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EXACT CONTROLLABILITY OF A MULTILAYER RAO-NAKRA PLATE
WITH CLAMPED BOUNDARY CONDITIONS

Scott W. Hansen1 and Oleg Imanuvilov2

Abstract. Exact controllability results for a multilayer plate system are obtained from the method
of Carleman estimates. The multilayer plate system is a natural multilayer generalization of a classical
three-layer “sandwich plate” system due to Rao and Nakra. The multilayer version involves a number of
Lamé systems for plane elasticity coupled with a scalar Kirchhoff plate equation. The plate is assumed
to be either clamped or hinged and controls are assumed to be locally distributed in a neighborhood
of a portion of the boundary. The Carleman estimates developed for the coupled system are based on
some new Carleman estimates for the Kirchhoff plate as well as some known Carleman estimates due
to Imanuvilov and Yamamoto for the Lamé system.

Mathematics Subject Classification. 93B05, 93C20, 74K20.

Received November 7, 2008. Revised February 24, 2010 and May 3, 2010.
Published online November 8, 2010.

1. Introduction

The classical (three-layer) “sandwich plate” (or sandwich beam) is a model for a plate structure (or beam
structure) consisting of two relatively stiff outer layers which “sandwich” a much more compliant central layer.
Some of the better-known sandwich beam models to be found in the engineering literature include the models of
Mead and Markus [19], DiTaranto [2], Rao and Nakra [20]; also see Sun and Lu [23] for history and comparisons
of the models.

In Hansen [3] several multilayer generalizations of the classical sandwich plate models consisting of alternating
“stiff” and “compliant” layers are derived. These models fall into two general types. In the case that all the
kinetic energy (in-plane, transverse and rotational) is accounted for in the stiff layers, a generalization of the
Rao-Nakra model is obtained. In the case that only transverse kinetic energy is accounted for, a simpler model
(see also [4]) is obtained which can be viewed as a generalization of the Mead-Markus model.

In this article we prove exact controllability with locally distributed controls (in a region to be specified,
sufficiently large) for the system (2.12), referred to as the “thin compliant layer Rao-Nakra model with shear
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damping” in [3]. In the special case of only three plate layers the model under consideration is the following:

m∂2
x0
w − αΔx′∂2

x0
w +KΔ2

x′w − h̃divx′ (G2s
2 + G̃2∂x0s

2) = f3
h1ρ1∂

2
x0
v1 − 12h1D̂1L

1v1 −G2s
2 − G̃2∂x0s

2 = {f1
1 , f

1
2 }

h3ρ3∂
2
x0
v3 − 12h3D̂3L

3v3 +G2s
2 + G̃2∂x0s

2 = {f3
1 , f

3
2 }

⎫⎬⎭ in Ω × (0,∞). (1.1)

In the above, and throughout the paper we use x0 to denote the time coordinate, while x′ = {x1, x2} refers to the
spatial coordinates. The variable s2 = {s21, s22} represents the shear in the second layer and is defined in terms
of the transverse displacement w and in-plane displacements v1 = {v1

1 , v
1
2}, v3 = {v3

1 , v
3
2} (of the first and third

layer, respectively) by

s2 =
v3 − v1

h2
+
h1 + 2h2 + h3

2h2
∇x′w; ∇x′w =

(
∂x1w, ∂x2w

)
.

The symbols Li, i = 1, 3 represent the stationary Lamé operators of plane elasticity for the ith layer and other
parameters appearing (m, α, K, hi, Gi, G̃i, D̂i, h̃ = (h1 +2h2 +h3)/2) are various (positive) physical constants
(see Sect. 2).

Various boundary conditions may be specified on Γ = ∂Ω. Here, we consider two types of boundary condi-
tions: clamped and hinged. In the case of clamped boundary conditions, one has

∂�nw = w = 0, v1 = v3 = 0 on Γ × (0,∞), (1.2)

where ∂�n is the derivative operator in the outward normal direction along Γ, �n is the outward unit normal. In
the case of hinged boundary conditions, one has

∂2
�nw = w = 0, v1 = v3 = 0 on Γ × (0,∞) (1.3)

(where operator ∂2
�n denotes the second derivative in �n direction).

We prove the exact controllability of the system (1.1) with clamped (1.2) or hinged boundary conditions (1.3)
using controls f3, f1 = {f1

1 , f
1
2 } and f3 = {f3

1 , f
3
2 } which are supported on a set ω ⊂ Ω that may be arbi-

trarily small in measure, but satisfies certain geometric conditions related to the existence of an appropriate
pseudoconvex function.

Actually, we prove this exact controllability result for the more general multilayer system (2.12)–(2.14).
(See Thms. 3.1 and 3.2.) For simplicity, the model we consider is described for the case of constant coefficients,
however, all our estimates used in this paper allow for smoothly varying (in time and space) coefficients. Precise
statements of the main results are given in Sections 3 and 4.

Concerning previous controllability results for layered beam and plate systems, the moment method was used
in [5,22] to obtain exact controllability results for three-layer Mead-Markus beam and the multilayer Rao-Nakra
beam, respectively. In [21] exact controllability of a three-layer Rao-Nakra beam was proved using the multiplier
method. To our knowledge, the results of this paper are the first exact controllability result for a layered plate
system.

On the other hand, there is an extensive literature on the topic of exact controllability of the classical
(single-layer) plate systems, where classical multipliers are applied. As our system (1.1) resembles the Reissner
plate system, we mention in particular the work of Lagnese [13], Lagnese and Lions [14], where boundary
stabilization and exact boundary controllability results for the Reissner plate are obtained. For the Kirchhoff
plate we mention [12,14,15].

Our method is based upon application of Carleman estimates. The system (1.1) (and also the more general
system (2.12)) consists of a Kirchhoff plate (the first equation in (1.1)) coupled with a number of (dynamic)
Lamé systems for planar elasticity (the second and third equations in (1.1)). As the coupling between the
subsystems is of low enough order as to not present a serious difficulty, the main technical issues we must
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overcome are (i) observability/Carleman estimates for Lamé systems, (ii) observability/Carleman estimates for
the Kirchhoff plate.

While there is an extensive literature on application of Carleman estimates to controllability problems for
scalar-valued partial differential equations (see e.g. [24]), much less is known for systems of partial differential
equations coupled through principal terms, as is the case in Lamé systems. Carleman estimates for the Lamé sys-
tems are obtained with the use of recently derived Carleman estimates due to Imanuvilov and Yamamoto [9–11].
(See Lems. 4.2 and 4.3.)

Up to principal terms, the first equation in (1.1) is a Kirchhoff plate:

m∂2
x0
w − αΔx′∂2

x0
w +KΔ2

x′w = f3 in Ω × (0,∞) (1.4)

where w satisfies the boundary conditions in (1.2) or (1.3). This PDE has double characteristics and this
prevents standard application of Carleman estimates due a loss of one order of the power of the large parameter
(s in our paper). Much of the effort of this paper is directed overcoming this difficulty through a careful analysis
of the factorization of the principal symbols associated with (1.4).

Our Carleman estimates for (1.4) are given in Lemmas 4.5 and 4.8. As a consequence we also obtain
controllability results for a Kirchhoff plate which are stated in Corollary 3.1.

A difficulty of dealing with equation (1.4) might be easily observed from the following fact. The principal
part of equation (1.4) can be obtained from the hyperbolic analog of the (nonlocal) Stokes system

∂2
x0
y −K ′Δy + ∇p = f̃ , div y = 0

by introduction of the stream function w; y = (∂x2w,−∂x1w).
This paper is organized as follows. In Section 2 we describe in detail the multilayer sandwich plate system

and provide some well-posedness results and a-priori estimates. In Section 3 we state the main controllability
results. Section 4 contains the proof of the main results and associated observability estimates. An appendix is
included to provide detailed proof to several technical results.

2. Multilayer sandwich plate model

2.1. Mathematical notations

Throughout the paper we assume the following notations: Ω denotes a bounded domain in the plane with
the boundary Γ = ∂Ω of regularity C3; ∂�n denotes the derivative in the direction of �n, the outward unit normal
to Ω and ∂2

�n denotes the second normal derivative. Likewise ∂ �tan is the derivative in the tangential direction
along Γ.

We use the rectangular coordinates x′ = {x1, x2} to denote points in Ω and x0 denotes the time coordinate;
x = (x0, x

′) generally denotes points in (0,∞) × Ω. In addition, ∇ = (∂x0 , ∂x1 , ∂x2), ∇x′ = (∂x1 , ∂x2), Δx′ =
∂2
x1

+ ∂2
x2
, etc. If A and B are operators then [A,B] = AB−BA stands for the commutator of these operators.

We also denote D = (Dx0 , Dx1 , Dx2); Dxk
= 1

i ∂xk
(i =

√−1, k = 0, 1, 2).

2.2. Model description

The model under consideration is referred to as the “thin compliant layer Rao-Nakra model” in [3]. For the
purpose of defining physical constants and expressions for energy, we give a summary of the derivation of the
equations of motion. See [3] for a detailed derivation.

The multilayer sandwich plate is assumed to consist of N = 2M + 1 layers of alternating “stiff” and
“compliant” plate layers that occupy the three-dimensional region Ω × (0, h) at equilibrium. The layers are
indexed from 1 to N , consecutively, with odd index k ∈ ON = {1, 3, . . . ,N} for stiff layers and even index
k ∈ EN = {2, 4, . . . , 2M} for compliant layers.
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As is typical in plate theories, it is assumed that the transverse displacement is independent of x3, the
transverse independent variable. Thus we may use the scalar w(x0, x

′) to denote the transverse displacement
at the point x′ ∈ Ω. We let vi = {vi1, vi2} i = 1, 2, . . . ,N denote the in-plane displacements along the mid-plane
of the ith layer.

It is assumed in that each layer has a uniform thickness and all the layers are bonded to one another so that
no slip occurs. The Kirchhoff hypothesis applies to the stiff layers (i.e., normal sections remain normal during
deformation) while the compliant layers allow shear. In either case the in-plane displacements are assumed
to vary linearly as a function of the transverse coordinate, with no extension or contraction in the transverse
direction. It follows that any displacement is completely determined by specification of the state variables w
and vi, i ∈ ON .

If θ and ξ are r× k matrix-valued functions defined on Ω̄, by θ(x′) · ξ(x′) we mean the scalar product in R
rk.

We also denote
(θ, ξ)L2(Ω) =

∫
Ω

θ · ξ dx′, (θ, ξ)L2(Γ) =
∫

Γ

θ · ξ dΓ.

Let σ(i)
jk , ε(i)jk denote the stress and strain tensors for the ith layer. It is assumed that each layer is transversely

isotropic, with the axis of isotropy normal to the surfaces. Let Ei > 0, νi (0 < νi < 1/2), Gi > 0 denote the
Young’s modulus, Poisson ratio and transverse shear modulus for the ith layer. One can derive the two-
dimensional stress-strain relations as in e.g., Lagnese and Lions [14], assuming σ(i)

33 to be negligible. Then one
obtains for i = 1, 2, . . . ,N :

σ
(i)
11 =

Ei
1 − ν2

i

(ε(i)11 + νiε
(i)
22 ), σ

(i)
22 =

Ei
1 − ν2

i

(ε(i)22 + νiε
(i)
11 ), σ

(i)
12 =

Ei
1 + νi

ε
(i)
12 . (2.1)

As Kirchhoff assumptions apply to odd layers, for i ∈ ON we have ε(i)12 = ε
(i)
13 = 0. Viscous damping due to

shear is included in the compliant layers:

σ
(i)
k3 = 2Giε

(i)
k3 +

d
dx0

2G̃iε
(i)
k3 , k = 1, 2; i ∈ EN , (2.2)

where G̃i is the modulus of transverse shear viscosity.
Define the form �ν (0 < ν < 1/2) for functions θ(x′) = {θ1(x′), θ2(x′)} by

�ν(θ; θ̂) =
(
∂x1θ1, ∂x1 θ̂1

)
L2(Ω)

+
(
∂x2θ2, ∂x2 θ̂2

)
L2(Ω)

+
(
ν∂x2θ2, ∂x1 θ̂1

)
L2(Ω)

+
(
ν∂x1θ1, ∂x2 θ̂2

)
L2(Ω)

+
((

1−ν
2

)
(∂x2θ1 + ∂x1θ2) , (∂x2 θ̂1 + ∂x1 θ̂2)

)
L2(Ω)

.
(2.3)

Using the previously described displacement assumptions (more precisely (2.1)–(2.4) of [3]), small strain
assumptions for displacements ((2.6) of [3]) stress-strain relations (2.1), (2.2), and the Rao-Nakra modeling
assumption that the in-plane inertia and bending stiffnesses of the even layers are small (negligible) in comparison
to those of the surrounding odd layers ((3.9) of [3]), one obtains the following expressions for the resulting kinetic
energy EKi and potential energy EPi for the ith layer:

(EK)i =
{ 1

2

∫
Ω
{ρihi|∂x0w|2 + αi|∇x′∂x0w|2 + ρihi|∂x0(vi)|2} dx′ i ∈ ON

1
2

∫
Ω
ρihi|∂x0w|2 dx′ i ∈ EN

(EP )i =
{

1
2

∫
Ω{�νi(h3

i D̂i∇x′w;∇x′w) + 12�νi(hiD̂iv
i; vi)} dx′ i ∈ ON

1
2

∫
ΩGihi|si|2 dx′ i ∈ EN .

In the above, D̂i = Ei/12(1 − ν2
i ), αi = ρih

3
i /12 where hi > 0 the thickness (assumed constant), ρi > 0 the

volume density, all for the ith layer. For simplicity we assume the layers are homogeneous, hence D̂i, Ei, νi are
assumed constant in each layer. (The shear coefficients Gi and G̃i and densities ρi can vary spatially.)
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The variable si is the shear of the ith layer which is a linear combination of the state variables {vO, w},
defined in (2.4) below.

