)

q(τ)Δτ.

Now, we observe that

(2h(b) − γ)1−λ − h1−λ(b) ≤ (1 − λ)γ
∫

[a,b)

q(τ)Δτ.

Furthermore, one can show that there exists a constant M > 0 such that h(b) ≤M . Thus

ϕ(t) ≤ h(b) ≤M

for all t ∈ T. The proof is completed. �

A function ϕ ∈ Crd(T, R) is said to be a weak solution of the backward problem for nonlinear dynamical
equation (5.1), if ϕ satisfies the following integral equation

ϕ(t) = ep(b, t)ϕ1 −
∫

[t,b)

ep(τ, t)w (τ, ϕ(τ), ϕσ(τ)) Δτ, t ∈ T. (5.6)

Our assumption on function w is as follows:
[W] (1) The function w : T×R×R −→ R is Δ-measurable in t ∈ T and locally Lipschitz continuous, i.e. for

all ϕ1, ϕ2, ψ1, ψ2 ∈ R, satisfying |ϕ1|, |ϕ2|, |ψ1|, |ψ2| ≤ ρ, we have

|w (t, ϕ1, ψ1) − w (t, ϕ2, ψ2)| ≤ L(ρ) (|ϕ1 − ϕ2| + |ψ1 − ψ2|) for all t ∈ T.

(2) There exist a constant 0 < λ < 1 and a function q ∈ L1(T, [0,+∞)) such that

|w(t, ϕ, ψ)| ≤ q(t)
(
1 + |ϕ|λ + |ψ|) for all ϕ, ψ ∈ R.

By the idea of Theorem 3.A, we can prove the following result.

Theorem 5.2. Let p ∈ Γ1(T). Under the assumption [W], the backward problem of the nonlinear dynamical
equation (5.1) has a unique weak solution ϕ ∈ Crd(T, R).

For the other nonlinear backward problem on time scales{
ϕΔ(t) = p(t)ϕ(t) + w (t, ϕ(t), ϕσ(t)) , a ≤ t < b,
ϕ(b) = ϕ1,

(5.7)

we can also prove the following result.
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Theorem 5.3. Let p ∈ Γ1(T), ϕ1 ∈ R. Under the assumption [W], (5.7) has unique weak solution ϕ ∈ Crd(T, R)
given by

ϕ(t) = e�p(b, t)ϕ1 −
∫

[t,b)

e�p(σ(τ), t)w (τ, ϕ(τ), ϕσ(τ)) Δτ, t ∈ T.

Now, we present the necessary conditions of optimality for the problem (P σ).
Let (x̄, ū) be optimal pair, assume that the following conditions are satisfied:
[F](3) Assume that f(t, ·, ·) : R × R −→ R is partial differentiable and fx̄ (·) = fx̄ (·, x̄(·), x̄σ(·)) ∈ L1(T, R),

fx̄σ (·) = fx̄σ (·, x̄(·), x̄σ(·)) ∈ L1(T, R).
(4) P (·) = p (·) − fx̄σ (·) ∈ Γ1(T).
[G](3) g : R× R −→ R is convex.

Theorem 5.4. Assume that p ∈ Γ1(T). Under the assumptions [F](1)-(2)-(3)-(4), [G](2)-(3) and [H], then, in
order that the pair (x̄, ū) be optimal pair of the problem (P σ), it is necessary that there is ϕ ∈ Crd(T, R) such
that the following equations and inequality hold:

{
x̄Δ(t) + p(t)x̄σ(t) = f (t, x̄(t), x̄σ(t)) + ū(t), a ≤ t < b,
x̄(a) = x0,

(5.8)

⎧⎨
⎩

ϕΔ(t) = P (t)ϕ(t) − fx̄(t)ϕσ(t) − [1 + μ(t)P (t)] η(t), a ≤ t < b,
η ∈ ∂G (x̄σ) ,
ϕ(b) = 0,

(5.9)

∫
[a,b)

[
ϕσ(t)

1 + μ(t)P (t)
+ ξ(t)

]
[u(t) − ū(t)] Δt ≥ 0, ∀u ∈ Uad, ∀ξ ∈ ∂H (ū) , (5.10)

where

∂G (x̄) =
{
ξ ∈ L1(T, R)

∣∣∣ ∫[a,b)
ξ(t) [x(t) − x̄(t)] Δt ≤ ∫

[a,b)
[g (x(t), xσ(t)) − g (x(t), x̄σ(t))] Δt

}
,

∂H(ū) =
{
ξ ∈ L∞(T, R)

∣∣∣ ∫[a,b)
ξ(t) [u(t) − ū(t)] Δt ≤ ∫

[a,b)
[h(u(t)) − h(ū(t))] Δt

}
.

