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LOGARITHMIC DECAY OF THE ENERGY
FOR AN HYPERBOLIC-PARABOLIC COUPLED SYSTEM

INES KAMOUN FATHALLAH'!

Abstract. This paper is devoted to the study of a coupled system which consists of a wave equation
and a heat equation coupled through a transmission condition along a steady interface. This system
is a linearized model for fluid-structure interaction introduced by Rauch, Zhang and Zuazua for a
simple transmission condition and by Zhang and Zuazua for a natural transmission condition. Using
an abstract theorem of Burq and a new Carleman estimate proved near the interface, we complete the
results obtained by Zhang and Zuazua and by Duyckaerts. We prove, without a Geometric Control
Condition, a logarithmic decay of the energy.
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1. INTRODUCTION AND RESULTS

In this work, we are interested in a linearized model for fluid-structure interaction introduced by Zhang and
Zuazua in [15] and Duyckaerts in [6]. This model consists of a wave equation and a heat equation coupled
through an interface by suitable transmission conditions. Our purpose is to analyze the stability of this system
and therefore to determine the decay rate of the energy of solutions as ¢t — oco.

Let Q C R™ be a bounded domain with a smooth boundary I' = 9. Let ©; and Q5 be two bounded open
sets with smooth boundary such that Q1 C Q and Qs = Q\ﬁl. We denote by v = 901 N 099 the interface,
v CC QT =09\, j=1,2, and we suppose that I'y # . Let 9,, and 9,/ the unit outward normal vectors
of €7 and Qs respectively. We recall that 0,,, = —0,, on 7.

Ou—Au=10 in (0,00) x Q,

02v—NAv=0 in (0,00) X Qa,

u=0 on (0,00) x I'y,

v=0 on (0,00) x T'g, (1.1)
U= 0w, Opu = —0pv on (0,00) X 7,

’ll,|t:0 =up € L2(Ql) in Ql,

’U|t:0 =1 € Hl(Qg), 8tv|t:0 =1 € L2(Qg) in Qs.
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In this system, u may be viewed as the velocity of fluid; while v and 0;v represent respectively the displacement
and velocity of the structure. That’s why the transmission condition v = O;v is considered as the natural
condition. For the discussion of this model, we refer to [12,15].

System (1.1) is introduced by Zhang and Zuazua [15]. The same system is considered by Rauch et al. in [12]
but for the simplified transmission condition © = v on the interface instead of u = 0yv. They prove, under a
suitable Geometric Control Condition (GCC) (see [1]), a polynomial decay result. Zhang and Zuazua in [15]
prove, without the GCC, a logarithmic decay result. Duyckaerts in [6] improves these results.

For system (1.1), Zhang and Zuazua in [15], prove the lack of uniform decay and, under the GCC, a polynomial
decay result. Without geometric conditions, they analyze the difficulty to prove the logarithmic decay result.
This difficulty is mainly due to the lack of regularity gain of the wave component v near the interface 7 (see [15],
Rem. 19) which means that the embedding of the domain D(A) of the dissipative operator in the energy space
is not compact (see [15], Thm. 1). In [6], Duyckaerts improves the polynomial decay result under the GCC
and confirms the same obstacle to proving the logarithmic decay for solution of (1.1) without the GCC. In this
paper we are interested in this problem.

There is an extensive literature on the stabilization of PDEs and on the Logarithmic decay of the en-
ergy ([2-4,7,9,11,13] and the references cited therein) and this paper uses part of the idea developed in [3].

Here we recall the mathematical framework for this problem (see [15]).

Define the energy space H and the operator A on H with domain D(A) by

H = {F = (fi, f2, f3) € L*(Q1) x Hp,(Q2) x L*(Q2) }

where H} (€s) is defined as the space

Hy,(Q2) = {f € H' (D), fIr, =0},
AF = (Afi, f3, A f2)
D(A)={F € H, fi € H'(), Af; € L*(),
fs € HE, (), Afa € L2 (), fily = fsly, Onfily = —0Onfaly}.

Thus system (1.1) may be rewritten as an abstract Cauchy problem in H as
o U(t) = AU(t), t>0,
U(0) = Uy,

where U(t) = (u(t),v(t), dv(t)) and Uy = (ug,vo, v1).

The operator A is the generator of a strongly continuous semi-group (see [15], Thm. 1).

In our case, i.e. when I'y # (), the energy of any solution U = (u, v, d;v) of (1.2) is defined as one half of the
square of a norm on H and we have

E(U(t)) = % </Q |u(t)|2dzc+/92 |8tv(t)|2d:c+/ﬂ2 |Vv(t)|2dx).

When T’y = (), we refer to [6,15].
By means of the classical energy method, we have

d 2
SEU®) /Q IVu|? da.

Therefore the energy of (1.2) is decreasing with respect to ¢, the dissipation coming from the heat component w.
Our main goal is to prove a logarithmic decay without the GCC assumption.
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As Duyckaerts [6] did for the simplified model, the idea is, first, to use a known result of Burq (see [5])
which links, for dissipative operators, logarithmic decay to resolvent estimates with exponential loss; secondly
to prove, following the work of Bellassoued in [3], a new Carleman inequality near the interface ~.

The main results are the following Theorem 1.1 concerning the resolvent and Theorem 1.2 concerning the
decay.

Theorem 1.1. There exists C > 0, such that for every u € R, we have
[(A - i”)_luz(m < CeClr, (1.3)

Theorem 1.2. There exists C > 0, such that for all Uy € D(A), we have

E(U(t)) (1.4)

C
< .
= gt 1) 100l pa)

Remark 1.1. To simplify, we assumed that Ts # 0. When T'y is empty, the constant functions (0, ¢, 0), where ¢
is arbitrary, are solutions of system (1.2). Therefore it is necessary to consider the decay of solutions orthogonal
to (0,¢,0) in H (for more details we refer to Thm. 1 in [15]).

Burq in [5], Theorem 3, and Duyckaerts in [6], Section 7, show that to prove Theorem 1.2 it suffices to prove
Theorem 1.1.

The strategy of the proof of Theorem 1.1, when p # 0, is the following. A new Carleman estimate proved near
the interface v implies an interpolation inequality given by Theorem 2.2. Theorem 2.2 implies Theorem 2.1
which gives an estimate of the wave component by the heat one and which is the key point of the proof of
Theorem 1.1.

The rest of this paper is organized as follows. In Section 2, we prove Theorem 1.1, for u # 0, from Theorem 2.1
and we explain how Theorem 2.2 implies Theorem 2.1. For g = 0, the proof of Theorem 1.1 is given in
Appendix C. In Section 3, we begin by stating the new Carleman estimate and we explain how this estimate
implies Theorem 2.2. Then we give the proof of this Carleman estimate. Section 4 is devoted to the proof of
important estimates, stated in Theorem 3.2, in the proof of this Carleman estimate. Appendices A and B are
devoted to prove some technical results used along the paper.

2. PrROOF OF THEOREM 1.1

For p = 0, the proof of Theorem 1.1 is given in Appendix C. For p # 0, we start by stating Theorem 2.1.
Then we will explain how this theorem implies Theorem 1.1. Finally, we give the proof of Theorem 2.1.
Let po > 0, small enough, for any u such that |u| > uo, we assume

F = (A* iu)U, U= (UO,’U(),’U1) S D(.A), F = (f(),g(),gl) c H. (21)

Equation (2.1) yields

(A - 1/_1/)’11,0 = fQ in Ql,
(A+p?)vo = g1 +ipgo in Qo (2.2)
vi = go+ipvg in Qo

with the following boundary conditions

uplr, = 0, wlr, =0

up — ipvo 9ol (2.3)
Optug — Opvg = 0|.
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Theorem 2.1. Let U = (ug,vg,v1) € D(A) satisfy equations (2.2) and (2.3). Then there exist constants C > 0,
c1 >0 and po > 0 such that for any |u| > po we have the following estimate

2 ¢ 2 . 2 2 2
||’U0HH1(92) < CectlH <||f0||L2(Ql) + llgr + 1M90||L2(92) + HQOHHI(QQ) + HUOHHl(Ql))' (2.4)

Moreover, from the first equation of system (2.2), we have
| (o imugs = 9wl + il — | e
1 g
Since ugly = go + ipwo and dpug = —0y v, then
/Ql(—A + ip)ugupde = HVUOHiQ(Ql) +ip HuOHiQ(Ql) - iu[y@n/voﬁoda +L8n'U0§odU- (2.5)
From the second equation of system (2.2) and multiplying by (—iu), we obtain
i,u/Q (A 4 ) weTode = —ip ||V’U0Hiz(g2) +ip® ||vo|\iQ(Q2) + iu/ OnrvoTpdo. (2.6)
2 gl

Adding (2.5) and (2.6), we obtain

/ (=A +ip)uguode + i,u/ (A + p?)voToda
Q Q3
: 2 2 . 2 . 2 —_
= ol + V0l = 10 19035y + 6 ool ) + [ O
v

Taking the real part of this expression, we get

L@

/ Onv0godo
.

Recalling that Avg = g1 + iugo — #?vo and using the trace lemma (Lem. 3.4 in [6]), we obtain

2 .
Vol 720,y < 1A = im)uoll 2ayy luoll 2,y + [ (A + MQ)UOHB(QQ) [voll 120y +

10nvoll,-3 ) < € (52 Mool + lor + g0l 2 )
Combining with (2.7), we obtain
2 .
HVUOHL?(QI) < ”fOHLz(Ql) HUOHL2(01) + g1 + 1M90||L2(92) HU0||L2(92)
(2 ool gy + g + 090 2 ) 9ol 3, -
Then
c c
2 2 2 . 2 2
[Vuollz2(q,) < " [follz2,) + € lluollzz,) + . g1 +ipgollT2(a,) + €llvollz2(ay)
(2 1903 + 191 + 490 2 ) 903 ) (2:8)

Now we use this result proved in Appendix A.
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Lemma 2.1. Let O be a bounded open set of R™. Then for all g > 0, there exists C > 0 such that for u and
[ satisfying (A —ip)u = [ in O, |u| > o, we have the following estimate

lllzs oy < € (IVull a0 + 1120 )- (2.9)
Using this lemma and (2.8), we obtain, for e small enough

2 2 . 2 2
[uollzri () < C lfollzzia,) + Ce llgr +ikgollz2q,) + € llvollz2(q,)

2 .
+ (B 1ol 1) + 91 + im0l 2 ) 9ol 3, -
Then there exists c3 > ¢; such that
o < C ([Ifoll? + eIl oy I3 + Cee I || gy + ipgo| 7 + el go |7 (2.10)
OllE () = 0llL2 () 01l H1(Q2) € 91 T 1HgoliL2(q,) T © 9ollH1(0,) ) .

