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OUTPUT FEEDBACK STABILIZATION OF A ONE-DIMENSIONAL
WAVE EQUATION WITH AN ARBITRARY TIME DELAY
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Abstract. The stabilization with time delay in observation or control represents difficult mathemat-
ical challenges in the control of distributed parameter systems. It is well-known that the stability
of closed-loop system achieved by some stabilizing output feedback laws may be destroyed by what-
ever small time delay there exists in observation. In this paper, we are concerned with a particularly
interesting case: Boundary output feedback stabilization of a one-dimensional wave equation system
for which the boundary observation suffers from an arbitrary long time delay. We use the observer
and predictor to solve the problem: The state is estimated in the time span where the observation is
available; and the state is predicted in the time interval where the observation is not available. It is
shown that the estimator/predictor based state feedback law stabilizes the delay system asymptoti-
cally or exponentially, respectively, relying on the initial data being non-smooth or smooth. Numerical
simulations are presented to illustrate the effect of the stabilizing controller.
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1. Introduction

In a practical control system, there is often a time delay between the controller to be implemented and
the information via the observation of the system. A general case occurs in sampled-data control systems.
Time delay may destroy the stability or cause periodic oscillations for a control system [9]. For distributed
parameter control systems, the stabilization with time delay in observation and control represents difficult
mathematical challenges ([8], p. 69). The first example of a one-dimensional wave equation with boundary
feedback in [4,6] illustrates that every small time delay in the known stabilizing boundary output feedback
schemes could destabilize the system. This interesting case was particularly mentioned in [8], on p. 69, and
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subsequently in [2,3,5]. When the time delay appears, re-designing a stabilizing controller becomes thereby
necessary. The difficulty to overcome in the time delay problem for elastic systems is that there are infinitely
many eigen-modes on the imaginary axis, which is in sharp contrast to parabolic systems. A general result
shown in [16] for a class of infinite-dimensional control systems is that if there is a time delay in the output,
the stabilization by the PI output feedback becomes defective or the stabilization is not robust to time delay.
However this does not mean that there is no stabilizing controller in the presence of time delay.

Recently, inspired by the works of [7,19], we solved successfully the stabilization of one dimensional wave
and beam equations with boundary control and non-collocated observation [12,14]. The generalization to multi-
dimensional systems is also available [11]. The idea behind is to use the infinite-dimensional observer to recover
the state. In the presence of time delay, we used in [13] the same idea for Euler-Bernoulli beam equation: The
state is estimated by the observer in the time span where the observation is available; and the state is predicted
in the time interval where the observation is not available. Unfortunately, the convergence is only proved for
smooth initial values in [13]. One of main objectives of this paper is to deal with the convergence of the scheme
for one-dimensional wave equation when the initial values are not smooth.

The system is described by the one-dimensional wave equation with boundary control and collocated obser-
vation with time delay: ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

wtt(x, t) − wxx(x, t) = 0, 0 < x < 1, t > 0,

w(0, t) = 0, wx(1, t) = u(t), t ≥ 0,

w(x, 0) = w0(x), wt(x, 0) = w1(x), 0 ≤ x ≤ 1,

y(t) = wt(1, t − τ), t ≥ τ,

(1.1)

where u is the control (or input), (w0, w1) is the unknown initial state, τ > 0 is a given arbitrary long constant
time delay, y is the observation (or output) which suffers delay time τ , that is to say, the information concerning
the initial condition is available only after time τ .

It is well-known that if the system (1.1) is free of time delay (i.e., τ = 0), the proportional output feedback
control law u(t) = −ky(t), k > 0, stabilizes exponentially the system. However, if there is a time delay τ > 0,
then the closed-loop system (1.1) by the output feedback law u(t) = −ky(t), k > 0, has at least one eigenvalue
with positive real part (see [4]) and so instability occurs. In other words, the proportional output feedback
stabilizing control law can not tolerate any time delay. The drawback of this feedback control law makes it
almost useless for present elastic system control theory or it is extremely dangerous in applications, because
usually there is a time delay from the received information to the implemented control. This problem has been
pointed out in [8], on p. 69, and the design of a stabilizing controller for the system (1.1) in presence of time
delay is the particularly interesting case raised there.

We proceed as follows. In the next section, Section 2, we show that the open-loop system is well-posed in
the sense of Salamon [1]. This seems necessary for the design of the observer. Section 3 is devoted to the design
of the observer. In Section 4, we design a stabilizing estimated state feedback control law and show that the
closed-loop system is asymptotically stable for non-smooth initial values and exponentially stable for smooth
values. Finally, some numerical simulations are presented in Section 5 to illustrate the convergence.