Proof. Since (x̄, ū) ∈ Crd(T, R) × Uad is an optimal pair, it must satisfies the dynamic equation (5.8).
Since Uad is convex, it is clear that uε = ū+ ε(u− ū) ∈ Uad for all ε ∈ [0, 1] and u ∈ Uad. Let xε be the weak

solution of the following dynamic equation
{
xΔ

ε (t) + p(t)xσ
ε (t) = f (t, xε(t), xσ

ε (t)) + uε(t), t > a,
xε(a) = x0,

then xε can be expressed by

xε(t) = e�p(t, a)x0 +
∫

[a,t)

e�p(t, τ) [f (τ, xε(τ), xσ
ε (τ)) + uε(τ)] Δτ, t ∈ T.

Considering

xε(t) − x̄(t) =
∫

[a,t)

e�p(t, τ) [f (τ, xε(τ), xσ
ε (τ)) − f (τ, x̄(τ), x̄σ(τ))] Δτ (5.11)

+ ε

∫
[a,t)

e�p(t, τ) [u(τ) − ū(τ)] Δτ,
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and set y = lim
ε→0

xε−x̄
ε . By the assumption [F](3), u −→ x(u) is continuously Gateaux differentiable at ū in the

direction u− ū. Its Gateaux derivative y satisfies the following dynamic equation

{
yΔ(t) + p(t)yσ(t) = fx̄(t)y(t) + fx̄σ(t)yσ(t) + u(t) − ū(t), a ≤ t < b,
y(a) = 0. (5.12)

This is usually known as the variational equation. By Theorem 3.A, the variational equation (5.12) has a unique
weak y ∈ Crd(T, R) given by

y(t) =
∫

[a,t)

e�(p−fx̄σ )(t, τ) [fx̄(τ)y(τ) + u(τ) − ū(τ)] Δτ.

Define

G (x) =
∫

[a,b)

g (x(t), xσ(t)) Δt for x ∈ L1(T, R).

Since g : R × R −→ R is convex, g : R × R −→ R is continuous. By Theorem 4.1, G is a lower semicon-
tinuous functional on the real locally convex space Crd(T, R). For any x1, x2 ∈ Crd(T, R) and λ ∈ [0, 1], by
assumption [G](3), we have

G (λx1 + (1 − λ)x2) =
∫

[a,b)

g (λx1(t) + (1 − λ)x2(t), λxσ
1 (t) + (1 − λ)xσ

2 (t))Δt

≤ λ

∫
[a,b)

g (x1(t), xσ
1 (t)) Δt+ (1 − λ)

∫
[a,b)

g (x2(t), xσ
2 (t)) Δt

= λG (x1) + (1 − λ)G (x2) .

Hence, G is convex on Crd(T, R). Note that x̄ is a weak solution of the controlled system (5.8) corresponding
to the optimal control ū, by Corollary 47.7 of [15], we know that G is finite and continuous at x̄. Moreover, one
can see from Theorem 47.A of [15] that G is subdifferentiable at x̄ ∈ Crd(T, R) and the subdifferential ∂G (x̄)
of G at x̄σ is given by

∂G (x̄) =
{
η ∈ L1(T, R)

∣∣∣ ∫[a,b)
η(t) [x(t) − x̄(t)] Δt ≤ ∫

[a,b)
[g (x(t), xσ(t)) − g (x̄(t), x̄σ(t))] Δt

}
. (5.13)

That is, ∂G (x̄) is nonempty.
Define

H(u) =
∫

[a,b)

h(u(t))Δt for u ∈ L1(T, R).

Similarly as the functional G, the functional H is subdifferentiable at ū ∈ Uad ⊆ L1(T, R) and the subdifferential
∂H (ū) of H at ū is given by

∂H(ū) =
{
ξ ∈ L∞(T, R)

∣∣∣ ∫[a,b)
ξ(t) [u(t) − ū(t)] Δt ≤ ∫

[a,b)
[h(u(t)) − h(ū(t))] Δt

}
, (5.14)

and ∂H (ū) is nonempty.
Note that, J = G+H , we conclude that J is subdifferentiable at ū ∈ Uad. Computing the subgradient of J

at ū in the direction u− ū, we find that

∂J (ū, u− ū) =
∫

[a,b)

y(t)η(t)Δt +
∫

[a,b)

ξ(t) [u(t) − ū(t)] Δt, (5.15)
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for all η ∈ ∂G (x̄), ξ ∈ ∂H(ū). Since ū is the optimal control, so

J (xε, uε) − J (x̄, ū) ≥ 0, ∀ε ∈ [0, 1], ∀u ∈ Uad.