Plugging (2.10) in (2.4), we obtain, for e small enough

2 . 2 2 . 2
l[voll 1 () < Ceclrl (||f0||L2(Ql) + 190l (q) + 191 + 1#90||L2(92)>- (2.11)

Combining (2.10) and (2.11), we obtain

2 c 2 2 . 2
l[uollz(q,) < Ce Iul (||f0||L2(Ql) + lgoll e () + 191 + 1M90||L2(92)>- (2.12)

Recalling that v1 = go + ipve and using (2.11), we obtain

2 c 2 2 . 2
[villz o, < Ce Iul (HfOHL?(Ql) + 1190l 711 () + lg1 + 1#90”1;2(92))- (2.13)

Combining (2.11), (2.12) and (2.13), we obtain Theorem 1.1.

Proof of Theorem 2.1. Estimate (2.4) is the consequence of two important results. The first one is a known
result proved by Lebeau and Robbiano in [10] and the second one is given by Theorem 2.2 and proved in
Section 3.

Let 0 <e; <exand Ve, j = 1,2, such that Vi, = {z € Qa, d(z,7) <€}

Recalling that (A + u?)vg = g1 +ipgo, then for all D > 0, there exists C' > 0 and v € ]0, 1 such that we have
the following estimate (see [10])

1—v . v
lvoll zrr (v, ) < CeP ! lvo ||, (||g1 +ingoll 20, + HUOHHl(VQ)) : (2.14)

Moreover we have the following result proved in Section 3.

Theorem 2.2. There exist C > 0, e > 0 and po > 0 such that for any |u| > po, for all ke > 0, there exists
k1 > 0 such that we have the following estimate

2 k 2 . 2 2 2
||’U0||H1(v€2) < Celilel [||f0||L2(Ql) + g1 JrIMSJOHH(QQ) + ||90||H1(92) + ”uO”Hl(Ql)}

4 Co—Felul ||UO||§{1(Q2). (2.15)
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Combining (2.14) and (2.15), we obtain

% 22—k,

1, ©
v

2 2 C ,p L2 2
||'UO||H1(Q2\V€2) < Celvollg(a,) + = 2wl gy + ipgoll 72 ) + )lul vl o)

€ v €

+ O @Bt
€ v

2 . 2 2
[follz2,) + lgr +ikgollz2(q,) + ||90||§{1(Q2) + luollz |- (2.16)
Adding (2.15) and (2.16), we obtain

2 2 D . 2 D_y 2
HUOHHl(QQ) < Ce HUOHHl(Qg) +Cee® g1 + 1M90||L2(92) + CeelZy —ha)ln ||’U0HH1(92)

D 2 : 2 2 2
+ Ceeuv il [”fO”L?(Ql) + llg1 +1ngoll 12 (q,) + 190151 0, + HUOHHl(Ql)} ~

We fix € small enough and ks such that 2% & ko, then there exists pg > 0 such that for any |u| > po, we
obtain (2.4). O

3. THE CARLEMAN ESTIMATE AND ITS CONSEQUENCE

In this part, we prove the new Carleman estimate and Theorem 2.2 which is a consequence of this estimate.

3.1. Statement of the Carleman estimate

In this subsection we state the Carleman estimate which is the starting point of the proof of the main result.
We begin by giving some notations and definitions used in the sequel.

Let 7 be a positive real number such that 7 > Co |u|, Cp > 0. We define the Sobolev spaces with a parameter 7,
H? by

u(e, 7)€ Hy < ()0 7) € L?, (1) =[¢ + 77

where @ denoted the partial Fourier transform with respect to x.

For a differential operator

P(an,T,ﬂ) = Z aayk(m)MkT]Daa
|| +E+5<m

we denote the associated symbol by

p(l‘,f,’]’, :LL) = Z aa’k(m)uk,rjga.

|| +k+5<m

The class of symbols of order m is defined by

STt = {p(m,&,r,u) € C™,

DﬁDgp(:c,E,T,u)‘ < Ca,ﬁ(§a7>m7‘m}

and the class of tangential symbols of order m by

TST = {p(x,é’,f, p) € C™,

DDl p(a,¢'7.)| < Capler)™ 1}

We denote by O™ (resp. 7O™) the set of pseudo-differential operators P = op(p), p € S (resp. T7S7*) and
by o(P) the principal symbol of P.

We shall frequently use the symbol A = (¢/,7) = (|¢/]* + 72)=.

We use the following Garding estimate: if p € 752 satisfies for Co > 0, p(z,&',7) + (2, &', 7) > CoA?, then

3C, >0, 379 >0, V7 > 79, Yu € C°(K), Re(P(z, D', 7, p)u,u) > Cy ||op(A)u||%2 . (3.1)
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Let u = (ug, vo) satisfy the equation

—(A& —ip)ug = f1 in 1,
_(A+M2)U02f2 in QQ; (3 2)
op(B1)u = ug — ipwg = €3 on 7, ’

op(B2)u = Opug — Opg = €2 On 7.

We will proceed like Bellassoued in [3], we will reduce the problem of transmission to a diagonal system defined
only on one side of the interface with boundary conditions.

Let © = (2/,2,) € R"! x R. In a neighborhood W C R™ of (0,0), we use normal geodesic coordinates (we
can assume W symmetric with respect to x,, — —x,). We denote

O={zeR", 2, >0}NW, and ©;={zeR" z,<0}NW.
The Laplacian on ©5 is written in the form
A = —Asy(z,D) = — (D2 + R(+ay, 2, Dy)).
The Laplacian on ©; can be identified locally to an operator in ©4 given by
A=—A(z,D)=— (D2 + R(—z,,2',Dy)).
We denote the operator, with C°° coeflicients defined in O, by
Alw, D) = diag(As(w, Da), Az, D))
and the tangential operator by
R(x,Dy) = diag(R(f:En, 2, Dyr), R(+an, 2/, Dz/)) = diag(Rl (x,Dyr), Ra(z, Dm/)).

The principal symbol of the differential operator A(z, D) satisfies 0(A) = &2 + r(z,£), where r(z,£') =
diag(rl(ac,«f'),rg(ac,«f’)> = o(R(x,D,)) and the quadratic form r;(z,¢’), j = 1,2, satisfies

3C >0, Y,&), rix)>Clg)], j=1,2.

We denote P(x, D) the matrix operator with C° coefficients defined in O3, by
L _( Ai(z,D)+1in 0
P(xz, D) = diag(Py(x, D), Py(z, D)) = ( 0 Ap(z,D) — 2 )"

Let ¢(z) = diag(¢1(x), p2(z)), with ¢;, j = 1,2, are C* functions in O,. For 7 large enough, we define the
operator
A(z,D,7) =€e"?A(x,D)e "%
where the principal symbol of A(z, D, T) is given by

o(A) = (gn + 1757@)2 + r(az,g’ + i%) €S2

Let 1
i

A 1 * ~ * .
Qg,j = 5(14] +Aj), Ql,j = Aj - Aj), J = 1,2
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its real and imaginary part. Then we have

Aj = QQ,j + i@l,j7

(3.3)
0(Qa) = 2 + g2, (.8, 7),  0(Quy) = 2758 &, +27q1 (2., 7), j=1,2,
where ¢1 ; € TS! and g2, ; € T S? are two tangential symbols given by
/ / 9p;\2 2 Opj
q2,(x, &', 7) =712, &) — (Tm) =iz, 35,
(3.4)
- 0, )
ql,j(x7§177—):7dj($a€l7%)7 J = 1725
where 7(z,£’,n) is the bilinear form associated to the quadratic form r(x,¢’).
In the sequel, P(x, D, 7, 1) is the matrix operator with C'*° coefficients defined in ©2 by
o ~( Ai(z,D,7)+1ip 0
P(%D’T’N) *dlag(Pl(maDaT7,LL)7P2(:L'aDaT7,u')) - < 0 AQ(I,D,T) _/12 (35)

and u = (ug, vp) satisfies the equation

Pu=f in {z, >0} NW,
op(b1)u = ugle, =0 — ipvo|s,—0 = €1 on {z, =0}NW, (3.6)
op(b2)u = (Dmn + ir%%) U0 |z, =0 + (Dzn + iT%ﬂ%) Volz,=0 =€z on {x, =0}NW,

where f = (f1, f2), e = (e1,e2) and B = (op(b1),0p(b2)). We note p;(z, &, 7, 1), j = 1,2, the principal symbol
associated to Pj(z, D, T, 1). We have

pi(w, 67 ) = €2 4 q21 (2, €, 7) + (27§26 + 27q1,1 (2, €', 7))

(3.7)
pQ(Ia €a T, M) = §721 + QQ,2($, gl, T) - /_L2 + 1(27—27905&71 + 2qu,2(I, €I7 T))
We assume that ¢ satisfies
p1(z) = p2(z) on{z, =0}NW
dp1
— >0 =0}NWwW
Dan on{zn = 0} (3.8)
8(,01 2 6(,02 2
- _ Zx= 1 _
(&’En) (&’En >1 on{z, =0}NW
and the following hypoellipticity condition of Hormander: 3C > 0, Vz € K, V¢ € R™\{0},
1 1 )
Rep; =0 et Q—Impj =0) = < Repj, 2—Impj > C{E, )7, (3.9)
T T

where {f, g} (x,&) = (g—g% — %g—é_) is the Poisson bracket of two functions f(z, ) and g(x,€) and K is
a compact in {z, >0} NW.
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We denote by

k
2 g 2 2 2
lull 2o,y = llull,  Ilulli, =D 72 D ullfn o, . luli = |lop(A)ul|”,
j=0
2 2 2 2 2 2 2
uly . = llule,=olls, |ulj = lule,=oll}, k€R and |ufi,, = [ul} + |[Dq,ul*.

