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STABILIZATION OF WALLS FOR NANO-WIRES OF FINITE LENGTH

Gilles Carbou1 and Stéphane Labbé2

Abstract. In this paper we study a one dimensional model of ferromagnetic nano-wires of finite
length. First we justify the model by Γ-convergence arguments. Furthermore we prove the existence of
wall profiles. These walls being unstable, we stabilize them by the mean of an applied magnetic field.

Mathematics Subject Classification. 35B35, 35K55.

Received March 30, 2009. Revised March 24, 2010 and September 27, 2010.
Published online December 2, 2010.

1. Introduction

This paper is concerned with stabilization of wall configurations in a mono-dimensional model of finite length
nanowire. This kind of object can be found in nano electronic devices. The three dimensional model is the
following (see [2,11,20]). We denote by m : R

+ ×Ω −→ R
3 the magnetic moment, defined on the ferromagnetic

domain Ω. We assume that the material is saturated, so that m satisfies the constraint:

for almost every (t, X) ∈ R
+ × Ω, |m(t, X)| = 1.

The magnetic moment links the magnetic induction B with the magnetic field H by the relation B = H + m̄,
where m̄ is the extension of m by zero outside Ω. The behavior of m is governed by the Landau-Lifschitz
equation: ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂m

∂t
= −m ∧ He − m ∧ (m ∧ He),

He = A2Δm + Hd(m) + Ha,

∂m

∂n
= 0 on ∂Ω,

(1.1)

where
• A2 is the exchange constant, depending on the material;
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• the demagnetizing field Hd(m) is characterized by

curl Hd(m) = 0 and div (Hd(m) + m̄) = 0 in R
3. (1.2)

We remark that −Hd(m) is the orthogonal projection of m̄ (for the L2 inner product) onto the curl free
vector fields, so that

‖Hd(m)‖L2(R3) ≤ ‖m‖L2(Ω);

• Ha is an applied magnetic field;
• n is the outward unit normal on ∂Ω.

The effective field is derived from the micromagnetism energy: He = −∂mEmic with

Emic(m) =
A2

2

∫
Ω

|∇m|2 dX +
1
2

∫
R3

|Hd(m)|2 dX −
∫

Ω

Ha · m dX.

Existence of weak solutions for (1.1) is established in [5,14,19]. Existence of strong solutions is proved in [6,7].
Numerical simulations are performed in [15]. For thin domains, equivalent 2-d models are justified in [1,4,10,16].
For nanowires, 1-d models are discussed in [8,9,13,17].

In this paper we deal with ferromagnetic nanowires. We assume that the wire is a cylinder of length 2L and
radius η. Taking the limit by Γ-convergence arguments when η tends to zero, we obtain an asymptotic one
dimensional model (see Sect. 2).

After renormalization, the one dimensional wire is assimilated to the segment ]− L
A
√

2
, L

A
√

2
[ e1, where (e1, e2, e3)

is the canonical basis of R
3. The magnetic moment m is then defined on R

+
t × ]− L

A
√

2
, L

A
√

2
[. The equivalent

demagnetizing field (after renormalization) is given by

hd(m) = −m2e2 − m3e3,

i.e. −hd is the orthogonal projection onto the plane orthogonal to the wire. In addition we assume that we
apply a magnetic field in the direction of the wire axis, and we denote by ha its renormalized intensity. Therefore
we deal with the following system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂m

∂t
= −m ∧ He − m ∧ (m ∧ He),

He =
∂2m

∂x2
− m2e2 − m3e3 + hae1,

∂m

∂x

(
t,− L

A
√

2

)
=

∂m

∂x

(
t,

L

A
√

2

)
= 0,

with m : R
+
t × ]− L

A
√

2
, L

A
√

2
[ −→ R

3, |m| = 1,

(1.3)

associated to the energy

E(m) =
∫ L/A

√
2

−L/A
√

2

(
1
2
|∂xm|2 +

1
2
(|m2|2 + |m3|2) − ham1

)
dx.
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In [8,9], we studied a similar model of infinite nanowire. After renormalization, the model was the following:
the wire is assimilated to the real axis Re1, and the one dimensional Landau-Lifschitz equation is in this case:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂m

∂t
= −m ∧ He − m ∧ (m ∧ He),

He =
∂2m

∂x2
− m2e2 − m3e3 + hae1,

with m : R
+
t × Rx −→ R

3, |m| = 1.

(1.4)

This system is invariant by translation in the x variable and by rotation around the wire axis, that is, if m is
a solution of (1.4), then for σ and τ in R, (t, x) 	→ ρτ (m(t, x − σ)) is another solution of (1.4), where ρτ is the
rotation of angle τ around the e1 axis:

ρτ =

⎛⎝ 1 0 0
0 cos τ − sin τ
0 sin τ cos τ

⎞⎠ .

We dealt with wall configurations for this model, that is solutions separating a left hand side domain where the
magnetization is closed to −e1 to a right hand side domain where the magnetization is closed to +e1. Such
solutions are described by rotations and translations of the canonical profile x 	→ (th x, 1/chx, 0). In [8,9], we
proved the asymptotic stability and the controllability for these configurations.

Here, in the case of a finite wire, the situation is quite different.

Definition 1.1. We call canonical wall profile a static solution for (1.3) of the form M0 = (sin θ0, cos θ0, 0) such
that θ0 : [− L

A
√

2
, L

A
√

2
] −→ [−π/2, π/2] is a non decreasing map satisfying θ0(− L

A
√

2
) < 0 < θ0( L

A
√

2
).