Hence, for ū to be optimal it is necessary that∫
[a,b)

y(t)η(t)Δt +
∫

[a,b)

ξ(t) [u(t) − ū(t)] Δt ≥ 0 (5.16)

for all η ∈ ∂G (x̄), ξ ∈ ∂H(ū).
Let η ∈ ∂G (x̄), consider the following adjoint equation{

ϕΔ(t) = P (t)ϕ(t) − fx̄(t)ϕσ(t) − (1 + μ(t)P (t)) η(t), a ≤ t < b,
ϕ(b) = 0. (5.17)

We note that P ∈ Γ1, by virtue of Theorem 5.3, the adjoint equation (5.17) has a unique weak solution
ϕ ∈ Crd(T, R) given by

ϕ(t) =
∫

[t,b)

e�P (σ(τ), t) [fx̄(τ)ϕσ(τ) + (1 + μ(τ)P (τ)) η(τ)] Δτ.

Using the integration by parts (see Thm. 2.1) and (5.17), we have

∫
[a,b)

y(t)η(t)Δt =
∫

[a,b)

y(t)
P (t)

(
ϕσ(t) − μ(t)ϕΔ(t)

)− ϕΔ(t) − fx̄(t)ϕσ(t)
1 + μ(t)P (t)

Δt

=
∫

[a,b)

y(t)
[
−ϕΔ(t) +

P (t) − fx̄(t)
1 + μ(t)P (t)

ϕσ(t)
]

Δt

=
∫

[a,b)

ϕσ(t)
[
yΔ(t) +

P (t) − fx̄(t)
1 + μ(t)P (t)

y(t)
]

Δt (5.18)

=
∫

[a,b)

ϕσ(t)
1 + μ(t) [p(t) − fx̄σ(t)]

[u(t) − ū(t)] Δt.

Further, substituting (5.18) into (5.16), we have the following inequality∫
[a,b)

[
ϕσ(t)

1 + μ(t) [p(t) − fx̄σ(t)]
+ ξ(t)

]
[u(t) − ū(t)] Δt ≥ 0 (5.19)

for ∀u ∈ Uad and ∀ξ ∈ ∂H (ū). This completes the proof of all the necessary conditions as stated in the
theorem. �

For the special case of the problem (P σ), we obtain the following results immediately.

Remark 5.1. Assume that p ∈ Γ1(T) and
(1) f(t, x(t), xσ(t)) = f(t, xσ(t)) and f(t, ·) : R −→ R is differentiable, fx̄σ (·) = fx̄σ (·, x̄σ(·)) ∈ L1(T, R);
(2) g(x(t), xσ(t)) = g(xσ(t)) and g(·) : R −→ R is differentiable, gx̄σ (·) ∈ L1(T, R);
(3) h(·) : R −→ R is differentiable and hū (·) ∈ L∞(T, R).
Under the assumptions [F](1)-(2)-(4), then, in order that the pair (x̄, ū) be optimal pair of the problem (P σ),
it is necessary that there is ϕ ∈ Crd(T, R) such that the following equations and inequality hold:
(i) the controlled equation {

x̄Δ(t) + p(t)x̄σ(t) = f (t, x̄σ(t)) + ū(t), a ≤ t < b,
x̄(a) = x0,

(5.20)
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(ii) the adjoint equation (see Thm. 6.1 of [5]){
ϕΔ(t) = p(t)ϕ(t) − fx̄σ(t)ϕ(t) − gx̄σ(t), a ≤ t < b,
ϕ(b) = 0, (5.21)

(iii) the optimal condition (see Thm. 3.3 of [9])∫
[a,b)

[ϕ(t) + hū(t)] [u(t) − ū(t)] Δt ≥ 0, ∀u ∈ Uad. (5.22)

In order to discover relation both the optimal control problem and the variational problem on time scales we
give Hamiltonian formulation to Theorem 5.A further.

Define
g(x(t)) = g (x(t), xσ(t)) , f(t, x(t)) = f (t, x(t), xσ(t)) − p(t)xσ(t),
H(t, x(t), u(t), ϕ(t)) = g (x(t)) + h(u(t)) + ϕσ(t) [f (t, x(t)) + u(t)] ,

we have
J(u) =

∫
[a,b)

H(t, x(t), u(t), ϕ(t))Δt −
∫

[a,b)

ϕσ(t)xΔ(t)Δt.

Hence, the integration by parts formula (2.3) yields

J(u) =
∫

[a,b)

H(t, x(t), u(t), ϕ(t))Δt +
∫

[a,b)

ϕΔ(t)x(t)Δt − ϕ(b)x(b) + ϕ(a)x0.