We are now ready to state our result.

Theorem 3.1. Let ¢ satisfies (3.8) and (3.9). Then there exist constants C > 0, 79 > 0 and po > 0 such that
for any T > 10, || > po such that T > Co ||, Co > 0, we have the following estimate

7.2
Pl 4 uf} + 72 Dl < € (1P D)l + Iy opn)ul} + 7lop()u?) . (3.0

for any w € Cg°({z, > 0} NW).

Corollary 3.1. Let ¢ satisfies (3.8) and (3.9). Then there exist constants C > 0, 79 > 0 and po > 0 such that
for any T > 10, |pt| > po such that T > Cy|pl, Co > 0, we have the following estimate

2
2 2 T 2 2
Il o) < CUI Pl DA Ere, + g 00D(BRIS 3 oy + mlle" DBl ). (311

for any h € C°({xzn, > 0} NW).
Proof. Let w = e"%h. Recalling that P(x, D, 7, p)w = €"?P(z, D)e”"?w and using (3.10), we obtain (3.11). O

3.2. Proof of Theorem 2.2

To apply Corollary 3.1, we have to choose @1 and 9 satisfying (3.8) and (3.9).
We denote © = (2/,x,) a point in Q. Let ¢ = (0,—¢), § > 0. We set

Y(z) = |z — x0|* — 62 and

e : )
@1(z) = e AV man) (1) = e AW@—az) 350 and 5 <a< 24.

The weight function ¢ = diag(p1, ¢2) has to satisfy (3.8) and (3.9). With these choices, we have @1z, —0 =
2z, =0 and %unzo > 0. It remains to verify

dp1 ? D2 ’

and the condition (3.9). We begin by condition (3.9) and we compute for ¢; and p; (the computation for ¢
and ps is made in the same way). Recalling that

I Bep (&, € — ir (@) Dupr (. £ + 70} ()]

[0p1(z, & — ity (2))] ] (2) [Ocpr (2, § — i) ()]

1
{Reph ;Imm} (ﬂfaf) = ;
+t
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We replace @1 () by @1 () = e ¥ =2n) 3> 0, we obtain, by noting &€ = — B¢ ()

{Rep17 %Impl} (xag) :(_ﬁQDI)s [{Repl(xa n— iTW); %Impl(% n + lTW)} (%77)

B 1Y/ (2)0p1 (2, + irv) ]

and
[ @)Dy, + i) =4 |72 |1 () + a0

where p1(x,n,1") is the bilinear form associated to the quadratic form p;(z,n). We have

1
<Rep1 =0 et Zlmpl = 0> <~ p1(z,n+iry’) = 0.

e If 7 =0, we have p1(z,£) = 0 which is impossible. Indeed, we have
pi(z,€) > C e, V(z,€) € K x R", K compact in {z, >0} NW.
o If 7 # 0, we have py(z,n,¢') = 0.
Then (¢ (2)0,p1(z,n+ iry)|* = 472 |p1 (z,¢')|> > 0. On the other hand, we have

1
{Reptavn = 7). 3-ups o+ i) | o) < €l + 72 0P

where C is a positive constant independent of ¢'. Then for 5 > C, the condition (3.9) is satisfied.
Now let us verify (3.12). We have, on {x,, = 0},

91 ? dp2 ? 2 B
— ] — (== =p3%a(46 — a)e ?"¥.
<8mn) <8:cn) Bal )
Then to satisfy (3.12), it suffices to choose 3 = % where M > 0 such that % > Cy.
In the sequel, to respect the geometry we return in ©; for the heat component wuy (in this case p; defined
above becomes ¢ (x) = e F¥(@)),
Let us choose 1 < 7] <712 <0=1¢(0) <rh <rs <ry. We denote

wj ={z€Q,r; <¢(x)<r;} and T,, =w;NOs.

We set R; = e i, R = e P j=1,2,3.
Then R; < Rz < Ry < Ry < R} < Ry. We introduce a cut-off function ¥ € C§°(R"*1) such that

0 if p<mr, p>ri
1 if p € [r],r3].
Let @ = (@9, U9) = xu = (Xuo, Xv0), we get the following system
(A —ip)ug = xfo+[A —ip, X]uo

i
(A + p?) o X(g1 +ipngo) + [A + 12, X]vo,
U1 = go+ipdo,
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with the boundary conditions

tio|r, = Volr, = 0,
op(B1)t = tp —ipty = (X9o)l|v,
Op(B2)ﬂ = ([3n,>~<]uo - [anaX]UON’Y'

From the Carleman estimate of Corollary 3.1 , we have
To~12 TY1 NS |12 T ~ 12
Fllem el < Ol (A = iiall 2o,y + €722 (A + 1250 2,

2
1

7_2
—_— TLP u
+ g lemon(bojl

2
+ 7 [[e"Pop(b2)ull72(,, —0))-
Using the fact that [A — iy, x] is the first order operator supported in (w; Uws) N ©1, we have
LN~ 12 R 2 R 2
e (A —ip)tol|z2@,) < C (627 foll2en 1 2R ||u0||H1(Ql)>'
Recalling that [A + u?, Y] is the first order operator supported in (w; Uws) N O, we show

2 . 2 2
™2 (A + 1) 70| 2,) < C <62T lgr + ingollz2(a,) +*7™ ||”0”H1(92>)'

811

(3.13)

(3.14)

(3.15)

From the trace formula and recalling that op(b2)@ is an operator of order zero and supported in {z, = 0} Nws,

we show

™ lle720p(b2)iil} 2y, —o) < Ce¥ ™ [[ulffa @y < € (3 s gy + € ol )

Now we need to use this result shown in Appendix B.

Lemma 3.1. There exists C' > 0 such that for all s € R and v € C§°(Q), we have
lop(A*)e™ull < Ce™ [lop(A*)ul .

Following this lemma and recalling that 7 > Cy |ul|, Co > 0, and |u| > uo, we obtain

2
T -
M2‘ le™?op(b1)a| < Cr2e?me |go|21 < O7?ee ||90||§{1(92) :

2
H? (2,=0) — 3 =
Combining (3.13)—(3.16) and (3.18), we obtain

, 9 ’ 2 2 2
Ore™ uollizs waner) + C70* % ol r,) < O™ I ollzaa + 0™ lluallir oy

. 2 R- 2 R. 2 2
+e*7 llgr +ipgoll 7z, + € ol u) + €7 ol ,) + €7 lgollr q,))-

Since R3 < R, < Ry. Then there exist ¢; > 0 and ¢ > 0 such that

2 . 2 . 2 2 2
[vollere () < Ce™™ | follz2q,y + 91 +ingollL2(qy) + 190l @) + 1wl o))

o 2
+ Ce™ 7 [|lvol[ 5 (qy) -

Now we must distinguish two cases:

(3.16)

(3.17)

(3.18)

(3.19)
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2 2 . 2 2 2
e Case 1: |vo|/ 31 (q,) = (”fOHL?(Ql) + llgr +ingollz2(q,) + 90l o, + HUOHHl(Ql))
Minimizing the right-hand side of (3.19) with respect to 7, we get with dg = co/(c1 + ¢2), the following
estimate

do
2 2 . 2 2 2
lvoll e (1, < € <||f0||L2(Ql) + llgr +ingollz2(q,) + 90l ,) + HuOHHl(Ql))

—5o

1
S (CIF (3.20)

2 2 . 2 2 2
e Case 2: HU0||H1(92) < <||f0||L2(Ql) +llg1 + 1#90HL2(92) + H90||H1(92) + HuOHHl(Ql))
In this case (3.20) is trivial.
Then for all k; > 0, there exists k; > 0 such that we have

2 2 . 2 2 2
lvoll e () < Cekrlnl |:Hf0||L2(Ql) + llgr +ingoll L2, + 190ll5 (o, + ”uO”Hl(Ql)}
+ Cehelv HUOHle(QQ) : (3.21)

Since 7 is compact, then there exists a finite number of T, such that v C U T, and if ez small enough, we
have V., C U T,,. Then (2.15) follows from (3.21).

3.3. Proof of the Carleman estimate (Thm. 3.1)

In the next section we will prove the following theorem which is analogous to Theorem 3.1 with another scale
of Sobolev spaces.

Theorem 3.2. Let ¢ satisfy (3.8) and (3.9). Then there exist constants C > 0, 19 > 0 and po > 0 such that
for any T > 10, |pt| > po such that T > Coy|p|, Co > 0, we have the following estimate

2 2 2
rull} . < ¢ (1P, D7l + 7 ful ., ) (3.22)
and
2 2 <c1pPxD 2, T b)ul? 2
Tlully - +7luly o, < C{ 1P, D, 7, pull” + 2 lop(b1)uly + 7 lop(b2)ul” |, (3.23)
for any v € C({zy, >0} NW).

To prove Theorem 3.1, we need the following lemma.

Lemma 3.2. There exist constants C > 0 and 19 > 0 such that for any T > 19, || > 1 such that 7 > Co |p|,
Co > 0, we have the following estimate

2 2 2
| p2,0p(a~ )|+ | Dot yul| + [lop(aR )| + 7 full o, < c( |P(, D, 7, wyul?
T
+ 7 |op(b1)u|? + 7 |op(b2)ul” ), (3.24)
for any u € C§°({xn, > 0} NW).

