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COMPLETE ASYMPTOTIC EXPANSIONS FOR EIGENVALUES
OF DIRICHLET LAPLACIAN IN THIN THREE-DIMENSIONAL RODS ∗

Denis Borisov
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Abstract. We consider the Dirichlet Laplacian in a thin curved three-dimensional rod. The rod is
finite. Its cross-section is constant and small, and rotates along the reference curve in an arbitrary
way. We find a two-parametric set of the eigenvalues of such operator and construct their complete
asymptotic expansions. We show that this two-parametric set contains any prescribed number of the
first eigenvalues of the considered operator. We obtain the complete asymptotic expansions for the
eigenfunctions associated with these first eigenvalues.
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Introduction

The asymptotics of the spectra of elliptic operators in thin domains were studied by many authors, see,
for instance [2–10,12,14], and the references therein. There are two types of thin domains usually considered,
namely, thin rods and thin plates. Both types were considered in the book [12]. The eigenvalues for elliptic
operators with the Neumann boundary condition on the lateral surface of the rods and on the bases of the
plates were studied. The asymptotic expansions for the eigenvalues and the eigenfunctions were constructed
and justified. We also mention the survey [9] on thin rods.

A thin two-dimensional domain formed by two different thin rectangles was studied in [14], i.e., the boundary
of the domain was non-smooth. The operator considered was the Laplacian subject to the Neumann condition
on the bases and to Dirichlet one on the lateral boundary. The paper provided the asymptotic expansions for the
eigenvalues remaining bounded as the width of the domain tends to zero, and the asymptotics for the associated
eigenfunctions. These asymptotic expansions were rigorously justified. The Laplacian in a thin two-dimensional
domain was also considered in [8]. The domain had a variable width with the unique point of maximum. The
uniform resolvent convergence was established and two-terms asymptotics for the eigenvalues were obtained, as
well as convergence theorems for the associated eigenfunctions. In [7] these results were extended for an infinite
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thin strip under similar conditions for the width. We also mention the paper [10], where a thin strip (finite or
infinite) was considered with the Neumann condition on the upper boundary and with the Dirichlet condition on
the lower boundary. Here two-terms asymptotics for the first eigenvalues were constructed. The case of a curved
infinite strip was also studied in [5], where the number of the discrete eigenvalues below the essential spectrum
was estimated. The results of [8] were also extended in [2]. Here a two-parametric set of the eigenvalues was
found and their complete asymptotic expansions were constructed.

A finite three-dimensional rod was considered in [3]. The cross section was supposed to be constant and
to rotate along the reference curve in an arbitrary way. Two-terms asymptotics for the first eigenvalues were
constructed and convergence theorems for the associated eigenfunctions were established. Similar results were
obtained in [6] for a tube in a space of arbitrary dimension. An infinite three-dimensional thin tube with a
round cross section was studied in [5]. The number of the discrete eigenvalues below the essential spectrum
was estimated and their complete asymptotic expansions were constructed. We also mention the paper [4],
where a multi-dimensional thin cylinder with distorted ends was considered. The operator studied was the
Laplacian in such domain subject to the Dirichlet condition on the lateral surface and to the Neumann one on
the distorted ends. The attention was paid to the localization effect of some eigenfunctions at the distorted
ends. The asymptotics for these eigenfunctions and the corresponding eigenvalues were constructed.

In this paper we extend the results of [3]. We again consider the Dirichlet Laplacian in a curved thin rod.
The cross section of the rod is a fixed domain, which rotates along the reference curve in an arbitrary way.
In what follows this operator, its eigenvalues and eigenfunctions are referred to as the perturbed ones. We
find a two-parametric set of the perturbed eigenvalues and construct their complete asymptotic expansions.
The eigenvalues are indexed by the first two terms of their asymptotic expansions. Namely, the leading terms
are determined by the eigenvalues of the Dirichlet Laplacian on the cross-section of the rod. Each of the
leading terms determines a certain operator on the reference curve, and its eigenvalues are the next-to-leading
terms of the aforementioned asymptotic expansions for the perturbed eigenvalues. It is convenient to group
the perturbed eigenvalues into a countable set of series, where each series consists of the perturbed eigenvalues
with the same leading term in the asymptotic expansions. We show that the series associated with the smallest
leading term contains any prescribed number of the first eigenvalues of the perturbed operator provided the rod
is thin enough. We prove that these eigenvalues are simple and construct complete asymptotic expansions for
the associated eigenfunctions.

In conclusion to this section, we describe briefly the contents of the paper. The next section contains the
description of the problem and the main results. In the third section we introduce a change of variables
required for the constructing the asymptotic expansions. In the fourth section we select the aforementioned
two-parametric series of the eigenvalues and construct their asymptotic expansions. In the last fifth section we
describe the first eigenvalues of the perturbed operator and give the asymptotic expansions for the associated
eigenfunctions.

1. Formulation of the problem and the main results

Let x = (x1, x2, x3) be Cartesian coordinates in R
3, γ be a finite infinitely differentiable curve in R

3 without
self-intersections. By s and s0 we denote the arc length and the length of γ, s ∈ [0, s0]. We parameterize γ
by its arc length, and r = r(s) is the infinitely differentiable vector describing γ. The tangential vector of γ is
indicated by τ = τ (s). By η = η(s) we denote an infinitely differentiable in s ∈ [0, s0] unit vector defined on γ
being orthogonal to τ (s) for all s ∈ [0, s0]. We let β(s) := τ (s)× η(s), where × is the cross product. It is clear
that β(s) is infinitely differentiable in s ∈ [0, s0], and (τ ,η,β) is an orthonormalized frame on γ. One of the
possible choices of η is

η(s) := cosα(s)n(s) + sinα(s)b(s), (1.1)
where n = n(s) and b = b(s) are the normal and binormal vectors of γ, and α(s) ∈ C∞[0, s0] is an arbitrary
function describing how our frame rotates with respect to the Frenet one. It follows from (1.1) that

β(s) := − sinα(s)n(s) + cosα(s)b(s). (1.2)



EIGENVALUES OF DIRICHLET LAPLACIAN IN THIN RODS 889

Although this formula and (1.1) could be an appropriate definition of η and β, we do not use this way. The
reason is that the Frenet frame does not exists for all smooth curves, since the normal vector can be undefined
at the points, where r′′(s) = 0.

By ω we indicate a bounded domain in R
2 with an infinitely smooth boundary, and the symbol ε stands for

a small positive parameter. We introduce a thin curved rod as

Ωε := {x ∈ R
3 : x = r(s) + εξ2η(s) + εξ3β(s), s ∈ (0, s0), (ξ2, ξ3) ∈ ω}.

Since the curve γ is smooth and not self-intersecting, the rod Ωε has no self-intersections for ε small enough.
Hereinafter the parameter ε is assumed to be chosen exactly in such way.

The main object of our study is the spectrum of the Dirichlet Laplacian in L2(Ωε), and this operator is
denoted by Hε. We introduce this operator rigorously as the Friedrichs extension of −Δx on C∞

0 (Ωε). For
each ε > 0 the operator Hε has a compact resolvent and its spectrum is thus purely discrete. The aim of this
paper is to construct the complete asymptotic expansions for the eigenvalues of Hε. We also observe that the
eigenvalues of Hε can be equivalently regarded as those of the boundary value problem

−Δψ(·, ε) = λ(ε)ψ(·, ε) in Ωε, ψ(·, ε) = 0 on ∂Ωε, ψ(·, ε) ∈W 1
2 (Ωε).

In order to formulate the main results we need to introduce additional notations. Let W 2
2,0(ω) be the subspace

of W 2
2 (ω) consisting of the functions vanishing on ∂ω. In the same way we introduce the space W 2

2,0(0, s0). By S
we indicate the Dirichlet Laplacian in L2(ω) with W 2

2,0(ω) as the domain. This operator is self-adjoint. Let λn

be the eigenvalues of S arranged in the ascending order with the multiplicities taken into account,

λ1 < λ2 � λ3 � . . . � λn � . . .

By φn we denote the associated eigenfunctions orthonormalized in L2(ω). By the smoothness improving theo-
rems [11], Chapter IV, Section 2.3, the functions φn are infinitely differentiable in ω.

It is straightforward to check that

τ ′ = κ1η − κ2β, η′ = −κ1τ + κ3β, β′ = κ2τ − κ3η, (1.3)

where κi = κi(s) ∈ C∞[0, s0] are certain functions characterizing the geometric properties of γ and rotation
of η.

Let an eigenvalue λn be simple. Denote

R := ξ3
∂

∂ξ2
− ξ2

∂

∂ξ3
, Cn(ω) :=

∫
ω

|Rφn|2 dξ. (1.4)

By Ln we indicate the operator

− d2

ds2
+ Cn(ω)κ2

3(s) −
κ2

1(s) + κ2
2(s)

4
in L2(0, s0) with the domain W 2

2,0(0, s0). The operator Ln is self-adjoint. Since it is one-dimensional, by Cauchy

theorem we conclude that all its eigenvalues are simple. We indicate these eigenvalues by λ(n,m)
0 , m = 1, 2, . . .

and arrange them in the ascending order. Let Ψ(n,m)
0 be the associated eigenfunctions orthonormalized in

L2(0, s0).
If one chooses η and β in accordance with (1.1), (1.2), it yields

κ1 = κ cosα, κ2 = κ sinα, κ3 = α′ + κ,
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where κ = κ(s) and κ = κ(s) are the curvature and torsion of γ, and κ,κ ∈ C∞[0, s0]. In this case the
operator Ln becomes

− d2

ds2
+ Cn(ω)(α′(s) + κ(s))2 − κ2(s)

4
·

Our first result gives the complete asymptotic expansions for the eigenvalues of Hε.