In the following theorem, we claim that the wall profiles exist if and only if the wire is long enough compared
to the exchange length:

Theorem 1.2. There exists a canonical wall profile if and only if L
A
√

2
> π/2. This profile is unique and is

centered in the middle of the wire, that is θ0(0) = 0. In addition, θ0 is odd.

Remark 1.1. In the infinite wire case, the corresponding canonical profiles are obtained taking θ0(x) =
Arcsin th x, and all its translation in the x variable (because of the invariance of (1.4) by translation). In the
finite wire case, we only have invariance by rotation, and we loose the invariance by translation, so we have
only one canonical profile.

Concerning the stability, we obtained in [8] the stability of the wall profile. In that case, the invariance
by rotation-translation induces that 0 is a double eigenvalue of the linearized version of (1.4) around the wall
profile. In the finite wire case, the lack of invariance by translation induces that the linearized version of (1.3)
around the canonical profile has one negative eigenvalue, and therefore we can prove that the wall profile given
by Theorem 1.2 is unstable.

Theorem 1.3. Assume that L
A
√

2
> π/2. Let θ0 given by Theorem 1.2. The static solution M0 = (sin θ0, cos θ0, 0)

in linearly unstable for the Landau-Lifschitz equation (1.3) with ha = 0.

Remark 1.2. This phenomenon was expected. Let us consider a small translation of the centered wall. Without
energetic cost, the Landau-Lifschitz equation induces then a displacement of the wall and pushes it outside the
wire. Then the magnetic moment tends to +π/2 or −π/2 (i.e. the minimizers of the ferromagnetism energy E).
In the case of an infinite wire, obviously, this translation cannot make the wall disappear, and we have stability.

We prove now a stabilization result. We control the system by an applied field parallel to the wire axis.
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Figure 1. Domain Ωη.

Theorem 1.4. Let L and A as in Theorem 1.2, and let M0 = (sin θ0, cos θ0, 0) be the canonical profile given by
this theorem. We consider the following control:

h(m(t, .)) =

[
− A√

2L

∫ L
A

√
2

− L
A

√
2

m1(t, s)ds

]
.

Then M0 is stable for the Landau Lifschitz equation controlled with the applied field ha = h(m).

Remark 1.3. The control given here is quite natural: for example when the wall is translated to the right
hand side, then the average of the profile first component is negative and our applied field he1 (with h > 0)
pushes the wall to the left hand side.

The paper is organized as follows. In Section 2 we justify the one dimensional model by Γ-convergence
arguments. In Section 3 we prove the existence of a canonical wall profile. We address the unstability of
this profile in Section 4 by linearization of the Landau-Lifschitz equation. The last section is devoted to the
stabilization of the wall by a convenient applied magnetic field.

2. modelization

In this section, we address the justification of the one dimensional model by Γ convergence arguments.
At the beginning we deal with the three-dimensional static case. The finite 3d wire is the cylinder Ωη =

]−L, L[×B2(0, η), where Bd(X, r) is the ball of radius r and center X in R
d. We assume that we apply on the

wire a magnetic field in the direction e1: Ha = hae1, where ha ∈ R. See Figure 1.
The micromagnetism energy on Ωη is given by

Eη(v) =
A2

2

∫
Ωη

|∇v|2 dX +
1
2

∫
R3

|Hd(v)|2 dX − ha

∫
Ωη

v · e1 dX for v ∈ H1(Ωη; S2).

The static configurations satisfy the minimization problem:

⎧⎨⎩
find u in H1(Ωη; S2) such that

Eη(u) = minv∈H1(Ωη ;S2) Eη(v).
(2.1)
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In order to work with a fixed domain, we introduce the following rescaling: for v ∈ H1(Ωη; S2), we define
v ∈ H1(Ω1; S2) by

v(x, y, z) = v(x, ηy, ηz).
In addition, for v ∈ H1(Ω1; S2), we denote by Hη

d (v) the rescaled demagnetizing field:

Hη
d (v)(x, y, z) = Hd(v)(x, ηy, ηz),

where v ∈ H1(Ωη; S2) is deduced from v by v(x, y, z) = v(x, y/η, z/η).

We deal with the rescaled energy defined for v ∈ H1(Ω1; S2) by Eη(v) = 1
η2 Eη(v):

Eη(v) =
A2

2

∫
Ω1

(
|∂xv|2 +

1
η2

|∂yv|2 +
1
η2

|∂zv|2
)

dX +
1
2

∫
R3

|Hη
d (v)|2 dX − ha

∫
Ω1

v · e1 dX

and the problem (2.1) is rescaled in the following equivalent problem:⎧⎨⎩
find u in H1(Ω1; S2) such that

Eη(u) = minv∈H1(Ω1;S2) Eη(v).
(2.2)

Proposition 2.1. For all (vη)η∈R
+
∗

in H1(Ω1; S2), sequence of minimizers of (2.2), (Eη(vη))η∈R
+
∗

is a bounded
sequence of R.

Proof. Let (vη)η∈R
+
∗

be a sequence of minimizers of (2.2) in H1(Ω1; S2). We denote by vη the rescaled of vη:
vη(x, y, z) = vη(x, y/η, z/η).

In order to exhibit an upper bound for Eη(vη), we write:

∀η ∈ R
+
∗ , Eη(vη) ≤ Eη(e1),

then
Eη(vη) ≤ −2haη2πL + 1

2

∫
R3 |Hd(e1)|2 dX

≤ 2η2Lπ(1 − ha).
Then, the lower bound is obtained by canceling the positive contributions of the energy and maximizing the
external contribution:

−η22haπL ≤ Eη(vη).
So, we can conclude

−2haπL ≤ Eη(vη) ≤ 2Lπ(1 − ha). �

We introduce the limit energy: we define H1(Ω1; S2) by

H1(Ω1; S2) = {u ∈ H1(Ω1; S2), ∂yu = ∂zu = 0}.