Define the following matrices:

hO = diag (h1, h3, . . . , hN ), hE = diag (h2, h4, . . . , hN−1),
DO = diag (D̂1, D̂3, . . . , D̂N ), pO = diag (ρ1, ρ3, . . . , ρN ),
GE = diag (G2, G4, . . . , GN−1), G̃E = diag (G̃2, G̃4, . . . , G̃N−1).

Also define �1E ∈ R
M and �1O ∈ R

M+1 as the column vectors consisting entirely of 1’s.
Let vO denote the (M + 1) × 2 matrix with rows vi, i ∈ ON . Likewise, let sO and sE denote the matrices

with rows si, i odd and even, respectively. Since the Kirchhoff hypothesis applies to the odd layers, sO = 0.
Using the displacement assumptions it is possible to solve for sE in terms of vO, ∇x′w:

hEsE = BvO + hE �N∇x′w; �N = h−1
E AhO�1O +�1E , (2.4)

where A = (aij), B = (bij) are the M× (M + 1) matrices defined by

aij =
{

1/2 if j = i or j = i+ 1
0 otherwise bij =

{
(−1)i+j+1 if j = i or j = i+ 1
0 otherwise.

Also define

�O(vO, v̂O) =
∑
i∈ON

�νi(vi; v̂i).

Collecting the energies one finds that the total potential and kinetic energy may be expressed as

EK(x0) = c(∂x0vO, ∂x0w; ∂x0vO, ∂x0w)/2 EP (x0) = a(vO, w; vO, w)/2,

where c(· ; ·) and a(· ; ·) denote the bilinear forms

c(vO, w; v̂O, ŵ) = (mw, ŵ)L2(Ω) + ((pOh3
O/12)�1O∇x′w,�1O∇x′ŵ)L2(Ω) + (hOpOvO, v̂O)L2(Ω)

= (mw, ŵ)L2(Ω) + (α∇x′w,∇x′ŵ)L2(Ω) + (hOpOvO, v̂O)L2(Ω),

a(vO, w; v̂O , ŵ) = �O(h3
ODO�1O∇x′w;�1O∇x′ŵ) + 12�O(hODOvO; v̂O) + (GEhEsE , ŝE)L2(Ω)

= �ν̄(K∇x′w;∇x′ŵ) + 12�O(hODOvO; v̂O) + (GEhEsE , ŝE)L2(Ω),

where sE and ŝE satisfy (2.4), and

m =
N∑
i=1

hiρi, α =
1
12

∑
i∈ON

ρih
3
i , K =

∑
i∈ON

D̂ih
3
i , ν̄ =

1
K

∑
i∈ON

Dih
3
i νi. (2.5)

Let us assume the plate is clamped on a portion Γ0 of the boundary Γ and simply-supported on the com-
plementary portion Γ1. We also consider the possibility of transverse and in-plane forces distributed on a
subdomain ω of Ω.

The conservative equations of motion are easily obtained from the energy using Hamilton’s principle. The
equations of motion with damping (2.2) can then be included through the correspondence:

GE → GE := GE + G̃E
∂

∂x0
·
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One obtains the following variational differential equation:

(m∂2
x0
w, ŵ)L2(Ω) + (α∇x′∂2

x0
w,∇x′ŵ)L2(Ω) + (hOpO∂2

x0
vO, v̂O)L2(Ω) + �ν̄(K∇x′w,∇x′ŵ)

+ 12�O(hODOvO, v̂O) + (hEGEsE ,h−1
E Bv̂O +N∇x′ŵ)L2(Ω) = W ({v̂O, ŵ}) =

∫
ω

(ŵf3 + v̂O · fO) dx′.

(2.6)

In the above, f3 is the (scalar) transverse applied force in ω and fO is the net in-plane force acting on the odd
layers in ω. (fO has rows f i = {f i1, f i2}, i = 1, 3, 5, . . . , 2M + 1.) See [3] for a detailed description of the forces.
The test functions ŵ, v̂O are assumed to be compactly supported with respect to time (x0), have dimensions
matching w and vO respectively, and satisfy the satisfy the clamped boundary conditions on Γ0 (i.e., v̂O, ŵ and
its outward normal derivative ∂�nŵ vanish on Γ0) and on Γ1, ŵ and v̂O vanish.

2.3. Existence, uniqueness of solutions

Define the spaces

H1
Γ0

(Ω) = {w ∈ H1(Ω) : w = 0 on Γ0}
H2

Γ0
(Ω) = {w ∈ H1

0 (Ω) : ∂xiw ∈ H1
Γ0

(Ω), i = 1, 2}
L2(Ω) = {y = {y1, y2} : yi ∈ L2(Ω), i = 1, 2}
H1(Ω) = {y ∈ L2(Ω) : ∂xiy ∈ L2(Ω), i = 1, 2}
H1

0(Ω) = {y ∈ H1(Ω) : y = 0 on Γ}
L2
O(Ω) = {vO = (vij), i = 1, 3, 5, . . .N , j = 1, 2 : vij ∈ L2(Ω)}

H1
O(Ω) = {vO ∈ L2

O(Ω) : vij ∈ H1(Ω)}
H1
O,0(Ω) = {vO ∈ H1

O(Ω) : vO = 0 on Γ}.

When Γ = Γ0, Hk
Γ0

(Ω) = Hk
0 (Ω), k = 1, 2. In the case Ω is replaced with another set, appropriate adjustments

to the above definitions will be assumed.
The energy space is V ×H, where

V = H1
O,0(Ω) ×H2

Γ0
(Ω), H = L2

O(Ω) ×H1
0 (Ω).

Define
b(vO, w; v̂O, ŵ) = (G̃hEsE , ŝE)L2(Ω),

where sE is defined in terms of vO and w by (2.4) and ŝE is defined in terms of v̂O and ŵ by the same equation.
The variational formulation of the initial boundary value problem corresponding to (2.6) with clamped

boundary conditions on Γ0 and simply-supported boundary conditions on Γ1 is the following:
Find y = {vO, w} such that

y ∈ C([0, T ],V) ∩ C1([0, T ],H) (2.7)
c(∂2

x0
y; ŷ) + b(∂x0y; ŷ) + a(y; ŷ) = W(ŷ) ∀ŷ = {v̂O, ŵ} ∈ V (2.8)
(in the sense of distributions on (0, T ))

y(0, ·) = y0 given in V , ∂x0y(0, ·) = y1 given in H. (2.9)

For simplicity, we assume all coefficients appearing in (2.8) are time-independent, positive and continuous on Ω̄,
with thicknesses hi, stiffnesses D̂i and Poisson ratios νi constant in each layer. The forces f3, fO in the definition
of W are assumed to be in the class L2(Q) and L2(0, T ; (H1(Ω))∗), respectively, where (H1(Ω))∗ denotes the
dual space to H1(Ω).

We also assume ∂Ω = Γ0 ∪ Γ1, where Γ0 ∩ Γ1 = ∅.
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Using [3], standard variational theory (e.g., [1]) and regularity results of Lasiecka and Triggiani for the
Kirchhoff plate [16]), one can prove the following.

Proposition 2.1. Suppose that y0 ∈ V, y1 ∈ H, f3 ∈ L2(0, T ; (H1(Ω))∗), fO ∈ L2(0, T ;L2
O(Ω)). There exists

a unique solution to (2.7)–(2.9). Furthermore, there exists C = C(T ) > 0 such that for each x0 ∈ [0, T ]

‖{y(x0, ·), ∂x0y(x0, ·)}‖V×H ≤ C{‖y0‖V + ‖y1‖H + ‖f3‖L2(0,T ;(H1(Ω))∗) + ‖fO‖L2(0,T ;L2
O(Ω))}.

2.4. Boundary value problem

Define the Lamé operator with parameter ν by Lν(D)φ = {Lν1(D)φ, Lν2(D)φ} by

Lν1(D)φ = ∂x1 [∂x1φ1 + ν∂x2φ2] + ∂x2 [(
1−ν

2 )(∂x2φ1 + ∂x1φ2)] = 1−ν
2 Δx′φ1 + 1+ν

2 ∂x1(divx′ φ),
Lν2(D)φ = ∂x2 [∂x2φ2 + ν∂x1φ1] + ∂x1 [(

1−ν
2 )(∂x1φ2 + ∂x2φ1)] = 1−ν

2 Δx′φ2 + 1+ν
2 ∂x2(divx′ φ).

(2.10)

Also define the boundary operators Bν(D)φ = {Bν1 (D)(φ1, φ2),Bν2 (D)(φ1, φ2)} by

Bν1 (D)(φ1, φ2) =
[
(∂x1φ1n1 + ν∂x2φ2n1) +

(
1−ν
2

)
(∂x2φ1 + ∂x1φ2)n2

]
,

Bν2 (D)(φ1, φ2) =
[
(∂x2φ2n2 + ν∂x1φ1n2) +

(
1−ν
2

)
(∂x1φ2 + ∂x2φ1)n1

]
,

where �n = (n1, n2) is the outward unit normal vector to Γ.
The following Green’s formula is valid for all sufficiently smooth φ̂, φ:

�ν(φ, φ̂) = (Bν(D)φ, φ̂)L2(Γ) − (Lν(D)φ, φ̂)L2(Ω). (2.11)

For the function ξ = (ξij) (i = 1, 3, 5, . . . ,N , j = 1, 2) define the matrices LO(D)ξ and BO(x,D)ξ by

(LO(D)ξ)ij = (Lνi

j (D)ξi), (BO(D)ξ)ij = (Bνi

j (D)ξi), i = 1, 3, 5 . . . ,N , j = 1, 2.

Assume that ŵ is a sufficiently smooth function that vanishes along with its gradient on Γ0. The equations
of motion can be found using the Green’s formula (2.11) and integrations by parts of (2.6). One obtains the
following:

m∂2
x0
w − αΔx′∂2

x0
w +KΔ2

x′w − divx′ �NThEGEsE = f3
hOpO∂2

x0
vO − 12hODOLO(D)vO +BTGEsE = fO

}
on Ω × (0,∞), (2.12)

where sE = h−1
E BvO +N∇x′w, GEsE = GEsE + G̃E∂x0sE

∂2
�nw = 0

}
on Γ1 × (0,∞), (2.13)

∂�nw = 0
}

on Γ0 × (0,∞), (2.14)
w = 0, vO = 0} on Γ × (0,∞). (2.15)

Appropriate initial conditions compatible with finite energy solutions are of the form

{vO(0, ·), w(0, ·)} = {v0
O, w

0} given in V , {∂x0vO(0, ·), ∂x0w(0, ·)} = {v1
O, w

1} given in H. (2.16)

Since we will need to refer to the literature on two-dimensional Lamé systems, it will be convenient to
express the operators Lν and boundary operators Bν in terms of effective 2-dimensional Lamé coefficients
λ(E, ν), μ(E, ν). The three-dimensional Young’s modulus E and Poisson’s ratio ν are related to the effective
two-dimensional Young’s modulus Ẽ and Poisson’s ratio ν̃ by

E =
Ẽ

1 − ν̃2
, ν =

ν̃

1 − ν̃
, (2.17)
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and these are related to the effective 2-dimensional Lamé parameters λ, μ by

Ẽ =
μ(2μ+ 3λ)
λ+ μ

, ν̃ =
λ

2(λ+ μ)
· (2.18)

Since E > 0 and 0 < ν < 1/2, it follows from (2.17) that 0 < ν̃ < 1/3 and Ẽ > 0.
Henceforth we let λi = λ(Ei, νi), μi = μ(Ei, νi) denote the effective (2-dimensional) Lamé coefficients for the

ith layer. Using (2.17), (2.18), one finds

12DiL
νi(D)φ =

Ei
1 − ν2

i

Lνi(D)φ = (λi + 2μi)Lνi(D)φ = μiΔx′φ+ (λi + μi)∇x′divx′ φ. (2.19)

In terms of two-dimensional Lamé parameters, the boundary operator Bν(D) can also be written as

(λ+ 2μ)Bν(D)φ = Bλ,μ(D)φ = (n1σ11 + n2σ21, n1σ12 + n2σ22), (2.20)

where �n = (n1, n2) is the unit normal vector on Γ and

σjk = λδjkdivx′ φ+ μ
(
∂xk

φj + ∂xjφk
)
; (δij = 1 if i = j and 0 otherwise).

Remark 2.1. The system (2.12) in the case M = 1 becomes the system (1.1) in the introduction. In this case
the various matrix quantities involved are

A =
(

1
2

1
2

)
, B =

( −1 1
)
, hO = diag (h1, h3), hE = h2,

�1O =
(

1
1

)
, �1E = 1, �N = h−1

E AhO�1O +�1E =
h1 + 2h2 + h3

2h2
,

DO = diag(D̂1, D̂3), pO = diag (ρ1, ρ3), GE = G2, G̃E = G̃2,

m = ρ1h1 + ρ2h2 + ρ3h3, α = (ρ1h
3
1 + ρ3h

3
3)/12, K = D̂1h

3
1 + D̂3h

3
3, GEhE = G2h2.

The state variables are w and vO, where vO =
(
v1

v3

)
=
(
v1
1 v1

3

v3
1 v3

2

)
. The operator LO is defined by

LO(D)vO =
(
Lν1(D)v1

Lν3(D)v3

)
=
(
Lν11 (D)v1 Lν12 (D)v1

Lν31 (D)v3 Lν32 (D)v3

)
, where Lν is defined in (2.10).

3. Statement of main results

In this section we describe our main controllability results. For simplicity, we consider the cases of clamped
and simply-supported boundary conditions separately. In the clamped case, Γ1 = ∅ and Γ = Γ0 and in the
simply supported case, Γ0 = ∅ and Γ = Γ1. In either case, we assume the control is locally distributed on the
subdomain ω ⊂ Ω.