Theorem 1.1. Let ε be small enough. Assume λn is a simple eigenvalue of S. Then there exists a two-
parametric set of the eigenvalues λ(n,m)(ε) of Hε with the asymptotics

λ(n,m)(ε) = ε−2λn + λ
(n,m)
0 +

K∑
i=1

εiλ
(n,m)
i + O(εK+1) (1.5)

for any K � 1, where

λ
(n,m)
1 =

(
ψ

(n,m)
0 , Q(n,m)ψ

(n,m)
0

)
L2(Ω)

+ 2
(Rψ(n,m)

0 , κ2
3qRψ(n,m)

0

)
L2(Ω)

,

Q(n,m) :=
(

2λ(n,m)
0 −

(
2Cn(ω) − 1

2

)
κ2

3

)
q +

1
2
∂2q
∂s2

+
1
2
κ′3Rq,

q = q(s, ξ) := κ1(s)ξ2 − κ2(s)ξ3, ψ
(n,m)
0 = ψ

(n,m)
0 (s, ξ) := Ψ(n,m)

0 (s)φn(ξ).

(1.6)

The remaining coefficients in the asymptotic series (1.5) are given by the formulas (3.44) in Lemma 3.1.

We observe that the set of the eigenvalues described in Theorem 1.1 is two-parametric and is indexed by n
and m. Given n, the eigenvalues λ(n,m)(ε) form a series with the same leading term. We stress that Theorem 1.1
does not imply that the eigenvalues λ(n,m)(ε) form the whole set of the eigenvalues of Hε. The first reason is
the assumption on the simplicity of λn. And even without this assumption it is an additional problem to find
out whether the eigenvalues λ(n,m)(ε) are the only possible ones or not.

We make the assumption that λn is simple in order to simplify the calculations in the formal constructing
of the asymptotic expansion, see Section 3. If λn is multiple, it is also possible to construct the asymptotic
expansions, but the formal constructing becomes more complicated and requires some additional careful calcu-
lations. Another interesting issue is the multiplicities of the perturbed eigenvalues corresponding to a multiple
eigenvalue λn. In view of these issues we regard the case of multiple eigenvalue λn as an additional problem,
which we postpone for another article.

One more interesting question is on the asymptotic expansions for the eigenfunctions associated with λ(n,m)(ε).
As usually, to justify such asymptotic expansions, one has to know lower bounds for the distances between the
perturbed eigenvalues. The structure of the eigenvalues λ(n,m)(ε) is such that it is rather difficult to obtain
such bounds once the eigenvalues are bigger than ε−2λ2. If we consider only the first eigenvalues of Hε lying
between ε−2λ1 and ε−2λ2, it is possible to prove the mentioned lower bounds and to obtain the asymptotic
expansions for the associated eigenfunctions. This is our second main result. Before formulating it, we introduce
two additional notations,

Ω := {(s, ξ) : 0 < s < s0, ξ ∈ ω}, Ω(t) := {(s, ξ) : t < s < s0 − t, ξ ∈ ω}, t ∈ (0, s0/2).

Theorem 1.2. Given any M � 1, there exists ε0 = ε0(M) > 0 such that for all ε < ε0 the first M eigen-
values of Hε are λ(1,m)(ε), m = 1, . . . ,M , satisfying (1.5). These eigenvalues are simple and the associated
eigenfunctions have the asymptotics

ψ(1,m)(x(s, εξ), ε) = Ψ(1,m)
0 (s)φ1(ξ) +

K∑
i=1

εiψ
(1,m)
i (s, ξ) + O(εK+1) (1.7)
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for any K � 1, where the coefficients of the series are given by (3.41) in Lemma 3.1. The asymptotics hold true
in W 1

2 (Ω)-norm and Ck(Ω(t))-norms for all k � 0, t ∈ (0, s0/2).

The results of [3] consist of the two-term asymptotics for λ(1,m)(ε) and the leading term in the asymptotics for
the eigenfunctions ψ(1,m). The asymptotics for the eigenfunctions were obtained in L2(Ω). Theorem 1.2 extends
these results in two directions. First, it gives the complete asymptotic expansions. Second, the asymptotics of
the eigenfunctions are given in a stronger norm. One more extension is provided by Theorem 1.1. Namely, in
addition to the first series of the eigenvalues λ(1,m)(ε) described in [3], we provide a countable set of similar
series λ(n,m)(ε), n � 2.

One more difference from [3] is the technique employed. The study in [3] was based on Γ-convergence of
certain functionals. Our approach consists of two main steps. The first step is the formal constructing of the
asymptotic expansions for the eigenvalues and the eigenfunctions by the multiscale method [1]. The second step
is the estimating of error terms by a result from spectral perturbation theory, see [15], Lemmas 12 and 13. We
mention that the same approach based on the formal constructing and the results from the spectral perturbation
theory has already been used successfully in studying thin domains, see for instance [14].

2. Change of variables

In this section we transform the operator Hε to another one which will be more convenient in proving
Theorems 1.1 and 1.2.

Let y = (y2, y3) be Cartesian coordinates in the plane spanned over η and β with the axes along these vectors
so that the variable y2 corresponds to η and the variable y3 does to β. We first pass to the variables (s, y) and
the domain Ωε is mapped onto

Ω̃ε := {(s, y) : 0 < s < s0, ε
−1y ∈ ω}.

At the second step we rescale the variables y passing to variables (s, ξ), where ξ = (ξ2, ξ3) = ε−1y. Then the
domain Ω̃ε is mapped onto Ω.

We define the operator describing the passing to the variables (s, y) as

(Uu)(s, y) = u(x(s, y)), (U−1u)(x) = u(s(x), y(x)).

We let
H̃ε := pUHεU−1, p = p(s, y) := 1 − q(s, y), q(s, y) = κ1(s)y2 − κ2(s)y3.

If λ(ε) and ψ(·, ε) are an eigenvalue and an associated eigenfunction of Hε, it is clear that the function Uψ(·, ε)
solves the equations

UHεU−1 Uψ(·, ε) = λ(ε)Uψε, H̃ε Uψ(·, ε) = λ(ε)pUψ(·, ε). (2.1)

Let us obtain the differential expression for H̃ε. Taking into account (1.3) and differentiating the identity

x = r(s) + y2η(s) + y3β(s)

with respect to s, y2, and y3, we obtain

∂x

∂s
= pτ (s) − κ3y3η(s) + κ3y2β(s),

∂x

∂y2
= η(s),

∂x

∂y3
= β(s).

Thus, the derivatives with respect to x and (s, y) are related by the identity

∇(s,y) = P∇x,
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where P is the matrix with the rows

P :=

⎛⎝pτ − κ3y3η + κ3y2β
η
β

⎞⎠ .

It is easy to check that

detP = p, ∇x = P−1∇(s,y), P−1 =
(
p−1τ κ3y3p−1τ + η − κ3y2p−1τ + β

)
, (2.2)

where the vectors in the definition of P−1 are treated as columns. Since ε−1y ∈ ω, we have y = O(ε) and hence
q(s, y) = O(ε). It yields that the function p(s, y) is strictly positive for the considered values of y.

By (2.2) for each u1, u2 ∈ C∞
0 (Ω̃ε) we have

(H̃εu1, u2)L2(Ω̃ε) = (pUHεU−1u1, u2)L2(Ω̃ε) = (HεU−1u1,U−1u2)L2(Ωε) = (∇xU−1u1,∇xU−1u2)L2(Ωε)

= (P−1∇(s,y)u1, p P−1∇(s,y)u2)L2(Ω̃ε) = −(div(s,y)p (P−1)tP−1∇(s,y)u1, u2)L2(Ω̃ε),

and therefore

H̃ε := −div(s,y) A∇(s,y) (2.3)

A = (Aij)i,j=1,3 =

⎛⎝ p−1 κ3y3p−1 −κ3y2p−1

κ3y3p−1 p + κ2
3y

2
3p−1 −κ2

3y2y3p−1

−κ3y2p−1 −κ2
3y2y3p

−1 p + κ2
3y

2
2p

−1

⎞⎠ .

Now we pass to the variables ξ. It leads us to a final transformed operator

Ĥε = −
(
∂

∂s
A

(ε)
11

∂

∂s
+ ε−1

3∑
i=2

∂

∂ξi
A

(ε)
i1

∂

∂s
+ ε−1

3∑
i=2

∂

∂s
A

(ε)
1i

∂

∂ξi
+ ε−2

3∑
i,j=2

∂

∂ξi
A

(ε)
ij

∂

∂ξj

)
, (2.4)

A(ε) :=
(
A

(ε)
ij

)
i,j=1,3

=

⎛⎝ p−1
ε εκ3ξ3p−1

ε −εκ3ξ2p−1
ε

εκ3ξ3p−1
ε pε + ε2κ2

3ξ
2
3p−1

ε −ε2κ2
3ξ2ξ3p

−1
ε

−εκ3ξ2p−1
ε −ε2κ2

3ξ2ξ3p
−1
ε pε + ε2κ2

3ξ
2
2p−1

ε

⎞⎠ , (2.5)

where

pε(s, ξ) := 1 − εq(s, ξ), (2.6)

and the operator Ĥε is considered in L2(Ω) as the Friedrichs extension from C∞
0 (Ω). The eigenvalue equa-

tion (2.1) casts into the form

Ĥεψ(·, ε) = λ(ε)pεψ(·, ε), (2.7)

where we redenoted (Uψ)(s, εξ, ε) by ψ(s, ξ, ε).