If we suppose that g : R −→ R, h : R −→ R f(t, ·) : R −→ R are differential and gx̄(·) = gx̄(x̄(·)) ∈ L1(T, R),
fx̄(·) = fx̄(·, x̄(·)) ∈ L1(T, R), hū(·) = hū(ū(·)) ∈ L∞(T, R). Hence J is Gateaux differentiable, and the
G-derivative of J at ū in the direction u− ū can be given by

lim
ε→0

J(ū+ ε(u− ū)) − J(ū)
ε

=
∫

[a,b)

Hx̄(t)y(t)Δt+
∫

[a,b)

ϕΔ(t)y(t)Δt − ϕ(b)y(b) (5.23)

+
∫

[a,b)

Hū(t) [u(t) − ū(t)] Δt,

where Hx̄(t) = Hx̄(t, x̄(t), ū(t), ϕ(t)), Hū(t) = Hū(t, x̄(t), ū(t), ϕ(t)). Note that ū is the optimal control, it
follows that J attains its minimum at ū. Hence∫

[a,b)

Hx̄(t)y(t)Δt+
∫

[a,b)

ϕΔ(t)y(t)Δt − ϕ(b)y(b) +
∫

[a,b)

Hū(t) [u(t) − ū(t)] Δt ≥ 0.

Let ϕ be any solution of {
ϕΔ(t) = −Hx̄(t), a ≤ t < b,
ϕ(b) = 0. (5.24)

By our assumption, this equation has a unique solution ϕ ∈ Crd(T, R). Further∫
[a,b)

Hū(t) [u(t) − ū(t)] Δt ≥ 0 for all u ∈ Uad,

that is, ∫
[a,b)

[hū(ū(t)) + ϕσ(t)] [u(t) − ū(t)] Δt ≥ 0 for all u ∈ Uad.

This means that the adjoint equation and the optimal inequality are derived.
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Next we derive the Hamiltonian formulations to Theorem 5.A. Set

J(x, u) =
∫

[a,b)

H(t, x(t), u(t), ϕ(t))Δt,

J is subdifferentiable at (x̄, ū) and the subdifferential ∂J (x̄, ū) of J at (x̄, ū) is given by

∂J (x̄, ū) =

⎧⎨
⎩(ν, ω) ∈ L1(T, R) × L∞(T, R)

∣∣∣∣∣∣
∫
[a,b)

ν(t) [x(t) − x̄(t)] Δt+
∫
[a,b)

ω(t) [u(t) − ū(t)] Δt

≤ ∫
[a,b) [H(t, x(t), u(t), ϕ(t)) −H(t, x̄(t), ū(t), ϕ(t))] Δt

⎫⎬
⎭ ,

and ∂J (x̄, ū) is nonempty. Computing the subgradient of J at ū in the direction u− ū, we find that

∂J (ū, u− ū) =
∫

[a,b)

y(t)ν(t)Δt +
∫

[a,b)

ω(t) [u(t) − ū(t)] Δt+
∫

[a,b)

ϕΔ(t)y(t)Δt − ϕ(b)y(b), (5.25)

for all (ν, ω) ∈ ∂J (x̄, ū), where y satisfies the variational equation (5.12). Since ū is the optimal control, it
follows that J attains its minimum at ū. This implies∫

[a,b)

y(t)ν(t)Δt +
∫

[a,b)

ω(t) [u(t) − ū(t)] Δt+
∫

[a,b)

ϕΔ(t)y(t)Δt− ϕ(b)y(b) ≥ 0, (5.26)

for all (ν, ω) ∈ ∂J (x̄, ū). Consider the following adjoint equation

{
ϕΔ(t) = −ν(t), a ≤ t < b,
ϕ(b) = 0. (5.27)

This equation (5.27) has a unique weak solution ϕ ∈ Crd(T, R) given by

ϕ(t) =
∫

[t,b)

ν(τ)Δτ.

Further, we have ∫
[a,b)

ω(t) [u(t) − ū(t)] Δt ≥ 0.

We obtain the Hamiltonian formulations to Theorem 5.A.

Theorem 5.5. Assume that p ∈ Γ1(T). Under the assumptions [F](1)-(2)-(3)-(4), [G](2)-(3) and [H], then, in
order that the pair (x̄, ū) be optimal pair of the problem (P σ), it is necessary that there is ϕ ∈ Crd(T, R) such
that the following equations and inequality hold:

{
x̄Δ(t) + p(t)x̄σ(t) = f (t, x̄(t), x̄σ(t)) + ū(t), a ≤ t < b,
x̄(a) = x0,

(5.28)

{
ϕΔ(t) = −ν(t), a ≤ t < b,
ϕ(b) = 0, (5.29)

∫
[a,b)

ω [u(t) − ū(t)] Δt ≥ 0, ∀u ∈ Uad, (5.30)

where (ν, ω) ∈ ∂J (x̄, ū).
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6. Another class of control problems

In this section, as contrast, we consider another class of optimal control problem (P), i.e., consider optimal
control problem (P): find ū ∈ Uad such that

J(ū) ≤ J(u) for all u ∈ Uad,

where the pairs (x, u) ∈ Crd(T, R) × Uad satisfies the following dynamic equation on time scales⎧⎨
⎩

xΔ(t) = p(t)x(t) + f (t, x(t), xσ(t)) + u(t), a ≤ t < b,
x(a) = x0,
u ∈ Uad.