3.1. Controllability problem

Denote Q = (0, T )× Ω, Qω = (0, T ) × ω and Σ = (0, T ) × Γ.
The equations (2.12), (2.13), (2.14) with (f3, fO) replaced by (f3 + q3, χωfO + qO) become

P1(D)(w, vO) := m∂2
x0
w − αΔx′∂2

x0
w +KΔ2

x′w − divx′ �NThEGEsE = f3 + q3 in Q, (3.1)

P2(D)(w, vO) := hOpO∂
2
x0
vO − 12hODOLO(D)vO +BTGEsE = χωfO+qO in Q, (3.2)

where sE = h−1
E BvO + �N∇x′w, GEsE = GEsE + G̃E∂x0sE .
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Clamped boundary conditions are given by

vO = 0, w = 0, ∂�nw = 0 on Σ. (3.3)

The initial conditions are

vO(0, ·) = v0, ∂x0vO(0, ·) = v1, w(0, ·) = w0, ∂x0w(0, ·) = w1. (3.4)

Here f3 and fO are the locally distributed boundary controls over the subdomain ω ⊂ Ω.
We consider the following controllability problem for the system (3.1)–(3.4): Find controls (fO, f3) supported

in Qω such that at time T the solution {vO, w} to (3.1)–(3.4) satisfies

vO(T, ·) = ∂x0vO(T, ·) = w(T, ·) = ∂x0w(T, ·) = 0. (3.5)

In the case of simply supported boundary conditions, (3.3) is replaced by

vO = 0, w = 0, ∂2
�nw = 0 on Γ0 × (0, T ). (3.6)

3.2. Exact controllability results

In order to formulate our results we need to introduce some notation. Let

p(x, ξ) = a00(x)ξ20 −
2∑

i,j=1

aij(x)ξiξj

be a symbol for a second order hyperbolic differential operator with coefficients aij ∈ C1(Q̄). Also let {p, q}
denote the Poisson bracket for symbols p, q:

{p, q} =
2∑
k=0

(∂ξk
p)(∂xk

q) − (∂xk
p)(∂ξk

q).

Definition 3.1. We say that the function ψ ∈ C2(Q̄) is pseudoconvex respect to the symbol p(x, ξ) if for all
ξ ∈ R

3 \ {0} the following inequalities hold:

(1) {p, {p, ψ}}(x, ξ) > 0 for all x ∈ Q \Qω such that p(x, ξ) =
(
∂p
∂ξ (x, ξ),∇ψ(x)

)
R3

= 0,

(2) {p(x, ξ − is∇ψ(x)), p(x, ξ + is∇ψ(x))}/2is > 0 for all x ∈ Q \Qω such that

p(x, ξ + is∇ψ(x)) =

(
∂p

∂ξ
(x, ξ + is∇ψ(x)),∇ψ(x)

)
R3

= 0.

Assumption A. There exists a function ψ(x) for which (i)–(iv) below hold.
(i) ψ is pseudoconvex respect to the following symbols

ρiξ
2
0 − 6D̂i(1 − νi)(ξ21 + ξ22), ρiξ

2
0 − 12D̂i(ξ21 + ξ22) (i ∈ ON ); ξ20 − K

α
(ξ21 + ξ22) (3.7)

and
∇x′ψ(x) �= 0 ∀x ∈ Q \Qω. (3.8)
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(ii) For all x ∈ (0, T ) × (Γ \ ∂ω) the following hold:

∂�nψ < 0, (3.9)

√
ρi|∂x0ψ| <

μi√
λi + 2μi

|∂ �tanψ| +
√
μi
√
λi + μi√

λi + 2μi
|∂�nψ| i ∈ ON , (3.10)

ρi(∂x0ψ)2 − μi|∇x′ψ|2 < 0 ∀x ∈ (0, T )× (Γ \ ∂ω) i ∈ ON , (3.11)

where μi = 6D̂i(1 − νi), λi + 2μi = 12D̂i and ∂ �tan is the tangential derivative on Γ.
(iii) There exists a moment τ ∈ (0, T ) such that

inf
x′∈Ω\ω

ψ(τ, x′) > max

{
sup

x′∈Ω\ω
ψ(T, x′), sup

x′∈Ω\ω
ψ(0, x′)

}
. (3.12)

(iv)
∂x0ψ(0, x′) > 0 ∂x0ψ(T, x′) < 0 ∀x′ ∈ Ω̄. (3.13)

Lemma 3.1. Let x̃ /∈ Ω̄, the subdomain ω taken such that {x′ ∈ ∂Ω : (�n, x′ − x̃)R2 ≤ 0} ⊂ ∂ω. Let γ ∈ (0, c)
where

c = min
i∈ON

{
K

α
,
12D̂i

ρi
,
6D̂i(1 − νi)

ρi

}
·

Then function ψ(x) = −γ(x0 − T
2 )2 + |x′ − x̃|2 satisfies Assumption A provided that T is sufficiently large and

γ is sufficiently small.

Proof. In [7] it is is shown that the function ψ(x) is pseudoconvex respect to the symbols

ρiξ
2
0 − 6D̂i(1 − νi)(ξ21 + ξ22), ρiξ

2
0 − 12D̂i(ξ21 + ξ22) (i ∈ ON ); ξ20 − K

α
(ξ21 + ξ22).

Since x̃ is taken outside of Ω the gradient of ψ is not equal zero on Q. From the choice of ψ the inequalities (3.13)
follows immediately. And (3.9) follows from the fact that {x′ ∈ ∂Ω : (�n, x′ − x̃)R2 ≤ 0} ⊂ ∂ω.

In order to have (3.12) we take T such that

γ
T 2

4
> d1 − d0, d0 = min

x′∈Ω\ω
|x′ − x̃|2, d1 = max

x′∈Ω\ω
|x′ − x̃|2.

Moreover taking γ = ε, T = ε−
3
4 we still have the previous inequality satisfied for all sufficiently small positive ε.

On the other hand
supx∈Q|∂x0ψ(x)| ≤ 4ε

1
4

and hence (3.10) and (3.11) are valid for ε sufficiently small. This completes the proof. �
Our main controllability result for case of clamped boundary conditions is the following:

Theorem 3.1. Let v0 ∈ H1
O,0(Ω), v1 ∈ L2

O(Ω), w0 ∈ H2
0 (Ω), w1 ∈ H1

0 (Ω), qO ∈ L2(Q), q3 ∈ L2(0, T ; (H1(Ω))∗).
Suppose that there exists a function ψ which satisfies Assumption A. Then there exist controls fO ∈ L2

O(Qω),
f3 ∈ (H1(Q))∗; supp f3 ⊂ Qω, such that there exists a solution {vO, w} to the problem (3.1)–(3.5) with

vO ∈ L2(0, T ;H1
O,0(Ω)), ∂x0vO ∈ L2(0, T ;L2

O(Ω)),

w ∈ L2(0, T ;H2
0(Ω)), ∂x0w ∈ L2(0, T ;H1

0 (Ω)).

For the case of simply supported boundary conditions our main controllability result is the following:
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Theorem 3.2. Let v0 ∈ H1
0(Ω), v1 ∈ L2(Ω), w0 ∈ H2(Ω) ∩H1

0 (Ω), w1 ∈ H1
0 (Ω) and assume Assumption A

holds. Then there exist controls fO ∈ L2
O(Qω), f3 ∈ L2(Qω), such that there exists a solution {vO, w} to the

problem (3.1), (3.2), (3.6), (3.4), (3.5) with vO ∈ C0([0, T ];H1
O(Ω))∩C1([0, T ];L2

O(Ω)), w ∈ C0([0, T ];H2(Ω)∩
H1

0 (Ω)) ∩ C1([0, T ];H1
0(Ω)).

Both theorems follow from Hilbert’s Uniqueness method (Lions [18]) using observability estimates that we
derive in the next section.

As a consequence of Theorems 3.1 and 3.2, analogous controllability results can be stated for the Lamé
systems and the Kirchhoff plate. For the case of the Kirchhoff plate equation (1.4), with the initial conditions

w(·, 0) = w0, ∂x0w(·, 0) = w1, (3.14)

we have the following controllability results.

Corollary 3.1. Assume that T and ω ⊂ Ω satisfy Assumption A. (That is, there exists a function ψ(x) which
is pseudoconvex with respect to the symbol ξ20 − K

α (ξ21 + ξ22) which satisfies conditions (3.8), (3.9), (3.12), (3.13)
of Assumption A.)

(i) Given any w0 ∈ H2
0 (Ω), w1 ∈ H1

0 (Ω), there exists a control f3 ∈ (H1(Q))∗; supp f3 ⊂ Qω such that the
solution to (1.4), with clamped boundary conditions (1.2) and initial conditions (3.14) satisfies

w ∈ L2(0,∞;H2
0 (Ω)), ∂x0w ∈ L2(0,∞;H1

0 (Ω)) and w ≡ 0 ∀x0 > T.

(ii) Given any w0 ∈ H2(Ω)∩H1
0 (Ω), w1 ∈ H1

0 (Ω), there exist a control f3 ∈ L2(Qω), such that the solution w
to the problem (1.4) with hinged boundary conditions (1.3) and initial conditions (3.14) satisfies

w ∈ C0([0, T ];H2(Ω) ∩H1
0 (Ω)) ∩ C1([0, T ];H1

0 (Ω)) and w(·, T ) = ∂x0w(·, T ) = 0.

4. Proof of main results

Before starting the proof we mention some known results on Carleman estimates for the hyperbolic equations
and the Lamé system.

4.1. Some known Carleman estimates

Let Q(D) = ∂2
x0

− K
α Δx′ denote the wave operator and consider the following wave equation

Q(D)y = f in Q, y = g on Σ,
y(0, ·) = ∂x0y(0, ·) = ∂x0y(T, ·) = y(T, ·) = 0. (4.1)

For a given pseudoconvex function ψ(x) it will be convenient to introduce the function

ϕ(x) = eτψ(x), (4.2)

where τ is a large positive parameter.

Lemma 4.1 ([7,25]). Let f0, f1, f2 ∈ L2(Q), g ∈ L2(Σ) and f̃ ∈ H−1(Q). Let ψ(x) ∈ C2(Q) be a function
pseudoconvex respect to the symbol ξ20 − K

α |ξ′|2 such that ∂�nψ|(0,T )×(Γ\∂ω) < 0 and the function ϕ given by

formula (4.2). Let y ∈ L2(Q) be a solution to problem (4.1) with the right hand side f = f̃ +
∑2
j=0 ∂xifi. Then

there exists τ0 > 0 such that for τ > τ0 there exists s0(τ) > 0 such that

∫
Q

sy2e2sϕdx ≤ C1

(
‖f̃esϕ‖2

H−1(Q) +
2∑
i=0

‖fiesϕ‖2
L2(Q) +

∫
Qω

sy2e2sϕdx+ s‖gesϕ‖2
L2(Σ)

)
∀s ≥ s0(τ), (4.3)
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where C1 is independent of s. Furthermore, if f ∈ L2(Q), g ∈ H1(Σ), then

∫
Q

(sτ2eτψ|∇y|2 + sτ4e3τψy2)e2sϕdx ≤ C1

(
‖fesϕ‖2

L2(Q) +
∫
Qω

(sτ2eτψ|∇y|2 + s3τ4e3τψy2)e2sϕdx

+
∫

Σ

(sτ(eτψ |∂x0g|2 + eτψ|∂ �tang|2) + s3τ3eτψg2)esϕdΣ
)

∀τ ≥ τ0, s ≥ s0(τ), (4.4)

where ∂ �tan is the tangential derivative on Γ.

Next we consider the two-dimensional Lamé system

P (x,D)u = ρ(x′)∂2
x0

u− μ(x′)Δx′u − (μ(x′) + λ(x′))∇x′divx′ u

−divx′ u∇x′λ(x′) − (∇x′u + (∇x′u)T )∇x′μ(x′) = f in Q = [0, T ]× Ω, (4.5)

u|Σ = 0, u(T, x′) = ∂x0u(T, x′) = u(0, x′) = ∂x0u(0, x′) = 0 in Ω, (4.6)

where u = {u1, u2}, f = {f1, f2} are vector functions and Γ ∈ C3.

Remark 4.1. With ρ, λ and μ picked to be ρi, λi, and μi (respectively) the operator P (x,D) in (4.5) is
independent of x and reduces to P (D)u = ρi∂

2
x0

u − 12DiL
νi(D)u, where Lν(D) is the Lamé operator defined

in (2.10). Here however, we only shall need to require that ρ(x′), μ(x′), λ(x′) ∈ C2(Ω̄) and satisfy

ρ(x′) > 0, μ(x′) > 0, μ(x′) + λ(x′) > 0 in Ω̄. (4.7)

Assumption A′. There exists a function ψ(x) for which:
(i) ψ is pseudoconvex respect to the following symbols

ρξ20 − μ(ξ21 + ξ22), ρξ20 − (λ+ 2μ)(ξ21 + ξ22); (4.8)

(ii) for all x ∈ (0, T )× (Γ \ ∂ω) the following hold:

∂�nψ < 0, (4.9)

√
ρ|∂x0ψ| <

μ√
λ+ 2μ

|∂ �tanψ| +
√
μ
√
λ+ μ√

λ+ 2μ
|∂�nψ|, (4.10)

ρ(∂x0ψ)2 − μ|∇x′ψ|2 < 0 ∀x ∈ (0, T ) × (Γ \ ∂ω). (4.11)

Lemma 4.2 ([9]). Let f ∈ L2(Q) and let the function ϕ satisfy (4.2) where ψ satisfies Assumption A′ and
assume the Lamé coefficients satisfy (4.7). Then there exists τ̂ > 0 such that for any τ > τ̂ , there exists
s0 = s0(τ) > 0 such that for any solution u ∈ H1(Q) to problem (4.5)–(4.6), the following estimate holds for all
s ≥ s0(τ): ∫

Q

(|∇u|2 + s2|u|2)e2sϕdx ≤ C2

(
‖fesϕ‖2

L2(Q) +
∫
Qω

(|∇u|2 + s2|u|2)e2sϕdx
)
, (4.12)

where the constant C2 = C2(τ) > 0 is independent of s.