2. Well-posedness of open-loop system

Since the time delay is a dynamic system itself, which represents somehow a memory, we have to specify the
initial condition for the memory such that the system (1.1) can be determined. To do this, we introduce a new
variable [17]

z(x, t) = wt(1, t − τx).
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Then the system (1.1) becomes⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

wtt(x, t) − wxx(x, t) = 0, 0 < x < 1, t > 0,
w(0, t) = 0, wx(1, t) = u(t), t ≥ 0,
τzt(x, t) + zx(x, t) = 0, 0 < x < 1, t > 0,
z(0, t) = wt(1, t), t ≥ 0,
w(x, 0) = w0(x), wt(x, 0) = w1(x), z(x, 0) = z0(x), 0 ≤ x ≤ 1,
y(t) = z(1, t), t ≥ 0,

(2.1)

where z0 is the initial value of the new variable z.
With state variable (w(·, t), wt(·, t), z(·, t)), we consider the system (2.1) in the energy state space H =

H × L2(0, 1), where H = H1
L(0, 1) × L2(0, 1) and H1

L(0, 1) = {f | f ∈ H1(0, 1), f(0) = 0}. The norm of
(w(·, t), wt(·, t), z(·, t)) in H is defined by the system energy as follows

E(t) =
1
2
‖(w(·, t), wt(·, t), z(·, t))‖2

H =
1
2

∫ 1

0

[w2
x(x, t) + w2

t (x, t) + z2(x, t)]dx.

The norm of (w(·, t), wt(·, t)) in H is defined by

‖(w(·, t), wt(·, t))‖2
H =

∫ 1

0

[w2
x(x, t) + w2

t (x, t)]dx.

The input space and the output space are the same U = Y = C.
The first question is the well-posedness for the system (2.1) in the sense of Salamon. The question is to

know if the mapping from each pair of initial data and control input signal to the pair of state and the output
observation signal is continuous.

Theorem 2.1. The system (2.1) is well-posed: For any (w0, w1, z0) ∈ H and u ∈ L2
loc(0,∞), there exists

a unique solution to (2.1) such that (w(·, t), wt(·, t), z(·, t)) ∈ C(0,∞; H), and for each T > 0, there exists a
constant CT such that

‖(w(·, T ), wt(·, T ), z(·, T ))‖2 +
∫ T

0

y2(t)dt ≤ CT

[
‖(w0, w1, z0)‖2 +

∫ T

0

u2(t)dt

]
. (2.2)

Proof. It is well-known that the following system⎧⎨⎩
wtt(x, t) − wxx(x, t) = 0, 0 < x < 1, t > 0,
w(0, t) = 0, wx(1, t) = u(t), t ≥ 0,
yw(t) = wt(1, t), t ≥ 0

(2.3)

can be written as a second-order system in H [10]:{
wtt(·, t) + Aw(·, t) + Bu(t) = 0,
yw(t) = −B∗wt(·, t), (2.4)

where
Af = −f ′′, ∀ f ∈ D(A) = {f ∈ H2(0, 1) ∩ H1

L(0, 1) | f ′(1) = 0}, B = −δ(x − 1), (2.5)
and δ(·) denotes the Dirac distribution. A has eigen-pairs {λn = (n − 1/2π)i, ϕn = sin(n − 1/2)πx}n∈Z. Since
|bn| = |〈B∗, sin(n − 1/2)πx〉| = 1 for any n ∈ Z, it follows from Proposition 2 of [10] that B is an admissible
input operator [21]. A direct computation shows that the transfer function of (2.3) is

H(s) =
es − e−s

es + e−s
, ∀ Re(s) > 0,
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which is bounded on some open right half complex plane. Hence the system (2.3) is well-posed in the sense
of Salamon [1], that is to say, for any u ∈ L2

loc(0,∞) and (w0, w1) ∈ H, there exists a unique solution
(w(·, t), wt(·, t)) ∈ C(0,∞;H) to (2.3). Moreover, for any T > 0, there exists a constant DT such that

‖(w(·, T ), wt(·, T ))‖2
H +

∫ T

0

|yw(t)|2dt ≤ DT

[
‖(w0, w1)‖2

H +
∫ T

0

|u(t)|2dt

]
. (2.6)

This together with the analytic expression of the “z” part solution which is obtained by integrating along the
characteristic line

z(x, t) =

⎧⎪⎪⎨⎪⎪⎩
z0

(
x − t

τ

)
, x ≥ t

τ
,

wt (1, t − xτ) , x <
t

τ
,

(2.7)

gives the required result. Since it involves only simple calculations and we omit the details here. �

3. Observer design

The well-posedness for system (2.1) claimed in previous section tells us that the L2
loc(0,∞) input of the

system produces L2
loc(0,∞) output. This point is particularly important in the design of the observer because

in observer, the output of the system becomes the input of the observer.
We go back to system (1.1). For any given t > τ , the output signal {y(s)|s ∈ [τ, t]} is known. We proceed

two steps by designing observer and predictor to recover the state of the system (1.1).

Step 1: Construct the observer to estimate the state {(w(x, s), ws(x, s)), s ∈ [0, t − τ ]} from the known
observation {y(s + τ)|s ∈ [0, t − τ ], t > τ}.

Since the observation {y(s+τ), s ∈ [0, t−τ ]} has been known and {(w(x, s), ws(x, s)), s ∈ [0, t−τ ]} satisfies⎧⎪⎪⎨⎪⎪⎩
wss(x, s) − wxx(x, s) = 0, 0 < x < 1, 0 < s < t − τ, t > τ,
w(0, s) = 0, 0 ≤ s ≤ t − τ, t > τ,
wx(1, s) = u(s), 0 ≤ s ≤ t − τ, t > τ,
w(x, 0) = w0(x), ws(x, 0) = w1(x), 0 ≤ x ≤ 1,

(3.1)

we can construct naturally the observer for the system (3.1) by the principle of “copy of the plant and injection
of the output”: ⎧⎪⎪⎨⎪⎪⎩

ŵss(x, s) − ŵxx(x, s) = 0, 0 < x < 1, 0 < s < t − τ, t > τ,
ŵ(0, s) = 0, 0 ≤ s ≤ t − τ,
ŵx(1, s) = u(s) − k1 [ŵs(1, s) − y(s + τ)] , 0 ≤ s ≤ t − τ, t > τ, k1 > 0,
ŵ(x, 0) = ŵ0(x), ŵs(x, 0) = ŵ1(x), 0 ≤ x ≤ 1,

(3.2)

where (ŵ0, ŵ1) is an arbitrary initial state of the observer. We first fix the solvability of the observer (3.2).