For v ∈ H1(Ω1; S2), we set:

E(v) =
A2

2

∫
Ω1

|∂xv|2 dX +
1
4

∫
Ω1

(|v2|2 + |v3|2
)

dX − ha

∫
Ω1

v · e1 dX

=
A2π

2

∫
]−L,L[

|∂xv|2dx +
π

4

∫
]−L,L[

(|v2|2 + |v3|2
)
dx − πha

∫
]−L,L[

v · e1dx.
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The limit minimization problem is given by:

⎧⎨⎩
find u in H1(Ω1, S

2) such that

E(u) = minv∈H1(Ω1,S2) E(v).
(2.3)

The main result of this section is the following:

Theorem 2.1. Eη Γ-converges to E in sense of H1(Ω1; R3) weak, it is to say:

(i) (lower semi continuity) for all sequence (vη)η∈R
+
∗ of H1(Ω1; S2) such that vη ⇀ v0 in H1(Ω1; R3) weakly

when η → 0, and (Eη(vη))η∈R
+
∗

is bounded, then the limit v0 is an element of H1(Ω1; S2) such that:

lim inf
η→0

Eη(vη) ≥ E(v0);

(ii) (reconstruction) for all u0 ∈ H1(Ω1; S2), there exists (vη)η∈R
+
∗ , sequence of H1(Ω1; S2), such that:

lim
η→0

vη = u0,

and

lim sup
η→0

Eη(vη) ≤ E(u0).

Proof. (i) Lower semi-continuity. Let (vη)η be a sequence in H1(Ω1;S2) such that vη tends to v in H1(Ω1)
weak and such that there exists c such that for all η

Eη(vη) ≤ c. (2.4)

Extracting a subsequence, we can assume that vη tends to v almost everywhere, so |v| = 1 a.e.

Using (2.4), we remark that since
∣∣∣∫Ω1

vηe1

∣∣∣ ≤ meas(Ω1),

‖∂yvη‖2
L2(Ω1) + ‖∂zvη‖2

L2(Ω1) ≤ Cη2,

so ∂yv = ∂zv = 0, that is

v ∈ H1(Ω1; S2).

From straightforward arguments,

A2

2

∫
Ω1

|∂xv|2 dX − ha

∫
Ω1

v · e1 dX

≤ lim inf

(
A2

2

∫
Ω1

(
|∂xvη|2 +

1
η2

|∂yvη|2 +
1
η2

|∂zvη|2
)

dX − ha

∫
Ω1

vη · e1 dX

)
.
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Concerning the demagnetizing field, the sequence (Hη
d (vη))η is bounded in L2(R3). Indeed, we denote by vη

the rescaled of vη: vη(x, y, z) = vη(x, y/η, z/η). We have

‖Hη
d (vη)‖L2(R3) =

1
η
‖Hd(vη)‖L2(R3) (by change of variable in the integral)

≤ 1
η
‖vη‖L2(R3) (since −Hd is an orthogonal projection in L2)

≤ 1
η
(2Lπη2)

1
2 (since |vη| = 1)

≤ √
2π L.

So, up to the extraction of a subsequence, we can assume that Hη
d (vη) ⇀ H for the weak topology in L2(R3).

We denote the coordinates of Hη
d (vη) and those of H by:

Hη
d (vη) =

⎛⎜⎜⎜⎜⎝
h1

η

h2
η

h3
η

⎞⎟⎟⎟⎟⎠ and H =

⎛⎜⎜⎜⎜⎝
h1

h2

h3

⎞⎟⎟⎟⎟⎠ .

Writing (1.2) in the rescaled coordinates, we obtain first that

η∂x(h1
η + v1

η) + ∂y(h2
η + v2

η) + ∂z(h3
η + v3

η) = 0,

so taking the weak limit, we have:
∂y(h2 + v2) + ∂z(h3 + v3) = 0. (2.5)

In addition, from the curl free condition, we obtain that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂yh3

η − ∂zh
2
η = 0

η∂xh2
η − ∂yh1

η = 0

η∂xh3
η − ∂zh

1
η = 0,

so, taking the weak limit we get

∂yh1 = ∂zh
1 = 0 so h1 = 0, since h1 ∈ L2(R3),

and
∂yh3 − ∂zh

2 = 0.

So H is deduced from v by the relations:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂y(h2 + v2) + ∂z(h3 + v3) = 0,

∂yh3 − ∂zh
2 = 0,

h1 = 0,



8 G. CARBOU AND S. LABBÉ

that is for a fixed x, H(x, ·) is defined from v(x, ·) by the 2-d demagnetizing field. In the following lemma we
calculate the 2-d demagnetizing field induced by a constantly magnetized 2-d disk.

Lemma 2.2. Let ξ = (ξ2, ξ3) ∈ R
2 be a fixed vector. Let V = (V 2, V 3) ∈ L2(R2; R2) such that{

curl 2DV := ∂yV 3 − ∂zV
2 = 0,

div 2D(V + ξ) := ∂y(V 2 + ξ2) + ∂z(V 3 + ξ3) = 0,

where ξ(y, z) = ξχB(0,1)(y, z) (we denote by χB(0,1) the characteristic function of B(0, 1)). Then

V (y, z) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−1

2
ξ if (y, z) ∈ B2(0, 1),

1
2

1
(y2 + z2)2

⎛⎝ ξ2(y2 − z2) + 2ξ3yz

−ξ3(y2 − z2) − 2ξ2yz

⎞⎠ if (y, z) /∈ B2(0, 1),

(2.6)

and ∫
R2

|V |2 dydz =
π

2
|ξ|2.