Proof. We have
P(z,D,7,p) = DI + R+ 7C1 +17°C,
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where R € TO?, C; = c1(x)Dy, +Th, with Ty € TO and Cy € TO. Then we have

1

L2 L2 2
H(DinJrR)op(A*E)uH §C<HPop(A2)uH +72Hop( 2) H + 72 HD%op H +74 Hop uH >

Since
2 2
< O3 |ul|7,

" Jopth e
1 2

HDmnop (A~ 5)UH < C7||Dy,u

72 op(ady|” = 72(rop(Au, v7u) < € (7 op(A)ull® + 7 ull).

Using the fact that ||uH1T ~ [lop(A)ul|* + ||Dlwu|| , we obtain

> and

2 ~5y|” < ~vall? 2
2, + mopta iy < € ([[Popia |+l ).

Following (3.22), we have

1 2 1 2
|02, + Ryop(A=H)u gc(HPopm-E)uH +||Pu||2+7|u|io,f). (3.25)
We can write
Pop(A~%)u = op(A~2)Pu+ [P,op(A *)1u
= op(A"%)Pu+[R,op(A”%)]u
+ 7[C1, op(A™%)]u + 72[Co, op(A™2)]u
= Op(A 2)Pu+t1 + to + t3. (326)

Let us estimate t,, to and t5. We have [R,op(A~2)] € TOz, then following (3.22), we have
2 1|12 2 2 2 2
2> < € Jop(a®yu|” < € (lop(a)ul + lul*) < & (IPulP + 7 ul? o ,)- (3.27)
We have ty = 7[C,0p(A~2)]u = 7[c1(2) Dy, , op(A~2)]u 4 7[T1, 0p(A~2)]u. Then following (3.22), we obtain

It2))* < € (771 1D

7 lul?) < ¢ (I1PulP + 7l ). (3.28)
We have [Co,op(A~2)] € TO~2, then following (3.22), we obtain
1 2
[721Co,op(A)u|” < 7 flull® < € (I1Pul® + 7 uff, ) (3.29)

From (3.26)—(3.29), we have

L2
|Pop(a=tyu|” < € (I1Pull* + 7l )
and from (3.25), we obtain

|02, + R)op(A—%)uH2 <0 (1PulP + 7l ). (3.30)
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Moreover, we have

2

H(Din + R)op(A’%)u‘ = HDlwop H + HRop uH2 + 2Re(D§W’op(A’%)u, Rop(A™2)u),

where (.,.) denote the scalar product in L2. By integration by parts, we find
9 _1 |2 9 At 2 _1 12
H(Dz + R)op(A 2)uH = HDmnop 2)uH + HRop(A 2)uH

+2Re (i(Dznu, Rop(A™"Yu)o + i(Dy, u, [op(A~7), R]op(A*%)u)o)

+2Re ((RD,,0p(A™#)u, Dy, 0p(A~#)u) + (Da,0p(A#)u, [D,, Rlop(A™H)u) ). (3.31)

Since, we have

3

Jop(a )] = (op(A%)op(ALyu, op(Ayu) = 37 (D3op(Adyu,op(A%)u) + 7*(op(A% ), op(A ).

j<n—1
By integration by parts, we find
Al 2 1 1 It 2 5 12
Hop A2y H = Z (Djop(A2)u, Djop(A2)u) + 7 Hop 2) H =k+7 Hop(A?)uH . (3.32)
j<n—1
Let xo € C5°(R™*!) such that xo = 1 in the support of u. We have
k=3 (xoDjop(A*)u, Djop(A%)u) + > (1= x0)Djop(A*)u, Djop(A*)u).
j<n—1 j<n—1
Recalling that you = u, we obtain
k=D (xoDjop(A*)u, Djop(A¥)u) + Y7 (L~ xo). Djop(A®)]u, Djop(A¥)u) = K+ k7. (3.33)
j<n—1 j<n—1
Using the fact that [(1 — xo), D;op(A2)] € TO? and Djop(Az) € TO?, we show
E" < C |lop(A)ull®. (3.34)

Using the fact that Zj k<n—1 X0ajkDjvDyv > 6xo Zj<n_1 |Djv|2, 6 > 0, we obtain

K <C > (xoauDjop(A?)u, Dyop(A?)u)

7,k<n—1
<C Y (Ixo,ajxDjop(A?)]u, Dyop(A=)u) + > (ajxDjop(A?)u, Dyop(A?)u).
Jyk<n—1 jk<n—1

Using the fact that [xo, ajijop(A%)] € TO? and Dyop(A2)u € TO?, we obtain

K gc( > (ajijop(Aé)u,Dkop(Aé)u)+|op(A)u||2>. (3.35)

Jik<n—1
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By integration by parts and recalling that R =3, . a;xD;Dk, we have

Z (ajijop(A%)u,Dkop(A%)u):(Rop(A%)u,op(A%)qu Z ([Dk,ajk]Djop(A%)u,op(A%)u). (3.36)

Jk<n—1 Jok<n—1
Since [Dk,ajk]Djop(A%) € TO3, then

Y ([Dr,azi] Djop(A*)u,0p(A%)u) < C'[lop(A)ul®.

7,k<n—1

Following (3.36), we obtain

>~ (auDjop(A*)u, Dop(A)u) < € ((Rop(A#)u,0p(A*)u) + [lop(A)ull*). (3.:37)

Jik<n—1

Since

N

(Rop(A )u,op(A%)u) = (Rop(A_%)u,op(A%)u) + ([op(A_l),R]op(A%)u,op(A%)u).
Using the fact that [op(A~!), Rlop(Az) € TO= and the Cauchy Schwartz inequality, we obtain

1 1 s, 12 C _1 2
(Rop(A#)u, op(Ad)u) < eC Hop(A2 )uH += HRop(A )uH +C [lop(A)ul®. (3.38)
Combining (3.32)—(3.35), (3.37) and (3.38), we obtain
3 2 3 2 C 1 2 2
Hop(AE)uH <eC Hop(Aa)uH += HRop(A*a)uH +C [lop(A)ul®.
For e small enough, we obtain
_1 PP 5. 120 o 1?2
HRop(A 2)uH >C <Hop(A2)uH -7 Hop(A2)uH ) (3.39)
Using the same computations, we show
1 1 1 2
(RD,, op(A™2)u, Dy, op(A™2)u) > C (HDxnop(AﬂuH -7 |Dl.nu||2). (3.40)
Combining (3.31), (3.39) and (3.40), we obtain
1 2 1 1
H(Din + R)op(AfE)uH + |(Dznu, Rop(A*l)u)0| + ‘(Dznu, [op(A™2), R]op(A*E)u)o‘

+ |(Da,op(AHyu, (D, Rlop(A~ )| + 7 Jul} . (3.41)

L2 L2 2
(T e L e e

Since

|(Da, 1, Rop(A™ Yo + | (Da,w, lop(A™ ), Rlop(A™H)u)o| < € (1D, ul* + |ul}) = Clull,,  (3.42)
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and
(D, 0p(AH)u, [Da,, Rlop(A~$)u)| < Cr [l , - (3.43)
From (3.30), (3.41)—(3.43) and (3.22), we obtain
AS AS 2 2 2
HD%op H + HDznop 2) H + Hop 2) uH <C (”P(:L’,D,T, wul| +T|u|1,077>.
Following (3.23), we obtain (3.24). O

We are now ready to prove that Theorem 3.2 and Lemma 3.2 imply Theorem 3.1.
Let x € C5°(R™1) such that y = 1 in the support of w and u = yop(A~2)w. Then

Pu =op(A™%)Pw + [P,op(A™%)Jw + P[x,op(A™%)]w
=op(h~H)Pw + [Pop(A~Hlw + D2, b op(A

1

+ R[x, 0p(A™%)Jw + 7e1 () Dy, [x, 0p(A ™% )Juw
+7T1[x, 0p(A™ #)]w + 7 Co[x, 0p(A™ ) w
:OP(A_%)PU) + [P; Op(A_%)]'w “+ a1 + ag + as + aq + as. (344)

Let us estimate aj, az, a3, as and as. Recalling that [, op(A_%)] € 7O % and xw = w. Using the fact that
[Dy,,,Tx] € TOF for all T}, € TO*, we show

laa* < C <HD2 op(A_%)wH2 + HDQE op(A_%)wH2 + Hop(A_%)wH2> (3.45)

and
) ) s 12 52
las]| SC(T HDxnop(A_2)wH +7 Hop(A‘?)wH ) (3.46)
We have R[y,op(A~2)] € TOz, Ty[x,op(A~2)] € TO~ 2 and Cy[x,op(A~2)] € TO~2. Then we obtain

1 2
laall® + flasl* + las | < € ||op(a%)u|". (3.47)

Using the same computations made in the proof of Lemma 3.2 (¢f. t1, t2 and t3 of (3.26)), we show

1

2
[1P.op(a~ 4] <C<Hop Ao +T-1|Dznw|2). (3.48)

Following (3.44)—(3.48), we obtain

1

| Pul? gc(ﬂ |Puwl® + [Jop(a?) wH + 7 Dy wl? + || D2, op(A~ 1)w||2>. (3.49)

‘We have
op(by)u = op(b1)xop(A~ % )w = op(A~2)op (b )w + op(b1)[x, op(A™)Jw + [op(b1), op(A~ % )]w.

Recalling that op(b1) € 7O, we obtain

T T T 1 2 T 1|2
T lop(on)ult = lop(op(en)af* < (2 opahoptouu] + Zfopabyul ). (a0



LOGARITHMIC DECAY OF THE ENERGY FOR AN HYPERBOLIC-PARABOLIC COUPLED SYSTEM 817

We have

op(ba)u = op(bz)xop(A~ 2 )w = op(A~2)op(ba)w + op(b2)[x, 0p(A™2)Jw + [op(b2), op(A~ % )]w.