3. Proof of Theorem 1.1

In this section we prove Theorem 1.1. The proof is divided into two parts, the first being devoted to the
formal constructing of the asymptotic expansions. The second part consists in proving the existence of the
mentioned two-parametric set of the eigenvalues and in the justification of the formal asymptotic expansions
for these eigenvalues, i.e., establishing estimates for the error terms.
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We construct the asymptotic expansions for the eigenvalues and the associated eigenfunctions as the series

λ(n,m)(ε) =
∞∑

i=−2

εiλ
(n,m)
i , (3.1)

ψ(n,m)(x, ε) =
∞∑

i=0

εiψ
(n,m)
i (s, ξ). (3.2)

The aim of the formal constructing is to determine the coefficients of these series.
We expand the functions A(ε)

ij in the powers of ε,

A
(ε)
ij =

∞∑
k=0

εkA
(ij)
k , A

(ij)
k = A

(ji)
k , (3.3)

A
(11)
k = qk, k � 0,

A
(12)
0 = 0, A

(12)
k = κ3ξ3qk−1, k � 1,

A
(13)
0 = 0, A

(13)
k = −κ3ξ2qk−1, k � 1,

A
(22)
0 = 1, A

(22)
1 = −q, A

(22)
k = κ2

3ξ
2
3qk−2, k � 2,

A
(23)
0 = A

(23)
1 = 0, A

(23)
k = −κ2

3ξ2ξ3q
k−2, k � 2,

A
(33)
0 = 1, A

(33)
1 = −q, A

(33)
k = κ2

3ξ
2
2qk−2, k � 2.

(3.4)

Hereinafter q = q(s, ξ), if else is not specified.
We substitute (2.4), (3.1), (3.2), (3.3), (3.4) into (2.7) and equate the coefficients at the same powers of ε.

Calculating the coefficient at εi−2, i � 0, we obtain

(−Δξ − λ
(n,m)
−2 )ψ(n,m)

i =
i∑

j=1

λ
(n,m)
j−2 ψ

(n,m)
i−j + F

(n,m)
i in Ω, ψ

(n,m)
i = 0 on ∂Ω, (3.5)

F
(n,m)
i :=

i∑
j=1

(Fj − λ
(n,m)
j−3 q)ψ(n,m)

i−j , (3.6)

F1 := − ∂

∂ξ2
q
∂

∂ξ2
− ∂

∂ξ3
q
∂

∂ξ3
,

Fj :=
∂

∂s
A

(11)
j−2

∂

∂s
+

3∑
l=2

∂

∂ξl
A

(l1)
j−1

∂

∂s
+

3∑
l=2

∂

∂s
A

(1l)
j−1

∂

∂ξl
+

3∑
t,l=2

∂

∂ξt
A

(tl)
j

∂

∂ξl

=
∂

∂s
qj−2 ∂

∂s
+ Rκ3qj−2 ∂

∂s
+

∂

∂s
κ3qj−2R + κ2

3Rqj−2R, j � 2.

(3.7)

Consider problem (3.5) for i = 0. It is clear that its solution can be chosen as

ψ
(n,m)
0 (s, ξ) = Ψ(n,m)

0 (s)φn(ξ), λ
(n,m)
−2 = λn, (3.8)

where the function Ψ(n,m)
0 is unknown and should satisfy the boundary conditions

Ψ(n,m)
0 (0) = Ψ(n,m)

0 (s0) = 0. (3.9)
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The eigenvalue equation for φn

(Δξ + λn)φn = 0 in ω (3.10)
and the definition of F1 and q imply

(F1 − λnq)φn = −
(
κ1

∂

∂ξ2
− κ2

∂

∂ξ3

)
φn. (3.11)

Taking into account this formula and (3.8), we write problem (3.5) for i = 1,

(−Δξ − λn)ψ(n,m)
1 = − Ψ(n,m)

0

(
κ1

∂

∂ξ2
− κ2

∂

∂ξ3

)
φn + λ

(n,m)
−1 Ψ(n,m)

0 φn in Ω,

ψ
(n,m)
1 = 0 on ∂Ω.

(3.12)

Employing equation (3.10), by direct calculations we check that

(−Δξ − λn)qφn = −2
(
κ1

∂

∂ξ2
− κ2

∂

∂ξ3

)
φn. (3.13)

Hence, the problem (3.12) is solvable for
λ

(n,m)
−1 = 0 (3.14)

with a solution given by the identity

ψ
(n,m)
1 (s, ξ) =

1
2
Ψ(n,m)

0 (s)φn(ξ)q(s, ξ) + Ψ(n,m)
1 (s)φn(ξ), (3.15)

where the function Ψ(n,m)
1 is unknown and should satisfy the boundary conditions

Ψ(n,m)
1 (0) = Ψ(n,m)

1 (s0) = 0.

The formula (3.14) for λ(n,m)
−1 and that for λ(n,m)

0 in (3.8) prove the formulas for the first terms in (1.5).
We substitute the formulas (3.6), (3.7), (3.8), (3.11), (3.14) into problem (3.5) for i = 2 to obtain

(−Δξ − λn)ψ(n,m)
2 = λ

(n,m)
0 ψ

(n,m)
0 + F

(n,m)
2 in Ω, ψ

(n,m)
2 = 0 on ∂Ω, (3.16)

F
(n,m)
2 =

1
2
(F1 − λnq)qψ(n,m)

0 + F2ψ
(n,m)
0 − Ψ(n,m)

1

(
κ1

∂

∂ξ2
− κ2

∂

∂ξ3

)
φn. (3.17)

Using equation (3.10), by direct calculations we check

(F1 − λnq)qφn = −3q
(
κ1

∂

∂ξ2
− κ2

∂

∂ξ3

)
φn − (κ2

1 + κ2
2)φn. (3.18)

Hence, we can rewrite the formula for F (n,m)
2 as follows,

F
(n,m)
2 = F̃ψ(n,m)

0 − Ψ(n,m)
1

(
κ1

∂

∂ξ2
− κ2

∂

∂ξ3

)
φn, (3.19)

F̃ψ(n,m)
0 =

1
2
(F1 − λnq)qψ(n,m)

0 + F2ψ
(n,m)
0 , (3.20)

F̃ : = −3q
2

(
κ1

∂

∂ξ2
− κ2

∂

∂ξ3

)
− κ2

1 + κ2
2

2
+

∂2

∂s2
+
(
κ3

∂

∂s
+

∂

∂s
κ3

)
R + κ2

3R2. (3.21)



EIGENVALUES OF DIRICHLET LAPLACIAN IN THIN RODS 895

In (3.16) the Laplace operator is taken only with respect to ξ, and this problem involves s as a parameter. So,
we can consider (3.16) as a problem for the Dirichlet Laplacian S in ω with a dependence on s. Since λn is
a simple eigenvalue of S, the solvability condition of (3.16) is the orthogonality of the right hand side in the
equation to φn in L2(ω),

λ
(n,m)
0 Ψ(n,m)

0 +
(
F

(n,m)
2 , φn

)
L2(ω)

= 0, s ∈ (0, s0), (3.22)

where we have taken into account the normalization of φn and the formula (3.8). Let us evaluate the second
term in the left hand side of (3.22).

Integrating by parts, we obtain

∫
ω

φnq
(
κ1

∂

∂ξ2
− κ2

∂

∂ξ3

)
φn dξ =

1
2

∫
ω

q
(
κ1

∂

∂ξ2
− κ2

∂

∂ξ3

)
φ2

n dξ

= −1
2

∫
ω

φ2
n

(
κ1

∂

∂ξ2
− κ2

∂

∂ξ3

)
q dξ = −κ

2
1 + κ2

2

2
,

∫
ω

φnRφn dξ =
1
2

∫
ω

Rφ2
n dξ = 0,

∫
ω

φnR2φn dξ = −
∫
ω

|Rφn|2 dξ = −Cn(ω),

∫
ω

φn

(
κ1

∂

∂ξ2
− κ2

∂

∂ξ3

)
φn dξ =

1
2

∫
ω

(
κ1

∂

∂ξ2
− κ2

∂

∂ξ3

)
φ2

n dξ = 0. (3.23)

We substitute the identities obtained, (3.8), (3.19), (3.21) into (3.22) and arrive at the equation

∂2Ψ(n,m)
0

∂s2
+
(
κ2

1 + κ2
2

4
− κ2

3Cn(ω)
)

Ψ(n,m)
0 + λ

(n,m)
0 Ψ(n,m)

0 = 0, s ∈ (0, s0).

Together with the boundary condition (3.9) it can be rewritten as

LnΨ(n,m)
0 = λ

(n,m)
0 Ψ(n,m)

0 . (3.24)

This equation is in fact the solvability condition of (3.16), and we satisfy this condition by choosing appropriate
λ

(n,m)
0 and Ψ(n,m)

0 . Namely, we choose them to be a (simple) eigenvalue and the associated eigenfunction of Ln.
In what follows the eigenfunctions Ψ(n,m)

0 are assumed to be orthonormalized in L2(0, s0). We also note that
by the smoothness improving theorems Ψ(n,m)

0 ∈ C∞[0, s0].
Let Vn be the orthogonal complement to {φn} in L2(ω). By S⊥

n we denote the restriction of S on Vn∩W 2
2,0(ω).