(6.1)

Definition 6.1. A function x ∈ Crd(T, R) is said to be a weak solution of the dynamic system (6.1), if x
satisfies the following integral equation

x(t) = ep(t, a)x0 +
∫

[a,t)

ep(t, σ(τ)) [f (τ, x(τ), xσ(τ)) + u(τ)] Δτ, t ∈ T. (6.2)

For the optimal control problem (P), by similar procedures we can show the following results.

Theorem 6.1. Let p ∈ Γ1(T). Under the assumption [F], the dynamic system (6.1) has a unique weak solution
x ∈ Crd(T, R).

Theorem 6.2. Suppose that p ∈ Γ1(T). Under the assumptions [F], [G] and [H], the problem (P) has at least
one solution.

Theorem 6.3. Assume that p ∈ Γ1(T) and −fx̄σ (·) ∈ Γ1(T). Under the assumptions [F](1)-(2)-(3), [G](2)-(3)
and [H], then, in order that the pair (x̄, ū) be optimal pair of the problem (P), it is necessary that there exists a
function ϕ ∈ Crd(T, R) such that the following equations and inequality hold:{

x̄Δ(t) = p(t)x̄(t) + f (t, x̄(t), x̄σ(t)) + ū(t), a ≤ t < b,
x̄(a) = x0,

(6.3)

⎧⎨
⎩

ϕΔ(t) = −fx̄σ(t)ϕ(t) − [p(t) + fx̄(t)]ϕσ(t) − [1 − μ(t)fx̄σ (t)] η(t), a ≤ t < b,
η ∈ ∂G (x̄) ,
ϕ(b) = 0.

(6.4)

∫
[a,b)

[
ϕσ(t)

1 − μ(t)fx̄σ (t)
+ ξ(t)

]
[u(t) − ū(t)] Δt ≥ 0 for ∀u ∈ Uad, ∀ξ ∈ ∂H (ū) . (6.5)

Remark 6.1. Assume that p ∈ Γ1(T) and
(1) f(t, x(t), xσ(t)) = f(t, x(t)) and f(t, ·) : R −→ R is differentiable, fx̄ (·) = fx̄ (·, x̄(·)) ∈ L1(T, R);
(2) g(x(t), xσ(t)) = g(x(t)) and g(·) : R −→ R is differentiable, gx̄ (·) ∈ L1(T, R);
(3) h(·) : R −→ R is differentiable and hū (·) ∈ L∞(T, R).
Under the assumptions [F](1)-(2), then, in order that the pair (x̄, ū) be optimal pair of the problem (P), it is
necessary that there is ϕ ∈ Crd(T, R) such that the following equations and inequality hold:{

x̄Δ(t) = p(t)x̄(t) + f (t, x̄(t)) + ū(t), a ≤ t < b,
x̄(a) = x0,

(6.6)

{
ϕΔ(t) + p(t)ϕσ(t) = −fx̄(t)ϕσ(t) − gx̄(t), a ≤ t < b,
ϕ(b) = 0, (6.7)∫

[a,b)

[ϕσ(t) + hū(t)] [u(t) − ū(t)] Δt ≥ 0 for ∀u ∈ Uad. (6.8)



676 Y. PENG ET AL.

Table 1. Difference between the problem (P σ) and problem (P).

Item Problem (P σ) Problem (P)
Cost

functional J(u) =
∫
[a,b)

g (x(t), xσ(t)) Δt+
∫
[a,b)

h(u(t))Δt

Controlled
system

{
xΔ(t) + p(t)xσ(t) = f (t, x(t), xσ(t)) + u(t)
x(a) = x0

{
xΔ(t) = p(t)x(t) + f (t, x(t), xσ(t)) + u(t)
x(a) = x0

Weak
solution of
controlled
system

x(t) = e�p(t, a)x0

+
∫
[a,t) e�p(t, τ)[f (τ, x(τ), xσ(τ)) + u(τ)]Δτ

x(t) = ep(t, a)x0

+
∫
[a,t) ep(t, σ(τ))[f (τ, x(τ), xσ(τ)) + u(τ)]Δτ

Adjoint
equation

⎧⎪⎪⎨
⎪⎪⎩

ϕΔ(t) = P (t)ϕ(t) − fx̄(t)ϕσ(t)
−[1 + μ(t)P (t)]η(t)

η ∈ ∂G (x̄)
ϕ(b) = 0

⎧⎪⎪⎨
⎪⎪⎩

ϕΔ(t) = q(t)ϕ(t) − [p(t) + fx̄(t)]ϕσ(t)
− [1 − μ(t)fx̄σ(t)] η(t)