Proposition 3.1. The system (3.2) is well-posed: For any t > τ , (w0, w1) ∈ H, (ŵ0, ŵ1) ∈ H, and u ∈
L2

loc(0,∞), there exists a unique solution to (3.2) such that (ŵ(·, s), ŵs(·, s)) ∈ C(0, t− τ ;H). Moreover, for any
0 < T ≤ t − τ , there exist positive constants ĈT , C̃T such that

‖(ŵ(·, T ), ŵs(·, T ))‖2
H ≤ ĈT

[
‖(ŵ0, ŵ1)‖2

H +
∫ T+τ

τ

y2(s)ds +
∫ T

0

u2(s)ds

]

≤ C̃T

[
‖(w0, w1)‖2

H + ‖(ŵ0, ŵ1)‖2
H +

∫ T

0

u2(s)ds

]
.



26 B.-Z. GUO ET AL.

Proof. Firstly, notice that (3.2) can be written as

ŵss(·, s) + Aŵ(·, s) + k1BB∗ŵs(·, s) + B[u(s) + k1y(s + τ)] = 0, ∀ 0 < s < t − τ, t > τ, (3.3)

where A, B are defined in (2.5). By Corollary 1 of [10], (3.3) is well-posed, that is, for any (ŵ0, ŵ1) ∈ H,
u(·) ∈ L2

loc(0,∞), y(·+ τ) ∈ L2(0, t− τ) which is assured by Theorem 2.1, there exists a unique solution to (3.3)
such that (ŵ(·, s), ŵs(·, s)) ∈ C(0, t − τ ;H). Moreover, for any 0 < T ≤ t − τ , there exists a constant Ĉ1T such
that

‖(ŵ(·, T ), ŵs(·, T ))‖2
H ≤ Ĉ1T

[
‖(ŵ0, ŵ1)‖2

H +
∫ T+τ

τ

y2(s)ds +
∫ T

0

u2(s)ds

]
. (3.4)

This is the first inequality required. The second inequality follows from the first inequality and (2.6) that∫ T+τ

τ

|y(s)|2ds ≤ DT

[
‖(w0, w1)‖2

H +
∫ T

0

|u(t)|2dt

]
.

The proof is complete. �
In order for (3.2) to be an observer for (3.1), we have to show its convergence. To do this, let

ε(x, s) = ŵ(x, s) − w(x, s), 0 ≤ s ≤ t − τ. (3.5)

Then by (3.1), (3.2) and (2.7), ε satisfies⎧⎪⎪⎨⎪⎪⎩
εss(x, s) − εxx(x, s) = 0, 0 < x < 1, 0 < s < t − τ, t > τ,
ε(0, s) = 0, 0 ≤ s ≤ t − τ, t > τ,
εx(1, s) = −k1εs(1, s), 0 ≤ s ≤ t − τ, t > τ,
ε(x, 0) = ŵ0(x) − w0(x), εs(x, 0) = ŵ1(x) − w1(x), 0 ≤ x ≤ 1.

(3.6)

System (3.6) can be written as:

d
ds

(
ε(x, s)
εs(x, s)

)
= Ak1

(
ε(x, s)
εs(x, s)

)
, (3.7)

where the operator Ak1 is defined as follows:{ Ak1(f, g)� = (g, f ′′)�,

D(Ak1 ) = {(f, g)� ∈ (H2(0, 1) ∩ H1
L(0, 1)) × H1

L(0, 1)|f ′(1) = −k1g(1)}.
(3.8)

It is well-known that Ak1 generates an exponential stable C0-semigroup on H, which satisfies

‖eAk1 t‖ ≤ Me−ωt, ∀ t ≥ 0 (3.9)

for some positive constants M, ω. Hence, for any (w0, w1) ∈ H, (ŵ0, ŵ1) ∈ H, there exists a unique solution
to (3.6) which satisfies

‖(ε(·, s), εs(·, s))‖H ≤ Me−ωs‖(ŵ0 − w0, ŵ1 − w1)‖H, ∀ s ∈ [0, t − τ ], t > τ. (3.10)

Therefore, (3.2) is indeed an observer for (3.1).

Step 2: Predict {(w(x, s), ws(x, s)), s ∈ (t − τ, t]} by {(ŵ(x, s), ŵs(x, s)), s ∈ [0, t − τ ]}.
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This is done by solving (1.1) in [t − τ, t] with estimated initial value (ŵ(x, t − τ), ŵs(x, t − τ)) obtained
from (3.2): ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ŵt
ss(x, s) − ŵt

xx(x, s) = 0, 0 < x < 1, t − τ < s < t, t > τ,

ŵt(0, s) = 0, t − τ ≤ s ≤ t, t > τ,

ŵt
x(1, s) = u(s), t − τ ≤ s ≤ t, t > τ,

ŵt(x, t − τ) = ŵ(x, t − τ), ŵt
s(x, t − τ) = ŵs(x, t − τ), 0 ≤ x ≤ 1, t > τ.