It is clear that the operator (S⊥
n − λn)−1 is well-defined in and bounded as that from Vn in W 2

2,0(ω).
It follows from (3.23) that (

κ1
∂

∂ξ2
− κ2

∂

∂ξ3

)
φn ∈ Vn. (3.25)

The identity (3.22) is satisfied due to (3.24) and it yields λ(n,m)
0 ψ

(n,m)
0 +F (n,m)

2 ∈ Vn. Hence, by (3.19), (3.25) we
have (F̃+λ(n,m)

0 )ψ(n,m)
0 ∈ Vn. Taking into account this fact, (3.19), and (3.13), we return back to problem (3.16),
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and write its solution as

ψ
(n,m)
2 (s, ξ) = ψ̃

(n,m)
2 (s, ξ) +

1
2
Ψ(n,m)

1 (s)φn(ξ)q(s, ξ) + Ψ(n,m)
2 (s)φn(ξ),

ψ̃
(n,m)
2 : = (S⊥

n − λn)−1(F̃ + λ
(n,m)
0 )ψ(n,m)

0 , (3.26)

where the function Ψ(n,m)
2 is unknown and should satisfy the boundary conditions

Ψ(n,m)
2 (0) = Ψ(n,m)

2 (s0) = 0.

Bearing in mind the belongings φn ∈ C∞(ω), κi ∈ C∞[0, s0], and the identities (3.21), (1.4), it is easy to see
that the function (F̃ +λ(n,m)

0 )ψ(n,m)
0 admits separation of variables and can be represented as a finite sum of the

terms Ψ(s)F (ξ), where Ψ ∈ C∞[0, s0], and F ∈ C∞(ω) ∩ Vn. Thus, the function ψ̃
(n,m)
2 is also a finite sum of

the terms Ψ(s)ψ(ξ), ψ = (S⊥
n − λn)−1F , where by the smoothness improving theorems ψ ∈ C∞(ω). Therefore,

ψ̃
(n,m)
2 ∈ C∞(Ω).
We substitute formulas (3.6), (3.7), (3.8), (3.11), (3.14), (3.15), (3.18), (3.21), (3.26) into problem (3.5) for

i = 3,

(−Δξ − λn)ψ(n,m)
3 = λ

(n,m)
0 ψ

(n,m)
1 + λ

(n,m)
1 ψ

(n,m)
0 + F

(n,m)
3 in Ω, ψ

(n,m)
3 = 0 on ∂Ω, (3.27)

F
(n,m)
3 = F̃

(n,m)
3 + F̃Ψ(n,m)

1 φn − Ψ(n,m)
2

(
κ1

∂

∂ξ2
− κ2

∂

∂ξ3

)
φn,

F̃
(n,m)
3 := (F1 − λnq)ψ̃(n,m)

2 +
1
2
F2qψ

(n,m)
0 + (F3 − λ

(n,m)
0 q)ψ(n,m)

0 .

(3.28)

We again treat this problem as that for S depending on s, and the corresponding solvability condition is

λ
(n,m)
0 (ψ(n,m)

1 , φn)L2(ω) + λ
(n,m)
1 Ψ(n,m)

0 + (F (n,m)
3 , φn)L2(ω) = 0. (3.29)

In the same way how equation (3.24) was derived we obtain

(Ln − λ
(n,m)
0 )Ψ(n,m)

1 = λ
(n,m)
1 Ψ(n,m)

0 + f
(n,m)
3 , (3.30)

f
(n,m)
3 (s) : = (F̃ (n,m)

3 (s, ·), φn)L2(ω) +
1
2
λ

(n,m)
0 Ψ(n,m)

0 (s)qn(s),

qn(s) : = (q(s, ·)φn, φn)L2(ω) = κ1(s)(ξ2φn, φn)L2(ω) − κ2(s)(ξ3φn, φn)L2(ω). (3.31)

Since λ(n,m)
0 is an eigenvalue of Ln, the solvability condition of the last equation is the orthogonality in L2(0, s0)

of its right hand side to the eigenfunctions associated with λ
(n,m)
0 , i.e., it should be orthogonal to Ψ(n,m)

0 . It
gives the formula for λ(n,m)

1 ,

λ
(n,m)
1 = −(f (n,m)

3 ,Ψ(n,m)
0 )L2(0,s0) = −(F̃ (n,m)

3 , ψ
(n,m)
0 )L2(Ω) − 1

2
λ

(n,m)
0 (ψ(n,m)

0 , qψ(n,m)
0 )L2(Ω). (3.32)
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Let us calculate the right hand side of this identity. Integrating by parts and employing (3.11), (3.13), (3.17),
(3.20), we have(

(F1−qλn)ψ̃(n,m)
2 , ψ

(n,m)
0

)
L2(Ω)

=
(
ψ̃

(n,m)
2 , (F1 − qλn)ψ(n,m)

0

)
L2(Ω)

= −1
2
(
ψ̃

(n,m)
2 , (Δξ + λn)qψ(n,m)

0

)
L2(Ω)

= −1
2
(
(Δξ + λn)ψ̃(n,m)

2 , qψ(n,m)
0

)
L2(Ω)

=
1
2
(
(F̃ + λ

(n,m)
0 )ψ(n,m)

0 , qψ(n,m)
0

)
L2(Ω)

=
1
2

(
1
2
(F1 − qλn)qψ(n,m)

0 + (F2 + λ
(n,m)
0 )ψ(n,m)

0 , qψ(n,m)
0

)
L2(Ω)

.

(3.33)

Due to (3.8), (3.18)

(F1 − qλn)qψ(n,m)
0 = −3q

(
κ1

∂

∂ξ2
− κ2

∂

∂ξ3

)
ψ

(n,m)
0 − (κ2

1 + κ2
2)ψ

(n,m)
0 .

We multiply this equation by qψ(n,m)
0 and integrate by parts,

(
(F1 − qλn)qψ(n,m)

0 , qψ(n,m)
0

)
L2(Ω)

= − 3
(

q2

(
κ1

∂

∂ξ2
− κ2

∂

∂ξ3

)
ψ

(n,m)
0 , ψ

(n,m)
0

)
L2(Ω)

− ((κ2
1 + κ2

2)ψ
(n,m)
0 , qψ(n,m)

0

)
L2(Ω)

= − 3
2

(
q2,

(
κ1

∂

∂ξ2
− κ2

∂

∂ξ3

)(
ψ

(n,m)
0

)2)
L2(Ω)

− ((κ2
1 + κ2

2)ψ
(n,m)
0 , qψ(n,m)

0

)
L2(Ω)

= 2
(
(κ2

1 + κ2
2)ψ

(n,m)
0 , qψ(n,m)

0

)
L2(Ω)

.

Substituting the identities obtained into (3.33), we arrive at

(
(F1 − qλn)ψ̃(n,m)

2 , ψ
(n,m)
0

)
L2(Ω)

=
1
2

(
(F2 + κ2

1 + κ2
2 + λ

(n,m)
0 )ψ(n,m)

0 , qψ(n,m)
0

)
L2(Ω)

. (3.34)

It follows from (3.7) that

F3 = qF2 +
∂q
∂s

∂

∂s
+ (Rq)κ3

∂

∂s
+
∂q
∂s
κ3R + κ2

3(Rq)R.

We substitute this identity and (3.34) into (3.32) and integrate by parts,

λ
(n,m)
1 = − 1

2

(
(F2 + κ2

1 + κ2
2)ψ

(n,m)
0 , qψ(n,m)

0

)
L2(Ω)

− 1
2

(
F2qψ

(n,m)
0 , ψ

(n,m)
0

)
L2(Ω)

−
(
qF2ψ

(n,m)
0 , ψ

(n,m)
0

)
L2(Ω)

−
(
∂q
∂s

∂ψ
(n,m)
0

∂s
, ψ

(n,m)
0

)
L2(Ω)

−
(
κ3
∂ψ

(n,m)
0

∂s
Rq, ψ(n,m)

0

)
L2(Ω)

−
(
κ3
∂q
∂s

Rψ(n,m)
0 , ψ

(n,m)
0

)
L2(Ω)

−
(
κ2

3Rψ(n,m)
0 , ψ

(n,m)
0 Rq

)
L2(Ω)

(3.35)
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= − 2
(F2ψ

(n,m)
0 , qψ(n,m)

0

)
L2(Ω)

− 1
2
(
(κ2

1 + κ2
2)ψ

(n,m)
0 , qψ(n,m)

0

)
L2(Ω)

−
(
∂q
∂s

∂ψ
(n,m)
0

∂s
, ψ

(n,m)
0

)
L2(Ω)

−
(
κ3
∂ψ

(n,m)
0

∂s
Rq, ψ(n,m)

0

)
L2(Ω)

−
(
κ3
∂q
∂s

Rψ(n,m)
0 , ψ

(n,m)
0

)
L2(Ω)

−
(
κ2

3Rψ(n,m)
0 , ψ

(n,m)
0 Rq

)
L2(Ω)

. (3.36)

In view of (3.6), (3.24) we have

− 1
2
(
(κ2

1 + κ2
2)ψ

(n,m)
0 , qψ(n,m)

0

)
L2(Ω)

− 2
(F2ψ

(n,m)
0 , qψ(n,m)

0

)
L2(Ω)

= 2
(
(λ(n,m)

0 − Cn(ω)κ2
3)ψ

(n,m)
0 , qψ(n,m)

0

)
L2(Ω)

− 2

(
Rκ3

∂ψ
(n,m)
0

∂s
, qψ(n,m)

0

)
L2(Ω)

− 2
(
∂

∂s
κ3Rψ(n,m)

