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CONTROLLER DESIGN FOR BUSH-TYPE 1-D WAVE NETWORKS ∗

Yaxuan Zhang1 and Genqi Xu1

Abstract. In this paper, we introduce a new method for feedback controller design for the complex
distributed parameter networks governed by wave equations, which ensures the stability of the closed
loop system. This method is based on the uniqueness theory of ordinary differential equations and
cutting-edge approach in the graph theory, but it is not a simple extension. As a realization of this idea,
we investigate a bush-type wave network. The well-posedness of the closed loop system is obtained via
Lax-Milgram’s lemma and semigroup theory. The validity of cutting-edge method is proved by spectral
analysis approach. In particular, we give a detailed procedure of cutting-edge for the bush-type wave
networks. The results show that if we impose feedback controllers, consisting of velocity and position
terms, at all the boundary vertices and at most three velocity feedback controllers on the cycle, the
system is asymptotically stabilized. Finally, some examples are given.
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1. Introduction

Many real-world situations can conveniently be described by 1-D multi-link flexible structures (distributed
parameter networks), including wave networks and beam networks. The study on these distributed parameter
networks has caught much attention in mathematics and engineering since 80’s last century. Many nice results
are available, covering the controllability, observability and stabilization of the networks (e.g., [1,3,7,9,11,13,14,
17,19]). Most of them are concerned with 1-D wave and beam equation expanded on simple graphs, while a
few focus on the complex networks which have a number of edges and complicated connections. For example,
the stabilization of a circular string was considered recently in [10] and a feedback law (with delay) acting at a
single position of the cycle was presented to guarantee the exponential energy decay.

For the complex networks, imposing controllers at every vertex is not realistic, because it will result in high
cost in engineering and complicated stability analysis in mathematics. The questions are: can we use fewer
controllers to stabilize the system? If the answer is yes, how many controllers are needed at least and where
should they be set up (this problem is itself an optimal one)? If the controllers have been designed, how can
we test the stability of the corresponding controlled network in a simple way? These are challenging problems
in both mathematics and engineering.
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In the present paper we consider the controller design and stability analysis for complex networks. Here we
introduce a new idea called “cutting-edge” method, by which we can get a control strategy, and at the same
time it also ensures the asymptotic stability of the closed loop system. Our method is based on the following
result.

Theorem 1.1. Let X be a Hilbert space, and let A be a compact resolvent operator which generates a C0

semigroup T (t) of contraction on X. Then there exist two invariant subspaces X1 and X2 of T (t) such that
X = X1 ⊕X2, where

X1 = {x ∈ X
∣∣ lim

t→∞ T (t)x = lim
t→∞ T ∗(t)x = 0}

and
X2 = {x ∈ X

∣∣ ||T (t)x|| = ||T ∗(t)x|| = ||x||, ∀t ≥ 0}.

Note that X1 corresponds to the stable subspace of X , and that X2 corresponds to the unstable subspace.
So a direct idea is to divide a complex network into some subnetworks, and then to design controllers for each
subnetwork so that the corresponding system is stable; and finally to combine the results appropriately. This
procedure is complete via the following steps:

Step 1. Impose controllers at all the boundary vertices;
Step 2. “Cut” some edges from the graph according to the decomposition of the dissipative semigroup associated
with the system. Here we hope the rest of the graph after “cutting-edge” is a subgraph;
Step 3. If the subgraph obtained in Step 2 is a null graph, the controller design is over; otherwise, impose
suitable controllers on the subgraph, then go to Step 2, until all the edges of the original graph are “cut”.

When all the edges are “cut”, the system should be at least asymptotically stable, and all the controllers
imposed to the system in this process form the desired control strategy.

In this process, the most important is Step 3, where we need to impose appropriate controllers according to
the connection manner of the network. To illustrate this, we give a counterexample as follows:⎧⎨⎩

wtt(x, t) = wxx(x, t), x ∈ (0, 1)
w(0, t) = 0, wx(1, t) = −αwt(1, t), α > 0
w(x, 0) = w0(x), wt(x, 0) = w1(x)

(1.1)

and ⎧⎨⎩
wtt(x, t) = wxx(x, t), x ∈ (1, 2)
w(2, t) = 0, wx(1, t) = αwt(1, t), α > 0
w(x, 0) = ŵ0(x), wt(x, 0) = ŵ1(x).