Lemma 4.3 ([9]). Assume that ϕ satisfies (4.2) where ψ satisfies Assumption A′ and (iv) of Assumption A and
the Lamé coefficients satisfy (4.7). Let f = f̃+

∑2
j=0 ∂xj fj with f̃ ∈ L2(0, T ;H−1(Ω)) and f0, f1, f2 ∈ L2(Q). Then

there exists τ̂ > 0 such that for any τ > τ̂ , there exists s0 = s0(τ) > 0 such that for any solution u ∈ L2(Q)
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to problem (4.5)–(4.6), the following estimate is valid for all s ≥ s0(τ):

∫
Q

|u|2e2sϕdx ≤ C3

⎛⎝‖f̃esϕ‖2
L2(0,T ;H−1(Ω)) +

2∑
j=0

‖fjesϕ‖2
L2(Q) +

∫
Qω

|u|2e2sϕdx

⎞⎠ , (4.13)

where the constant C3 = C3(τ) > 0 is independent of s.

Consider the boundary value problem for the Laplace operator

Δx′u = f̃ +
2∑
j=1

∂xj f̃j in Ω, u|∂Ω = g̃. (4.14)

The lemma below refers to a function ϕ(x) = eτψ(x), where τ is a large parameter and ψ is described in the
lemma.

Lemma 4.4 ([8]). Let g̃ ∈ L2(0, T ;H
1
2 (Γ)), f̃ ∈ L2(0, T ;L2(Ω)), f̃j ∈ L2(0, T ;L2(Ω)). Let ψ(x) ∈ C2(Q),

∂�nψ < 0 on (0, T )× Γ and |∇x′ψ| �= 0 on [0, T ]× Ω \ ω. Then solutions to (4.14) satisfy the estimate

‖∇x′uesϕ‖L2(Q) + s‖uesϕ‖L2(Q) ≤ C
(
s

1
4 ‖g̃esϕ‖

L2(0,T ;H
1
2 (Γ))

+
1√
s
‖f̃esϕ‖L2(Q)

+
√
s

2∑
j=1

‖f̃jesϕ‖L2(Q) + ‖∇x′uesϕ‖L2(Qω) + s‖uesϕ‖L2(Qω)

)
∀s ≥ s0, (4.15)

s‖uesϕ‖L2(Q) ≤ C
(
s

3
4 ‖g̃esϕ‖L2(Σ) +

1√
s
‖f̃esϕ‖L2(Q) +

√
s

2∑
j=1

‖f̃jesϕ‖L2(Q) + s‖uesϕ‖L2(Qω)

)
∀s ≥ s0, (4.16)

where C = C(τ) > 0 is independent of s.

4.2. Proof of main results for clamped boundary conditions

Next we consider the partial differential equation

K(D)v = m∂2
x0
v − αΔx′∂2

x0
v +KΔ2

x′v = f in Q, (4.17)
v|Σ = 0, ∂�nv|Σ = 0, v(0, ·) = v(T, ·) = ∂x0v(0, ·) = ∂x0v(T, ·) = 0. (4.18)

We introduce the Banach spaces

X = {v(x), x ∈ Q : v, ∇v ∈ L2(0, T ;H1(Ω))},

with norm ‖v‖X = ‖∇v‖L2(0,T ;H1,s(Ω)) + s‖∇v‖L2(0,T ;L2(Ω)) + s2‖v‖L2(Q) and X∗ is the space of the linear
continuous functionals on X . Also define H1,s(Ω) = H1(Ω) with norm ‖v‖H1,s(Ω) = ‖v‖H1(Ω) + s‖v‖L2(Ω).

We have:

Lemma 4.5. Let f ∈ X∗ and ϕ satisfy (4.2) where ψ ∈ C2(Q) is pseudoconvex with respect to the symbol
ξ20 − K

α (ξ21 + ξ22), ∂�nψ < 0 on (0, T )×Γ and |∇x′ψ| �= 0 on [0, T ]×Ω \ ω. Then there exists s0 > 0 such that for
all solutions to problem (4.17)–(4.18) the following estimate holds true

‖vesϕ‖L2(0,T ;H1,s(Ω)) ≤ C(‖fesϕ‖X∗ + ‖vesϕ‖H1,s(Qω)) ∀s ≥ s0, (4.19)

where C = C(τ) > 0 is independent of s.
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Proof. First we prove the Carleman estimate (4.19) for solutions of the problem (4.17)–(4.18) in slightly different
spaces:

2∑
|α|=0

s2−|α|‖Dαvesϕ‖L2(Q) ≤ C
(
‖fesϕ‖L2(0,T ;(H1,s(Ω))∗) +

2∑
|α|=0

s2−|α|‖Dαvesϕ‖L2(Qω)

)
∀s ≥ s0(τ). (4.20)

Here the space (H1,s(Ω))∗ is the space (H1(Ω))∗ equipped with the norm

‖f̃‖(H1,s(Ω))∗ = sup
z∈H1,s(Ω),‖z‖H1,s(Ω)=1

| < f̃, z > |.

By the Riesz representation theorem each f in (H1)∗ can be represented uniquely as an element of H1 as follows:

〈f, δ〉 =
∫

Ω

fδ + ∂x1f∂x1δ + ∂x2f∂x2δ dx′ ∀δ ∈ H1(Ω).

Therefore there exists L2(Ω) functions fi, i = 0, 1, 2 such that

〈f, δ〉 =
∫

Ω

f0δ − f1∂x1δ − f2∂x2δ dx′ ∀δ ∈ H1(Ω). (4.21)

Of course for any fi in L2(Ω) the functional given by (4.21) remains continuous on H1(Ω).
By density of test functions in L2(Ω) we can approximate fi by fi,ε ∈ C∞

0 (Ω) such that ‖fi,ε−fi‖L2(Ω) ≤ ε/3
for i = 0, 1, 2. Define fε by fε = f0,ε + ∂x1f1,ε + ∂x2f2,ε. Define the following linear functional on H1(Ω):

〈fε, δ〉 =
∫

Ω

f0,εδ − f1,ε∂x1δ − f2,ε∂x2δ dx′ =
∫

Ω

fεδ dx′ ∀δ ∈ H1(Ω).

Since

|〈f − fε, δ〉| ≤
∫

Ω

|f0 − f0,ε||δ| + |f1 − f1,ε||∂x1δ| + |f − f2,ε||∂x2δ| dx′ ∀δ ∈ H1(Ω)

≤ ε‖δ‖H1(Ω),

fε → f in H1(Ω)∗. Now consider the scalar product for the space L2(0, T ;H1,s(Ω)):

(u, v) =
∫
Q

(
2∑

k=1

∂xk
v∂xk

u+ suv

)
dx′ dx0.

By the Riesz representation theorem, each element x∗ of L2(0, T ; (H1,s(Ω)))∗ is represented as an element f of
L2(0, T ; (H1,s(Ω))∗), which can be approximated (as above) by C∞

0 (Q) functions fε =
∑2

i=1 ∂xifi,ε + f0,ε such
that fi,ε ∈ C∞

0 (Q) and fi,ε → fi in L2(0, 2T ;L2(Ω)) for all i ∈ {0, 1, 2} assuming that we define fi(x0, ·) ≡ 0 for
x0 > T.

Let vε be the solution to the problem

K(D)vε = fε, vε|∂Ω = ∂�nvε|∂Ω = 0, vε(0, ·) = ∂x0vε(0, ·) = 0.

Then, due to e.g., [16], vε → v in H2((0, 2T ) × Ω). Let χ ∈ C∞(R1) be a function such that χ(x0) = 1 for
x0 ≤ 0 and χ(x0) = 0 for x0 ≥ 1. We set χε1 = χ((x0 − T )/ε1) and ṽε,ε1 = χε1vε. Obviously we have

K(D)vε,ε1 = χε1fε − [χε1 ,K]vε, vε|(0,T+ε1)×Γ = ∂�nvε|(0,T+ε1)×Γ = 0,

vε,ε1(0, ·) = ∂x0vε,ε1(0, ·) = vε,ε1(T + ε1, ·) = ∂x0vε,ε1(T + ε1, ·) = 0. (4.22)



EXACT CONTROLLABILITY OF A RAO-NAKRA PLATE 1115

Since there exist subsequences ε0,k, ε1,k such that ‖[χε1,k
,K]vε0,k

‖L2(0,T ;(H1(Ω))∗) → 0 as ε0,k, ε1k
→ +0 it suffices

to prove Carleman (4.20) estimate only for f ∈ C∞(0, T ;C∞
0 (Ω̄)). Suppose that we have proved the following

estimate:

√
s‖∂2

�nve
sϕ‖L2(Σ) ≤ C

(
‖fesϕ‖L2(0,T ;(H1,s(Ω))∗) +

2∑
|α|=0

s2−|α|‖Dαvesϕ‖L2(Qω)

)
∀s ≥ s0(τ). (4.23)

Then applying the Carleman estimates (4.16) and (4.3) to equation (4.17) we have

√
s(‖Q(D̃)(vesϕ)‖L2(Q) + ‖Δx′(D̃)(vesϕ)‖L2(Q)) ≤C

(
‖(f −m∂2

x0
v)esϕ‖L2(0,T ;(H1,s(Ω))∗) +

√
s‖∂2

�nve
sϕ‖L2(Σ)

+
2∑

|α|=0

s2−|α|‖Dαvesϕ‖L2(Qω)

)
∀s ≥ s0(τ),

where

Q(D̃) =

(
1
i
∂x0 + is∂x0ϕ

)2

− K

α
Δx′(D̃), Δx′(D̃) =

(
1
i
∂x1 + is∂x1ϕ

)2

+

(
1
i
∂x2 + is∂x2ϕ

)2

.

Thanks to (4.23)

√
s(‖Q(D̃)(vesϕ)‖L2(Q) + ‖Δx′(D̃)(vesϕ)‖L2(Q)) ≤ C

(
‖(f −m∂2

x0
v)esϕ‖L2(0,T ;(H1,s(Ω))∗)

+
2∑

|α|=0

s2−|α|‖Dαvesϕ‖L2(Qω)

)
∀s ≥ s0(τ). (4.24)

Applying the Carleman estimate (4.15) to the elliptic operator Δx′(D̃) in (4.24) we obtain

√
s(‖Q(D̃)(vesϕ)‖L2(Q) + ‖Δx′(D̃)(vesϕ)‖L2(Q)) +

2∑
|α|=0,α0=0

s2−|α|‖Dαvesϕ‖L2(Q)

≤ C
(
‖(f −m∂2

x0
v)esϕ‖L2(0,T ;(H1,s(Ω))∗) +

2∑
|α|=0

s2−|α|‖Dαvesϕ‖L2(Qω)

)
∀s ≥ s0(τ). (4.25)

Then since (1
i ∂x0 + is∂x0ϕ)2 = K

α Δx′(D̃) +Q(D̃), we have

√
s(‖Q(D̃)(vesϕ)‖L2(Q) + ‖Δ(D̃)(vesϕ)‖L2(Q) + ‖(∂x0 − sϕx0)

2(vesϕ)‖L2(Q)) +
2∑

|α|=0,α0=0

s2−|α|‖Dαvesϕ‖L2(Q)

≤ C
(
‖(f −m∂2

x0
v)esϕ‖L2(0,T ;(H1,s(Ω))∗) +

2∑
|α|=0

s2−|α|‖Dαvesϕ‖L2(Qω)

)
∀s ≥ s0(τ).

This inequality implies
√
s(‖Q(D̃)(vesϕ)‖L2(Q) + ‖Δx′(D̃)(vesϕ)‖L2(Q)) + ‖vesϕ‖H2,s(Q)

≤ C
(
‖(f −m∂2

x0
v)esϕ‖L2(0,T ;(H1,s(Ω))∗) +

2∑
|α|=0

s2−|α|‖Dαvesϕ‖L2(Qω)

)
∀s ≥ s0(τ). (4.26)
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The term ‖m(∂2
x0
v)esϕ‖L2(0,T ;(H1,s(Ω))∗) can be absorbed by the third term in the left hand side of (4.26). So

√
s(‖Q(D̃)(vesϕ)‖L2(Q) + ‖Δx′(D̃)(vesϕ)‖L2(Q)) + ‖vesϕ‖H2,s(Q)

≤ C
(
‖fesϕ‖L2(0,T ;(H1,s(Ω))∗) +

2∑
|α|=0

s2−|α|‖Dαvesϕ‖L2(Qω)

)
∀s ≥ s0(τ). (4.27)

Hence (4.23) implies (4.20).
Before we begin the proof of (4.23), it is convenient to define a weight function φ such that φ|Γ = ϕ|Γ and

φ(x) < ϕ(x) for all x in a neighborhood of Σ. We construct such a function φ locally near the boundary Γ:

φ(x) = eτψ̃(x), ψ̃(x) = ψ(x) − 1√
N
g̃1(x′) +Ng̃2

1(x
′), (4.28)

where N > 0 is a large positive parameter and g̃1 ∈ C3(Ω) satisfies

g̃1(x′) > 0 ∀x′ ∈ Ω, g̃1|Γ = 0, ∇x′ g̃1|Γ �= 0. (4.29)

Denote Ω 1
N2

= {x′ ∈ Ω|0 < dist (x′,Γ) < 1
N2 }. Obviously there exists N0 > 0 such that

φ(x) < ϕ(x), ∀x ∈ [0, T ]× Ω 1
N2
, N ∈ (N0,∞). (4.30)

Now we begin the proof of estimate (4.23). As a first step we prove (4.23) under the assumption supp v ⊂
Bδ(x∗). We assume that the point x∗ ∈ Σ. (If Bδ(x∗) ∩ Σ = ∅ then (4.23) is trivially true. If Bδ(x∗) ∩ Σ �= ∅
then Bδ(x∗) is a subset of a slightly larger ball centered at a point of Σ.) Without loss of generality we may
assume that x∗ = 0. Locally near zero the boundary Γ is given by equation x2 − g(x1) = 0. Making the change
of variables y1 = x1, y2 = x2 − g(x1), we obtain

R(y,D)v = Q(y,D)A(y,D)v = A(y,D)Q(y,D)v = f inG, (4.31)

v|y2=0 = ∂y2v|y2=0 = 0, (4.32)
where

G = {(y0, y1, y2) ∈ R
2 × R

+}
and Q(y,D) = −D2

y0 +A(y,D), and A is the Laplace operator after the change of variables, which is extended
outside of the image of Bδ(0) to an elliptic operator on G. Denote w(y) = v(y)e|s|φ(y), where φ(y) is the
function φ after change of the variables and let Dyk

= (1
i ∂yk

+ i|s|φyk
), where D = (Dy0 ,Dy1 ,Dy2). Then we

have
R(y,D)w = Q(y,D)A(y,D)w = A(y,D)Q(y,D)w = fe|s|φ inG, (4.33)

w|y2=0 = ∂y2w|y2=0 = 0, (4.34)

with suppw ⊂ Bδ̃(y
∗), where Bδ̃(y

∗) contains the image of Bδ(0) after the change of variables.
Denote by a(y, ξ) the principal symbol of the operators A(y,D):

a(y, ξ) = ξ21 − 2g′(y1)ξ1ξ2 + (1 + |g′(y1)|2)ξ22 .