η ∈ ∂G(x̄)
ϕ(b) = 0

Weak
solution of

adjoint
equation

ϕ(t) =
∫
[t,b)

e�P (σ(τ), t)[β(τ) + η(τ)]Δτ

+
∫
[t,b) e�P (σ(τ), t)ω(τ)Δτ

ϕ(t) =
∫
[t,b)

e�q(τ, t)[β(τ) + η(τ)]Δτ

+
∫
[t,b) e�q(τ, t)ψ(τ)Δτ

Optimal
inequality

∫
[a,b)

[
ϕσ(t)

1+μ(t)P (t) + ξ(t)
]
[u(t) − ū(t)] Δt ≥ 0

∫
[a,b)

[
ϕσ(t)

1−μ(t)fx̄σ (t) + ξ(t)
]
[u(t) − ū(t)] Δt ≥ 0

Theorem 6.4. Assume that p ∈ Γ1(T) and −fx̄σ (·) ∈ Γ1(T). Under the assumptions [F](1)-(2)-(3), [G](2)-(3)
and [H], then, in order that the pair (x̄, ū) be optimal pair of the problem (P), it is necessary that there is a
function ϕ ∈ Crd(T, R) such that the following equations and inequality hold:{

x̄Δ(t) = p(t)x̄(t) + f (t, x̄(t)) + ū(t), a ≤ t < b,
x̄(a) = x0,

(6.9)

{
ϕΔ(t) = −ν(t), a ≤ t < b,
ϕ(b) = 0, (6.10)∫

[a,b)

ω(t) [u(t) − ū(t)] Δt ≥ 0 for ∀u ∈ Uad, (6.11)

where (ν, ω) ∈ ∂J (x̄, ū) and ∂J (x̄, ū) given by

∂J (x̄, ū) =

⎧⎨
⎩(ν, ω) ∈ L1(T, R) × L∞(T, R)

∣∣∣∣∣∣
∫
[a,b)

ν(t) [x(t) − x̄(t)] Δt+
∫
[a,b)

ω(t) [u(t) − ū(t)] Δt

≤ ∫
[a,b) [H(t, x(t), u(t), ϕ(t)) −H(t, x̄(t), ū(t), ϕ(t))] Δt

⎫⎬
⎭ ,

H(t, x(t), u(t), ϕ(t)) = g (x(t)) + h(u(t)) + ϕσ(t) [f (t, x(t), xσ(t)) + p(t)x(t) + u(t)] .

Define

F (t) = f (t, x(t), xσ(t)) , q(t) = −fx̄σ(t), β(t) = fx̄(t)ϕσ(t), ψ(t) = μ(t)q(t)η(t), ω(t) = μ(t)P (t)η(t).

Now, we can show the relationship and difference between the problem (P) and problem (P σ) in Tables 1 and 2.

7. Example

In this section, some examples are given to illustrate our theory.



NONLINEAR DYNAMIC SYSTEMS AND OPTIMAL CONTROL PROBLEMS ON TIME SCALES 677

Table 2. Equivalence of different formulations of control problems.

Item Problem (P̄ σ) Problem (P̄ )
Cost

functional J(u) =
∫
[a,b)

g (xσ(t))Δt+
∫
[a,b)

h(u(t))Δt J(u) =
∫
[a,b)

g (x(t)) Δt+
∫
[a,b)

h(u(t))Δt

Controlled
system

{
xΔ(t) + p(t)xσ(t) = f (t, xσ(t)) + u(t)
x(a) = x0

{
xΔ(t) = p(t)x(t) + f (t, x(t)) + u(t)
x(a) = x0

Weak
solution of
controlled
system

x(t) = e�p(t, a)x0

+
∫
[a,t) e�p(t, τ)[f (τ, xσ(τ)) + u(τ)]Δτ

x(t) = ep(t, a)x0

+
∫
[a,t) ep(t, σ(τ))[f (τ, x(τ)) + u(τ)]Δτ

Adjoint
equation

{
ϕΔ(t) = p(t)ϕ(t) − fx̄σ(t)ϕ(t) − g′ (x̄σ(t))
ϕ(b) = 0

{
ϕΔ(t) + p(t)ϕσ(t) = −fx̄(t)ϕσ(t) − g′(x̄(t))
ϕ(b) = 0

Weak
solution of

adjoint
equation

ϕ(t) =
∫
[t,b)

e�P (σ(τ), t)g′ (x̄σ(τ)) Δτ ϕ(t) =
∫
[t,b)

e�p(τ, t)[fx̄(τ)ϕσ(τ) + g′(x̄(τ))]Δτ

Optimal
inequality

∫
[a,b) [ϕ(t) + h′(ū(t))] [u(t) − ū(t)] Δt ≥ 0

∫
[a,b) [ϕσ(t) + h′(ū(t))] [u(t) − ū(t)] Δt ≥ 0

Example 7.1. Let T = [0, 3] ⊂ R be real interval, consider the following dynamic equation
⎧⎨
⎩

ẋ(t) + ln 1
t x(t) = u(t), t > 0,

x(0) = x0,
u ∈ Lr([0, 3], R) (r > 1)

(7.1)

with the cost functional

J(u) =
∫ 3

0

(|x(t)|2 + |u(t)|r) dt.