(1.2)

Obviously, the systems (1.1) and (1.2) are exponentially stable. But the composite system⎧⎪⎪⎨⎪⎪⎩
wtt(x, t) = wxx(x, t), x ∈ (0, 1) ∪ (1, 2)
w(0, t) = 0, w(2, t) = 0, w(1+, t) = w(1−, t)
wx(1−, t) − wx(1+, t) = −αwt(1, t), α > 0
w(x, 0) = w0(x), wt(x, 0) = w1(x)

(1.3)

is unstable.
The “cutting-edge” approach is merely an idea for controller design. In the present paper we shall use this

approach to design feedback controllers for 1-D wave system defined on bush-type graph, which is an arbitrary
graph that has exactly one cycle and some trees rooted at the vertices of the cycle, shown as in Figure 1 for
instance. The controller design is carried out from the boundary of the trees to the cycle. According to the
existing results, for instance, see [2,4,6,8,15,20], we can prove that a tree-shaped wave network is asymptoti-
cally stabilized if every boundary vertex is equipped with a velocity feedback controller. Therefore, imposing
controllers at all the boundary vertices of a bush-type wave network will “cut” all the trees; the subgraph
obtained after “cutting-edge” is only the cycle, of which the displacements at vertices across the trees are 0.
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Figure 1. An example of bush-type graphs.

Now we design at most three controllers at appropriate positions so that the whole cycle can be “cut”, and
hence the bush-type wave network is asymptotically stable.

The rest is organized as follows. In Section 2, we present the description of the bush-type wave network, and
the solvability of the system via Lax-Milgram’s lemma and semigroup theory in an appropriate state space. The
main result is given in Section 3, in which the number and locations of the controllers are provided. In addition,
the validity of “cutting-edge” method, which ensures the stability, is proved for bush-type wave network by the
spectral analysis [16]. In Section 4 we give some examples to show that for a concrete graph, we can use fewer
controllers to stabilize the system. Finally, in Section 5, we conclude the results of the present paper.

2. Model description and solvability of the closed loop system

In this section, we describe the bush-type wave network under consideration and prove its solvability under
more general assumptions.

2.1. Bush-type wave network

Let G = C ∪ T be a bush-type graph with vertex set V and edge set E, where C is a cycle with vertex set
Vc = {vc

1, v
c
2, . . . , v

c
Nc

} and edge set Ec = {ec
1, e

c
2, . . . , e

c
Nc

}, whose index set is denoted by Ic = {1, 2, . . . , Nc},
and T is a tree set whose roots are vertices of C. Let IT ⊂ Ic be the index set of the roots of the trees in T ,
and Tk be the tree rooted at vertex vc

k, k ∈ IT . Then T = ∪k∈IT Tk.
For a tree Tk, k ∈ IT , and two points u1, u2 ∈ Tk, if u1 lies on a path that connects the root vc

k with u2, we
write u1 ≤ u2. Set [u1, u2] = {z ∈ Tk | u1 ≤ z ≤ u2}. If an edge e = [v, v̂], then v is called the start point of e
and v̂ the end point. For each vertex v ∈ Tk, denote by |v| the number of the edges between vc

k and v, which
is called the order of v. For each edge e ∈ Tk, its order is defined as the order of its end point. The number
pk := max{|v| | v ∈ Tk} is called the height of Tk. Then the vertex set and edge set of Tk can be written as

Vk =
{
vc

k, v
k
j,i | j = 1, 2, . . . , pk, i = 1, 2, . . . , Nk,j

}
, Ek =

{
ek

j,i | j = 1, 2, . . . , pk, i = 1, 2, . . . , Nk,j

}
where j is the order and Nk,j is the number of j-order vertices (hence the edges) in Tk.

For clarity, we arrange the elements of Vk and Ek in the increasing order of j and i, e.g.,

Vk =
{
vc

k, v
k
1,1, v

k
1,2, . . . , v

k
1,Nk,1

, vk
2,1, v

k
2,2, . . . , v

k
2,Nk,2

, . . . , vk
pk,1, v

k
pk,2, . . . , v

k
pk,Nk,pk

}
.

Let Nk denote the number of the edges of Tk, then Nk > 0 and N :=
∑

k∈IT
Nk +Nc is the number of the edges

(hence the vertices) of G.
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To simplify the description, for k ∈ Ic, we view k+ 1 as 1 if k = Nc and k− 1 as Nc if k = 1. For ec
k, k ∈ Ic,

we always denote by vc
k its start point and vc

k+1 its end point. The direction of edge e ∈ G is defined from its
start point to its end point. In this way, G can be viewed as a directed bush-type graph.