We cover the sphere S2 by small balls Bδ1(ξ0,ν , ξ1,ν , sν), and let {χν} be the partition of unity applied to this
covering:

∑
ν χν = 1, χν ≥ 0, χν ∈ C∞

0 (Bδ1(ξ0,ν , ξ1,ν , sν)). We extend the function χν as a homogeneous
function of order 0 on the set |(ξ0, ξ1, s)| ≥ 1 and up to a C∞ function on R

3. Let γ = (y∗, ξ∗0 , ξ∗1 , s∗), where
(ξ∗0 , ξ

∗
1 , s

∗) is an arbitrary point of S2 and wν = χν(D′, s)w, D′ = (1
i ∂y0 ,

1
i ∂y1).
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Denote wν(y) = χν(Dy0 , Dy1, s)(v(y)e|s|φ(y)), q = χν(fe|s|φ) − [χν , R(y,D)]. Then we have

R(y,D)wν = Q(y,D)A(y,D)wν = A(y,D)Q(y,D)wν = q inG, (4.35)

wν |y2=0 = 0, ∂y2wν |y2=0 = 0, (4.36)
with suppw ⊂ Bδ̃(y

∗). Note that [Q(y,D),A(y,D)] = 0.
Let us consider the case when (ξ∗1 , s

∗) �= 0. We factor the operator A(y,D) as follows:

A(y,D) = A−(y,D, s)A+(y,D, s) + T (y2) = A+(y,D, s)A−(y,D, s) + T̃ (y2), (4.37)

where T (y2), T̃ (y2) are the operators such that for some κ > δ̃,

T̃ (y2), T (y2) ∈ C2(0, κ;L(Hk,s(R3);Hk−1,s(R3))), k = 1, 2. (4.38)

Let us write ξ′ = (ξ0, ξ1) and set

rA(y, ξ1, s) = −(ξ1 + i|s|φy1)2,
rQ(y, ξ′, s) =

α

K
(ξ0 + i|s|φy0)2 + rA(y, ξ1, s)

and

Γ±
Q(y, ξ′, s) = −|s|φy2i+

g′(y1)(ξ1 + i|s|φy1) +
√
rQ±(y, ξ′, s)

(1 + (g′(y1))2)
,

Γ±
A(y, ξ′, s) = −|s|φy2i+

g′(y1)(ξ1 + i|s|φy1) +
√
rA

±(y, ξ1, s)
(1 + (g′(y1))2)

· (4.39)

Here
√ ±

refers to the branch of the complex root with positive or negative imaginary part. When
(ξ∗1 , s

∗) �= 0 explicitly we have

√
rA

±(y, ξ1, s) =
{ ±i sign (ξ∗1 )(ξ1 + i|s|φy1) if ξ∗1 �= 0,

±i(ξ1 + i|s|φy1) if ξ∗1 = 0.

The principal symbols of operators A± in (4.37) are given by

A±(y, ξ, s) = ξ2 + Γ±
A(y, ξ′, s). (4.40)

We set z1 = A+(y,D, s)(Q(y,D)wν). Thanks to (4.35), (4.36), (4.37) this function satisfies the equation

A−(y,D, s)z1 = q − TQ(y,D)wν in G, z1|y2=κ = 0, (4.41)

with
‖q − TQ(y,D)wν‖Z ≤ C(‖q‖Z + ‖wν‖H2,s(G)), (4.42)

where Z is a dual space to Z̃ = {w : w, ∂y1w, ∂y2w ∈ L2(G)} equipped with the norm ‖w‖Z̃ = s‖w‖L2(G) +
‖∂y1w‖L2(G) + ‖∂y2w‖L2(G).

For the initial value problem (4.41) the following a priori estimate holds (see e.g., Prop. 2.3 of [11]):

‖A+(y,D, s)Q(y,D)wν‖L2(G) ≤ C(‖q‖Z + ‖wν‖H2,s(G)). (4.43)

Next we consider the following boundary value problem with z2 = A+(y,D, s)wν treated as the unknown:

Q(y,D)z2 = −[A+,Q(y,D)]wν + A+(y,D, s)Q(y,D)wν , z2(·, 0) = z2(·, κ) = ∂y2z2(·, κ) = 0.
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Since operator Q(y,D) is hyperbolic and the pseudoconvexity property is preserved under the change of
variables we may apply to the above equations the Carleman estimate for the hyperbolic equations (from
Lem. 4.1) to obtain √

|s|‖∂2
y2wν(·, 0)‖L2(R2) ≤ C(‖q‖Z + ‖w‖H2,s(G)).

Next we consider the case when (ξ∗1 , s
∗) = 0.

Since (ξ∗0 , ξ
∗
1 , s

∗) �= 0 then rQ(γ) �= 0 and we can factor the operator Q into the product of two operators and
a remainder as

Q(y,D) = Q−(y,D, s)Q+(y,D, s) + T+(y2) = Q+(y,D, s)Q−(y,D, s) + T−(y2), (4.44)

where the principal symbol of the operator Q±(y,D, s) is

Q±(y, ξ, s) =
√

1 + (g′(y1))2(ξ2 − Γ±
Q(y, ξ′, s)), (4.45)

and operators T± satisfy
T± ∈ L(Hk+1,s(G), Hk,s(G)) k ∈ {1, 2}. (4.46)

We set z2 = Q+(y,D, s)(A(y,D)wν). Thanks to (4.35), (4.36) this function satisfies the equation

Q−(y,D, s)z2 = q − T+A(y,D)wν in G, z2|y2=κ = 0, (4.47)

with
‖q − T+Q(y,D)wν‖Z ≤ C(‖q‖Z + ‖wν‖H2,s(G)). (4.48)

For the initial value problem (4.47) the following a priori estimate holds:√
|s|‖Q+(y,D, s)A(y,D)wν (·, 0)‖H−1,s(R2) ≤ C(‖q‖Z + ‖wν‖H2,s(G)). (4.49)

A small inconvenience is that the function |ξ1| is not smooth when ξ1 = 0, so the symbol
√
rA

±(y, ξ1, s)
in (4.39) is not continuously dependent on ξ∗1 . In order to overcome this difficulty we consider the covering of
S1 = {(ξ1, s) : s2 + ξ21 = 1} by the following set: e1 = {(ξ1, s) ∈ S1 : |ξ1| ≤ 3ε|s|} and e2 = {(ξ1, s) ∈ S1 :
|ξ1| ≥ ε|s|} with some small positive ε. Next we consider the partition of unity submitted to this covering of S1:
χ̃i ∈ C∞

0 (ei), χ̃1(ξ1, s) + χ̃2(ξ1, s) = 1. We extend the functions χ̃i on the set {ξ21 + s2 ≥ 1} as homogeneous
functions of order zero. Also we extend the functions χ̃i on the set {ξ21 + s2 ≤ 1} as smooth functions. By
χ̃k(Dy1 , s) we denote the pseudodifferential operators with symbols χ̃k(ξ1, s).

For k = 1, 2 we set z1,k = A+(y,D, s)χ̃k(Dy1 , s)(Q(y,D)wν). Thanks to (4.35), (4.36) this function satisfies
the equation

A−(y,D, s)z1,k = χ̃kq − T+χ̃k(Dy1 , s)Q(y,D)wν + [A(y,D), χ̃k]Q(y,D)wν in G, (4.50)

with z1,k|y2=κ = 0 and hence by (4.46)

‖χ̃kq − T+χ̃k(Dy1 , s)Q(y,D)wν + [A(y,D), χ̃k(Dy1 , s)]Q(y,D)wν‖Z ≤ C(‖q‖Z + ‖wν‖H2,s(G)). (4.51)

Then we have

‖A+(y,D, s)χ̃k(Dy1 , s)Q(y,D)wν‖L2(G) + ‖Λ− 1
2 (D1, s)A+(y,D, s)χ̃k(D1, s)Q(y,D)wν(·, 0)‖L2(R2)

≤ C(‖q‖Z + ‖wν‖H2,s(G)). (4.52)

From (4.52) and (4.49) (again using Prop. 2.3 of [11]) we obtain√
|s|‖∂2

y2wν(·, 0)‖L2(R2) ≤ C(‖q‖Z + ‖wν‖H2,s(G)). (4.53)
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Hence in both cases: (ξ∗1 , s∗) = 0 or (ξ∗1 , s∗) �= 0, we have the same a priori estimate (4.53). Applying the
Carleman estimate (4.3) to equation (4.35) and using (4.53) we have√

|s|(‖A(y,D)wν‖L2(G) + ‖Q(y,D)wν‖L2(G) + ‖∂2
y2wν(·, 0)‖L2(R2)) ≤ C(‖q‖Z + ‖wν‖H2,s(G)).

This inequality and the Carleman estimate established in Proposition 5.1 of [9] for the elliptic equation implies

√
|s|(‖A(y,D)wν‖L2(G) + ‖Q(y,D)wν‖L2(G) + ‖D2

y0wν‖L2(G)) +N
1
2

2∑
|α|=0,α0=0

‖Dαwν‖L2(G)

+
√
|s|‖∂2

y2wν(·, 0)‖L2(R2) ≤ C(‖q‖Z + ‖wν‖H2,s(G)).

Finally, using the arguments similar to (4.25)–(4.27) we estimate the time (x0) derivatives of the function wν :

N
1
2 ‖wν‖H2,s(G) +

√
s(‖A(y,D)wν‖L2(G) + ‖Q(y,D)wν‖L2(G) + ‖D2

y0wν‖L2(G)

+ ‖∂2
y2wν(·, 0)‖L2(R2)) ≤ C(‖q‖Z + ‖wν‖H2,s(G)) ∀s ≥ s0(τ,N), N ≥ N0.

Increasing the parameter N0 if it is necessary we obtain

N
1
2 ‖wν‖H2,s(G) +

√
s(‖A(y,D)wν‖L2(G) + ‖Q(y,D)wν‖L2(G)

+ ‖D2
y0wν‖L2(G) + ‖∂2

y2wν(·, 0)‖L2(R2)) ≤ C‖q‖Z ∀s ≥ s0(τ,N), N ≥ N0. (4.54)

Hence the following estimate is valid ∀s ≥ s0(τ,N), N ≥ N0

N
1
2 ‖w‖H2,s(G) +

√
s‖∂2

y2w(·, 0)‖L2(R2) + s
1
4

1∑
|α|=0

‖DαDy0wν‖L2(G) ≤ C‖fesφ‖Z .

Consequently estimate (4.23) holds under the assumption that supp v ⊂ Bδ(x∗). However, by taking N
sufficiently large in the above estimate, we no longer need the assumption supp v ⊂ Bδ(x∗) in the estimate (4.19).
This follows using the same argument as in Lemma 8.3.1 of [6].

We now show that (4.20) implies (4.19).
In order to prove this result, we consider the following extremal problem

J(z, v0, v1, v2, v3) = 1
2 (‖∇x′(ze−sϕ)‖2

L2(Q) + ‖ze−sϕ‖2
L2(Q)) +

∑2
k=0

1
2‖vke−sϕ‖2

L2(Qω)

+ 1
2s2 ‖v3e−sϕ‖2

L2(Qω) −→ inf, (4.55)

K(D)z = −esϕΔx′(vesϕ) + s2ve2sϕ +
∑2

k=0 ∂
2
x0xk

vk + v3 in Q, (4.56)

where supp vj ⊂ Qω, j = 0, 1, 2, 3, vknk|∂ω\Γ = 0, k = 1, 2,
∂�nz|Σ = z|Σ = 0, ∂x0z(0, ·) = ∂x0z(T, ·) = 0. (4.57)

Remark 4.2. We understand the equalities (4.56)–(4.57) in the weak sense

(z,K(D)δ)L2(Q) = (∇x′(veϕ),∇x′(δeϕ))L2(Q) +
∫
Q

(
(s2ve2sϕ + v3)δ +

2∑
k=0

vk∂
2
x0xk

δ

)
dx (4.58)

for all δ ∈ H4(Q) such that ∂x0δ(0, ·) = ∂x0δ(T, ·) = 0, ∂�nδ|Σ = δ|Σ = 0.