Proof. We have (see [3] or [14]), for X = (y, z) ∈ R
2:

V (X) =
1
2π

∫
Y ∈∂B2(0,1)

X − Y

|X − Y |2 ξ · ν(Y )dσ(Y ),

where ν is the unit normal on ∂B2(0, 1).
Using complex notations, we write V (X) = V 2(X) + iV 3(X), X = y + iz, ξ = ξ2 + iξ3 and we have:

V (X) =
1

2iπ

∫
z∈C(0,1)

ξ + w2ξ

2Xw
(
w − 1

X

)dw.

If |X | < 1, the only pole is 0, and by the residue formula, V (X) = − 1
2ξ. If |X | > 1, there are two poles, 0

and 1/X̄, and we obtain V (X) = 1
2

ξ̄
X̄2 which is equivalent to (2.6).

In addition, by a direct calculation, we obtain that:∫
R2

|V (y, z)|2 dydz =
π

2
|ξ|2. �

We apply the previous lemma to calculate the weak limit H :

H(x, y, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1
2

⎛⎝ 0
v2(x)
v3(x)

⎞⎠ if (y, z) ∈ B2(0, 1),

1
2

1
(y2 + z2)2

⎛⎝ 0
v2(x)(y2 − z2) − 2v3(x)yz
−v3(y2 − z2) − 2v2yz

⎞⎠ if (y, z) /∈ B2(0, 1),

and by a direct calculation, ∫
R3

|H(x, y, z)|2dxdydz =
π

2

∫
R

(|v2(x)|2 + |v3(x)|2)dx.
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We remark now that since −Hd is an orthogonal projection for the L2 inner product,∫
R3

|Hη
d (vη)|2 dX = −

∫
Ω1

Hη
d (vη) · vη dX.

Thus we can take the limit in this integral, and we obtain that:∫
R3

|Hη
d (vη)|2 dX −→ −

∫
Ω1

H · v dX =
∫

R3
|H |2 dX.

So, in fact, Hη
d (vη) tends to H strongly in L2(R3), and we obtain that

π

4

∫
R

(|v2(x)|2 + |v3(x)|2)dx = lim inf
1
2

∫
R3

|Hη
d (vη)|2 dX.

Therefore,
E(v) ≤ lim inf Eη(vη).

(ii) Reconstruction. Let u0 ∈ H1(Ω1; S2). For η > 0, we define uη = u0. Then,

Eη(uη) =
A2

2

∫
Ω1

|∂xu0|2 dX +
1
2

∫
R3

|Hη
d (u0)|2 dX − ha

∫
Ω1

u0 · e1 dX.

As in the previous step, we have:

1
2

∫
R3

|Hη
d (u0)|2 dX −→ π

4

∫
Ω1

(|u2
0|2 + |u3

0|2) dX,

that is
Eη(uη) −→ E(u0). �

This theorem gives the behavior of minimizers for the one dimensional limit case: the limit energy, for
u ∈ H1(]−L, L[; S2) is then E(u) = E(u · χB2(0,1)):

E(u) =
πA2

2

∫
]−L,L[

∣∣∣∣∣du

dx

∣∣∣∣∣
2

dx +
π

4

∫
]−L,L[

(|u2|2 + |u3|2) dx − haπ

∫
]−L,L[

v · e1 dx,

then, in order to find out the effective field, we write (see [11]):

He = −dE
du

,

it is to say

He = πA2 ∂2u

∂x2
− π

2
(u2 e2 + u3 e3) + πha e1.

The boundary conditions for the minimizers are:

∂u

∂x
= 0 at x = −L and x = L,

since we minimize the energy without Dirichlet boundary conditions.
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Then, the limit dynamic system is obtain using the Landau Lifschitz combined with the new effective field He.

We perform the following rescaling in time t′ = π
2 t and in space x′ = x/A

√
2, we denote by h′

a = 2ha the
rescaled applied field. The resulting rescaled system is then given by (1.3) as we expected.

3. Existence of canonical wall profiles

In this section we are interested in characterizing equilibrium states of the magnetization in a finite nano-wire
when h = 0, it is to say when there is no external magnetic field. The constant stable solutions are those equal
to −e1 or e1, since the demagnetizing field behaves like a Re1 easy axes anisotropic field. We are interested in
profiles describing one wall connecting a left hand side −e1 domain to a right hand side e1 domain. So, a priori,
we look for solutions which can be written as: ⎛⎝ sin θ0

cos θ0 cos τ
cos θ0 sin τ

⎞⎠
where θ0 is a non decreasing map from

]
− L

A
√

2
, L

A
√

2

[
into R satisfying θ0

(
− L

A
√

2

)
< 0 < θ0

(
L

A
√

2

)
. If we write

the energy of such a profile, we obtain:

E(θ0, τ) =
1
2

∫ − L
A

√
2

− L
A

√
2

(|θ′0|2 + |τ ′|2 cos2 θ0

)
+

1
2

∫ − L
A

√
2

− L
A

√
2

| cos2 θ0|2.