For such a directed bush-type graph G, we refer to the set of edges with start (end) point v as E−(v) (E+(v)).
The number of the elements in E−(v) (E+(v)) is called the out-degree (in-degree) of v, denoted by d−(v)(d+(v)).
A vertex v ∈ V is called a boundary vertex of G if d−(v) = 0 and an interior vertex otherwise. An edge is
called a boundary edge if its end point is a boundary vertex. In particular, let NB be the number of boundary
vertices, VB be the set of boundary vertices, VI be the set of interior vertices, and VIT = VI \ Vc.

Take Figure 1 as an example. In this concrete bush-type graph, IT = {1, 3}, T = T1∪T3. Nc = 6, N1 = N1,1 =
2, N3 = N3,1 +N3,2 = 3+5 = 8. The number of the edges (vertices) of the graph is N = Nc +N1 +N3 = 16. The
heights of the trees are p1 = 1, p3 = 2. The out-degrees of vertices v3

1,1 and v3
1,2 are d−(v3

1,1) = 2, d−(v3
1,2) = 3,

and the out-degrees of the other vertices are 0. Moreover, VIT = {v3
1,1, v

3
1,2}. The boundary vertex set is

VB = {v1
1,1, v

1
1,2, v

3
1,3, v

3
2,j , j = 1, 2, . . . , 5}. The number of the boundary vertices is NB = 8.

Now we assume that G is a geometric graph. For each e ∈ E, it has a finite arc length �e. If e ∈ E and
e = [v, v̂], then we parameterize it by its arc length via the function πe defined by

πe : [0, �e] → e

where πe(0) = v, πe(�e) = v̂.
Let y(z) be a function defined on E. We defined the parameterization of y(z) on each e ∈ E by

ye(x) = y(πe(x)), x ∈ (0, �e)

where x is the arc-length parameter.

Definition 2.1. Let G be a directed bush-type graph, and y : G×R+ → C be a scalar function in (z, t) ∈ G×R+.
Suppose that the parameterization ye(x, t) of y(z, t) on each edge e ∈ G satisfies the following wave equations

meye,tt(x, t) = Teye,xx(x, t), x ∈ (0, �e). (2.1)

Then we say that y(z, t) satisfies 1-D wave equation on G, and G together with y(z, t) is called a bush-type wave
network, which is still denoted by G when there is no scope for ambiguity.

For the bush-type wave networks, in addition, we impose the following conditions at its interior vertices and
boundary vertices:

(1) At every interior vertex, G satisfies the geometric continuity condition:

yê(�ê, t) = ye(0, t) = y(v, t), v ∈ VI , ê ∈ E+(v), e ∈ E−(v)

where for each e ∈ E, limx→�−e ye(x, t) = ye(�e, t) and limx→0+ ye(x, t) = ye(0, t).
(2) The dynamic condition (the Kirchhoff law) at every interior vertex:

Têyê,x(�ê, t) −
∑

e∈E−(v)

Teye,x(0, t) = −αvyt(v, t) − βvy(v, t), v ∈ VI , ê ∈ E+(v).

(3) At every boundary vertex, we impose the dynamic condition:

Têyê,x(�ê, t) = −αvyt(v, t) − βvy(v, t), v ∈ VB , ê ∈ E+(v).

In the sequel, we always assume that αv ≥ 0, βv ≥ 0 for v ∈ VI ∪VB and
∑

v∈VB
βv > 0. That is, the feedback

law (2) is an internal feedback, and (3) is a boundary feedback with position term.
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Although the lengths of the edges may be distinct from one another, they can be normalized to 1 by a variable
transform x = �ex̃ for each edge e ∈ E. In fact, this variable transform leads (2.1) to

m̃eỹe,tt(x̃, t) = T̃eỹe,x̃x̃(x̃, t), x̃ ∈ (0, 1)

where m̃e = me�e, T̃e = Te/�e, ỹe(x̃, t) = ye(x, t). This shows that by normalizing y, the length �e of edge e
appears in the parameters me and Te. So without loss of generality we can assume that yc

k(x, t) and yk
j,i(x, t),

x ∈ (0, 1) are the normalizations of y(z, t) on edge ec
k and ek

j,i, respectively. Thus a bush-type wave network G
is described as ⎧⎪⎪⎨⎪⎪⎩

T c
ky

c
k,xx(x, t) = mc

ky
c
k,tt(x, t), x ∈ (0, 1)

T k
j,iy

k
j,i,xx(x, t) = mk

j,iy
k
j,i,tt(x, t), x ∈ (0, 1)

k ∈ Ic, j = 1, 2, . . . , pk, i = 1, 2, . . . , Nk,j

(2.2)