Recalling that op(b2) € D, + 7O, we obtain
2 1 2 1 2 3 2
7 lop(b2)ul” < C <T ‘op(Afi)op(bg)w‘ + 7 ‘op(A*E)w‘ + 7 ‘Dm"op(A*E)w‘ ) . (3.51)

Moreover, we have
Tlulf o, =7ulf + 7Dy, ul> = 7 lop(A)uf® + 7 | Dy, ul* .
We can write
op(A)u = op(A)xop(A™2)w = op(A2)w + op(A)[x, op(A~2)]w.
Then
L2 L2 2 2
7 lop(A )u| > 7 ‘op(Ai) ‘ - Cr ‘op(A_i)w‘ ‘ ‘

>7 ‘op(A%) —Oor ! ‘op(A%)w

For 7 large enough, we obtain

L2
7 op(A)uf’ = C [op(At)u) (3.52)
By the same way, we prove, for 7 large enough
2 1y |2
T |Dy,ul” > Crt ‘D%op(A 2 )w‘ (3.53)
Combining (3.52) and (3.53), we obtain
2 1 2 _1 2
T |u|1’07T >C (T ‘op(A?)w‘ +7 ‘D%op(A 2)w‘ ) (3.54)
By the same way, we prove
2
lop(ad)ul|” = lop(a)w]* - € luw]?, (3.55)
1|12 _ 2 _ 2
HD;cnop(/U)uH > | Dy, w|* — C lop(A™) Dy, wl||” = C |lop(A™Huw| (3.56)
and
1 2 _ 2 _ 2
HD%op (A72) H HD%op A~ l)w” -C ||Dznop 2)wH -C HDmnop(A 2)w” -C ||op(A 2)w” . (3.57)

Combining (3.55)—(3.57), we obtain for 7 large enough

l 3

2
|22, opa =y "+ | rop(a 2|+ optad | > € (12, 0p(A= yu]]* + 1D + lop(Au]?). (3.58)
Combining (3.24), (3.49)—(3.51), (3.54) and (3.58), we obtain (3.10), for 7 large enough and x| > po. O

4. PROOF OF THEOREM 3.2

In this section, we use especially microlocal analysis and we recall and follow the notations used in [11].
The techniques used are the Calderon projector for the elliptic regions and Carleman estimates for non elliptic
regions.
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4.1. Study of the eigenvalues

The proof is based on a partition argument related to the nature of the roots of the polynomial p;(z, &', &, T, 1),
7=1,2,in &,. On =z, = 0, we note

QI(xlagla T) = q1,1(07xla€l77—) = Q1,2(07$17§I77')-

Let us introduce the following microlocal regions

Ef:{(x,g’,r,p)erR”—lxRxR, q21—|——

Z =

2
(2,8, 7, 1) E K xR X RXR, goq + 5 :0},
(z,&,7,u) € K xR xR xR, q21+— }

(2,6, 7, 1) € K xR" 7 x RXR, qoz—p° +

S“

n—1 —
(ng:LL)GKXR XRXR q2,2 — [ +(Q§0_)20}’

E =R (2,8, 7, p) E K xR XxRXR, gqoo—p?+

A
+

I

/—/H/—/H/—/H/—/H/—H

o7
g6 |
3 N
e

V
o
——

We consider p;/, (x,&,7,1) as a polynomial in &,. Then we have the following lemma describing the root
localization of p;/, (here and in the sequel the index 3 1/2 means 1 or 2).

Lemma 4.1. We have the following:
(1) For (z,&,1,p) € Ef’/ , the roots of p1,, denoted th satisfy :l:hnzf[/2 > 0.
(2) For (x,£',7,1) € Z4/,, one of the roots of py,, is real.
(3) For (x,&,1,u) € 51/ , the roots of py,, are in the half- plane Im§&,, > 0 if = 6%/2 < 0 (resp. in the
half-plane Tmé,, < 0 if %222 > 0).

Proof. Using (3.3) and (3.4), we can write

0 0
pl(zlaga’ra N) = (fn + 17_87(‘01 - 1041) (fn + 17_87(‘01 + i041)7

(4.1)
.0 . . 0 .
p2(fﬂl,§7ﬂﬂ): £n+1ﬂ*1a2 §n+17ﬁ+1042 s
oxy, oxy,
where a; € C, j = 1,2, defined by
20,0 ¢l Jp1 ° .
aq (I 5€ y T /J/) = 7-87 + Q2,1 + 217'6117
(4.2)

o2\’ .
o3(2, &, ) = (TaTw) —1° + @22 + 2iTqs.
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We set 5
+ _ . 501/2
2y, = —IT 0z,

the roots of p;/,. The imaginary parts of the roots of p;,, are

+iay,, (4.3)

0 0
fTﬂfReOzl/?, P1/s

oxy, ’ Oy,

+ReOé1/2.

The signs of the imaginary parts are opposite if ‘8<p1/2/8:£n| < |Re a1/2|, equal to the sign of —0y,,,/0z,, if
‘8<p1/2/8xn| > ‘Re al/Q‘ and one of the imaginary parts is null if |8<p1/2/8:£n‘ = ‘Re 041/2‘. However the lines

Rez = £7 ¢y, /0xy change by the application z — 2’ = 2% into the parabolic curve Re 2’ = ‘T 8@1/2/&%”‘2 -
[Im 2| /4(r d¢1/,/0x,)*. Thus we obtain the lemma by replacing z’ by a%h. O

Lemma 4.2. If we assume that the function o satisfies the following condition

2 2
<%) <%) >1, (4.4)

then the following estimate holds

@ @

2
Po2—p+ ——— 5 > @1t — (4.5)
(0p2/0n)’ (Op1/0wn)’
Proof. Following (3.4), on {x,, = 0}, we have
8(,01 2 8(,02 2
4 — 4 — - — R — P

o €.7) -~ a6 = (152 ) - (52 (1.6
Using (4.4), we have (4.5). O

Remark 4.1. The result of this lemma imply that £ C & .

4.2. Estimate in £

In this part we study the problem in the elliptic region 51+ . In this region we can inverse the operator and use

2
the Calderon projectors. Let x*(x, &, 7, 1) € TS such that in the support of x* we have ¢z 1 + —H—7 >
T ’ (6991/893”)

6 > 0. Then we have the following estimate.

Proposition 4.1. There exist constants C > 0, 70 > 0 and o > 0 such that for any 7 > 1o, || > po such that
7> Co ||, Co > 0, we have

2 2 2 2
7 llop(x a2, < € (1P, Dym,wul + ull + 7 ull ) (47)

for any u € C§°({xn, > 0} NW).
If we suppose moreover that ¢ satisfies (4.4) then the following estimate holds

2 2 T 2 2 2 — 2
T\OP(X+)U|17O,TSC(IIP(%D,TWUII + < lop(ba)ul} + 7 lop(b2)ul” + ullf, + 7 |u|) (4.8)

for any u € C§°({z,, >0} NW) and b;, j = 1,2, defined in (3.6).
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Proof. Let @ = op(x™)u. From (3.2), we get

P’ﬁ:f in {z, >0} NW,
op(b1)t = Ug|y, =0 — 400z, —0 = €1 on {x, =0} NW, (4.9)
op(be)i = (Ds, + 17%) ole,—0 + (Dmn + ifg;ﬂ) Tolw,—0 =& on {zn, =0} NW,

ox .,

with f = op(xT)f + [P,op(x )] u. Since [P,op(x*)] € (TO®)D,, + TO', we have
17122 < € (1P D.r. w2 + [l ) (410)

and é; = op(x™)e; satisfying
ey < Clerf; (4.11)

and

92
oz,

91
oz,

Since [D., ,op(x")] € TO°, we have

ér= (D, +ir )70p(x+)} uo|xn:o+[<Dxn+ir )70p(x+)] voleso + 0D (e

|&2]* < C (Jul® + |e2]?). (4.12)

Let @ the extension of @ by 0 in z;,, < 0. According to (3.3)-(3.5), we obtain, by noting d¢/0z,, = diag (dp1/0xy,
dp2/dn), vj(a) = * (D], (to) |, =0+ D3, (90) |z,=0+), 7 = 0,1 and 6¥) = (d/dzn)” (8z,=0).

szf—fyo(ﬂ)(@(?’—i—% (71(11)4-2#57@) ®9 (4.13)

Let x(z,&,7,1) € S be equal to 1 for sufficiently large |£| + 7 and in a neighborhood of supp(x*). We
assume p is elliptic in support of x. These conditions are compatible due to the choice made for supp(x*) and
Remark 4.1. Let m large enough chosen later, by ellipticity of p on supp(y) there exists a parametric E = op(e)

of P. We recall that e € S;2 and e has the following form e(z, &, 7, 1) = Z?ZO ej(z,& 7, 1), where eg = xp~*
and e; = diag(e;1,ej2) € S; 277 where €1 and e; 2 are rational functions with respect to &,. Then we have

EP =op(x)+ Rm, R,c0O ™1 (4.14)

Following (4.13) and (4.14), we obtain

- 1
w=FEf+E —h1®5'+Th0®5 + w1,

- .0 - - 4.15
o =10 (5) + 20722 (i), By = 0(8), )

wy = (Id — op(x)) & — R

Using the fact that supp(1 — x) Nsupp(xt) = @ and the symbolic calculus (see Lem. 2.10 in [8]), we have
(Id — op(x)) op(x™) € O™, we obtain

2 — 2
lwillz - < CT7% |lull: - (4.16)
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1
Now, let us look at the term F [hl R + -hy® 5]. For z,, > 0, we get
i

1 . .
E [—hl ® 6 + ;ho ® 5} =T1h1 + Toho,

—

. Nt R
T5(h) = (%) / ! (2,67, p)h(y')dy'd€" = op(E;)h

. 1

t]’ 2_71'1 : elmn‘gne(m’g’/]—’ M)f%dfn

where v is the union of the segment {&, € R, |, < coy/[€|2 + 72} and the half circle {§n € C & =

|€']2 + 72, Im&,, > 0}, where the constant ¢ is chosen large enough for the roots Z1 and 22 to be enclosed
by v (if ¢o is large enough, the change of contour R — + is possible because the symbol e(z,§, 7, 1) is a
holomorphic function for large |&,|; &, € C). In particular we have in a,, > 0