(3.11)

By Theorem 2.1, system (3.11) is well-posed: For any t > τ and u ∈ L2(t − τ, t), there exists a unique so-
lution to (3.11) such that (ŵt(·, s), ŵt

t(·, s)) ∈ C(t − τ, t;H). Moreover, for any s ∈ [t − τ, t], there exists a
constant Ĉt,s such that

‖(ŵt(·, s), ŵt
s(·, s))‖2

H ≤ Ĉt,s

[
‖(ŵ(·, t − τ), ŵs(·, t − τ))‖2

H +
∫ t

t−τ

|u(s)|2ds

]
.

This together with Proposition 3.1 leads to the well-posedness of (3.11).

Proposition 3.2. The system (3.11) is well-posed: For any t > τ , (w0, w1) ∈ H, (ŵ0, ŵ1) ∈ H, and u ∈
L2(t − τ, t), there exists a unique solution to (3.11) such that

(ŵt(·, s), ŵt
s(·, s)) ∈ C([t − τ, t];H).

Moreover, for any s ∈ (t − τ, t], there exists a constant Ct,s such that

‖(ŵt(·, s), ŵt
s(·, s))‖2

H ≤ Ct,s

[
‖(w0, w1)‖2

H + ‖(ŵ0, ŵ1)‖2
H +

∫ t

0

u2(s)ds

]
.

We finally get the estimated state variable:

w̃(x, t) = ŵt(x, t), w̃t(x, t) = ŵt
s(x, t), ∀ t > τ. (3.12)

Theorem 3.1. For any t > τ , we have

‖(w(·, t) − w̃(·, t), wt(·, t) − w̃t(·, t))‖H ≤ Me−ω(t−τ)‖(ŵ0 − w0, ŵ1 − w1)‖H, (3.13)

where (ŵ0, ŵ1) is the initial state of the observer (3.2), (w0, w1) is the initial state of the original system (1.1),
and the positive constants M, ω are given in (3.10).

Proof. Let
εt(x, s) = ŵt(x, s) − w(x, s), t − τ ≤ s ≤ t. (3.14)

Then εt(x, s) satisfies⎧⎪⎪⎨⎪⎪⎩
εt

ss(x, s) − εt
xx(x, s) = 0, 0 < x < 1, t − τ < s ≤ t, t > τ,

εt(0, s) = 0, t − τ ≤ s ≤ t, t > τ,
εt

x(1, s) = 0, t − τ ≤ s ≤ t, t > τ,

εt(x, t − τ) = ε(x, t − τ), εt
s(x, t − τ) = εt(x, t − τ), 0 ≤ x ≤ 1, t > τ,

(3.15)

which is a conservative system

‖(εt(·, t), εt
s(·, t))‖H = ‖(ε(·, t − τ), εt(·, t − τ))‖H. (3.16)

This together with (3.10) and (3.12) gives (3.13). �
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4. Stabilization by the estimated state feedback

Since u(t) = −k2wt(1, t) stabilizes exponentially the system (1.1), and due to (3.12) and Theorem 3.1, the
estimation w̃t(1, t) of wt(1, t) has been obtained, we naturally design the observer/predictor based state feedback
control law as follows:

u∗(t) =
{ −k2w̃t(1, t) = −k2ŵ

t
s(1, t), t > τ,

0, 0 ≤ t ≤ τ.
(4.1)

By applying this control law the closed-loop system becomes a system of partial differential equations (4.2)–(4.4):⎧⎨⎩
wtt(x, t) − wxx(x, t) = 0, 0 < x < 1, t > τ,
w(0, t) = 0, t > τ,
wx(1, t) = −k2ŵ

t
s(1, t), t > τ,

(4.2)

⎧⎪⎪⎨⎪⎪⎩
ŵss(x, s) − ŵxx(x, s) = 0, 0 < x < 1, 0 < s < t − τ, t > τ,
ŵ(0, s) = 0, 0 ≤ s ≤ t − τ, t > τ,
ŵx(1, s) = u∗(s) − k1 [ŵs(1, s) − wt(1, s)] , 0 ≤ s ≤ t − τ, t > τ, k1 > 0,
ŵ(x, 0) = ŵ0(x), ŵs(x, 0) = ŵ1(x), 0 ≤ x ≤ 1,

(4.3)

⎧⎪⎪⎨⎪⎪⎩
ŵt

ss(x, s) − ŵt
xx(x, s) = 0, 0 < x < 1, t − τ < s < t, t > τ,

ŵt(0, s) = 0, t − τ ≤ s ≤ t, t > τ,
ŵt

x(1, s) = u∗(s), t − τ ≤ s ≤ t, t > τ,

ŵt(x, t − τ) = ŵ(x, t − τ), ŵt
s(x, t − τ) = ŵs(x, t − τ), 0 ≤ x ≤ 1, t > τ.