⎧⎪⎪⎨⎪⎪⎩
yc

k−1(1, t) = yc
k(0, t) = yk

1,i(0, t) = y(vc
k, t), k ∈ Ic, i = 1, 2, . . . , Nk,1

yk
j,i(1, t) = yk

j+1,l(0, t) = y(vk
j,i, t), vk

j,i ∈ VIT , e
k
j+1,l ∈ E−(vk

j,i)

yk
j,i(1, t) = y(vk

j,i, t), vk
j,i ∈ VB

(2.3)

and⎧⎪⎪⎨⎪⎪⎩
T c

k−1y
c
k−1,x(1, t) − T c

ky
c
k,x(0, t) −

∑Nk,1
i=1 T k

1,iy
k
1,i,x(0, t) = −αc

kyt(vc
k, t) − βc

ky(v
c
k, t), k ∈ Ic

T k
j,iy

k
j,i,x(1, t) −

∑
ek

j+1,l∈E−(vk
j,i)

T k
j+1,ly

k
j+1,l,x(0, t) = −αk

j,iyt(vk
j,i, t) − βk

j,iy(v
k
j,i, t), vk

j,i ∈ VIT

T k
j,iy

k
j,i,x(1, t) = −αk

j,iyt(vk
j,i, t) − βk

j,iy(v
k
j,i, t), vk

j,i ∈ VB.

(2.4)

The system (2.2)–(2.4) is a general form of a bush-type wave network under consideration.

2.2. Well-posedness of the system

In this subsection, we give the well-posedness of the system (2.2)–(2.4) for the applications later. We first
formulate (2.2)–(2.4) into an abstract evolutionary equation in an appropriate Hilbert space.

Let y(z, t) be the function defined on G × R+. We associate it with a vector-valued function Y (x, t), whose
components are yc

k(x, t) and yk
j,i(x, t), ordered as below:

Yc(x, t) = (yc
1(x, t), y

c
2(x, t), . . . , y

c
Nc

(x, t))

Yk(x, t) = (yk
1,1(x, t), . . . , y

k
1,Nk,1

(x, t), yk
2,1(x, t), . . . , y

k
2,Nk,2

(x, t), . . . , yk
pk,1(x, t), . . . , y

k
pk,Nk,pk

(x, t))

Y (x, t) = (Yc(x, t), Y1(x, t), Y2(x, t), . . . , YNc(x, t))
T

where the superscript T stands for the transpose of a matrix. We associate y(v, t), v ∈ V with a vector-valued
function Y (V, t), whose components are y(vc

k, t) and y(vk
j,i, t), ordered in accordance with Y (x, t).

Suppose that y(z, t) satisfies the 1-D wave equation on G. We associate the coefficient functions with the
matrices denoted by T,M,Γ and S, respectively. They are diagonal matrices whose diagonal elements are
T c

k , T
k
j,i; m

c
k,m

k
j,i; α

c
k, α

k
j,i and βc

k, β
k
j,i, ordered in consistent with Y (x, t), respectively.

Denote by Φ+ and Φ− the incoming and outgoing incidence matrices of the directed bush-type graph G, and
Φ := Φ+ − Φ− its incidence matrix (definitions of them are referred to any standard graph theory textbook,
e.g. [5,12] or the Appendix in our paper).
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With the help of the above notations we can rewrite the system (2.2)–(2.4) into the vector-valued form:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

TYxx(x, t) = MYtt(x, t), x ∈ (0, 1)

Y (1, t) = (Φ+)TY (V, t)

Y (0, t) = (Φ−)TY (V, t)

Φ+TYx(1, t) − Φ−TYx(0, t) = −ΓYt(V, t) − SY (V, t).

(2.5)

Set
L2(E) = {f | f c

k ∈ L2(0, 1), fk
j,i ∈ L2(0, 1), k ∈ Ic, j = 1, 2, . . . , pk, i = 1, 2, . . . , Nk,j} and

Hn(E) = {f | f c
k ∈ Hn(0, 1), fk

j,i ∈ Hn(0, 1), k ∈ Ic, j = 1, 2, . . . , pk, i = 1, 2, . . . , Nk,j}
where Hn(0, 1) is the usual Sobolev space of order n, and

Hn
e (G) = {f ∈ Hn(E)

∣∣ ∃η ∈ R
N such that f(1) = (Φ+)T η, f(0) = (Φ−)T η}.