0 , qψ(n,m)
0

)
L2(Ω)

− 2
(
κ2

3R2ψ
(n,m)
0 , qψ(n,m)

0

)
L2(Ω)

. (3.37)

We integrate by parts employing (3.8),

− 2

(
Rκ3

∂ψ
(n,m)
0

∂s
, qψ(n,m)

0

)
L2(Ω)

− 2
(
∂

∂s
κ3Rψ(n,m)

0 , qψ(n,m)
0

)
L2(Ω)

−
(
κ3
∂ψ

(n,m)
0

∂s
Rq, ψ(n,m)

0

)
L2(Ω)

−
(
κ3
∂q
∂s

Rψ(n,m)
0 , ψ

(n,m)
0

)
L2(Ω)

= 2

(
κ3
∂ψ

(n,m)
0

∂s
,Rqψ(n,m)

0

)
L2(Ω)

+ 2
(
κ3Rψ(n,m)

0 ,
∂

∂s
qψ(n,m)

0

)
L2(Ω)

−
(
κ3
∂ψ

(n,m)
0

∂s
Rq, ψ(n,m)

0

)
L2(Ω)

−
(
κ3
∂q
∂s

Rψ(n,m)
0 , ψ

(n,m)
0

)
L2(Ω)

=

(
κ3
∂ψ

(n,m)
0

∂s
, ψ

(n,m)
0 Rq

)
L2(Ω)

+
(
κ3
∂q
∂s

Rψ(n,m)
0 , ψ

(n,m)
0

)
L2(Ω)

+ 4

(
κ3qRψ(n,m)

0 ,
∂ψ

(n,m)
0

∂s

)
L2(Ω)

=
1
2

(
κ3Rq,

∂

∂s

(
ψ

(n,m)
0

)2)
L2(Ω)

+
1
2

(
κ3
∂q
∂s
,R(ψ(n,m)

0

)2)
L2(Ω)

+
(
κ3qRφ2

n,
∂

∂s

(
Ψ(n,m)

0

)2)
L2(Ω)

= − 1
2

(
∂

∂s
κ3Rq,

(
ψ

(n,m)
0

)2)
L2(Ω)

− 1
2

(
Rκ3

∂q
∂s
,
(
ψ

(n,m)
0

)2)
L2(Ω)

+
(
φ2

n

(
Ψ(n,m)

0

)2
,
∂

∂s
κ3Rq

)
L2(Ω)

=
1
2

(
ψ

(n,m)
0 , ψ

(n,m)
0

∂

∂s
κ3Rq

)
L2(Ω)

− 1
2

(
ψ

(n,m)
0 , ψ

(n,m)
0 κ3R∂q

∂s

)
L2(Ω)

=
1
2

(
ψ

(n,m)
0 , ψ

(n,m)
0 κ′3Rq

)
L2(Ω)

. (3.38)

In the same fashion we obtain

−
(
∂q
∂s

∂ψ
(n,m)
0

∂s
, ψ

(n,m)
0

)
L2(Ω)

=
1
2

(
ψ

(n,m)
0 ,

∂2q
∂s2

ψ
(n,m)
0

)
L2(Ω)

. (3.39)
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Employing the identity R2q = −q, we get

−
(
κ2

3Rψ(n,m)
0 , ψ

(n,m)
0 Rq

)
L2(Ω)

− 2
(
κ2

3R2ψ
(n,m)
0 , qψ(n,m)

0

)
L2(Ω)

= −
(
κ2

3Rψ(n,m)
0 , ψ

(n,m)
0 Rq

)
L2(Ω)

+ 2
(
κ2

3Rψ(n,m)
0 ,Rqψ(n,m)

0

)
L2(Ω)

= 2
(
κ2

3Rψ(n,m)
0 , qRψ(n,m)

0

)
L2(Ω)

+
(
κ2

3Rψ(n,m)
0 , ψ

(n,m)
0 Rq

)
L2(Ω)

= 2
(
κ2

3Rψ(n,m)
0 , qRψ(n,m)

0

)
L2(Ω)

+
1
2
(
κ2

3R(ψ(n,m)
0 )2,Rq

)
L2(Ω)

= 2
(
κ2

3Rψ(n,m)
0 , qRψ(n,m)

0

)
L2(Ω)

− 1
2
(
κ2

3ψ
(n,m)
0 , ψ

(n,m)
0 R2q

)
L2(Ω)

= 2
(
κ2

3Rψ(n,m)
0 , qRψ(n,m)

0

)
L2(Ω)

+
1
2
(κ2

3ψ
(n,m)
0 , qψ(n,m)

0 )L2(Ω).

We substitute the identities obtained and (3.37), (3.38), (3.39) into (3.35) that leads us to formula (1.6)
for λ(n,m)

1 .
Let Vn,m be the orthogonal complement to {Ψ(n,m)

0 } in L2(0, s0), and L⊥
n,m be the restriction of Ln to

Vn,m ∩W 2
2,0(0, s0). The operator (L⊥

n,m − λ
(n,m)
0 )−1 is well-defined and bounded as that from Vn,m into Vn,m ∩

W 2
2,0(0, s0).

The orthogonality condition (3.32) means that the right hand side of (3.30) is orthogonal to Ψ(n,m)
0 . Thus,

λ
(n,m)
1 Ψ(n,m)

0 + f
(n,m)
3 ∈ Vn,m. In view of this fact we can choose a solution to (3.30) as

Ψ(n,m)
1 = (L⊥

n,m − λ
(n,m)
0 )−1(λ(n,m)

1 Ψ(n,m)
0 + f

(n,m)
3 ) + CΨ(n,m)

0 ,

where C is an arbitrary constant. We could choose it zero, but as we will see in what follows the most convenient
way is to choose C by the orthogonality condition

(ψ(n,m)
1 , ψ

(n,m)
0 )L2(Ω) = 0. (3.40)

By (3.15), (3.31) and by the fact that the range of (L⊥
n,m − λ

(n,m)
0 )−1 is orthogonal to {Ψ(n,m)

0 } it yields

C = −1
2
(ψ(n,m)

0 , qψ(n,m)
0 )L2(Ω) = −1

2
(Ψ(n,m)

0 , qnΨ(n,m)
0 )L2(0,s0),

and

Ψ(n,m)
1 = (L⊥

n,m − λ
(n,m)
0 )−1(λ(n,m)

1 Ψ(n,m)
0 + f

(n,m)
3 ) − 1

2
(Ψ(n,m)

0 , qnΨ(n,m)
0 )L2(0,s0)Ψ

(n,m)
0 .

By the smoothness improving theorems Ψ(n,m)
1 ∈ C∞[0, s0].

Equations (3.29), (3.30) being satisfied, the right hand side of the equation in (3.27) is orthogonal to φn, i.e.,

λ
(n,m)
0 ψ

(n,m)
1 + λ

(n,m)
1 ψ

(n,m)
0 + F

(n,m)
3 ∈ Vn.

By (3.25), (3.28) it yields

λ
(n,m)
0 ψ

(n,m)
1 + λ

(n,m)
1 ψ

(n,m)
0 + F̃

(n,m)
3 + F̃Ψ(n,m)

1 φn ∈ Vn.
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In view of this fact we can choose a solution to (3.27) as

ψ
(n,m)
3 (s, ξ) = ψ̃

(n,m)
3 (s, ξ) +

1
2
Ψ(n,m)

2 (s)φn(ξ)q(s, ξ) + Ψ(n,m)
3 (s)φn(ξ),

ψ̃
(n,m)
3 := (S⊥

n − λn)−1
(
λ

(n,m)
0 ψ

(n,m)
1 + λ

(n,m)
1 ψ

(n,m)
0 + F̃

(n,m)
3 + F̃Ψ(n,m)

1 φn

)
,

where the function Ψ(n,m)
3 is unknown and should satisfy the boundary conditions

Ψ(n,m)
3 (0) = Ψ(n,m)

3 (s0) = 0,

and ψ̃(n,m)
3 ∈ C∞(Ω). This smoothness is proved in the same way as for ψ̃(n,m)

2 .
The remaining problems for ψi, i � 4, are solved in the same way as for i = 1, 2, 3. Namely, the solvability

condition of these problems is the orthogonality of the right hand side to φn in L2(ω) for each s ∈ (0, s0). In
its turn, these condition imply the equations for Ψi. The solvability conditions of these equations imply the
formulas for λi. The result of this recurrent procedure is formulated in:

Lemma 3.1. There exist solutions to problems (3.5) given by the identities

ψ
(n,m)
i (s, ξ) = ψ̃

(n,m)
i (s, ξ) +

1
2
Ψ(n,m)

i−1 (s)q(s, ξ)φn(ξ) + Ψ(n,m)
i (s)φn(ξ), i � 0. (3.41)

The functions ψ̃(n,m)
i ∈ C∞(Ω), Ψ(n,m)

i ∈ C∞[0, s0] read as follows,

ψ̃
(n,m)
i (s, ξ) = 0, i � 1,

ψ̃
(n,m)
i (s, ξ) = (S⊥

n − λn)−1

(
F̃

(n,m)
i + F̃Ψ(n,m)

i−2 φn +
i∑

j=2

λ
(n,m)
j−2 ψ

(n,m)
i−j

)
, i � 2,

F̃
(n,m)
i = 0, i � 2,

F̃
(n,m)
i =(F1 − λnq)ψ̃(n,m)

i−1 + F2

(
ψ̃

(n,m)
i−2 +

1
2
Ψ(n,m)

i−3 qφn

)
+

i∑
j=3

(Fj − λ
(n,m)
j−3 q)ψ(n,m)

i−j , i � 3, (3.42)