;g,agfj\ < G pple, 7Y 1AE 1, (4.17)

We now choose x1(x, &', 7, 1) € TS, satisfying the same requirement as y*, equal to 1 in a neighborhood of
supp(x ™) and such that the symbol y be equal to 1 in a neighborhood of supp(x1). We set ¢; = x1t;, j = 0, 1.
Then we obtain ~

U= Ei+0p(t0)h0 +Op(t1)h1 + wy + wo (418)

where wy = op((1 — x1)fo)ho + op((1 — x1)t1)hi. By using the composition formula of tangential operator,
estimate (4.17), the fact that supp(1 — x1) Nsupp(x ™) = @ and the following trace formula
_1 ,
o(w)l; < Cr2ulljta,-  JEN, (4.19)

we obtain

wall3,, < CT2 (Jullf, + |ulfo,r)- (4.20)
Since x = 1 in the support of x1, we have e(z,&, 7, ) is meromorphic w.r.t. &, in the support of x;. The
roots zfr/z are in Im&, > c1+/|¢'[? + 72 (c1 > 0). If ¢; is small enough we can choose fixed contours v;,, in

Im¢,, > F/[¢'|> + 72 and we can write
. 1 o 4 ,
tj = dlag(tj,htj,Q); tj,l/g ($,§I,T, M) = Xl(xagla T, /J/)% / e ﬁ'«nﬁnel/2 ($,§,T, /J')ggzdg'ru J= 0; 1. (421)
Y1/

Then there exists co > 0 such that in z,, > 0, we obtain

k0200t | < Co e 2™ &7l p)Im1ol01E, (4.22)

In particular, we have e®>*»" (9% )t; bounded in 7.S3~'** uniformly w.r.t. ,, > 0. Then
182 0p(t;)hs 122 + llop(t; )hsl|2 < / e fop(e T () < O
L >

and
10a,, 0p(t )l < C/ e 22T op(e T Oy, ) hjl 70 (wn)dan < CT Ry 3.

x>0
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Using the fact that hg = 1 (a) + 217%7&&) and hy = yo(@), we obtain

2 _
lop(t;)hsl1 , < CT7 ulio - (4.23)

From (4.18) and estimates (4.10), (4.16), (4.20) and (4.23), we obtain (4.7).
It remains to proof (4.8). We recall that, in supp(x1), we have

- (L 1) 1 ! |
€y = dlag (60,1;60,2) - dlag <p17p2> dlag<(£n 7Zi|_)(§n — Zl_)a (fn 723_)(£n — 22_)>

Using the residue formula, we obtain

+ )
—iwnzy (Zl/z) . —o4j
(§] 1/2t]-’1/2 :Xlﬁ—’—Al/Q’ J :O,l, )\1/2 ETST . (424)
1/ T F1/s
Taking the traces of (4.18), we obtain
"0(@) = op(c)yo(@) + op(d)y1 (@) + wo, (4.25)

where wy = 'yo(Eer wy + ws) satisfies, according to the trace formula (4.19), the estimates (4.10), (4.16)
and (4.20), the following estimate

2 2 — 2
7 wol? < € (IP(, D7, wull® + llul} , + 72 [ul} ., ). (4.26)

Following (4.23), ¢ and d are two tangential symbols of order respectively 0 and —1 given by

. . 2y,
co = diag(co,1, co,2) with  ¢o1/, = — <X1 %) )
1)y TR,

. 1
d_1 = diag(d_171,d_1,2) with d,171/2 = <X1+7>'
F1/2 T *1/s

Following (4.9), the transmission conditions give

Yo(tio) — ipyo(to) = €1

(4.27)
(i) + (o) + it G 0(fho) + iTZE270(To) = éa.
We recall that @ = (ug, 0g), combining (4.25) and (4.27) we show that
0 0
t - N 1., (= 1 0| 0 —1z
op(k) " (v0(@0),70(T0), A~ v (o), A~ 1 (o)) = wo + ;013 1 [ator| o | A e, (4.28)
0 1
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where k is a 4 x 4 matrix, with principal symbol defined by

1-— Co,1 0 —A d_1,1 0
0 1— Cp,2 0 —A d,LQ
o+ .
—Trog = —T
0 [ 0 0 ] 0 0 [ 05
0 0
1TA—1879‘: iTA_laT(pj 1 1

where ¢ is a tangential symbol of order 0.
We now choose ya(z,&, 7, 1) € TSY, satisfying the same requirement as x*, equal to 1 in a neighborhood of
supp(x™) and such that the symbol x; be equal to 1 in a neighborhood of supp(xz2). In supp(x2), we obtain

+ A
+Zl = 0 LT 0
21 T 21 |
x A
0 +22 — 0 - + —
kolsupp(xa) = %2 T % %2 T %
0 —i 0 0
. op1 . 2
A= A= 1 1
ir oz, ir Dz,

Then, following (4.3),
-1 _\—1
det(ko)lsuppis) = — (21 —21) (23 —23) Ao

To prove that there exists ¢ > 0 such that ‘det(k0)|supp(x2)| > ¢, by homogeneity it suffices to prove that

det(k/’o)|supp(X2) 7é 0 if |§I|2 + T2 =1.
If we suppose that det(ko)|supp(y,) = 0, we obtain a; = 0 and then a? =0.
Following (4.2),we obtain

2
g1 =0 and (Tﬁ) + a1 = 0. (4.29)

But in &, this implies g2 1 > 0, then (4.29) is impossible.
Therefore det(ko)|supp(xz) 7 0- It follows that, for 7 large enough, k = ko + %ro is elliptic in supp(x2). Then
there exists [ € 752, such that

op(l)op(k) = op(x2) + R,
with R,, € TO~™1, for m large enough. This yields

0
" (70(@0), 70(T0), A 71 (@0), A~ 71(%0)) = op()wo + ;op(1)op (1)
0

+(op(1 = x2) = Bm)" (70(@0), 70 (T0), A~ 71 (tho), A"
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Since supp(1 — x2) Nsupp(x ") = @ and by using (4.26), we obtain

- T - ~ 2 2 — 2
rif2y, < C <E'el'? T rleal? + 1P(, Dl + 2 + 7 |u|1,0,7>.

From estimates (4.11) and (4.12) and the trace formula (4.19), we obtain (4.8).

4.3. Estimate in Z;

The aim of this part is to prove the estimate in the region Z;. In this region, if ¢ satisfies (4.4), the
symbol pi(x,&, 7, ) admits a real root and pao(x,&, 7, 1) admits two roots zgi satisfy =+ Im(zQi) > 0. Let

X0(x, &, 7, 1) € TS? equal to 1 in 21 and such that in the support of x° we have gz 2 — p? + M}% >46>0.

Then we have the following estimate.

Proposition 4.2. There exist constants C > 0, 79 > 0 and po > 0 such that for any T > 19, |u| > po such that

7 > Co|p|, Co > 0, we have the following estimate

2 2 2
~[lop()ally , < € (1P, D, 7wyl + 7 [uff ., + [l

2
1,7)>

for any u € C§°({xn, > 0} NW).
If we assume moreover that ¢ satisfies (4.4) then we have

2 2 T 2 2 2 — 2
T\op<x0>u|1,0,7sc(nP(x,D,T,u)un + -7 lop@uuly + 7lop(o)ul® + [l + 7 |u|>

for any u € C§°({z,, >0} NW) and b;, j = 1,2, defined in (3.6).
4.3.1. Preliminaries

Let u € C§°(K), i = op(x°)u and P the differential operator with principal symbol given by
p(x, &, 7, 1) = diag(p1, p2)
with p; and ps defined in (3.7). Then we have the following system
Pu=f in {z, >0}NW,
Bu=¢é=(é1,62) on{z,=0}NW,

where f = op(x°)f + [P,op(x")] u. Since [P,op(x")] € (TO°)D,, +TO", we have

2
1,7)>

1712 < € (1P, D7 pyul + fu
B defined in (3.6) and é; = op(x°)e; satisfying
s < Clealt
and

_ . . 0
éy = [(Dl-n +irgg), Op(xo)] Uo |z, =0 + KDwn + ”aTw) ’OP(XO)] 00z, =0 + op(x°)es.

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)
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Since [D., ,op(x")] € TO°, we have
&2f® < C (Ju]* + |e2|?). (4.35)
Let us reduce the problem (4.32) to a first order system. Put v =' ((D’, 1)@, D, @). Then we obtain the
following system
Dy, v—op(P)v=F in{x, >0}NW,
(4.36)
op(B)v = (ﬁAél, é2) on{x, =0}NW,
where P is a 4 X 4 matrix, with principal symbol defined by

Py — 0 Aldy Iy = gii 0 Iy = q2,1 0
Aty =il )7 0 q2 )’ 0 quo—p? )’

B is a tangential symbol of order 0, with principal symbol given by

1 0 —i 0 0 1
Bt im=(nten i 1 1)t
1
(ro a tangential symbol of order 0), F =40, f) and A = (¢/,7) = (|§’|2 + 72) ’

For a fixed (x0, &), 70, ft0) in suppxo, the generalized eigenvalues of the matrix P are the zeroes in &, of p;
and py i.e. 2 = —17'2951 +io and 2z = —172“’2 + icp with £Im(2F) > 0 and 2] € R.

Let s(x, &, 7,1) = (57,585,571 ,53) a basis of the generalized elgenspace of P(xo,&), 10, to) corresponding to
eigenvalues with positive or negative imaginary parts. The vectors s (:c & mou), j = 1,2 are C* functions
on a conic neighborhood of (zg, &), 70, po) of degree zero in (&', 7, u). We denote op(s)(x, Dy, T, it) the pseudo-
differential operator associated to the principal symbol

s(z, & mp) = (s7(z,&, 7, pm), 85 (x, & 7 p0), T (2,6 7 p), s (2, €, 7, ).