So in order to decrease the energy, we obtain minimizing walls assuming that τ ′ = 0, that is for constant τ .
Without loss of generality (by rotational invariance), we assume that τ = 0. Therefore, we look for wall profiles
which can be written as follows:

M0(x) =

⎛⎝sin θ0

cos θ0

0

⎞⎠ , ∀x ∈
]
− L

A
√

2
,

L

A
√

2

[
,

where θ0 is a non decreasing map from
]
− L

A
√

2
, L

A
√

2

[
into R satisfying θ0

(
− L

A
√

2

)
< 0 < θ0

(
L

A
√

2

)
, and such

that M0 is a stationary solution to (1.3). In fact, we want M0 to verify:

−M0 ∧ He − M0 ∧ (M0 ∧ He) = 0, ∀x ∈
]
− L

A
√

2
,

L

A
√

2

[
,

with

He =
∂2M0

∂x2
− cos θ0 e2,

then, one has the following relation

− θ′′0 − sin θ0 cos θ0 = 0, ∀x ∈
]
− L

A
√

2
,

L

A
√

2

[
, (3.1)

with on the boundary

θ′0

(
− L

A
√

2

)
= θ′0

(
L

A
√

2

)
= 0. (3.2)
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Setting γ0 = θ0( L
A
√

2
) (γ0 is supposed to be non negative, that is we look for a non decreasing solution θ0),

we have, integrating the equation (3.1) and using (3.2):

(θ′0)
2 + sin2 θ0 = sin2 γ0. (3.3)

The length of the nano-wire has to be such that the function θ0 goes from −γ0 to γ0. From formula (3.3), we
deduce the length:

�(γ0) =
∫ γ0

−γ0

dθ√
sin2 γ0 − sin2 θ

·

Using the length expression computed above, we prove now Theorem 1.2.

Proof. In order to ensure the existence of an equilibrium state as defined above, we must verify that there exists

γ0 ∈ ]0, π/2[ such that �(γ0) = 2
L

A
√

2
(the case γ0 = π/2 corresponds to the constant solution M2 = −e1, which

does not describe a wall). First of all, one has

�(γ0) = 2
∫ 1

0

γ0√
sin2 γ0 − sin2 uγ0

du,

we then see that
lim

γ0→π
2

�(γ0) = +∞.

Let us prove that � is a non decreasing map. We denote by

F (γ, u) =
γ

(sin2 γ − sin2 uγ)
1
2

so that

�(γ) = 2
∫ 1

0

F (γ, u)du.

For u ∈ [0, 1[, we have
∂F

∂γ
=

1
(sin2 γ − sin2 uγ)

3
2

(g(γ) − g(uγ))

with g(τ) = sin τ(sin τ − τ cos τ).
We remark that for τ ∈ [0, π/2], τ 	→ sin τ is increasing, τ 	→ −τ cos τ is increasing, and (sin τ − τ cos τ)

remains non negative, so g is an increasing map on [0, π/2]. Hence for γ ∈ [0, π/2] and for u ∈ [0, 1[, g(γ)−g(uγ)
is non negative, therefore for u ∈ [0, 1[, γ 	→ F (γ, u) is non decreasing, that is � is strictly increasing on ]0, π

2 ].
Then, the comparison could be done at the limit γ0 = 0:

lim
γ0→0

�(γ0) = lim
γ0→0

∫ 1

−1

γ0

sinγ0

du√
1 − sin2(u γ0)

sin2 γ0

=
∫ 1

−1

du√
1 − u2

= π,

then, we require that 2
L

A
√

2
> π. �

Remark 3.1. In the case of nanowires, in order to describe a wall, the magnetization must point out the
domain so we are in presence of a Bloch type wall (see [18]).
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4. Linear unstability of canonical wall profiles without applied field

Let us consider L, A and θ0 > 0 given by Theorem 1.2. We denote by M0 the canonical wall profile

M0(x) =

⎛⎝sin θ0(x)
cos θ0(x)

0

⎞⎠ .

This profile is a static solution to (1.3) with ha = 0. We aim to calculate the linearized equation of (1.3)
around M0. In order to calculate this linearization taking into account that we are only interested in the
perturbations of M0 satisfying the constraint |m| = 1, we describe the small perturbations of M0 as follows:

m(t, x) = r1 M1 + r2 M2 +
√

1 − r2
1 − r2

2 M0,

where the mobile frame (M0(x), M1(x), M2) is given by

M0(x) =

⎛⎝sin θ0(x)
cos θ0(x)

0

⎞⎠ , M1(x) =

⎛⎝− cos θ0(x)
sin θ0(x)

0

⎞⎠ , M2(x) =

⎛⎝0
0
1

⎞⎠ , (4.1)

for x ∈ ]− L
A
√

2
, L

A
√

2
[.

The new unknown is now r = (r1, r2) taking its values into R
2 and the profile M0 corresponds to r = 0. We

rewrite the Landau-Lifschitz system (1.3) in the unknown r and we linearize this new equation around r = 0.
In the new unknowns, the effective field writes:

He = g0M0 + (2θ′0∂xr1 + r1θ
′′
0 − cos θ0 sin θ0 r1)M0

+ (∂xxr1 + cos2 γ0r1)M1 + ∂xxr2M2 + non linear terms

where
g0 = sin2 θ0 − (θ′0)

2. (4.2)
After tedious calculations, we obtain the following linearized equation:

∂tr = J

(
(L − cos2 γ0)r1

Lr2

)
,

with

• J =
(−1 −1

1 −1

)
;

• γ0 = θ0(L/A
√

2);
• Lri = −∂xxri + g0ri, where g0 is given by (4.2).

The linear unstability of the wall structure computed in the previous section is given by the study of the
operator L.

Proposition 4.1. L is a linear, positive operator. Its first eigenvalue, 0, is associated to the eigenfunction
cos θ0 and its second eigenvalue, 1, is associated to the eigenfunction sin θ0.