Ψ(n,m)
i = (L⊥

n,m − λ
(n,m)
0 )−1

⎛⎝f (n,m)
i+2 +

i∑
j=1

λ
(n,m)
j Ψ(n,m)

i−j

⎞⎠
− 1

2
(Ψ(n,m)

i−1 , qnΨ(n,m)
0 )L2(0,s0)Ψ

(n,m)
0 , i � 1,

(3.43)

f
(n,m)
i = 0, i � 2, f

(n,m)
i = (F̃i, ψ

(n,m)
0 )L2(Ω) +

1
2

i−3∑
j=0

λ
(n,m)
j Ψ(n,m)

i−j−3qn, i � 3,

where λ
(n,m)
−2 and λ

(n,m)
−1 are determined by (3.8), (3.14), λ(n,m)

0 is an eigenvalue of Ln with the associated
eigenfunction Ψ(n,m)

0 , and

λ
(n,m)
i = −(F̃ (n,m)

i+2 , ψ
(n,m)
0 )L2(Ω) − 1

2
λ

(n,m)
0

(
Ψ(n,m)

i−1 φn, qψ
(n,m)
0

)
L2(Ω)

, i � 1. (3.44)

The identities
(ψ(n,m)

i , ψ
(n,m)
0 )L2(Ω) = 0, i � 1, (3.45)

hold true.
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Remark 3.2. Formula (3.42) involves the term F2ψ̃
(n,m)
i−2 . It is zero for i � 3, and this is why it is absent

in (3.19), (3.28). At the same time, it is easy to see that it comes from the term (F2 − λ
(n,m)
j−3 )ψ(n,m)

i−2 in (3.6),

when ψ(n,m)
i−2 is taken in accordance with (3.41).

Remark 3.3. The identities (3.45) are analogues of condition (3.40) and they imply the second term in
formulas (3.43) for Ψ(n,m)

i , where we used that

(ψ̃(n,m)
i , ψ

(n,m)
0 )L2(Ω) = 0.

This identity is valid since the range of (Sn − λn)−1 is orthogonal to φn in L2(ω).

Given any N � 1, we denote

λ
(n,m)
ε,N := ε−2λn +

N−2∑
i=0

εiλ
(n,m)
i , ψ

(n,m)
ε,N (s, ξ) :=

N∑
i=0

εiψ
(n,m)
i (s, ξ). (3.46)

The next lemma follows directly from Lemma 3.1.

Lemma 3.4. The function ψ
(n,m)
ε,N ∈ C∞(Ω) and the number λ(n,m)

ε,N satisfy the equation

(Ĥε − λ
(n,m)
ε,N pε)ψ

(n,m)
ε,N = h

(n,m)
ε,N , (3.47)

where the right-hand side obeys the inequality

‖h(n,m)
ε,N ‖Ck(Ω) � C

(n,m)
N,k εN−1, (3.48)

with constants C(n,m)
N,k > 0 independent of ε.

We proceed to the justification of formal asymptotics (3.1), (3.2). We use the standard approach based on
Lemmas 12 and 13 from [15]. More precisely, we use these lemmas in the formulation presented in Lemma 1.1
in [13], Chapter III, Section 1.1. For the convenience of the reader below we give the mentioned lemma.

Lemma 3.5. Let A : H → H be a continuous linear compact self-adjoint operator in a Hilbert space H. Suppose
that there exist a real μ > 0 and a vector u ∈ H, such that ‖u‖H = 1 and

‖Au− μu‖H � α, α = const. > 0.

Then there exists an eigenvalue μi of operator A such that

|μi − μ| � α.

Moreover, for any d > α there exists a vector u such that

‖u− u‖H � 2αd−1, ‖u‖H = 1,

and u is a linear combination of the eigenvectors of the operator A corresponding to the eigenvalues of A from
the segment [μ− d, μ+ d].

Let ε be small enough. Denote ψ̂(n,m)
ε,N := p1/2

ε ψ
(n,m)
ε,N . We remind that the function pε was introduced in (2.6),

while the function q was defined in Theorem 1.1.
We rewrite (3.47) as

p−1/2
ε Ĥεp−1/2

ε ψ̂
(n,m)
ε,N = λ

(n,m)
ε,N ψ̂

(n,m)
ε,N + p−1/2

ε h
(n,m)
ε,N . (3.49)
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Identities (2.3), (2.4), (2.5) imply that the operator Ĥε is self-adjoint and non-negative. The same is obviously
true for p−1/2

ε Ĥεp
−1/2
ε . Let δ > 0 be a positive number. Then the operator Aε := (1 + δp−1/2

ε Ĥεp
−1/2
ε )−1 is

well-defined as an operator in L2(Ω), is bounded and self-adjoint, and satisfies the estimate

‖Aε‖ � 1. (3.50)

As it follows from (2.4), for any f ∈ L2(Ω) the function v = Aεf is a generalized solution to the boundary value
problem

−δp−1/2
ε

3∑
i,j=1

∂

∂ξi
Ã

(ε)
ij

∂

∂ξj
p−1/2

ε v + v = f in Ω, v = 0 on ∂Ω.

ξ1 := s, Ã
(ε)
11 := A

(ε)
11 , Ã

(ε)
i1 := Ã

(ε)
1i := ε−1A

(ε)
i1 , Ã

(ε)
ij := ε−2A

(ε)
ij , i, j = 2, 3.

Hence, operator Aε is also bounded as that from L2(Ω) into W 1
2 (Ω). In view of the compact embedding of

W 1
2 (Ω) in L2(Ω) operator Aε is compact as that in L2(Ω).
We rewrite (3.49) as

(1 + δλ
(n,m)
ε,N )−1ψ̂

(n,m)
ε,N = Aεψ̂

(n,m)
ε,N + δĥ

(n,m)
ε,N , ĥ

(n,m)
ε,N := (1 + δλ

(n,m)
ε,N )−1Aεp−1/2

ε h
(n,m)
ε,N .

In view of definition (3.46) of λ(n,m)
ε,N we can choose small δ = δ(ε,N,m, n) such that

δ|λ(n,m)
ε,N | � 1

2
,

1
2

� 1 + δλ
(n,m)
ε,N � 3

2
· (3.51)

By definition (2.6) of pε and smoothness q ∈ C∞(Ω), for sufficiently small ε we can always assume the estimate

1
2

� |pε| � 3
2
· (3.52)

Hence, by the definition of ψ̂(n,m)
ε,N

‖ψ̂(n,m)
ε,N ‖L2(Ω) � 1

2
‖ψ(n,m)

ε,N ‖L2(Ω). (3.53)

Employing (3.45) and the normalization of φn and Ψ(n,m)
0 , we obtain

‖ψ(n,m)
ε,N ‖2

L2(Ω) = ‖ψ(n,m)
0 ‖2

L2(Ω) + 2
N∑

i=1

εi(ψ(n,m)
i , ψ

(n,m)
0 )L2(Ω) +

∥∥∥ N∑
i=1

εiψ
(n,m)
i

∥∥∥2

L2(Ω)

= ‖ψ(n,m)
0 ‖2

L2(Ω) +
∥∥∥ N∑

i=1

εiψ
(n,m)
i

∥∥∥2

L2(Ω)
� 1.

(3.54)

Remark 3.6. We note that we introduced the orthogonality conditions (3.45) to guarantee the last estimate
for ‖ψ(n,m)

ε,N ‖2
L2(Ω) uniformly in ε, N , n, and m.

The estimates (3.53) and (3.54) yield

‖ψ̂(n,m)
ε ‖L2(Ω) � 1

2
·

Bearing in mind this estimate and choosing if needed δ small enough, by (3.48) with k = 0, (3.50), (3.54) we
get

δ‖ĥ(n,m)
ε,N ‖L2(Ω)

‖ψ̂(n,m)
ε,N ‖L2(Ω)

� Ĉ
(n,m)
N δεN−1 � 1

6
, (3.55)

where Ĉ(n,m)
N are some constants independent of ε.
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We apply Lemma 3.5 with

H = L2(Ω), A = Aε, μ = (1 + δλ
(n,m)
ε,N )−1, u =

ψ̂
(n,m)
ε,N

‖ψ̂(n,m)
ε,N ‖L2(Ω)

, α = Ĉ
(n,m)
N δεN−1, (3.56)

and conclude that there exists an eigenvalue μ(n,m)
ε,N of Aε such that

|μ(n,m)
ε,N − (1 + δλ

(n,m)
ε,N )−1| � Ĉ

(n,m)
N δεN−1. (3.57)

It is clear that λ̃(n,m)
ε,N :=

(
(μ(n,m)

ε,N )−1 − 1
)
δ−1 is an eigenvalue of p−1/2

ε Ĥεp
−1/2
ε . It follows from (3.57), (3.51),

(3.55) that
1

1 + δλ̃
(n,m)
ε,N

� 1

1 + δλ
(n,m)
ε,N

− Ĉ
(n,m)
N εN−1δ � 1

2
, 1 + δλ̃

(n,m)
ε,N � 2.

The last inequality and (3.51), (3.57) imply∣∣(1 + δλ̃
(n,m)
ε,N ) − (1 + δλ

(n,m)
ε,N )

∣∣ � Ĉ
(n,m)
N δεN−1|1 + δλ̃

(n,m)
ε,N | |1 + δλ

(n,m)
ε,N |,

|λ̃(n,m)
ε,N − λ

(n,m)
ε,N | � 3Ĉ(n,m)

N εN−1. (3.58)

By ε(n,m)
N we denote a monotonically decreasing (in N) sequence such that

Ĉ
(n,m)
N ε � Ĉ

(n,m)
N−1 as ε � ε

(n,m)
N .