1120 S.W. HANSEN AND O. IMANUVILOV

Denote by (z, v0, v1, v2, v3) the solution to extremal problem (4.55)–(4.57).
We have:

Lemma 4.6. Under the conditions of Lemma 4.5 for all v ∈ L2(0, T ;H1(Ω)), there exists a unique solution
(z, v0, v1, v2, v3) ∈ H2(Q) × H1(Q) to problem (4.55)–(4.57). Moreover this solution satisfies the optimality
system

K(D)p− e−sϕΔx′(ze−sϕ) + s2ze−2sϕ = 0 in Q, (4.59)
∂�np|Σ = p|Σ = 0, ∂x0p(0, ·) = ∂x0p(T, ·) = 0, (4.60)

p =
1
s2
v3e−2sϕ in Qω, ∂2

x0xk
p = vke−2sϕ, k = 0, 1, 2 in Qω, (4.61)

K(D)z = −esϕΔx′(vesϕ) + s2ve2sϕ +
2∑
k=0

∂2
x0xk

vk + v3, in Q, (4.62)

where supp vj ⊂ Qω, j ∈ {0, 1, 2, 3}, vknk|∂ω\Γ = 0, k = 1, 2
∂�nz|Σ = z|Σ = 0, ∂x0z(0, ·) = ∂x0z(T, ·) = 0, (4.63)

and there exists s0 > 0 such that the following estimate holds true:

‖ze−sϕ‖2
H2,s(Q) +

2∑
k=0

∥∥(∂x0vk)e
−sϕ∥∥2

L2(Qω)
+ s2‖vke−sϕ‖2

L2(Qω)

+ ‖v3e−sϕ‖2
L2(Qω) ≤ C1‖vesϕ‖2

H1,s(Q) ∀s ≥ s0, (4.64)

where C1 is independent of s.

Lemma 4.6 is proved using a standard argument (e.g., [17]) and is similar to one found in [9]. For the sake
of completeness, we include the proof in the Appendix.

Now we complete the proof of Lemma 4.5. We plug in (4.58) function v instead of δ. Then we have

‖∇x′(vesϕ)‖2
L2(Q) + s2‖vesϕ‖2

L2(Q) =
∫ T

0

〈f, z〉dx0 −
∫
Qω

(
2∑

k=0

vk∂
2
x0xk

v + v v3

)
dx.

Applying (4.64) to this equality the inequality |ab| ≤ δ
2 |a|2 + 1

2δ |b|2 we obtain

‖vesϕ‖2
L2(0,T ;H1,s(Ω)) ≤ C9

(
‖fesϕ‖2

X∗ +
∫
Qω

(|∇v|2 + s2|v|2)e2sϕdx
)
, ∀s ≥ s0(τ).

The proof of the Lemma 4.5 is finished. �
Next we consider the system which is formally adjoint to the system (3.1)–(3.5). Let G∗

E = GE − G̃E∂x0

then the adjoint system can be written

m∂2
x0
q − αΔx′∂2

x0
q +KΔ2

x′q − divx′ �NT (G∗
E(BzO + hE �N∇x′q)) = h on Q, (4.65)

hOpO∂
2
x0
zO − 12hODOLO(D)zO +BTh−1

E (G∗
E(BzO + hE �N∇x′q)) = g onQ, (4.66)

zO|Σ = 0, q|Σ = 0, ∂�nq|Σ = 0. (4.67)

We need the following standard result on solvability of the system (4.65)–(4.67) equipped with the following
initial conditions

zO(τ̂ , ·) = z0
O, ∂x0zO(τ̂ , ·) = z1

O, q(τ̂ , ·) = q0, ∂x0q(τ̂ , ·) = q1. (4.68)
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Proposition 4.1. Let τ̂ ∈ [0, T ] be an arbitrary point. Suppose that z0
O ∈ L2

O(Ω), z1
O ∈ H−1

O (Ω), q0 ∈
H1

0 (Ω), q1 ∈ L2(Ω), (h,g) ∈ L2(0, T ;H−2(Ω)) × L2(0, T ;H−1(Ω)). Then there exists a unique solution to the
problem (4.65)–(4.68) which satisfies:

‖q‖L2(0,T ;H1(Ω)) + ‖zO‖L2
O(Q) ≤ C(‖(h,g)‖L2(0,T ;H−2(Ω))×L2(0,T ;H−1(Ω))

+ ‖(z0
O, z

1
O)‖L2

O(Ω)×H−1
O (Ω) + ‖(q0, q1)‖H1(Ω)×L2(Ω)). (4.69)

The proof of this proposition can be easily done by transposition method.
Using the Carleman estimates obtained in Lemmata 4.3 and 4.5 we arrive to the following inequality:

Lemma 4.7. There exists a constant C such that any solution zO ∈ L2
O(Q), q ∈ L2(0, T ;H1(Ω)) to sys-

tem (4.65)–(4.67) satisfies the estimate

‖zO‖L2
O(Q) + ‖q‖L2(0,T ;H1(Ω)) ≤ C(‖(h,g)‖L2(0,T ;H−2(Ω))×L2(0,T ;H−1(Ω)) + ‖zO‖L2

O(Qω) + ‖q‖H1(Qω)). (4.70)

Proof. Denote
f = g −BTh−1

E (G∗
E(BzO + hE �N∇x′q)).

Using the new notation one can rewrite (4.66) as

hOpO∂
2
x0
zO − 12hODOLO(D)zO = f.

Next we denote
r = h+ divx′ �NT (G∗

E(BzO + hE �N∇x′q)).

Using this notation we rewrite (4.65) as

m∂2
x0
q − αΔx′∂2

x0
q +KΔ2

x′q = r.

Let χ = χ(x0) be a cut-off function such that

χ ∈ C∞
0 [0, T ], χ|[δ,T−δ] ≡ 1,

where δ > 0 is sufficiently small such that

inf
x∈Ω\ω

ψ(τ, x′) > sup
x∈([0,δ]∪[T−δ,T ])×Ω\ω

ψ(x). (4.71)

Denote z̃O = χzO, q̃ = χq. The functions z̃O, q̃ satisfy the equations

hOpO∂
2
x0
z̃O − 12hODOLO(D)z̃O = χf − [χ,hOpO∂

2
x0

]zO, (4.72)

m∂2
x0
q̃ − αΔx′∂2

x0
q̃ +KΔ2

x′ q̃ = χr + [χ,−m∂2
x0

+ αΔx′∂2
x0

]q. (4.73)

Applying to the equation (4.72) the Carleman estimate (4.19) we obtain for s ≥ s0(τ) the following:

‖z̃Oesϕ‖L2
O(Q) ≤ C1

(
‖gesϕ‖H−1,s

O (Q) + ‖qesϕ‖L2(Q) + ‖∇qesϕ‖L2(Q)

+ ‖zOesϕ‖L2
O(Qω) + ‖([χ,hOpO∂

2
x0

]zO)esϕ‖H−1,s
O (Q)

)
.
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Applying to (4.73) Carleman estimate (4.19) we obtain for s ≥ s0(τ):

s‖q̃esϕ‖L2(Q) + ‖∇q̃esϕ‖L2(Q) ≤ C(‖(hesϕ,gesϕ)‖L2(0,T ;H−2,s(Ω))×L2(0,T ;H−1,s(Ω))

+ s‖q̃esϕ‖L2(Qω) + ‖∇qesϕ‖L2(Qω) + ‖zOesϕ‖L2
O(Q)

+ ‖∇q̃esϕ‖L2(Q) + ‖([χ,−m∂2
x0

+ αΔx′∂2
x0

]q)esϕ‖X∗).

Combining this with the previous estimate gives ∀s ≥ s0(τ):

‖z̃Oesϕ‖L2
O(Q) + s‖q̃esϕ‖L2(Q) + ‖∇q̃esϕ‖L2(Q) ≤ C(‖zOesϕ‖L2

O(Qω) + s‖q̃esϕ‖L2(Qω)

+ ‖∇qesϕ‖L2(Qω) + ‖(h,g)esϕ‖L2(0,T ;H−2,s(Ω))×L2(0,T ;H−1,s(Ω))

+ ‖([χ,hOpO∂
2
x0

]zO)esϕ‖H−1,s
O (Q) + ‖([χ,−m∂2

x0
q + αΔx′∂2

x0
]q)esϕ‖X∗). (4.74)

Thanks to Assumption A there exists τ ∈ [0, T ] and ε > 0 such that

ϕm = min
x∈[−ε+τ,ε+τ ]×Ω\ω

ϕ(x) > max
x∈[0,ε]∪[T−ε,T ]×Ω\ω

ϕ(x) = ϕM . (4.75)

We set

E(x0) = ‖zO(x0, ·)‖2
L2

O(Ω) + ‖∂x0zO(x0, ·)‖2
H−1

O (Ω)
+ ‖∂x0q(x0, ·)‖2

L2(Ω) + ‖∇x′q(x0, ·)‖2
L2(Ω).

Applying Proposition 2.1, obviously we have

E(τ)esϕm ≤ C(‖z̃Oesϕ‖2
L2

O(Q) + s
1
2 ‖q̃esϕ‖2

L2(Q) + ‖∇q̃esϕ‖2
L2(Q) + ‖q‖2

H1(Qω))

+ C̃(s)(‖(h,g)‖2
L2(0,T ;H−2,s(Ω))×L2(0,T ;H−1,s(Ω)) + ‖zO‖L2(Qω)) (4.76)

and

‖([χ,hOpO∂
2
x0

]zO)esϕ‖2
H−1,s

O (Q)
+ ‖([χ,−m∂2

x0
+ αΔx′∂2

x0
]q)esϕ‖2

X∗ ≤ CE(τ)esϕM . (4.77)

Finally by (4.74), (4.76), (4.77) we have

E(τ)esϕm ≤ C(E(τ)esϕM + ‖zOesϕ‖2
L2

O(Qω) + s2‖qesϕ‖2
L2(Qω) + ‖∇qesϕ‖2

L2(Qω))

+ C̃(s)‖(h,g)‖2
L2(0,T ;H−2,s(Ω))×L2(0,T ;H−1,s(Ω)). (4.78)

Taking the value of the parameter s sufficiently large by (4.75) from (4.78) we obtain (4.70). The proof of the
Lemma is finished. �

Proof of Theorem 3.1. This theorem follows from the observability estimate in Lemma 4.7 and the duality
between controllability and observability (Hilbert’s Uniqueness Method; cf. Lions [18]). One can alternatively
derive the controls as solutions of a limiting extremal problem. We sketch this approach.

Let P(D)(w, vO) = (P1(D)(w, vO),P2(D)(w, vO)) denote the expressions in (3.1), (3.2).
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Without loss of generality we may assume the initial data v0, v1, w0, w1 are all zero. Consider the extremal
problem

F(w, vO, f3, fO) = ‖(w, vO)‖2
L2(0,T ;H2(Ω)×H1

O(Ω)) + ‖f3‖2
L2(Qω)

+ ‖fO‖2
L2(Qω) +

1
ε
‖(u3, uO)‖2

L2(Q) → inf, (4.79)

P(D)(w, vO) −
(

2∑
k=0

∂xk
f3,k, fO

)
+ (q3, qO) = (u3, uO) in Q, (4.80)

(w, vO)|Σ = 0, ∂�nw|Σ = 0,
(w, vO)|x0=0 = (∂x0w, ∂x0vO)|x0=0 = (w, vO)|x0=T = (∂x0w, ∂x0vO)|x0=T = 0.

Denote the solution to this problem by (ŵε, v̂O,ε, f̂3,ε, f̂O,ε, û3,ε, ûO,ε). This solution exists and is unique. We
set pε = (p3,ε, pO,ε) = 1

ε (û3,ε, ûO,ε). Define the space of test functions

D̃ = {(δ3, δO) ∈ H2(Q) × H1(Q) : P(D)(δ3, δO) ∈ L2(Q), (δ3, δO)|∂Q = 0, ∂�nδ3|∂Q = 0}.
By Fermat’s theorem,

((ŵε, v̂O,ε), (δ3, δO))L2(0,T ;H2(Ω)×H1
O(Ω)) + (pε,P(D)(δ3, δO))L2(Q) = 0, ∀(δ3, δO) ∈ D̃. (4.81)

This implies

P∗(D)(p3,ε, pO,ε) = −(Δ2
x′ŵε + ŵε,−Δx′ v̂O,ε + v̂O,ε), (4.82)

(p3,ε, pO,ε)|Σ = 0, ∂�np3,ε|Σ = 0. (4.83)

Note that (p3,ε, pO,ε) ∈ L2(0, T ;H2(Ω) × H1
O(Ω)).

Also

∂xk
û3,ε + εf̂3,k = 0 k = 0, 1, 2 in Qω, (4.84)

ûO,ε + εf̂O,ε = 0 in Qω. (4.85)

Applying to (4.82), (4.83) observability estimate (4.69) we have

‖pε‖L2(0,T ;H1(Ω)×L2
O(Ω)) ≤ C(‖(ŵ, v̂O)‖L2(0,T ;H2(Ω)×H1

O(Ω)) + ‖f̂3‖L2(Qω) + ‖f̂O‖L2(Qω)). (4.86)

If we plug in (4.81) instead of (δ3, δO), the pair (ŵ, v̂O), we have

F(ŵε, v̂O,ε, f̂3,ε, f̂O,ε) = −(pε, (q3, qO))L2(Q).

By (4.86) we have
F(ŵε, v̂O,ε, f̂3,ε, f̂O,ε) ≤ C‖(q3, qO)‖2

L2(0,T ;H−1(Ω)×L2(Ω)). (4.87)
Using (4.87) and the standard a priori estimates for the system (3.1)–(3.4) we obtain:

‖(ŵε, v̂O,ε)‖L2(0,T ;H2(Ω)×H1
O(Ω)) + ‖∂x0ŵε‖L2(0,T ;H1

0 (Ω)) + ‖f̂3,ε‖L2(Qω) + ‖f̂O,ε‖L2(Qω)

≤ C‖(q3, qO)‖L2(0,T ;H−1(Ω)×L2(Ω)). (4.88)

By (4.88) we can take a subsequence from (ŵε, v̂O,ε, f̂3,ε, f̂O,ε) which converges weakly in L2(0, T ;H2(Ω) ×
H1
O(Ω)) × L2(Qω) to a function (w, vO, f3, fO). Passing to the limit in (4.80) we obtain that the element

(w, vO, f3, fO) is a solution to our controllability problem. The proof of Theorem 3.1 is finished. �



1124 S.W. HANSEN AND O. IMANUVILOV

4.3. Simply supported boundary conditions

In order to treat the boundary conditions (3.6) we consider the following problem

K(D)v = m∂2
x2
0
v − αΔx′∂2

x2
0
v +KΔ2

x′v = f in Q, (4.89)

v|Σ = 0, ∂2
�nv|Σ = 0, v(0, ·) = v(T, ·) = ∂x0v(0, ·) = ∂x0v(T, ·) = 0. (4.90)

Lemma 4.8. Let ψ(x) ∈ C2(Q) be a function pseudoconvex respect to the symbol ξ20 − K
α |ξ′|2 such that

∂ψ
∂�n |(0,T )×(Γ\∂ω)

< 0, |∇x′ψ| �= 0 on [0, T ] × Ω \ ω, and let the function ϕ given by formula (4.2). Suppose

that v ∈ L2(0, T ;H2(Ω)) is a solution to problem (4.89), (4.90) with the right hand side f = f̃ +
∑2
j=0 ∂xifi,

with f̃ ∈ H−1(Q), fi ∈ L2(Q). Then there exists τ0 > 1 such that for any τ > τ0 there exists s0(τ) > 0 such
that ∀s > s0(τ)

‖vesϕ‖2
H2,s(Q) ≤ C1

(
‖f̃esϕ‖2

H−1,s(Q) +
2∑
i=0

‖fiesϕ‖2
L2(Q) +

∫
Qω

(s4v2 + s|Δx′v|2)e2sϕdx

)
(4.91)

and C1(τ) → 0 as τ → +0.