Let Y(x,&',7,1) € TS? equal to 1 in a conic neighborhood of (zg, &), 70, t0) and in a neighborhood of supp(x°)
and satisfies that in the support of ¥, s is elliptic. Then there exists n € 7S, such that

op(s)op(n) = op(X) + Rm,

with R, € TO~™"1, for m large.
Let V = op(n)v. Then we have the following system

D, V=GV +AV + F, in {x, >0}NW,

(4.37)
op(B1)V = (%Aél, €2) +v1 on{x, =0}NW,
where G = op(n)op(P)op(s), A = [Dy,,op(n)]op(s), Fi = op(n)F + op(n)op(P)(op(l = X) — Rum)v +
[Dz,,,0p(n)] (Op(l —X) = Rm)v, Op(Bl) = op(B)op(s) and vy = OP(B)( p(X — 1) + Bm)v.
Using the fact that supp(1 — ¥) Nsupp(x°) = @, Ry € TO™™= 1 for m large and estimate (4.33), we show
181 < 0 (1P D7 pula + ul?,). (4.39)

Using the fact that supp(1 — ) Nsupp(x°) = @, R, € TO™1 for m large and the trace formula (4.19), we
show

ror? < € (772 full o, + lulf,). (4.39)
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Here we recall an argument shown in Taylor [14] given by this lemma:

Lemma 4.3. Let v solves the system

%UZGU+AU

where G = r and A are pseudo-differential operators of order 1 and 0, respectively. We suppose that

the symbols of E and F are two square matrices and have disjoint sets of eigenvalues. Then there exists a
pseudo-differential operator K of order —1 such that w = (I + K)v satisfies

gw:Gw—i—(al )U}+R1’LU+R2’U
dy 2

where o; and R;, j = 1,2 are pseudo-differential operators of order 0 and —oo, respectively.

By this argument, there exists a pseudo-differential operator K (z, D,, T, 1) of order —1 such that the bound-
ary problem (4.37) is reduced to the following

D, w—op(H)w=F in {x, >0}NW,
) (4.40)
op(B)w = (%Aél, €) +v1 +vy on{x, =0}NW,

where w = (I+K)V, F = (I+ K)F,, op(H) is a tangential of order 1 with principal symbol H = diag(H~, H™)
and —Im(H~) > CA, op(B) = op(B1)(I + K') with K’ is such that (I + K')(I + K) = Id+ R!, (R, € O~ 1,
for m large) and vo = op(B1)R.,V.

According to (4.38), we have

- 2 2
1812 < € (1P, D, 7, wulfs + ulf; ). (4.41)

Using the fact that R/, € O~™~1, for m large, the trace formula (4.19) and estimates (4.34), (4.35) and (4.39),
we show

B 2< T 2 2 —2 12 2
Tlop(B)w| <C E|el|1+7—|e2| + 77 uly o+l ) (4.42)

Lemma 4.4. Let R = diag(—plds,0), p > 0. Then there exists C > 0 such that:
(1) Im(RH) = diag (e(z, &', 7, 1), 0), with e(x, &, 7, 1) = —pIm(H ™),
(2) e(z,&,7,pn) > CA in supp (x"),
(3) =R+ B*B > C.Id on {x, =0} N W Nsupp (x°).
Proof. We have
Im(RH) = diag (—pIm(H "), 0) = diag (e(z, &', 7, 1),0), (4.43)
where e(z,&',7,pu) = —pIm(H~) > CA, C' > 0. It remains to prove (3).
We denote the principal symbol B of the boundary operator op(g) by (B*, B*) where BT is the restriction

of B to subspace generated by (sf‘, s;) We begin by proving that B is an isomorphism. Denote
wy =" (1,0) and we =" (0,1).

Then
sf = (wl,zf'A’lwl)

sy = (w2, 25 A ws)
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are eigenvectors associated to z;” and z. We have Bt = (By + %ro)(sf s§) =Bt + ,%rg' To proof that Bt is
an isomorphism it suffices, for 7 large, to proof that BS‘ is an isomorphism. Following (4.3), we obtain

0 —i
+ _
By = ( A Moy A tHas )

Then
det(BSr) = —A_lal.

If we suppose that det(B;) = 0, we obtain a; = 0 and then a2 = 0. Following (4.2), we obtain

o 2
¢ =0 and (Tﬂ> + g1 =0.
oxy,

9p1

2
Combining with the fact that ¢»1 + = 0, we obtain (T e ) = 0, that is impossible because

2
4
(8<P1/61n)2

2 -
following (4.4), we have (Q“’—;) # 0 and following (3.4), we have 7 # 0. We deduce that BT is an isomorphism.

n

ox
Let w = (w™,wt) € C* = C2 @ C2. Then we have Bw = B~w™ + BTw™. Since BT is an isomorphism, then
there exists a constant C' > 0 such that )
Bt = ot
Therefore, we have
~2
wt < C (‘Bw‘ + |w\2).
We deduce
T I ST 2 s P
—(Rw,w) = p|w ‘ > 6|w | +(p71)‘w | f‘Bw‘ .
Then, we obtain the result, if p is large enough. O
4.3.2. Proof of Proposition 4.2
We start by showing (4.30). We have

1Py (2, D, puo® = [|[(RePr)uol|” + || (lm Py )uo|*

+ il((ImPl)uo, (RePl)uo) — ((RePl)uo, (ImPl)uo)

By integration by parts we find

1Pu(a D, ol = | (RePJuoll® + | (T P ol + i [RePy, TP o, o ) + 7Qouo)

where 9
Qo(ug) = ( - 2—851 D, uo, Da-nuo>0 + (op(71)uo, Dq, u0)o
/ 8901
+ (op(r1) Dz, u0, uo)o + (0p(r2)uo, uo)o + 7 5y, Lo U0 )
T, 0
dp1
— =9 s S
r=n q1,1, ) RS g2,1

Then we have
2 2
|Qo(uo)|” < Cluoly g, -
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We obtain the same estimate on vy by the same method. In addition we know that the principal symbol
of the operator [ReP;,ImP;], j = 1,2, is given by %{Rer,Iij}. Proceeding like Lebeau and Robbiano in
paragraph 3 in [10], we obtain (4.30).

It remains to prove (4.31). Following Lemma 4.4, let G(z,,) = d/dz,, (op(R)w, w) 2 mn-1y.

Using D, w — op(H) = F, we obtain

G(zn) = —2Im(op(R)F,w) — 2Im(op(R)op(H)w, w).

The integration in the normal direction gives
(op(R)w, w)g = / Im(op(R)op(H)w, w)dz, + 2/ Im(op(R)F, w)dz,,. (4.44)
0 0
From Lemma 4.4 and the Garding inequality, we obtain, for 7 large enough,
Im(op(R)op(H)w,w) > C ‘wfﬁ ) (4.45)
2
moreover we have for all € > 0
o ~ 2 Cepi=io
‘(op(R)F,w)‘dxn < Or o |[* + =11 (4.46)
0

Applying Lemma 4.4 and the Garding inequality, we obtain, for 7 large enough,
— (op(R)w, w) + lop(B)w|* > C w|*. (4.47)

Combining (4.47), (4.46), (4.45) and (4.44), we get
—12 2 C - 2 ~ 2
Clw™[y +Clul™ < —|IFI* + [op(B)w|* (4.48)

Then B B

7 [w|* < C|IF|)* + lop(Bw|*.
Recalling that w = (I + K)V, V = op(n)v, v =t (D', 1)@, D,, @) and % = op(x")u and using estimates (4.41)
and (4.42), we prove (4.31). O
4.4. Estimate in &

2
Let x~ (x,&,7,1) € TS? equal to 1 in & and such that in the support of Y~ we have go 1 + MW <
—9 < 0. Then we have the following estimate.

Proposition 4.3. There exist constants C > 0, 79 > 0 and pg > 0 such that for any T > 19, |u| > po such that
T > Cy |p|, Co > 0, we have the following estimate

_ 2 2 2 2
mopJull2 . < € (1P, D7l + 7l + 1l (1.49)

for any v € C({zy, >0} NW).

- )
Moreover if we assume 52+ > 0, we have

n

_ 2 _
rlop(xJuol? o, < (1P Dyrwhull® + 772 ful o + [l ) (4.50)

for any u = (ug,vo) € CF({zn, >0} NW).
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Proof. Let @ = op(x ™ )u = (op(x " )ug,op(x )vo) = (o, Vo).
In this region we have not a priori information for the roots of pa(z, &, 7, ). Following the proof of (4.30),
we obtain

- 2 2 2 2
llopwoll?, < € (1P@. Dom ol + 7 ol + o2, ). (151)
In supp(x~) the two roots zli of p1(z,&, 7, ) are in the half-plane Im&,, < 0. Then we can use the Calderon
projector. By the same way that the proof of (4.7) and using the fact that the operators ¢p1 and ¢1,1 vanish in
@, > 0 (because the roots are in Im¢&,, < 0, see (4.21)), the counterpart of (4.18) is then
o = Ejl +awy 1 +wey, form, >0, (4.52)

where wy 1 and wq 1 satisfy (4.16) and (4.20) respectively.
We then obtain (see proof of (4.7))

_ 2
7 o Juolly , < € (1P (@, D7 o + 7ol o, + ol ). (4.53)

Combining (4.51) and (4.53), we obtain (4.49).
It remains to proof (4.50). We take the trace at z,, = 0" of (4.52),

~Yo(@o) = wo,1 = ’)’o(Ef1 +wig +wa),

which, by the counterpart of (4.26), gives
r hoo)? < € (1P (. Dom | + o 2, + 7 ol ). (4.5
From (4.52) we also have
D, ug = Dg,JanEf1 + Dy, w11+ Dy, we 1, forz, >0.