Letting

λ(n,m)(ε) := λ̃
(n,m)
ε,N for ε ∈ [ε(n,m)

N , ε
(n,m)
N+1 ),

employing (3.58), and taking into account the fact that N is arbitrary, we see that the eigenvalue λ(n,m)(ε) of
p−1/2

ε Ĥεp
−1/2
ε has the asymptotic expansion (1.5). To complete the proof it remains to note that the eigenvalues

of p−1/2
ε Ĥεp

−1/2
ε coincide with those of Hε.

4. Proof of Theorem 1.2

We begin the proof with the result of Theorem 4.4 in [3]. Namely, item (ii) of this theorem says that given
any M > 0, there exists ε0(M) > 0 so that for all ε < ε0 the first M eigenvalues λm(ε), m = 1, . . . ,M , of Hε

taken counting multiplicities satisfy the asymptotics

λm(ε) = ε−2λ1 + λ
(1,m)
0 + o(1), m = 1, . . . ,M. (4.1)

Since the eigenvalues λ(1,m)
0 of L1 are simple, the same is true for the eigenvalues λm(ε).

It follows from (4.1) that there exists a fixed number θ > 0 so that for each m = 1, . . . ,M , and all ε < ε0(M)
the interval

(ε−2λ1 + λ
(1,m)
0 − θ, ε−2λ1 + λ

(1,m)
0 + θ) (4.2)

contains exactly one eigenvalue of Hε which is λm(ε). In accordance with Theorem 1.1 the eigenvalues λ(1,m)(ε)
of Hε satisfy the same asymptotics as λm(ε). Hence, for sufficiently small ε0(M) and all m = 1, . . . ,M each of
the intervals (4.2) contains the eigenvalue λ(1,m)(ε). Therefore, λ(1,m)(ε) = λm(ε), and it proves the statement
of the theorem on the eigenvalues.



904 D. BORISOV AND G. CARDONE

To prove the statement on the eigenfunctions, we adopt the same notations as in the proof of Theorem 1.1.
We again apply Lemma 3.5 with (3.56) and we take d = εN/2. Then there exists a linear combination ψ̃(1,m)

ε,N of
the eigenfunctions associated with the eigenvalues of Aε lying in the segment

[(1 + δλ
(1,m)
ε,N )−1 − εN/2, (1 + δλ

(1,m)
ε,N )−1 + εN/2] (4.3)

such that

‖ψ̃(1,m)
ε,N ‖L2(Ω) = 1,

∥∥∥∥∥ψ̃(1,m)
ε,N − p1/2

ε ψ
(1,m)
ε,N

‖p1/2
ε ψ

(1,m)
ε,N ‖L2(Ω)

∥∥∥∥∥
L2(Ω)

� 2Ĉ(1,m)
n δεN/2−1,

∥∥ψ̃(1,m)
ε,N ‖p1/2

ε ψ
(1,m)
ε,N ‖L2(Ω) − p1/2

ε ψ
(1,m)
ε,N

∥∥
L2(Ω)

� C
(m)
N δεN/2−1, (4.4)

where C
(m)
N are positive constants independent of ε and δ. Here we have also used an obvious fact that

‖pεψ
(1,m)
ε,N ‖L2(Ω) can be estimated uniformly in ε by a constant depending on m and N .

Since M is finite and fixed, and m, p = 1, . . . ,M , by asymptotics (1.5) we conclude that there exists a
constant C independent of ε, m, p = 1, . . . ,M , m �= p, such that

|λ(1,m)(ε) − λ(1,p)(ε)| � C, m, p = 1, . . . ,M, m �= p.

Employing this estimate and choosing δ = ε2, we obtain the estimate∣∣∣∣ 1
1 + δλ(1,m)(ε)

− 1
1 + δλ(1,p)(ε)

∣∣∣∣ =
ε2|λ(1,m)(ε) − λ(1,p)(ε)|

|1 + ε2λ(1,m)(ε)| |1 + ε2λ(1,p)(ε)| � Cε2

for ε small enough, m, p = 1, . . . ,M , m �= p, where C is a positive constant independent of ε, m, and p.
Hence, for N � 5, m = 1, . . . ,M , and ε small enough the intervals (4.3) contain no eigenvalues of Aε except
(1 + ε2λ(1,m)(ε))−1. This eigenvalue is simple, since the corresponding eigenvalue λ(1,m)(ε) is simple. Thus,
the linear combination ψ̃(1,m)

ε,N is an orthonormalized in L2(Ω) eigenfunction associated with (1+ ε2λ(1,m)(ε))−1.
Moreover, it is independent of N .

By Lemma 3.1 we have

‖p1/2
ε ψ

(1,m)
ε,N ‖L2(Ω) =

N∑
j=0

c
(m)
j εj + O(εN+1), c

(m)
j = const.,

for all N � 0, m = 1, . . . ,M . Hence, there exists a function cm = cm(ε) such that

cm(ε) = ‖p1/2
ε ψ

(1,m)
ε,N ‖L2(Ω) + O(εN+1) for all N � 0.

The last equation, the identity δ = ε2, and (4.4) yield

‖ψ̃(1,m)
ε,∗ − p1/2

ε ψ
(1,m)
ε,N ‖L2(Ω) = O(εN/2+1), ψ̃

(1,m)
ε,∗ := cm(ε)ψ̃(1,m)

ε,N .

We use this equation and (3.52) and denote

ψ(1,m)(s, ξ, ε) := p−1/2
ε (s, ξ)ψ̃(1,m)

ε,∗ (s, ξ), Φ(m)
ε,N (s, ξ) := ψ(1,m)(s, ξ, ε) − ψ

(1,m)
ε,N (s, ξ),

that yields
‖Φ(m)

ε,N‖L2(Ω) = ‖p−1/2
ε (ψ̃(1,m)

ε,∗ − p1/2
ε ψ

(1,m)
ε,N )‖L2(Ω) = O(εN/2+1). (4.5)
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It is also clear that the function ψ(1,m)(s, ξ, ε) solves (2.7) with λ(ε) = λ(1,m)(ε). Hence, by (3.47)

ĤεΦ
(m)
ε,N = λ(1,m)(ε)pεΦ

(m)
ε,N + h̃

(m)
ε,N , h̃

(m)
ε,N := (λ(1,m)(ε) − λ

(1,m)
ε,N )pεψ

(1,m)
ε,N − h

(1,m)
ε,N . (4.6)

Due to this equation we can write the integral identity

(ĤεΦ
(m)
ε,N ,Φ

(m)
ε,N )L2(Ω) = λ(1,m)(ε)(pεΦ

(m)
ε,N ,Φ

(m)
ε,N )L2(Ω) + (h̃(m)

ε,N ,Φ
(m)
ε,N )L2(Ω). (4.7)

From (4.5), (3.46), (3.48), (1.5), and the smoothness of ψ(n,m)
i we derive

‖h̃(m)
ε,N‖Ck(Ω) � |λ(1,m)(ε) − λ

(1,m)
ε,N |‖pεψ

(1,m)
ε,N ‖Ck(Ω) + ‖h(1,m)

ε,N ‖Ck(Ω) � CεN−1(‖pεψ
(1,m)
ε,N ‖Ck(Ω) + 1)

� CεN−1(‖ψ(1,m)
ε,N ‖Ck(Ω) + 1) = O(εN−1), N � 5, k � 0. (4.8)

Together with (1.5), (2.4), (2.5), (4.5), (4.7) it gives

‖∇(s,ξ)Φ
(m)
ε,N‖2

L2(Ω) �C(A(ε)∇(s,ξ)Φ
(m)
ε,N ,∇(s,ξ)Φ

(m)
ε,N )L2(Ω)

=C
(
λ(1,m)(ε)(pεΦ

(m)
ε,N ,Φ

(m)
ε,N )L2(Ω) + (h̃(m)

ε,N ,Φ
(m)
ε,N )L2(Ω)

)
= O(εN ), m = 1, . . . ,M. (4.9)

Combining (4.5) and (4.9), we conclude that asymptotics (1.7) hold true in W 1
2 (Ω)-norm.

We proceed to the proof of (1.7) in Ck(Ω(t))-norm. First we note that by the standard smoothness improving
theorems we have ψ(1,m)

ε ∈ C∞(Ω(t)) for all t ∈ (0, s0/2). The rest of the proof follows from (4.5), (4.6), (4.8), (4.9),
the embedding of W k+2

2 (Ω) into Ck(Ω), and from the next lemma applied to Φ(m)
ε,N .

Lemma 4.1. Let uε be a solution to the equation

Ĥεuε = λ(1,m)(ε)pεuε + h, h ∈ C∞(Ω).

Then uε ∈ C∞(Ω(t)) for all t ∈ (0, s0/2), and

‖uε‖W k
2 (Ω(t))

� Ckε
−2(k−1)

(
‖uε‖W 1

2 (Ω) + ‖h‖W k−2
2 (Ω)

)
(4.10)

for all k � 2, t ∈ (0, s0/2), where the constants Ck are independent of ε, h and uε.