Proof. We set: f = θ′0 tan θ0, then
L = �∗�, where � = ∂x + f,

then, we can conclude that L is a positive operator and that cos θ0 is in the kernel of L. Thus 0 is the first
eigenvalue of L and Ker L = R cos θ0.
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Furthermore, we have:

L(sin θ0) = sin θ0,

it is to say that 1 is an eigenvalue of L associated to the eigenfunction sin θ0. In addition we remark that sin θ0

vanishes once in the domain, so by Sturm-Liouville theorem, 1 is the second eigenvalue of L. �

We can now prove Theorem 1.3.

Proof. We first remark that by definition of the canonical profile, then γ0 < π/2. Indeed γ0 = π/2 should imply
that θ0 is constant equal to π/2 and does not satisfy the condition θ0(−L/

√
2A) < 0. This case corresponds to

the case M0 ≡ e1, which is a stable (but constant) configuration.
From the previous proposition, since − cos2 γ0 < 0, we conclude that L − cos2 γ0 has one strictly negative

eigenvalue, then, zero is unstable for the linearized of (1.3) around M0. �

5. Stabilization of walls

Now, we discuss the stabilization of M0 by the command Ha (the applied field). We recall that we introduced
the following command:

ha = ha(m) =
−A√
2L

∫ L
A

√
2

− L
A

√
2

m1(t, s) ds.

We want to prove that the profile M0 is a stable stationary solution for the following system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂m

∂t
= −m ∧ He − m ∧ (m ∧ He),

∂m

∂x

(
− L

A
√

2

)
=

∂m

∂x

(
L

A
√

2

)
= 0,

He =
∂2m

∂x2
− m2 e2 − m3 e3 + ha(m) e1.

(5.1)

Proof. To start with, let us introduce the wall canonical profile M0 = (sin θ0, cos θ0, 0) given in Theorem 1.2.
We recall that

θ′′0 + sin θ0 cos θ0 = 0,

θ′
(
− L

A
√

2

)
= θ′

(
L

A
√

2

)
= 0.

Furthermore, on
[
− L

A
√

2
, L

A
√

2

]
,

cos2 θ0 − (θ′0)
2 = cos2 γ0,

where γ0 = θ0( L
A
√

2
). In addition, we remark that θ0 is an odd map.

Since ha(M0) = 0 (as θ0 is odd), we remark that M0 is a stationary solution of (5.1).
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5.1. First step: moving frame

As in the previous section, in the spirit of [8], we will describe the problem in the moving frame

(M0(x), M1(x), M2),

given by (4.1).
We write the solutions to (5.1) as:

m(t, x) = M0(x) + r1(t, x)M1(x) + r2(t, x)M2 + ν(r(t, x))M0(x)

where ν(r) =
√

1 − r2
1 − r2

2 − 1. In this moving frame, we get

He = (g0 + a0)M0 + (a1 + ã1)M1 + a2M2

with
g0 = sin2 θ0 − (θ′0)

2

a0 = 2θ′0∂xr1 + r1θ
′′
0 − cos θ0 sin θ0 r1 + ∂xxν − ν(θ′0)

2 + ν sin2 θ0 + h(r) sin θ0,

a1 = ∂xxr1 + cos2 γ0r1 − S(r1) cos θ0,

ã1 = −2∂xνθ′0 − ϕ(r) cos θ0,

a2 = ∂xxr2,

where

S(r1) =
A√
2L

∫ L
A

√
2

− L
A

√
2

r1 cos θ0 ds, ϕ(r) = − A√
2L

∫ L
A

√
2

− L
A

√
2

ν(r) sin θ0 ds,

and h(r) = S(r1) + ϕ(r).

Using these coordinates in the Landau-Lifschitz equation (3.2) and projecting on M1 and M2 yield:

∂tr = Λr + F (x, r, ∂xr, ∂xxr), (5.2)

where

Λr =
(−1 −1

1 −1

)(L̃1(r1)
L(r2)

)
with

L = −∂xx + g0,

L̃1 = L − cos2 γ0 + cos θ0S,

and where the non linear part F is given by

F (x, r, ∂xr, ∂xxr) = F1(r)∂xxr + F2(r)(∂xr, ∂xr) + F3(x, r)∂xr + F4(r) + F5(r),
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with
• F1 ∈ C∞(R2;M2(R)):

F1(r) =

⎛⎝ (r2)2 + (ν(r))2 + 2ν(r) ν(r) − r1r2

r1r2 − ν(r) (r1)2 + (ν(r))2 + 2ν(r)

⎞⎠

+

⎛⎝ −r1 − r2 − ν(r)r1

r1 − r2 − ν(r)r2

⎞⎠ ν′(r);

• F2 ∈ C∞(R2;L2(R2; R2)):

F2(r)(∂xr, ∂xr) =

⎛⎝ −r1 − r2 − ν(r)r1

r1 − r2 − ν(r)r2

⎞⎠ ν′′(r)(∂xr, ∂xr);

• F3 ∈ C∞
([

− L
A
√

2
, L

A
√

2

]
× R

2;L(R2; R2)
)
:

F3(x, r)∂xr = 2θ′0(x)

⎛⎝ −r1 − r2 − ν(r)r1

r1 − r2 − ν(r)r2

⎞⎠ ∂xr1

− 2θ′0(x)

⎛⎝ (r2)2 + (ν(r))2 + 2ν(r) + 1

r1r2 − ν(r) − 1

⎞⎠ ν′(r)(∂xr);

• F4(r) ∈ C∞
([

− L
A
√

2
, L

A
√

2

]
× R

2; R2
)
:

F4(r) = (cos2 γ0 r1)

⎛⎝ (r2)2 + (ν(r))2 + 2ν(r)

r1r2 − ν(r)

⎞⎠− g0ν(r)

⎛⎝ r1

r2

⎞⎠

+ ((θ′′0 − cos θ0 sin θ0)r1 + g0ν(r))

⎛⎝ −r1 − r2 − ν(r)r1

r1 − r2 − ν(r)r2

⎞⎠ ;

• F5 is given by

F5(r) = − h(r) cos θ0

⎛⎝ (r2)2 + (ν(r))2 + 2ν(r)

r1r2 − ν(r)

⎞⎠− ϕ(r) cos θ0

⎛⎝ 1

−1

⎞⎠

+ h(r) sin θ0

⎛⎝ −r1 − r2 − ν(r)r1

r1 − r2 − ν(r)r2

⎞⎠ .