Proof. Using the Carleman estimate (4.3) we obtain ∀s ≥ s0(τ) the following

∫
Q

s|Δx′v|2e2sϕdx ≤ C2

(
‖f̃esϕ‖2

H−1(Q) +
2∑
i=0

‖fiesϕ‖2
L2(Q) +

∫
Qω

s|Δx′v|2e2sϕdx
)

(4.92)

and C2(τ) → 0 as τ → +0. Thanks to (3.8), we have the Carleman estimate for elliptic equation (see e.g. [8])
which yields:

2∑
|α|=0

∫
Q

s3−2|α||Dαv|2e2sϕdx ≤ C3

(∫
Q

|Δx′v|2e2sϕdx+
∫
Qω

|v|2e2sϕdx
)

∀s ≥ s0(τ), (4.93)

where C3(τ) → +0 as τ → +∞.
The estimates (4.92) and (4.93) imply (4.91). The proof of the lemma is finished. �

For the simply supported boundary conditions, the analog of Lemma 4.7 is the following.

Lemma 4.9. Let h =
∑2
i=0 ∂xihi, g ∈ H−1

O (Q), hi ∈ L2(Q), i = 0, 1, 2. There exists a constant C such that
any solution zO ∈ L2

O(Q), q ∈ L2(0, T ;H2(Ω)) to system (4.65), (4.66), (3.6) satisfies the estimate

‖zO‖L2
O(Q) + ‖q‖L2(0,T ;H2(Ω)) ≤ C

(
2∑
i=0

‖hi‖L2(Q) + ‖g‖H−1
O (Q)

+ ‖zO‖L2
O(Qω) + ‖q‖L2(0,T ;H2(ω))

)
. (4.94)

The proof of the Lemma 4.9 is exactly the same as the proof of the Lemma 4.7. The only difference is that
instead of the estimate (4.19) we use the estimate (4.91). Likewise, Theorem 3.2 follows as a consequence of
Lemma 4.9.
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5. Appendix

The following proposition can be found in [16].

Proposition 5.1. Let w ∈ C(0, T,H2
0 (Ω)) be a solution to the initial value problem

K(D)w = f, w|Σ = ∂�nw|Σ = 0, w(0, ·) = w0, ∂x0w(0, ·) = w1

where f ∈ L2(0, T ; (H1(Ω))∗), w0 ∈ H2
0 (Ω), w1 ∈ H1

0 (Ω). Then ∂2
�nw ∈ L2(Σ).

Proof of Lemma 4.6. For any ε ∈ (0, 1), we consider the following extremal problem

Jε(z, v0, v1, v2, v3, w) =
1
2

∫
Q

(|∇x′(ze−sϕ)|2 + s2|z|2e−2sϕ)dx

+
1
2

∫
Q

mε

(
|v0|2 + |v1|2 + |v2|2 +

|v3|2
s2

)
e−2sϕdx+

1
2ε

∫
Q

|w|2dx −→ inf, (5.1)

K(D)z =
2∑
k=0

∂2
x0xk

vk + v3 − esϕΔx′(vesϕ) + s2ve2sϕ + w in Q, (5.2)

∂�nz|Σ = z|Σ = 0, ∂x0z(0, x
′) = ∂x0z(T, x

′) = 0, (5.3)

where the penalty function mε satisfies mε ∈ C2(Ω), mε > 0 on Ω, with mε(x′) = 1 if x′ ∈ ω and mε(x′) = 1
ε if

dist (x, ω) ≥ −1
ln ε .

We understand the equalities (5.2)–(5.3) in the weak sense

(z,K(D)δ)L2(Q) = (∇x′(veϕ),∇x′(δeϕ))L2(Q) +
∫
Q

(
(s2ve2sϕ + v3)δ +

2∑
k=0

vk∂
2
x0xk

δ

)
dx (5.4)

for all δ ∈ H2(Q) such that K(D)δ ∈ L2(Q), with ∂x0δ(0, ·) = ∂x0δ(T, ·) = 0, δ|Σ = ∂�nδ|Σ = 0.
Denote by (ẑε, v̂ε, ŵε) = (ẑε, v̂0,ε, v̂1,ε, v̂2,ε, v̂3,ε, ŵε) the solution to extremal problem (5.1)–(5.3). We have:

Proposition 5.2. Under the conditions of Lemma 4.6 for all v ∈ L2(0, T ;H2
0(Ω)), there exists a unique solution

(ẑε, v̂ε, ŵε) ∈ H2(Q) × H1(Q) ×H2(Q) to problem (5.1)–(5.3). Moreover this solution satisfies the optimality
system:

pε(x) =
ŵε(x)
ε

in Q, (5.5)

K(D)pε − e−sϕΔx′(ẑεe−sϕ) + s2e−2sϕẑε = 0 in Q, (5.6)
∂�npε|Σ = pε|Σ = ∂�nẑε|Σ = ẑε|Σ = 0, (5.7)

∂x0pε(0, ·) = ∂x0pε(T, ·) = ∂x0 ẑε(0, ·) = ∂x0 ẑε(T, ·) = 0, (5.8)

K(D)ẑε =
2∑

k=0

∂2
x0xk

v̂k,ε + v̂3,ε − esϕΔx′(esϕv) + s2ve2sϕ + ŵε in Q, (5.9)

−∂2
x0xk

pε +mεv̂k,εe−2sϕ = 0, k = 0, 1, 2; in Q, (5.10)

pε −mε
v̂3,ε
s2

e−2sϕ = 0 in Q, (5.11)
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and there exists s0 > 0 such that the following estimate holds:

‖∇x′(ẑεe−sϕ)‖2
H1,s(Q) +

2∑
k=0

∥∥v̂k,εe−sϕ∥∥2

H1,s(Qω)
+ s2‖v̂k,εe−sϕ‖2

L2(Qω)

+ ‖v̂3,εe−sϕ‖2
L2(Qω) +

3∑
k=0

1
s2

‖mεv̂k,ε‖2
L2(Q) ≤ C2‖vesϕ‖2

L2(0,T ;H1,s(Ω)) ∀s ≥ s0, (5.12)

where C2 is independent of s.

Proof of Proposition 5.2. Since the functional Jε is strictly convex and the set of admissible elements is a
linear space, problem (5.1)–(5.3) has at most one solution. First let us prove that there exists a solution
to (5.1)–(5.3): an element (ẑ, v̂, ŵ) in the space L2(Q). Obviously (0, 0, 0, e−sϕΔx′(e−sϕv) − s2ve−2sϕ) is an
admissible element and so the set of an admissible elements is not empty. Hence there exists a minimizing
sequence {(ẑj,ε, v̂j,ε, ŵj,ε)}∞j=1 such that

(ẑj,ε, v̂j,ε, ŵj,ε) → (ẑε, v̂ε, ŵε) weakly in L2(Q). (5.13)

Passing to the limit in (5.4) and using (5.13), we obtain that (ẑε, v̂ε, ŵε) is an admissible element. On the other
hand, since the functional Jε is lower semi-continuous with respect to the weak convergence in L2(0, T ;H1(Ω))×
L2(Q), this element is a solution to problem (5.1)–(5.3).

In order to obtain optimality system (5.5)–(5.11), we introduce the function q(δ), δ = (δ0, δ1, δ2, δ3, δ4) by

q(δ) = Jε(ẑε + δ0d0, v̂0,ε + δ1d1, v̂1,ε + δ2d2, v̂2,ε + δ3d3, v̂3,ε + δ4d4, r(δ)),

where d0 ∈ H2(Q) with K(D)d0 ∈ L2(Q), d1, d2, d3 ∈ H2(Q), d4 ∈ L2(Q),

r(δ) = K(D)(ẑε + δ0d0) −
(

2∑
k=0

∂2
x0xk

(v̂k,ε + δk+1dk+1) + v̂3,ε + δ4d4

)
+ esϕΔx′(esϕv) − s2ve2sϕ.

Obviously the function q attains the minimum in R
3 at 0. Thus ∇q(0) = 0. Moreover the equalities ∂δ1q(0) =

∂δ2q(0) = ∂δ3q(0) = ∂δ4q(0) = 0 imply

−1
ε

∫
Q

ŵε∂
2
x0xk

dk+1dx+
∫
Q

mεv̂k,εdk+1e−2sϕdx = 0, k = 0, 1, 2,

∀dk+1 ∈ H2(Q) such that dk+1(0, ·) = dk+1(T, ·) = 0, dk+1|Σ = ∂�ndk+1|Σ = 0, k = 0, 1, 2,
and ∂x0d1(0, ·) = ∂x0d1(T, ·) = 0,

−1
ε

∫
Q

ŵεd4dx+
∫
Q

mε
v̂3,εd4

s2
e−2sϕdx = 0, ∀d4 ∈ L2(Q).

On the other hand, these equalities are equivalent to

1
ε
∂2
x0xk

ŵε −mεv̂k,εe−2sϕ = 0 k = 0, 1, 2 in Q, (5.14)

ŵε
ε

−mε
v̂3,ε
s2

e−2sϕ = 0 in Q. (5.15)

By the equality ∂δ0q(0) = 0, we obtain(
ŵε
ε
,K(D)d0

)
L2(Q)

+
∫
Q

s2ẑεd0e−2sϕdx+ (∇x′(ẑεe−sϕ),∇x′(d0e−sϕ))L2(Q) = 0, ∀d0 ∈ Y, (5.16)
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where

Y = {d0 ∈ H4(Q); K(D)d0 ∈ L2(Q), ∂�nd0|Σ = d0|Σ = 0,
∂x0d0(0, ·) = ∂x0d0(T, ·) = 0}.

Since v̂k,ε ∈ L2(Q), k = 0, 1, 2, 3 we obtain immediately from (5.14) that ∇∂x0ŵε ∈ L2(Q). Since d0(0, ·) and
d0(T, ·) can be chosen arbitrarily, it follows from (5.16) that

∂x0ŵε(0, ·) = ∂x0ŵε(T, ·) = 0 ∂�nŵε|Σ = ŵε|Σ = 0.

Introducing the function pε by formula (5.5), in terms of (5.14)–(5.16), we immediately obtain equalities (5.5)–
(5.11). Equations (5.5) implies ∂x0∇pε ∈ L2(Q). Let ρ1(x0) ∈ C∞[0, T ] be a nonnegative function which
vanishes around x0 = 0 and ρ1(x0) > 0 is positive for x0 ∈ [T/2, T ].

Let ρ2(x0) ∈ C∞[0, T ] be a nonnegative function which is equal zero around x0 = T and ρ2(x0) > 0 is
positive for x0 ∈ [0, T/2]. We set pε,i = ρipε. For i = 1 or i = 2 this function solves the initial value problem

K(D)pε,i = −[ρi,m∂2
x0

− αΔx′∂2
x0

]pε + ρie−sϕΔx′(ẑεe−sϕ) − s2e−2sϕρiẑε in Q, (5.17)
∂�npε,i|Σ = pε,i|Σ = 0, (5.18)

pε,1(0, ·) = ∂x0pε,1(0, ·) = 0, or (5.19)
pε,2(T, ·) = ∂x0pε,2(T, ·) = 0. (5.20)

The solution to the problem (5.17)–(5.20) satisfies pε,i ∈ C(0, T ;H2
0 (Ω))∩C1(0, T ;H1

0 (Ω)) and is unique. Hence
pε ∈ C(0, T ;H2

0 (Ω)). Since

e−sϕΔx′(ẑεe−sϕ) − s2e−2sϕẑε ∈ L2(0, T ;H−1,s(Ω))

Proposition 5.1 implies ∂2
�npε ∈ L2(Σ). This implies ∂2

x0
pε ∈ L2(Q). Hence pε ∈ H2(Q).