Proof. The smoothness of uε follows from that of A(ε)
ij , h, pε, and the smoothness improving theorems. For the

sake of brevity we denote ξ1 := s, ξ := (ξ1, ξ2, ξ3).
Let χ(t)

1 = χ
(t)
1 (ξ1) be an infinitely differentiable cut-off function equaling one as ξ1 ∈ [t, s0 − t] and vanishing

for ξ1 ∈ [0, t/2] ∪ [s0 − t/2, s0]. We fix t ∈ (0, s0/2) and denote

u(t)
ε (ξ) := χ

(t)
1 (ξ1)uε(ξ).
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It is straightforward to check that u(t)
ε solves the equation

Ĥεu
(t)
ε = λ(1,m)(ε)pεu

(t)
ε + hχ

(t)
1 + ε−2G

(t)
1

(
ε, ξ, uε,

∂uε

∂ξi

)
,

G
(t)
1

(
ε, ξ, uε,

∂uε

∂ξi

)
= ε2

3∑
j=1

dχ(t)
1 Ã

(ε)
ij

dξ1
∂u

∂ξj
+ ε2uε

3∑
i=1

∂

∂ξi
Ã

(ε)
ij

dχ(t)
1

dξ1
· (4.11)

We differentiate (4.11) with respect to ξ1,

Ĥε
∂u

(t)
ε

∂ξ1
=λ(1,m)(ε)pε

∂u
(t)
ε

∂ξ1
+ ε−2G

(t)
2

(
ε, ξ, u(t)

ε ,
∂u

(t)
ε

∂ξi
,
∂2u

(t)
ε

∂ξi∂ξj

)

+
∂

∂ξ1

(
hχ

(t)
1 + ε−2G

(t)
1

(
ε, ξ, uε,

∂uε

∂ξi

))
,

(4.12)

G
(t)
2

(
ε, ξ, u(t)

ε ,
∂u

(t)
ε

∂ξi
,
∂2u

(t)
ε

∂ξi∂ξj

)
= ε2

3∑
i,j=1

∂

∂ξi

∂Ã
(ε)
ij

∂ξ1

∂u
(t)
ε

∂ξj
+ ε2λ

(1,m)
1 (ε)

∂pε

∂ξ1
u(t)

ε . (4.13)

Equation (4.12) implies the integral identity(
A(ε)∇∂u

(t)
ε

∂ξ1
,∇∂u

(t)
ε

∂ξ1

)
L2(Ω)

=λ(1,m)(ε)

(
pε
∂u

(t)
ε

∂ξ1
,
∂u

(t)
ε

∂ξ1

)
L2(Ω)

+ ε−2

(
G

(t)
2 ,

∂u
(t)
ε

∂ξ1

)
L2(Ω)

−
(
hχ

(t)
1 + ε−2G

(t)
1 ,

∂2u
(t)
ε

∂ξ21

)
L2(Ω)

, (4.14)

where we have by parts in the last term. We use (4.13) and integrate by parts in the second term in the right
hand side of the last identity,(

G
(t)
2 ,

∂u
(t)
ε

∂ξ1

)
L2(Ω)

= −ε2
3∑

i,j=1

(
∂Ã

(ε)
ij

∂ξ1

∂u
(t)
ε

∂ξj
,
∂2u

(t)
ε

∂ξi∂ξ1

)
L2(Ω)

+ ε2λ(1,m)(ε)

(
∂pε

∂ξ1
u(t)

ε ,
∂u

(t)
ε

∂ξ1

)
L2(Ω)

·

We substitute this identity into (4.14) and proceed as in (4.9) employing Cauchy-Schwartz inequality, (1.5), and
the explicit formulas for G(t)

1 and G(t)
2 ,

∥∥∥∇∂u
(t)
ε

∂ξ1

∥∥∥2

L2(Ω)
� C

(
A(ε)∇∂u

(t)
ε

∂ξ1
,∇∂u

(t)
ε

∂ξ1

)
L2(Ω)

� C

(
ε−2
∥∥∥∂u(t)

ε

∂ξ1

∥∥∥
L2(Ω)

+ ε−2
3∑

i,j=1

∥∥∥∂u(t)
ε

∂ξj

∥∥∥
L2(Ω)

∥∥∥ ∂2u
(t)
ε

∂ξi∂ξ1

∥∥∥
L2(Ω)

+ ε−2‖u(t)
ε ‖L2(Ω)

∥∥∥∂u(t)
ε

∂ξ1

∥∥∥
L2(Ω)

+
(‖h‖L2(Ω) + ε−2‖u‖W 1

2 (Ω)

)∥∥∥∂2u
(t)
ε

∂ξ21

∥∥∥
L2(Ω)

)

� Cε−4
(‖h‖L2(Ω) + ‖u‖W 1

2 (Ω)

)
+

1
2

∥∥∥∇∂u
(t)
ε

∂ξ1

∥∥∥2

L2(Ω)
·

(4.15)
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Here and till the end of the proof by C we indicate non-specific constants independent of ε, uε and h. The
obtained estimate implies ∥∥∥∇∂u

(t)
ε

∂ξ1

∥∥∥
L2(Ω)

� Cε−2
(
‖h‖L2(Ω) + ‖uε‖W 1

2 (Ω)

)
. (4.16)

Let us estimate
∥∥∥∇∂u(t)

ε

∂ξi

∥∥∥
L2(Ω)

, i = 2, 3. We could have tried to differentiate (4.11) with respect to ξi and

proceed as above. However, the function ∂u(t)
ε

∂ξi
does not vanish on (0, s0) × ∂ω and this is the main difficulty.

This is why we have to employ a slightly different trick. We introduce an infinitely differentiable in ω cut-off
function χ2 = χ2(ξ) equaling one in a small neighborhood of ∂ω and vanishing outside a bigger neighborhood.
Writing the equation for u(t)

ε (1 − χ2) similar to (4.11) and proceeding as in (4.12), (4.15), one can show that∥∥∥∥ ∂

∂ξi
u(t)

ε (1 − χ2)
∥∥∥∥

W 1
2 (Ω)

� Cε−2
(‖h‖L2(Ω) + ‖uε‖W 1

2 (Ω)

)
. (4.17)

To estimate the same norm for χ2u
(t)
ε we use the same approach as in the proof of Theorem 4 in [11], Chapter IV,

Section 2.3.
In a small neighborhood of ∂ω we introduce new variables ζ = (ζ1, ζ2, ζ3), where ζ1 = ξ1, ζ2 is the arc length

of ∂ω, and ζ3 is the distance from the point to ∂ω measured in the direction of the inward normal. Then it
follows from (4.11) that the function v

(t)
ε = χ2u

(t)
ε satisfies the boundary value problem

−
3∑

i,j=1

B
(ε)
ij

∂2v
(t)
ε

∂ζi∂ζj
= hχ2χ

(t)
1 + ε−2χ2G

(t)
1 +B

(ε)
0 u(t)

ε +
3∑

i=1

B
(ε)
i

∂u
(t)
ε

∂ζi
, ζ ∈ (0, s0) × (0, ζ(0)

2 ) × (0, ζ(0)
3 ),

(4.18)
where ζ(0)

2 is the length of ∂ω, ζ(0)
3 is a small fixed number. The operator in the left hand side of the last

equation is elliptic uniformly in ζ and ε. The function v
(t)
ε satisfies periodic boundary condition as ζ2 = 0

and ζ2 = ζ
(0)
2 , and vanishes as ζ3 = 0, ζ3 = ζ

(0)
3 , ζ1 = 0, ζ1 = s0. The coefficients B(ε)

ij , B(ε)
i are infinitely

differentiable and satisfy the estimates

‖B(ε)
ij ‖

C1([0,s0]×[0,ζ
(0)
2 ]×[0,ζ

(0)
3 ])

� Cε−2, ‖B(ε)
i ‖

C1([0,s0]×[0,ζ
(0)
2 ]×[0,ζ

(0)
3 ])

� Cε−2.

We differentiate (4.18) with respect to ζ2, and in the same fashion as in (4.12), (4.15), (4.16) we obtain

∥∥∥∇∂v
(t)
ε

∂ζ2

∥∥∥
L2([0,s0]×[0,ζ

(0)
2 ]×[0,ζ

(0)
3 ])

� Cε−2
(
‖h‖L2(Ω) + ‖uε‖W 1

2 (Ω)

)
. (4.19)

Now we express the term ∂2v(t)
ε

∂ζ2
3

from (4.18). Together with (4.16), (4.17), (4.19) it gives the estimate

∥∥∥∂2v
(t)
ε

∂ζ2
3

∥∥∥
L2([0,s0]×[0,ζ

(0)
2 ]×[0,ζ

(0)
3 ])

� Cε−2
(
‖h‖L2(Ω) + ‖uε‖W 1

2 (Ω)

)
.

This estimate and (4.16), (4.17), (4.19) imply (4.10) for k = 2. To prove it for other k’s, it is sufficient to

proceed as above starting with differentiating the aforementioned equations for ∂u(t)
ε

∂ξ1
, ∂

∂ζi
(1−χ2)u

(t)
ε , ∂

∂ζi
χ2u

(t)
ε ,

i = 2, 3. �
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[3] G. Bouchitté, M.L. Mascarenhas and L. Trabucho, On the curvature and torsion effects in one dimensional waveguides. ESAIM:
COCV 13 (2007) 793–808.

[4] G. Cardone, T. Durante and S.A. Nazarov, The localization effect for eigenfunctions of the mixed boundary value problem in
a thin cylinder with distorted ends. SIAM J. Math. Anal. (to appear).

[5] P. Duclos and P. Exner, Curvature-induced bound states in quantum waveguides in two and three dimensions. Rev. Math.
Phys. 7 (1995) 73–102.
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