Since r > 1, the space L
r

r−1 ([0, 3], R) is locally uniformly convex. Moreover, the functional u −→ ‖u‖Lr is
Frechet differentiable. Using the necessary conditions of optimality given by Theorem 5, one can show the
following theorem.

Theorem 7.1. In order that the pair (x̄, ū) is optimal, it is necessary that there exists a function ϕ ∈ C([0, 3], R)
such that the following equations and inequality hold:{

˙̄x(t) + ln 1
t x̄(t) = ū(t), t ∈ (0, 3]

x̄(0) = x0;
(7.2)

{
ϕ̇(t) = ln 1

t ϕ(t) − 2x̄(t), t ∈ [0, 3)
ϕ(3) = 0; (7.3)

∫ 3

0

[
rūr−1(t) + ϕ(t)

]
[u(t) − ū(t)] dt ≥ 0. (7.4)

Example 7.2. (see Ex. 2 of [10]). We consider the quantum time scale T =
{
t = qk|q > 1, 0 ≤ k ≤ N0

}
.

Obviously, we have σ(t) = qt, μ(t) = (q − 1)t. Let

Uad =

{
u : T −→ R|

N0∑
k=0

μ
(
qk
) ∣∣u (qk

)∣∣ < +∞
}
, ‖u‖ =

N0∑
k=0

μ
(
qk
) ∣∣u (qk

)∣∣ ,
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one can verify that Uad is a nonempty closed convex set. Study the following dynamic equation

⎧⎪⎨
⎪⎩

x
(
qk+1

)
= 1

1+μ(qk)p(qk)
x
(
qk
)

+
μ(qk)

1+μ(qk)p(qk)
u
(
qk
)
, 0 ≤ k ≤ N0 − 1,

x(1) = x0,
u ∈ Uad,

(7.5)

with the cost functional

J(u) =
N0−1∑
k=0

∣∣x (qk+1
)∣∣2 +

N0∑
k=0

∣∣u (qk
)∣∣2 .

For this example, our results can be used to (7.5), that is, we have the following theorem.

Theorem 7.2. In order that the pair (x̄, ū) is optimal, it is necessary that there exists a sequence
{
ϕ
(
qk
)}

such that {
x̄
(
qk+1

)
= 1

1+μ(qk)p(qk)
x̄
(
qk
)

+
μ(qk)

1+μ(qk)p(qk)
ū
(
qk
)
, 0 ≤ k ≤ N0 − 1,

x̄(1) = x0;
(7.6)

{
ϕ
(
qk
)

= 1
1+μ(qk)p(qk)

[
ϕ
(
qk+1

)
+ μ

(
qk
)
x̄
(
qk+1

)]
, 0 ≤ k ≤ N0 − 1,

ϕ
(
qN0

)
= 0;

(7.7)

N0∑
k=0

[
ū
(
qk
)

+ ϕ
(
qk
)] [

u
(
qk
)− ū

(
qk
)] ≥ 0. (7.8)

Example 7.3. (see Ex. 3 of [10]). Consider mathematical programming problem

min
n∑

i=1

m∑
j=1

cij (xij)

s.t.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

m∑
j=1

xij ≤ ai, i = 1, 2, . . . , n,
n∑

i=1

xij ≥ bj, j = 1, 2, . . . ,m,

xij ≥ 0, i = 1, 2, . . . , n; j = 1, 2, . . . ,m,

(7.9)

where
m∑

j=1

bj ≤
n∑

i=1

ai. Let T = {0, 1, 2, . . . ,m}, x(0) =

⎛
⎜⎝

0
...
0

⎞
⎟⎠, x(1) =

⎛
⎜⎝

x11

...
xn1

⎞
⎟⎠, x(k) =

⎛
⎜⎜⎜⎜⎜⎜⎝

k∑
j=1

x1j

...
k∑

j=1

xnj

⎞
⎟⎟⎟⎟⎟⎟⎠

,

u(k) =

⎛
⎜⎝

u1(k)
...

un(k)

⎞
⎟⎠ =

⎛
⎜⎝

x1,k+1

...
xn,k+1

⎞
⎟⎠, Ck+1(u(k)) = (1 · · · 1)

⎛
⎜⎝

c1,k+1 (ui(k))
...

cn,k+1 (un(k))

⎞
⎟⎠,

Uad =

⎧⎪⎨
⎪⎩u : T −→ Rn

∣∣∣∣∣∣∣ 0 ≤ u(k) ≤

⎛
⎜⎝

a1

...
an

⎞
⎟⎠−

k−1∑
j=0

u(j), (1 · · · 1)u(k) ≥ bk+1

⎫⎪⎬
⎪⎭ .
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Then the mathematical programming problem (7.9) can be rewritten as the following optimal control problem

min J(u) =
m−1∑
k=0

Ck+1 (u(k))

satisfying ⎧⎨
⎩

x(k + 1) = x(k) + u(k), k = 0, 1, 2, . . . , n− 1,
x(0) = 0,
u ∈ Uad.