(4.4)

We consider the closed-loop system (4.2)–(4.4) in the state space X = H3. Obviously the system (4.2)–(4.4)
is equivalent to the following (4.5)–(4.7) for t > τ (see also Rem. 4.1 below)⎧⎨⎩

wtt(x, t) − wxx(x, t) = 0, 0 < x < 1, t > τ,
w(0, t) = 0, t > τ,
wx(1, t) = −k2wt(1, t) − k2ε

t
s(1, t), t > τ,

(4.5)

⎧⎪⎪⎨⎪⎪⎩
εss(x, s) − εxx(x, s) = 0, 0 < x < 1, 0 < s < t − τ, t > τ,
ε(0, s) = 0, 0 ≤ s ≤ t − τ, t > τ,
εx(1, s) = −k1εs(1, s), 0 ≤ s ≤ t − τ, t > τ,
ε(x, 0) = ŵ0(x) − w0(x), εs(x, 0) = ŵ1(x) − w1(x), 0 ≤ x ≤ 1,

(4.6)

⎧⎪⎪⎨⎪⎪⎩
εt

ss(x, s) − εt
xx(x, s) = 0, 0 < x < 1, t − τ < s < t, t > τ,

εt(0, s) = 0, t − τ ≤ s ≤ t, t > τ,
εt

x(1, s) = 0, t − τ ≤ s ≤ t, t > τ,

εt(x, t − τ) = ε(x, t − τ), εt
s(x, t − τ) = εs(x, t − τ), 0 ≤ x ≤ 1, t > τ,

(4.7)

where ε(x, s) and εt(x, s) are given by (3.5) and (3.14), respectively.

Theorem 4.1. Let k1 > 0, k2 > 0 and t > τ . Then for any (w0, w1) ∈ H, (ŵ0, ŵ1) ∈ H, there exists a unique
solution to system (4.5)–(4.7) such that (w(·, t), wt(·, t)) ∈ C([τ,∞);H), (ε(·, s), εs(·, s)) ∈ C([0, t − τ ];H),
(εt(·, s), εt

s(·, s)) ∈ C([t − τ, t]× [τ,∞);H). Moreover, for any t > τ , s ∈ [0, t− τ ] and q ∈ (t− τ, t], there exists
a constant Ctsq > 0 such that

‖(w(·, t), wt(·, t))‖H + ‖(ε(·, s), εs(·, s))‖H + ‖(εt(·, q), εt
s(·, q))‖H ≤ Ctsq[‖(w0, w1)‖H + ‖(ŵ0, ŵ1)‖H].

Proof. Firstly, since the operator Ak1 defined by (3.8) generates a C0-semigroup on H, for any (w0, w1) ∈ H,
(ŵ0, ŵ1) ∈ H, there is a unique solution (ε(·, s), εs(·, s)) ∈ C([0, t − τ ];H) to (4.6) such that (3.10) holds true.



STABILIZATION OF WAVE EQUATION WITH TIME DELAY 29

Next, for any given time t > τ , since (4.7) is a classical one-dimensional wave equation in (x, s), for any
(ε(·, t − τ), εt(·, t − τ)) ∈ H that is guaranteed by (3.10), there exists a unique solution to (4.7) such that

‖(εt(·, s), εt
s(·, s))‖H = ‖(ε(·, t − τ), εt(·, t − τ))‖H, ∀ s ∈ [t − τ, t]. (4.8)

Hence (εt(·, s), εt
s(·, s)) ∈ C([t − τ, t] × [t,∞); H). Now we consider the well-posedness of (4.5).

For brevity in notation, let us consider the following wave equation:⎧⎨⎩
pξξ(x, ξ) − pxx(x, ξ) = 0, 0 < x < 1, t − τ < ξ < ∞,
p(0, ξ) = px(1, ξ) = 0, t − τ ≤ ξ ≤ t,
p(x, t − τ) = ε(x, t − τ), pξ(x, t − τ) = εs(x, t − τ), 0 ≤ x ≤ 1.

(4.9)

Then
εt

s(1, t) = pξ(1, t). (4.10)
Denote by

f̂(x, s) =
∫ ∞

t−τ

e−sρf(x, ρ)dρ (4.11)

the Laplace transform of the classical (or distribution) function f(x, ξ) where x is regarded as a parameter.
Take Laplace transform to the first equation of (4.9) and take the initial conditions into account, to obtain⎧⎨⎩

d2p̂(x, s)
dx2

− s2p̂(x, s) = −s ε(x, t − τ) − ερ(x, t − τ),

p̂(0, s) = p̂x(1, s) = 0.

(4.12)

The solution to (4.12) is found to be

p̂(x, s) =
sinh(sx)
s cosh(s)

∫ 1

0

[s ε(η, t − τ) + ερ(η, t − τ)] cosh(s(1 − η))dη

−1
s

∫ x

0

[s ε(η, t − τ) + ερ(η, t − τ)] sinh(s(x − η))dη.

(4.13)

By using p̂ξ(x, s) = s p̂(x, s) − ε(x, t − τ) and (4.13), a simple computation gives us

p̂ξ(1, s) =
∫ 1

0

[s ε(η, t − τ) + ερ(η, t − τ)]
sinh(sη)
cosh(s)

dη − ε(1, t − τ)

=
∫ 1

0

ερ(η, t − τ)
sinh(sη)
cosh(s)

dη +
1

cosh(s)

∫ 1

0

ε(η, t − τ) d cosh(sη) − ε(1, t − τ)

=
∫ 1

0

ερ(η, t − τ)
sinh(sη)
cosh(s)

dη −
∫ 1

0

εx(η, t − τ)
cosh(sη)
cosh(s)

dη.