Remark 5.1. The command h makes the linear part of (5.2) positive. Indeed, on one hand, we know that
L ≥ 0 with Ker L = R cos θ0. On the other hand, L̃1 = L+ cos θ0S − cos2 γ0. On R cos θ0, L̃1 cos θ0 = α0 cos θ0
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with

α0 =
A√
2L

∫ L
A

√
2

− L
A

√
2

cos2 θ0(x)dx − cos2 γ0 > 0 (5.3)

since for x ∈ ]− L
A
√

2
, L

A
√

2
[, cos2 θ0(x) > cos2 γ0, and on (R cos θ0)⊥,

L̃1|(cos θ0)⊥ = L − cos2 γ0 ≥ 1 − cos2 γ0

since L ≥ 1 on (R cos θ0)⊥ (see Prop. 4.1).

5.2. Second step

5.2.1. New unknown

The Landau Lifschitz equation (1.3) is invariant by rotation around the wire axis, so we can build a one
parameter family of static solutions for (5.2).

For τ ∈ R let us introduce the rotation around the x-axis given by

ρτ =

⎛⎝ 1 0 0
0 cos τ − sin τ
0 sin τ cos τ

⎞⎠ .

We denote Mτ (x) = ρτM0(x), and Rτ its projection on the moving frame:

Rτ (x) =
(

Mτ (x).M1(x)
Mτ (x).M2(x)

)
=

(
cos θ0(x) sin θ0(x)(cos τ − 1)

cos θ0(x) sin τ

)
.

Since Mτ is solution to (5.1), Rτ is a static solution of (5.2), that is

ΛRθ + F (x, Rθ, ∂xRθ, ∂xxRθ) = 0. (5.4)

Now in order to avoid the problems due to the zero eigenvalue of Λ, we describe r in the new coordinates
(τ, σ, W ) defined by

r(t, x) = Rτ(t)(x) + σ(t)
(

cos θ0(x)
0

)
+ W (t, x), (5.5)

where (τ, σ) ∈ C1(R+; R2) and W ∈ C1(R+; H2) such that both coordinates of W are in (R cos θ0)⊥.
Indeed, as in [12], we can prove that for a given r ∈ H2(− L

A
√

2
, L

A
√

2
) in a neighbourhood of 0, there exists a

unique (τ, σ, W ) ∈ R × R ×W such that

ρ = Rθ + σ

(
cos θ0

0

)
+ W,

where W is the set of the W =
(

W1

W2

)
∈ H2 satisfying the homogeneous Neumann Boundary condition

∂W

∂x

(
− L

A
√

2

)
=

∂W

∂x

(
L

A
√

2

)
= 0 and the orthogonality condition:

∫ L
A

√
2

− L
A

√
2

W1(x) cos θ0(x)dx =
∫ L

A
√

2

− L
A

√
2

W2(x) cos θ0(x)dx = 0.
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Remark 5.2. On (R cos θ0)⊥, the operators L and L− cos2 θ0 are non negative, so we introduce the following
norms on W , respectively equivalent to the H2 and the H3 norms:

‖W‖H2 =
(
‖L 1

2 (L − cos2 γ0)
1
2 W1‖2

L2 + ‖LW2‖2
L2

) 1
2

,

‖W‖H3 =
(
‖L 1

2 (L − cos2 γ0)W1‖2
L2 + ‖L 3

2 W2‖2
L2

) 1
2

.

5.2.2. Equation (5.2) with these unknowns

Plugging the decomposition (5.5) in (5.2) and using (5.4) yield the following equivalent form for the Landau-
Lifschitz equation in the coordinates (τ, σ, W ), valid for small perturbations of M0:

dτ

dt
R′

τ +
dσ

dt

(
cos θ0

0

)
+ ∂tW = σ

(−α0 cos θ0

α0 cos θ0

)
+ ΛW + G(x, τ, σ, W, ∂xW, ∂xxW ). (5.6)

Let us describe the different terms in this equation:
Concerning the time derivatives, we have

∂tr =
dτ

dt
R′

τ (x) +
dσ

dt

(
cos θ0

0

)
+ ∂tW,

where

R′
τ (x) =

(− sin τ cos θ0 sin θ0

cos τ cos θ0

)
.

Concerning the linear part, we have

Λr = ΛRτ +
(−α0 cos θ0

α0 cos θ0

)
σ + Λ(W )

(see Rem. 4.1 for the definition of α0).
Concerning the non linear part, we have

F (x, r, ∂xr, ∂xxr) = F (x, Rτ , ∂xRτ , ∂xxRτ ) + G(x, τ, σ, W, ∂xW, ∂xxW ).