Next we will show that pε ∈ H3(Q).
We extend pε, ẑε on the set [−T, 2T ] × Ω by the formula: pε(x0, x

′) = pε(−x0, x
′), ẑε(x0, x

′) = ẑε(−x0, x
′)

for x ∈ [−T, 0]×Ω and pε(x0, x
′) = pε(2T −x0, x

′), ẑε(x0, x
′) = ẑε(2T −x0, x

′) for (x0, x
′) ∈ [T, 2T ]×Ω. In the

same way, we extend −e−sϕΔx′(ẑεe−sϕ)+ ẑεe−2sϕ on the domain [−T, 2T ]×Ω and denote the extended function
by f̃ . Since ∂x0ϕ(T, x′) < 0 for all x′ ∈ Ω and ∂x0ϕ(0, x′) > 0 for all x′ ∈ Ω, there exists δ > 0 such that we can
continue the function ϕ on [−δ, T + δ]× Ω up to a C3-function such that ∂x0ϕ(x) < 0 for all x ∈ [T, T + δ]× Ω
and ∂x0ϕ(x) > 0 for all x ∈ [−δ, 0]× Ω. By (5.6), we have

K(D)pε = f̃ in Q̃ ≡ [−δ, T + δ] × Ω. (5.21)

Let Dhf = f(x0+h,x
′)−f(x)

h and Dhf = f(x)−f(x0−h,x′)
h · For the function DhDhpε, we have

∂x0DhDhpε|x0=0 = ∂x0DhDhpε|x0=T = 0. (5.22)

Note that K(D)DhDhpε = DhDhf̃ . Hence

(ẑε, DhDhf̃)L2(Q) =
2∑

k=0

(v̂k,ε, ∂x0∂xk
DhDhpε)L2(Q) +(v̂3,ε−esϕΔx′(esϕv)+s2ve2sϕ+ ŵε, DhDhpε)L2(Q). (5.23)
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Using (5.9), (5.10) and the definition of the function f̃ , we have

1
2
(Dh∇x′(ẑεe−sϕ), Dh∇x′(e−sϕẑε))L2(Q) +

1
2
(Dh∇x′(ẑεe−sϕ), Dh∇x′(e−sϕẑε))L2(Q)

+
s2

2
(Dhẑε, Dh(e−2sϕẑε))L2(Q) +

s2

2
(Dhẑε, Dh(e

−2sϕẑε))L2(Q)

+ (ẑε, [DhDh, e
−sϕ](Δx′(ẑεe−sϕ)))L2(Q) +

2∑
k=0

(
1
2
(Dhv̂k,ε, Dh(mεe−2sϕv̂k,ε))L2(Q)

+
1
2
(Dhv̂k,ε, Dh(mεe−2sϕv̂k,ε))L2(Q)

)
+

1
2
(Dhv̂3,ε, Dh(s−2mεe−2sϕv̂3,ε))L2(Q)

+
1
2
(Dhv̂3,ε, Dh(s

−2mεe−2sϕv̂3,ε))L2(Q) +
1
2ε

(Dhwε, Dhwε)L2(Q) +
1
2ε

(Dhwε, Dhwε)L2(Q)

= (−esϕΔx′(esϕv) + s2ve2sϕ, DhDhpε)L2(Q). (5.24)

Hence

‖Dhẑε‖L2(0,T ;H1(Ω)) +
3∑

k=0

‖Dhv̂k,ε‖L2(Q) + ‖Dh̄ẑε‖L2(0,T ;H1(Ω)) +
3∑

k=0

‖Dh̄v̂k,ε‖L2(Q)

≤ C′
2(‖v‖L2(0,T ;H1(Ω)) + ‖(ẑε, v̂ε)‖L2(0,T ;H1(Ω))×L2(Q)), (5.25)

where the constant C′
2 > 0 is independent of h. Therefore

(∂x0∇x′ ẑε, ∂x0 v̂ε) ∈ L2(Q). (5.26)

Therefore the right hand side of equation (5.9) belongs to L2(0, T ;H−1(Ω)). Hence ẑε ∈ H2(Q). From (5.26)
and equation (5.10) we see that ∂x0pε ∈ H2(Q). The function p̃ε,i = ρi∂x0pε

K(D)p̃ε,i = −[ρi,m∂2
x0

− αΔx′∂2
x0

]∂x0pε + ρi∂x0(e
−sϕΔx′(ẑεe−sϕ))

−s2ρi∂x0(ẑεe
−2sϕ) in Q, (5.27)

∂�np̃ε,i|Σ = p̃ε,i|Σ = 0, (5.28)
p̃ε,1(0, ·) = ∂x0 p̃ε,1(0, ·) = 0, p̃ε,2(T, ·) = ∂x0 p̃ε,2(T, ·) = 0. (5.29)

The solution to the problem (5.27)–(5.29) satisfies p̃ε,i ∈ C(0, T ;H2
0 (Ω))∩C1(0, T ;H1

0 (Ω)) and is unique. Hence
∂2
x0
pε ∈ C(0, T ;H1

0 (Ω)). Since

e−sϕΔx′(ẑεe−sϕ) − s2e−2sϕẑε ∈ L2(0, T ;H−1(Ω))

Proposition 5.1 implies ∂2
�n∂x0pε ∈ L2(Σ). This implies ∂3

x0
pε ∈ L2(Q). Hence ∂x0pε ∈ H2(Q). Finally solving

the elliptic problem

K

α
Δ2
x′pε = Δx′∂2

x0
pε − m

α
∂2
x0
pε +

1
α

(e−sϕΔx′(ẑεe−sϕ) − s2ẑεe−2sϕ); pε|Σ = ∂�npε|Σ = 0

we obtain pε ∈ L2(0, T ;H3(Ω)). Hence pε ∈ H3(Q).
Note that assumption (3.13) for the function ϕ holds true if we replace the domainsQ, Qω by Q̃, [−δ, T+δ]×ω

respectively.
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Let χ1 ∈ C∞
0 (−δ, T + δ) be a cut-off function such that χ1|[− δ

2 ,T+ δ
2 ] = 1. Then

K(D)(χ1pε) = χ1f̃ − [χ1,K]pε in [−T, 2T ]× Ω, χ1pε|Σ = ∂�nχ1pε|Σ = 0, (5.30)

where supp [χ1,K]pε ⊂ ([T + δ
2 , T + δ] × Ω) ∪ ([−δ,− δ

2 ] × Ω). We will apply Carleman estimate (4.20) to
equation (5.30).

For this, we observe that

‖f̃esϕ‖L2(−δ,T+δ;(H1,s(Ω))∗) ≤ C3‖ẑεe−sϕ‖L2(0,T ;H1,s(Ω)), (5.31)

‖([χ1,K]pε)esϕ‖L2(−δ,T+δ;(H1,s(Ω))∗) ≤ C4
s ‖pεesϕ‖H2,s(Q). (5.32)

Next we prove that in the right hand side of (4.20) we can replace the second term Qω by the following integral∫
Qω

(
|∂x0∇v|2 + s2 |∇v|2 + s4|v|2

)
e2sϕdx.

Note that thanks to the choice of the extension of the function ϕ, we have

∫
(−δ,T+δ)×ω

(
2∑

k=0

|∂x0∂xk
(χ1pε)|2 + s2 |∇(χ1pε)|2 + s4|χ1pε|2

)
e2sϕdx

≤ C5

∫
Qω

(
2∑

k=0

|∂x0∂xk
pε|2 + s2 |∇pε|2 + s4|pε|2

)
e2sϕdx. (5.33)

In fact, let us denote the left and the right hand sides of (5.33) respectively by I1 and I2. For convenience,
let us denote

Φ(pε) =

(
2∑

k=0

|∂x0∂xk
pε|2 + s2 |∇pε|2 + s4|pε|2

)
,

so that I2 = C5

∫
Qω

Φ(pε)e2sϕdx. First, it is easy to see that

I1 ≤ C′
5

∫
(−δ,T+δ)×ω

Φ(pε)e2sϕdx.

On the other hand, since pε(x0, x
′) = pε(−x0, x

′), −δ ≤ x′ ≤ 0 by the extension, we have∫ 0

−δ

∫
ω

Φ(pε)e2sϕ(x0,x
′)dx0dx′ =

∫ δ

0

∫
ω

Φ(pε)e2sϕ(−x0,x
′)dx0dx′.

By (3.13), we have ∂x0ϕ(0, x′) > 0. Therefore, for all sufficiently small δ > 0, we obtain ∂x0ϕ(x) > 0 for all
x0 ∈ [−δ, δ]. This implies e2sϕ(−x0,x

′) ≤ e2sϕ(x0,x
′) for 0 < x0 < δ. Hence∫ δ

0

∫
ω

Φ(pε)e2sϕ(−x0,x
′)dx0dx′ ≤

∫ δ

0

∫
ω

Φ(pε)e2sϕ(x0,x
′)dx0dx′ ≤ I2.

We can similarly estimate
∫ T+δ

T

∫
ω Φ(pε)e2sϕdx0dx′. Thus the verification of (5.33) is complete.

Using equations (5.9), (5.10), (5.11) and estimate (5.33), (4.20) we obtain

‖pεesϕ‖2
H2,s(Q) ≤ C6J(ẑε, v̂ε) ∀s ≥ s0 (5.34)
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and
‖∂x0pεe

sϕ‖2
H2,s(Q) ≤ C6J(∂x0 ẑε, ∂x0 v̂ε) ∀s ≥ s0. (5.35)

Note that pε is the eligible test function for (5.4)(∑2
k=1 v̂k,ε, ∂

2
x0xk

pε

)
L2(Q)

+ (∇x′(vesϕ),∇x′(pεesϕ))L2(Q) + (v̂3,ε + s2ve2sϕ + ŵε, pε)L2(Q)

= (ẑε,K(D)pε)L2(Q) = −‖ẑεe−sϕ‖2
L2(0,T ;H1,s(Ω)).

Then we transform the left hand side of this inequality using (5.9), (5.10). We obtain

2Jε(ẑε, v̂ε, ŵε) = −
∫
Q

((∇x′(vesϕ),∇x′(esϕpε)) + s2ve2sϕpε)dx.

By (5.34), we obtain from this inequality that

sJε(ẑε, v̂ε, ŵε) ≤ C7‖vesϕ‖L2(0,T ;H1,s(Ω))J(ẑε, v̂ε)
1
2 . (5.36)

Passing to the limit in (5.24) as h→ 0 we have

2Jε (∂x0 ẑε, ∂x0 v̂ε, ∂x0ŵε) =
∫
Q

{(
−esϕΔx′(vesϕ) + s2ve2sϕ, ∂2

x2
0
pε

)
+ 2s∂x0ϕ (∂x0 ẑε, ẑε) e−2sϕ + 2s(∂x0 ẑε)mε

2∑
k=0

(∂x0 v̂k,ε, v̂k,ε) e−2sϕ +
2mε

s
∂x0ϕ (∂x0 v̂3,ε, v̂3,ε) e−2sϕ

}
dx.

This equality and (5.35), (5.36) implies

Jε (∂x0 ẑε, ∂x0 v̂ε, ∂x0ŵε) ≤ C8‖vesϕ‖L2(0,T ;H1,s(Ω))J (∂x0 ẑε, ∂x0 v̂ε)
1
2 . (5.37)

Taking the scalar product of (5.9) with ẑεe−2sϕ in L2(Q), we obtain

∫
Q

(
m((∂x0 + sϕx0)(ẑεe

−sϕ))2 +
2∑

k=1

α((∂xk
+ sϕxk

)(∂x0 + sϕx0)(ẑεe
−sϕ))2

)
dx

−K
∫
Q

2∑
k=1

((∂xk
+ sϕxk

)2(ẑεe−sϕ))2dx

=
∫
Q

(
2∑
k=0

v̂k,ε∂x0∂xk
(ẑεe−2sϕ) + (v̂3,ε − esϕΔx′(esϕv) + s2ve2sϕ + ŵε)ẑεe−2sϕ

)
dx.

From this equality and (5.37) we immediately obtain (5.12). The proof of Proposition 5.2 is complete. �

Now we finish the proof of Lemma 4.6. Obviously ŵε → 0 in L2(Q) and v̂εk
→ 0 in L2(Q \Qω) as ε → +0.

In terms of (5.37), from the sequence {(ẑε, v̂ε, pε)}, one can extract a subsequence {(ẑεk
, v̂εk

, pεk
)} such that

(ẑεk
, v̂εk

, pεk
) → (ẑ, v̂, p)

weakly in H2
0 (Q) × H1(Q) × L2(Q). (5.38)
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Thanks to (5.38), we can pass to the limit in (5.6)–(5.12), so that the element (ẑ, v̂0, p) satisfies the equations

K(D)p − e−sϕΔx′(e−sϕẑ) + s2e−2sϕẑ = 0 in Q,
∂�np|Σ = p|Σ = ẑ|Σ = ∂�nẑ|Σ = 0,

∂x0p(0, ·) = ∂x0p(T, ·) = ∂x0 ẑ(0, ·) = ∂x0 ẑ(T, ·) = 0,

K(D)ẑ =
2∑

k=0

∂2
x0xk

v̂k + v̂3 − esϕΔx′(esϕv) + s2ve2sϕ in Q,

∂2
x0xk

p+ v̂ke−2sϕ = 0, k = 0, 1, 2 p− v̂3
s2

e−2sϕ = 0 in Q,

where supp v̂j ⊂ Qω, j = 0, 1, 2, 3, v̂knk|∂ω\Γ = 0 k = 1, 2.

Estimate (4.64) follows from (5.13). Finally we note that Jε(ẑε, v̂ε, ŵε) ≤ J(z,v) for all ε ∈ (0, 1). Hence
J(ẑ, v̂) ≤ J(z,v), the element (ẑ, v̂) is a solution to extremal problem (4.55)–(4.57). Since a solution to this
problem is unique, we have (ẑ, v̂0) = (z, v0, v1, v2, v3). The proof of Lemma 4.6 is complete. �

References

[1] R. Dautray and J.-L. Lions (with collaboration of M. Artola, M. Cessenat, H. Lanchon), Mathematical Analysis and Numerical

Methods for Science and Technology, Volume 5: Evolution Problems I. Springer-Verlag (1992).
[2] R.A. DiTaranto, Theory of vibratory bending for elastic and viscoelastic layered finite-length beams. J. Appl. Mech. 32 (1965)

881–886.
[3] S.W. Hansen, Several related models for multilayer sandwich plates. Math. Models Methods Appl. Sci. 14 (2004) 1103–1132.
[4] S.W. Hansen, Semigroup well-posedness of a multilayer Mead-Markus plate with shear damping, in Control and Boundary

Analysis, Lect. Not. Pure Appl. Math. 240, Chapman & Hall/CRC, Boca Raton (2005) 243–256.
[5] S.W. Hansen and R. Rajaram, Riesz basis property and related results for a Rao-Nakra sandwich beam. Discrete Contin.

Dynam. Syst. Suppl. (2005) 365–375.
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