(4.14)

Using the inverse Laplace transform formulae in [18], on p. 288, we have, for k = 0, 1, . . ., that

pξ(1, t) =

⎧⎪⎪⎨⎪⎪⎩
−εx(4k + 1 − τ, t − τ) + ερ(4k + 1 − τ, t − τ) 4k ≤ τ < 4k + 1,
−εx(τ − 4k − 1, t − τ) + ερ(τ − 4k − 1, t − τ) 4k + 1 ≤ τ < 4k + 2,
−εx(4k + 3 − τ, t − τ) + ερ(4k + 3 − τ, t − τ) 4k + 2 ≤ τ < 4k + 3,
−εx(τ − 4k − 3, t − τ) + ερ(τ − 4k − 3, t − τ) 4k + 3 ≤ τ < 4k + 4.

(4.15)
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We only treat the case of 4k ≤ τ < 4k + 1 since other cases can be treated similarly. Let 4k ≤ τ < 4k + 1.
Then 0 < 4k + 1 − τ ≤ 1. Let

ρ(s) =
∫ 4k+1−τ

0

xεx(x, s)εs(x, s)dx, ∀ s ∈ [0, t− τ ].

Then it is easy to see that |ρ(s)| ≤ 1
2‖(ε(·, s), εs(·, s))‖2

H, and

ρ̇(s) =
4k + 1 − τ

2
[
ε2

s(4k + 1 − τ, s) + ε2
x(4k + 1 − τ, s)

] − 1
2

∫ 4k+1−τ

0

[ε2
x(x, s) + ε2

s(x, s)]dx.

Integrate above over [0, T ] for any T > 0 to give

4k + 1 − τ

2

∫ T

0

[
ε2

s(4k + 1 − τ, t) + ε2
x(4k + 1 − τ, t)

]
dt = ρ(T ) − ρ(0)

+
1
2

∫ T

0

∫ 4k+1−τ

0

[ε2
x(x, t) + ε2

s(x, t)]dxdt, ∀ T > 0. (4.16)

Using (4.16) and (3.10), we can easily get the following inequality∫ ∞

0

[ε2
x(4k + 1 − τ, t) + ε2

s(4k + 1 − τ, t)]dt ≤ 2ω + M2

(4k + 1 − τ)ω
‖(ε(·, 0), εs(·, 0))‖2

H

=
2ω + M2

(4k + 1 − τ)ω
‖(ŵ0 − w0, ŵ1 − w1)‖2

H.

(4.17)

This together with (4.10) and (4.15) shows that∫ ∞

t

εt
s
2(1, ρ)dρ ≤ 2(2ω + M2)

(4k + 1 − τ)ω
‖(ŵ0 − w0, ŵ1 − w1)‖2

H, ∀ t > τ. (4.18)

Now, since (4.5) can be written as

wtt(·, t) + Aw(·, t) + k2BB∗wt(·, t) − k2Bεt
s(1, t) = 0 for all t > τ, (4.19)

where A, B are defined in (2.4). Similarly to (3.3), (4.19) is well-posed: For any t > τ , there exists a unique
solution to (4.19) in H, and there exist constants C′

t > 0, C′′
t > 0 such that

‖(w(·, t), wt(·, t))‖2
H ≤ C′

t

[
‖(w(·, τ), wt(·, τ))‖2

H +
∫ t

τ

εt
s
2(1, t)dt

]
= C′

t

[
‖(w0, w1)‖2

H +
∫ t

τ

εt
s
2(1, t)dt

]
.

(4.20)

This together with (4.8), (4.18) and (3.10) gives the required result. �
Remark 4.1. Rigorously, the equivalence of (4.2)–(4.4) and (4.5)–(4.7) requires the control u∗(t) = −k2wt(1, t)−
k2ε

t
s(1, t), t > τ defined by (4.1) belongs to L2

loc(τ,∞). This can be simply proved by defining

G(t) =
1
2

∫ 1

0

[w2
t (x, t) + w2

x(x, t)]dx.



STABILIZATION OF WAVE EQUATION WITH TIME DELAY 31

Then we can consider only for the classical solution of (4.5). The reason is the same as in the proof of Lemma A.1
in Appendix,

Ġ(t) = −k2w
2
t (1, t) − k2wt(1, t)εt

s(1, t).
Integrate above over [τ, T ] for any T > τ to give

k2

∫ T

τ

w2
t (1, t)dt = −k2

∫ T

τ

wt(1, t)εt
s(1, t)dt − G(T ) + G(τ),

and hence
k2

2

∫ T

τ

w2
t (1, t)dt ≤ k2

2

∫ T

τ

εt
s
2(1, t)dt − G(T ) + G(τ).

This together with (4.18) and (4.20) shows that u∗(t) ∈ L2
loc(0,∞).

Finally, we are in a position to show the convergence of the system (4.5).

Theorem 4.2. Let k1 > 0 and let k2 > 0. Then for any initial conditions (w0, w1) ∈ H and (ŵ0, ŵ1) ∈ H, the
solution of (4.5) satisfies

lim
t→∞ ‖(w(·, t), wt(·, t))‖H = 0.