(7.10)

Theorem 7.3. Suppose that Ck : Rn −→ R is convex (k = 1, 2, . . . ,m). In order that the pair (x̄, ū) is optimal,
it is necessary that the following equality and inequality hold:

{
x̄ (k + 1) = x̄ (k) + ū (k) , 0 ≤ k ≤ m− 1,
x̄(0) = 0; (7.11)

m−1∑
k=0

C′
k+1 (ū(k)) [u (k) − ū (k)] ≥ 0. (7.12)

Specially, when m = 1, n = 2, c11(x11) = 20x11, c21(x21) = 25x21, a1 = 100, a2 = 150, b1 = 200, the
mathematical programming problem (7.9) is a linear programming problem and its solution is (x11, x21) =
(100, 100). On the other hand, we have T = {0, 1} in Theorem 6.3, control set

Uad =
{
u : T −→ R2 | 0 ≤ u(0) =

(
u1(0)
u2(0)

)
≤
(

100
150

)
, u1(0) + u2(0) ≥ 200

}

is a nonempty closed convex set. The controlled dynamic equation⎧⎨
⎩

x(k + 1) = x(k) + u(k),
x(0) = 0,
u ∈ Uad

(7.13)

with the cost functional
J(u) = (20 25)u(0).

Furthermore, (x̄, ¯̄u) is optimal if and only if the following equality and inequality hold:

{
x̄(k + 1) = x̄(k) + ū(k),
x̄(0) = 0, (7.14)

u(0) − ū(0) ≥ 0. (7.15)

Furthermore, we immediately obtain ū(0) =
(

100
100

)
, that is, (x11, x21) = (100, 100).

Example 7.4. Consider variational problem

min J(x) =
∫

[a,b)

g (xσ(t))Δt+
∫

[a,b)

h
(
xΔ(t)

)
Δt, (7.16)

over all x ∈ C1
rd(T, R) satisfying x(a) = x0, where g, h ∈ C1(R,R).



680 Y. PENG ET AL.

It is easy to rewrite the problems of the calculus of variations into optimal control problems. Consider{
xΔ(t) = u(t), a ≤ t < b,
x(a) = x0

(7.17)

with the cost functional
J(u) =

∫
[a,b)

g (xσ(t))Δt+
∫

[a,b)

h (u(t))Δt.

By Theorem 5.A and Remark 5.1, we have the following result.

Theorem 7.4. In order that the pair (x̄, ū) be optimal, it is necessary that there is ϕ ∈ Crd(T, R) such that the
following equations and inequality hold:{

x̄Δ(t) = ū(t), a ≤ t < b,
x̄(a) = x0,

(7.18)

{
ϕΔ(t) = −g′ (x̄σ(t)) , a ≤ t < b,
ϕ(b) = 0, (7.19)∫

[a,b)

[ϕ(t) + h′(ū(t))] [u(t) − ū(t)] Δt ≥ 0, ∀u ∈ Crd. (7.20)

Define Hamiltonian function

H(t, x(t), u(t), ϕ(t)) = g (xσ(t)) + h(u(t)) + ϕ(t)u(t).

Note that Uad = Crd(T, R), we have

∂H

∂u
|u=ū(t) = ϕ(t) + h′(ū(t)) = 0 ∀t ∈ T.

Hence,

h′(ū(t)) = −
∫

[t,b)

g′ (x̄σ(τ)) Δτ. (7.21)

This equation is the Euler-Lagrange equation (integral form).
Let E : R×R −→ R be the function with the values

E(r, u) = h(u) + h(r) − (u− r)h′(r).

Obviously, we have
E
(
x̄Δ(t), u(t)

)
= H(t, x(t), u(t), ϕ(t)) −H(t, x(t), x̄Δ(t), ϕ(t)).

By optimal condition, we obtain immediately the following inequality

E
(
x̄Δ(t), u(t)

) ≥ 0, ∀t ∈ T, (7.22)

that is, we obtain also the Weierstrass condition [9].

Theorem 7.5 (see Thm. of 3.3 of [9]). Assume that g, h ∈ C1(R,R). If x̄ is optimal for (7.16), then for all
t ∈ T, we have

h′(ū(t)) = −
∫

[t,b)

g′ (x̄σ(τ)) Δτ, (7.23)

E
(
x̄Δ(t), u(t)

) ≥ 0. (7.24)
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