The last term G is obtained from F with the Taylor formula around Rτ :

G(x, τ, σ, W, ∂xW, ∂xxW ) = F1(r)(∂xxw) + F̃1(r)(w)(∂xxRτ )

+ 2F2(r)(∂xw, ∂xRτ ) + F2(r)(∂xw, ∂xw)

+ F̃2(r)(w)(∂xRτ , ∂xRτ )

+ F3(x, r)(∂xw) + F̃3(x, r)(w)(∂xRτ ) + F̃4(r)(w)

+ F5(r),

where

• w = W +
(

cos θ0

0

)
σ;
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• for i = 1, . . . , 4, F̃i(r) ∈ L(R2; R2) is given by

F̃i(r) =
∫ 1

0

F ′
i (Rτ + sw)ds.

From straightforward calculations, we see that:

F1(r) = O(|r|2), F̃1(r) = O(|r|2)

F2(r) = O(|r|), F̃2(r) = O(1)

F3(x, r) = O(|r|), F̃3(x, r) = O(1)

F̃4(r)O(|r|).

• Concerning F5, on one hand we remark that

S(r1) = S(W1) + σS(cos θ0)

(since S(Rτ ) = 0).
On the other hand, ϕ(Rτ ) = 0 and

ϕ(r) = − ε

2L

∫ L
A

√
2

− L
A

√
2

ν̃(r)(w) sin θ0,

where

ν̃(r) =
∫ 1

0

ν′(Rτ + sw)ds = O(|r|).

Therefore with all these estimates, if ‖r‖H2 is sufficiently small, we have

‖G‖L2 ≤ K‖r‖L∞ [|σ| + ‖W‖H2],

‖∂xG‖L2 ≤ K‖r‖L∞ [|σ| + ‖W‖H3]
(5.7)

(see Rem. 5.2).

5.2.3. Separation of the unknowns

In order to separate the unknowns τ , σ and W , we first take the inner product of (5.6) with
(

cos θ0

0

)
and

with
(

0
cos θ0

)
. We remark that both ∂tW and ΛW are orthogonal to these vectors, so that we obtain:

ρ0σ
′ = −α0ρ0σ + G1,

gττ ′ = α0ρ0σ + G2,
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where

ρ0 =
∫ L

A
√

2

− L
A

√
2

cos2 θ0,

G1 =
∫ L

A
√

2

− L
A

√
2

G(x, τ, σ, W, ∂xW, ∂xxW ) ·
(

cos θ0

0

)
dx,

gτ =
∫ L

A
√

2

− L
A

√
2

R′
τ (x) ·

(
0

cos θ0

)
dx,

G2 =
∫ L

A
√

2

− L
A

√
2

G(x, τ, σ, W, ∂xW, ∂xxW ) ·
(

0
cos θ0

)
dx.

By subtraction, we have:
∂tW = ΛW + G̃

with

G̃ = G − G2

gτ
R′

τ − G1

ρ0

(
cos θ0

0

)
+ α0σ

[(
0

cos θ0

)
− ρ0

gτ
R′

τ

]
.

5.2.4. Equivalent formulation

We are then led to study the following equation

τ ′ = α0
ρ0

gτ
σ +

1
gτ

G2, (5.8)

together with the system coupling:

σ′ = −α0σ +
1
ρ0

G1, (5.9)

with

∂tW =
(−(L− cos2 γ0)W1 − LW2

(L − cos2 γ0)W1 − LW2

)
+ G̃. (5.10)

From (5.7), with Remark 5.2 we have∣∣∣∣ 1
ρ0

G1

∣∣∣∣ (t) ≤ K‖r‖L∞
[
|σ(t)| + ‖W (t)‖H3

]
. (5.11)

In addition, since gτ = ρ0 + O(τ2), since R′
τ =

(
0

cos θ0

)
+ O(τ), we get:

‖G̃‖H1 ≤ K‖r‖L∞
[
|σ(t)| + ‖W (t)‖H3

]
. (5.12)

5.3. Last step: Variational estimates

Taking the inner product of (5.10) with
(L(L − cos2 γ0)W1

L2W2

)
, we obtain using (5.12) that

d
dt

(‖W‖2
H2

)
+ ‖W‖2

H3 ≤ K‖r‖L∞
[
|σ(t)| + ‖W (t)‖H3

]
.
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Remark 5.3. In order to avoid the boundary terms when we integrate by part, we perform the previous
estimates on the Galerkin approximation of (5.10) built on the eigenvectors of L with the homogeneous Neumann
boundary condition.

Multiplying (5.9) by σ, (5.11) yields:

d
dt

σ2 + α0σ
2 ≤ K‖r‖L∞

[
|σ(t)|2 + ‖W (t)‖2

H3

]
.

Summing up the previous estimates, we have:

d
dt

[
|σ(t)|2 + ‖W (t)‖2

H2

]
+ α0

[
|σ(t)|2 + ‖W (t)‖2

H3

]
(1 − K‖r‖L∞) ≤ 0.

So there exists δ > 0 such that while ‖r‖L∞ ≤ 1
2K ,

d
dt

[
|σ(t)|2 + ‖W (t)‖2

H2

]
+ δ

[
|σ(t)|2 + ‖W (t)‖2

H2

]
≤ 0,

that is [
|σ(t)|2 + ‖W (t)‖2

H2

]
≤

[
|σ0|2 + ‖W0‖2

H2

]
e−δt.

Now, with equation (5.8), we have

|τ ′| ≤ K|σ| + K
[
|σ(t)| + ‖W (t)‖H2

]
so while ‖r‖L∞ ≤ 1

2K ,

|τ | ≤ |τ0| + K
[
|σ0| + ‖W0‖H2

]
e−δt/2.

Therefore, if τ0, σ0 and ‖W0‖H2 are small enough, we remain in the domain {‖r‖L∞ ≤ 1
2K } and all the

previous estimates remain valid for all times. This concludes the proof of Theorem 1.4. �
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