We take the trace at z, = 07 and obtain

7 (tio) = Y0(Da, (Ef | + w11 + ws1)).

Using the trace formula (4.19), we obtain

2

~ 2
@) < O Do (B, +wia +wan)|

SCTfl HE£1+U}171+UJ2,1‘2

7T 7T

and, by the counterpart of (4.10), (4.16) and (4.20), this yields
_ 2 2 2 2 2
o) < € (1P . Dol + ol + 72 ol ). (4.55)

Combining (4.54) and (4.55), we obtain (4.50). O

4.5. End of the proof

We can choose a partition of unity x* + x° + x~ = 1 such that xT, x° and y~ satisfy the properties listed
in Propositions 4.1, 4.2 and 4.3 respectively. We have

lullf - < JlopCcHully , + [lop ()l + op(xull; -
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Combining this inequality and (4.7), (4.30) and (4.49), we obtain, for 7 large, the first estimate (3.22) of
Theorem 3.2, i.e.

2 2 2
rull} . < ¢ (1P, D7, pul + 7 [ul} )

It remains to estimate 7 |u|i07T. We begin by giving an estimate of 7 |u0|?’07T.
We have ) ) )
2 _
luoly ,, < |op(x+)uo|170,7 + |op(x0)u0|170,7 +[op(x )u0‘1,0,7'7

[op(xJualy o, < Jop(x )l .
and ) )
‘OP(XO)UO‘LO,T < |Op(XO)u‘1,O,T.

Combining these inequalities, (4.8), (4.31), (4.50) and the fact that 72 |u|i077 =772 |u0|i0,7 +772 |UO|?,0,T’ we
obtain, for 7 large enough.

T _
a2y, < C (IIP(:C,D,T, P + T lop(b)ul + 7 oplba)u® + 72 ol + |u|if)- (456)

For estimate 7 |v0|io ., we use the transmission conditions given by (3.6). We have
op(b1)u = ug|y,—0 — igvgle,—0 on {x, =0} NW.

Then
T T
oo < C <P uof} + 7 |op<b1>u|%)-

Since, for |u| > po, we have luol? < CT |u0|io’7. Then using (4.56), we obtain
T _
7wy < C <||P(=’E, D7, mul® + 7 lop(b1)ul; + 7 op(b2)ul® + 772 [uol o, + |U||f,7>- (4.57)
We have also

3} 0
op(b2)u = (Dxn + iTaT(pl) 0|z, =0 + (Dl.n + iTaT(pQ) vole,—=0 on {z, =0} NW.

n n

Then
7 1Da, 00l < C (7lop(b2)ul® + 7 |Da ol + 7 ol + 7% uo ).
Using the fact that |u|, , < 77! |ul,, we obtain
2 2 2 2 2
7D, w0l < C (7lop(b2)ul® + 7 |Da o + 7 luol? + 7 [vo]}).
Since we have T |u0|i07T = 7| Dy, uol” + 7 |uo|?. Then using (4.56) and (4.57), we obtain
T 2 2 - 2 2
7|Dy, w0l < C <||P(937D,T, wul® + Lz lop(bn)uly + 7 Jop(ba)ul” + 7 *Jvoly o + ||U||1,T>- (4.58)

Combining (4.57) and (4.58), we have

-
7 lvolt o, < C (HP(%D’T’ wul” + I lop(b1)ul} + 7 [op(bz)ul” + |U|iT)- (4.59)
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Combining (4.56) and (4.59), we obtain
-
rlufta, <€ (1P Dl + T lopouuf + rlop()uf + ., ).
Inserting (4.60) in (3.22) and for 7 large enough, we obtain (3.23).

APPENDIX A: PROOF OF LEMMA 2.1

To prove Lemma 2.1, we need to distinguish two cases.

(1) Inside O
To simplify the expressions, we note [[u/[ 2y = [ul|-
Let x € C§°(O). We have by integration by part

(A = i 1y, xPu) = (=Y, x2V) — (Vu, V(o)) — i | ul

Then
2 2
il < € (A1 [xul| + 19l + [ 97ul lxall).
Then
2 1 2 2 1 2 2
) §C<E||f|| + e ul + 1Vl + < 1Vl + el )

Recalling that |p| > o, we have for e small enough
2 2 2
Il < € (I9ull® + 1£1).

Hence the result inside O.

(2) In the neighborhood of the boundary
Let x = (2/,z,) € R"! x R. Then

00 = {z € R", z, =0}.

Let € > 0 such that 0 < z,, < €. Then we have
u(z' e) —u(a', xz,) = / O, u(x', o)do.

Then

€

2
ju(@’,z0)[* < 2Ju(a’, €)[* + 2 < / |0, )| d”) '

Using the Cauchy Schwartz inequality, we obtain

n

€
e, )2 < 2|u(:c',e)|2+262/ 100, (2!, 20)| A
0

Integrating with respect to x’, we obtain

/ lu(z’, 2, da’ < 2/ lu(z’,e)|” da’ + 262/ (|0xnu(x', ) dxn> dz’.
|z’ |<e |z’ |<e |z’ | <€, |zn|<e
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(4.60)

(4.61)

(4.62)
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Using the trace theorem, we have

[ worar<c| (ju(@)P? + [Vu(@)*)d.
|z’ <e |z/]<2€, |Tn—€|< 5
Now we introduce the following cut-off functions
1 if0<mz, <5,
xi(z) =
0 ifz,>c¢€
and
1 if § <y < 3,
x2(z) =
0 ifw, <3, Ty > 26

Combining (4.62) and (4.63), we obtain for e small enough
IaulP < € (Ieul + [1Vul?).
Since following (4.61), we have
Ixeull® < € (1717 + 1Vul®).
Inserting in (4.64), we obtain
baul® < € (A7 + 7ul®).

Hence the result in the neighborhood of the boundary.

Following (4.61), we can write

1@ =xaul® < ¢ (I + 1 Vul®).

Adding (4.65) and (4.66), we obtain (2.9).

APPENDIX B: PROOF OF LEMMA 3.1

(4.63)

(4.64)

(4.65)

(4.66)

Let x € C§°(R™) such that x = 1 in the support of u. It suffices to show that op(A®)e™ xop(A~*) is bounded
in L?. Recalling that for all u and v € S(R"), we have

Then

f@@@@(%) Flu)s FO)(E), V€ eR™L

Flop(A)e™#xop(A™*)v)(¢',7) = (£, 1) F(eT¥xop(A")v)(¢,7)
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where g(&',7) = F(e™¥x)(¢', 7). Then we have
Flop(A%)e"*x0p (A7) = [ g€ = o/ THE TV ) FW) o 7

Let k(¢'.n') = g(& —n/,7){(&,7)*(n',7)~%. Our goal is to show that [ K(¢&,n')F(v)(n',7)dn is bounded in L.
To do it, we will use Schur’s Lemma. It suffices to prove that there exist M > 0 and N > 0 such that

/ K@ )de <M and / K (€, o) dif < N.

In the sequel, we suppose s > 0 (the case where s < 0 is treated in the same way).
For R > 0, we have

(&) m) = / (€7 e x (@)e W da’

/ (1= A+ 7)™ )x(a)e™ D da’

= / e (1 — A+ 72) B (x(2)e™®))da.

Then there exists C' > 0, such that
(¢, ) (¢ 7)| < Ce . (4.67)
Moreover, we can write

Sl ~\—s
1T e

J i€ = [late oo o ST

Using (4.67), we obtain
&) )
[ niag <ceer [EI e
Since

[ERUn g [ e [ R
|€ 1< LIn’| In'[<el¢’|

(€ —n 1)k (& - 1)k (& =, 7)°"
If |¢'| < L|n'|, we have

<£la7—>5<n/a7—>75 <77/a7'>5<77/a7'>75 C
C
(¢ —n', 1)k = (¢ —n', 1)k = (¢ —n', 1)k

If || <e€|f|, ie. (& —n',7) >6(¢,7), 6 >0, we have

e L' if2R>n—1.

€. C
<§/ - 77/; T>2R B <§/ - 77', T>2Ris

Then there exists M > 0, such that

e L' if2R—s>n—1.

/ K (¢ )] de’ < M.
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By the same way, we show that there exists N > 0, such that
/IK(E’,n’)Idn’ < Ne“.
Using Schur’s Lemma, we have (op(A®)e™yop(A~*)) is bounded in L? and
Hop(As)eT“’XOp(A_S)HE(LQ) < Ce©T.
Applying in op(A®)u, we obtain the result.

APPENDIX C: PROOF OF THEOREM 1.1, FOR p =0

Let U = (up, vo,v1) € D(A) and F = (fo, g0, 91) € H such that F' = AU. Then we have the following system

AUO = fo in Ql,
AUO = g1 in QQ,
v1T = 9o in QQ,
with the following boundary conditions
wlr, = 0,  wolr, =0
uoly = goly,

(Onuo — 6nUO)|’v

0]+.

From Aug = fo in Q4, uglr, = 0 and ug = gol, we have the following estimate

2 2 2
loll3 @y < € (Molli-sqn) + ol 4., )

Then
ol @y < € (Ifoll 3z, + 9ol o) ) (4.68)
Moreover, from Avy = g1 in Q2, vo|r, =0, I's # 0 and 9,v9 = Onugly, we have the following estimate
2 2 2
[voll g (0, < C (||91HL2(92) + ||8nU0|‘H*%(v))' (4.69)

Recalling that Aug = fo and using the trace lemma (Lem. 3.4 in [6]), we obtain

1ol ., < € (Iollzs o) + ol 2y )

Combining with (4.69), we obtain
2 2 2 2
lwolzrs ) < € (9112 + ol gy + 1ol 2ca))-
Combining with (4.68), we get

2 2 2 2
lvollz1 (0, < C (HfO”L?(Ql) + 1190l 71 () + H91||L2(92))~ (4.70)

Recalling that v; = go and combining (4.68) and (4.70), we obtain Theorem 1.1, for p = 0.
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