Furthermore, if (w0, w1) ∈ H and (ŵ0, ŵ1) ∈ H satisfy

(w0 − ŵ0, w1 − ŵ1) ∈ D(Ak1),

where Ak1 is defined by (3.8), then there are some positive constants M2 > 0 and ω2 > 0 such that the solution
of (4.5) satisfies

‖(w(·, t), wt(·, t))‖H ≤ M2e−ω2(t−τ)‖Ak1(w0 − ŵ0, w1 − ŵ1)‖H, ∀ t > τ. (4.21)

Proof. The first part follows directly from (i) of Proposition A.1 in Appendix. As in the proof of Theorem 4.1,
we only consider the case of 4k ≤ τ < 4k +1. If (ε(·, 0), εs(·, 0))� ∈ D(Ak1), where Ak1 is defined by (3.8), then
by (3.9)

‖Ak1e
Ak1s(ε(·, 0), εs(·, 0))�‖H ≤ Me−ωs‖Ak1(ε(·, 0), εs(·, 0))�‖H, ∀ s ≥ 0,

that is, ∫ 1

0

[ε2
xx(x, s) + ε2

xs(x, s)]dx ≤ Me−ωs

∫ 1

0

[ε2
xx(x, 0) + ε2

xs(x, 0)]dx, ∀ s ≥ 0. (4.22)

Since εs(0, s) = 0, it is easy to prove the following inequalities:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ε2

s(4k + 1 − τ, s) ≤
∫ 4k+1−τ

0

ε2
xs(x, s)dx, k−2

1 ε2
x(1, s) = ε2

s(1, s) ≤
∫ 1

0

ε2
xs(x, s)dx,

ε2
x(4k + 1 − τ, s) =

∣∣∣∣∣εx(1, s) +
∫ 4k+1−τ

1

εxx(x, s)dx

∣∣∣∣∣
2

≤ 2
∫ 1

0

[ε2
xs(x, s) + ε2

xx(x, s)]dx.

(4.23)

Set now f(s) = εs(1, s, s). By (4.10), (4.15), (4.22), (4.23), (ii) of Proposition A.1 in Appendix, and the
definition of D(Ak1 ), we prove the second part of the required result. �
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Figure 1. Displacement and velocity with time delay τ = 0.5.
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Figure 2. Displacement with time delay τ = 0.5 disturbed by θ = 0.1.

5. Simulation results

In this section, we give some numerical simulation results for the closed loop systems (4.5)–(4.7). We use
the backward Euler method in the time domain and the Chebyshev spectral method in space domain. The
numerical results are produced by Matlab program [20].

The basic idea of the numerical scheme is as follows. Firstly, the second order equations in time are trans-
formed into a system of two first order equations. Secondly, the boundary conditions are implemented in an
explicit way. In the numerical scheme, the space grid size N = 40 and dt = 10−4 time step are used. The
parameters are taken to be τ = 0.5, k1 = k2 = 1. The initial conditions are

w0(x) = −x, w1(x) =
x

k2
, ŵ0(x) = ŵ1(x) = 0, ∀ x ∈ [0, 1]. (5.24)

The time span is [0, 4.5]. It is seen from Figure 1 that both the string displacement and the velocity are almost
at rest after t = 4.

Finally, we point out that our scheme is also not robust to small time delay as the general output PI feedbacks
in [16]. In Figure 2, we use grid size N = 40; time step dt = 10−4; parameters τ = 1.0, k1 = k2 = 1; and the
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same initial conditions (5.24) to get the displacement where the time delay is disturbed by θ = 0.1. It is seen
that the displacement is not convergent anymore. This phenomena coincides with [13] for beam equation. The
big difference with [13] is that we are able to show the convergence for non-smooth initial values. The scheme
is certainly applicable to multi-dimensional PDEs and we believe that the same convergence is also true in that
case.

A. Appendix: The solution decay rate of the nonhomogeneous wave equation

Consider the boundary nonhomogeneous wave equation⎧⎨⎩
wss(x, s) − wxx(x, s) = 0, 0 < x < 1, s > t ≥ 0,
w(0, s) = 0, s ≥ t,
wx(1, s) = −kws(1, s) + f(s), s ≥ t, k > 0,

(A.25)

in the space H = H1
L(0, 1) × L2(0, 1), H1

L(0, 1) = {f | f ∈ H1(0, 1), f(0) = 0}.
Proposition A.1. (i) Suppose f ∈ L2(t,∞). Then for any initial value w(·, t), ws(·, t) ∈ H, the solution
of (A.25) decays asymptotically to 0 as s goes to infinity:

lim
s→∞ ‖(w(·, s), ws(·, s))‖H = 0.

(ii) Suppose e�sf(s) ∈ L2(t,∞), t ≥ 0 for some  > 0. Then the solution of (A.25) decays exponentially to 0
in H as follows

‖(w(·, s), ws(·, s))‖H ≤ Cte−αs
[
‖(w(·, t), ws(·, t))‖H + ‖eα·f(·)‖L2(t,∞)

]
, ∀ s ≥ t

for some constants Ct > 0, α > 0 independent of s.

Proof. (i) As (4.19), (A.25) can be written as

wss(·, s) + Aw(·, s) + kBB∗ws(·, s) + Bf(s) = 0 for all s > t, (A.26)

where A, B are defined in (2.4). Write (A.26) further as

d
ds

(
w(·, s)
ws(·, s)

)
= Ak

(
w(·, s)
ws(·, s)

)
+ B

(
0

f(s)

)
(A.27)

where

Ak =
(

0 I
−A −kBB∗

)
, B =

(
0
B

)
.

By Proposition 4.2.10 of [21], on p. 120, for any (w(·, t), ws(·, t)) ∈ D(Ak), f ∈ H1
loc(t,∞), f(t) = 0, (A.25)

admits a unique classical solution.
For any (w(·, t), ws(·, t)) ∈ H, f ∈ L2(t,∞) and given ε > 0, find the (w̃(·, t), w̃s(·, t)) ∈ D(Ãk), f̃ ∈

H1
loc(t,∞), f̃(t) = 0 such that

‖(w̃(·, t), w̃s(·, t)) − (w(·, t), ws(·, t))‖H ≤ ε, ‖f̃ − f‖L2(t,∞) ≤ ε.

By the well-known facts on (A.26) mentioned in previous sections, Ak and B satisfies assumptions (H.1)–(H.4)
of Theorem 7.4.1.1 of [15], on p. 653. By (7.4.1.3) of Theorem 7.4.1.1 of [15], on p. 654, with ε = 0, we have

‖(w̃(·, s), w̃s(·, s)) − (w(·, s), ws(·, s))‖H ≤ Ct[‖(w̃(·, t), w̃s(·, t)) − (w(·, t), ws(·, t))‖H
+ ‖f̃ − f‖L2(t,∞)] ≤ 2Ctε, ∀ s ≥ t,
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where Ct is a constant independent of ε and (w̃(·, s), w̃s(·, s)) is the solution of (A.25) with f replaced by f̃ .
Therefore, in order to prove (i), we need only consider the classical solution of (A.25).

Now for small δ > 0, define the Lyapunov function

F (s) =
1
2

∫ 1

0

[w2
s(x, s) + w2

x(x, s)]dx + δ

∫ 1

0

xwx(x, s)ws(x, s)dx.

Then we have

Ḟ (s) = −kw2
s(1, s) + f(s)ws(1, s) +

δ

2
w2

s(1, s) +
δ

2
w2

x(1, s) − δ

2

∫ 1

0

[w2
s(x, s) + w2

x(x, s)]dx

≤ −δ0F (s) + C0f
2(s)

for some positive constant δ0, C0 as long as δ small enough. Hence

F (s) ≤ e−δ0(s−t)F (t) + C0

∫ s

t

e−δ0(s−τ)f2(τ)dτ.

Since f(s) ∈ L2(t,∞), for any given ε > 0, take s sufficiently large so that s− t > s/2 and C0

∫ s

s/2 f2(τ)dτ < ε.
Then

F (s) ≤ e−δ0(s−t)F (t) + C0

∫ s

t

e−δ0(s−τ)f2(τ)dτ ≤ e−δ0(s−t)F (t) + C0

∫ s/2

t

e−δ0(s−τ)f2(τ)dτ + ε

≤ e−δ0(s−t)F (t) + C0e−δs/2

∫ ∞

t

f2(τ)dτ + ε.

Therefore
lim sup

s→∞
F (s) ≤ ε.

Since ε is arbitrary chosen, (i) is proved.
Next, we prove (ii). It is well-known that Ak generates an exponential stable C0-semigroup:

‖eAks‖ ≤ M1e−ω1s, ∀ s ≥ 0

for some M1 > 0, ω1 > 0. Suppose 0 < α < min{, ω1} and let

Y (s) = eαs(w(·, s), ws(·, s))�.

Then
d
ds

Y (s) = (Ak + α)Y (s) + B(0, eαsf(s))�.

Again, Ak + α and B satisfies assumptions (H.1)–(H.4) of Theorem 7.4.1.1 of [15], on p. 653. Apply (7.4.1.3) of
Theorem 7.4.1.1 of [15], on p. 654, with ε = 0, to obtain

‖Y (s)‖H ≤ Ct[‖(w(·, t), ws(·, t))‖H + ‖eα·f‖L2(t,∞)], ∀ s ≥ t,

for some Ct > 0. Therefore,

‖(w(·, s), ws(·, s))‖H ≤ Cte−αs[‖(w(·, t), ws(·, t))‖H + ‖eα·f‖L2(t,∞)], ∀ s ≥ t.

This is the required result. �
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Remark A.1. It should be pointed out that (7.4.1.3) of Theorem 7.4.1.1 of [15], on p. 654, and (7.6.2.8)
of Theorem 7.6.2.2 of [15], on p. 665, are valid only for ε = 0. When ε > 0, both results are wrong. An
counter-example can be constructed as

ẋ(t) = −x(t) + u(t), x(0) = 1.

Take u(t) =
t

(1 + t)2
∈ L2(0,∞). Then

x(t) = e−t +
∫ t

0

e−(t−s)u(s)ds = e−t + [Lu](t) =
1

1 + t
·

This shows that (7.4.1.3) of Theorem 7.4.1.1 of [15], on p. 654, is wrong with ε > 0.
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	Introduction
	Well-posedness of open-loop system
	Observer design
	Stabilization by the estimated state feedback
	Simulation results
	Appendix: The solution decay rate of the nonhomogeneous wave equation
	References