Actually, Hn
e (G) denotes the functions in Hn(E) that satisfy the geometric continuity condition (1) at the

interior vertices. For convenience, we denote by f(V ) = η if η satisfies f(1) = (Φ+)T η and f(0) = (Φ−)T η.
Let H be the state space defined by

H = H1
e (G) × L2(E) (2.6)

equipped with the inner product

〈(f, g), (f̂ , ĝ)〉H =
∫ 1

0

(Tf ′(x), f̂ ′(x))CN dx+
∫ 1

0

(Mg(x), ĝ(x))CN dx+ (Sf(V ), f̂(V ))CN

where (·, ·)CN is the usual inner product in CN , S is a nonnegative matrix, and the term (Sf(V ), f̂(V ))CN is
added to ensure that ||(f, g)||H :=

√
〈(f, g), (f, g)〉H is a norm of H. Clearly, H is a Hilbert space.

Define an operator A in H by

A(f, g) = (g,M−1Tf ′′), (f, g) ∈ D(A) (2.7)

with domain

D(A) =
{

(f, g) ∈ H
∣∣∣ f ∈ H2(E), g ∈ H1

e (G)
Φ+Tf ′(1) − Φ−Tf ′(0) = −Γg(V ) − Sf(V )

}
. (2.8)

Thus the equations (2.5) can be rewritten into an abstract evolutionary equation in H:⎧⎨⎩
d
dtW (t) = AW (t), t > 0
W (t) = (Y (x, t), Yt(x, t))
W (0) = (Y0(x), Y1(x))

(2.9)

where (Y0(x), Y1(x)) ∈ H is an appropriate initial condition.
The following theorem gives the well-posedness of (2.9).

Theorem 2.1. Let H and A be defined by (2.6)–(2.8). Then A is a dissipative operator in H, 0 ∈ ρ(A), and
A−1 is compact on H. Hence A generates a C0 semigroup S(t) of contraction on H.

Proof. A direct verification shows that A is a closed and densely defined linear operator in H. The detail is
omitted. In what follows, we mainly prove the other assertions.
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Firstly, A is a dissipative operator in H. In fact, for any (f, g) ∈ D(A), we have

2〈A(f, g), (f, g)〉H = 〈A(f, g), (f, g)〉H + 〈(f, g),A(f, g)〉H

=
∫ 1

0

(Tg′(x), f ′(x))CN dx+
∫ 1

0

(Tf ′′(x), g(x))CN dx+ (Sg(V ), f(V ))CN

+
∫ 1

0

(f ′(x), T g′(x))CN dx+
∫ 1

0

(g(x), T f ′′(x))CN dx+ (f(V ), Sg(V ))CN

= (Tg(1), f ′(1))CN − (Tg(0), f ′(0))CN + (Tf ′(1), g(1))CN − (Tf ′(0), g(0))CN

+ (Sg(V ), f(V ))CN + (f(V ), Sg(V ))CN

= (g(V ),Φ+Tf ′(1) − Φ−Tf ′(0) + Sf(V ))CN

+ (Φ+Tf ′(1) − Φ−Tf ′(0) + Sf(V ), g(V ))CN

= − 2(Γg(V ), g(V ))CN .

Since Γ is a nonnegative matrix, so 〈A(f, g), (f, g)〉H = −(Γg(V ), g(V ))CN ≤ 0, i.e., A is dissipative.
Next we prove that A−1 exists on H. In fact, A is injective. This is because if there is a pair (f, g) ∈ D(A)

such that A(f, g) = 0, then it holds that g = 0 and f satisfies the equations⎧⎪⎪⎨⎪⎪⎩
M−1Tf ′′(x) = 0, x ∈ (0, 1)

f(1) = (Φ+)T f(V ), f(0) = (Φ−)T f(V )

Φ+Tf ′(1) − Φ−Tf ′(0) = −Sf(V ).

The differential equation implies that f ′(x) ≡ c, x ∈ [0, 1] where c is a constant vector in CN . Integrating it over
[0, 1], we get f(1) = f(0) + c. Substituting it into the boundary conditions yields (S + ΦTΦT )f(V ) = 0. Since
S + ΦTΦT is a positive definite matrix (see Appendix), we have f(V ) = 0, which leads to f(x) ≡ 0, x ∈ [0, 1].
So A is injective.

Further, A is surjective. For any (u,w) ∈ H, we consider the solvability of the resolvent equation A(f, g) =
(u,w), i.e., g = u and

Tf ′′(x) = Mw(x), x ∈ (0, 1). (2.10)

For any test function ϕ(x), taking inner product of (2.10) and ϕ(x) in CN , integrating it over [0, 1] and using
integration by parts, we get∫ 1

0

(Mw(x), ϕ(x))CN dx = (Tf ′(x), ϕ(x))CN

∣∣∣1
0
−
∫ 1

0

(Tf ′(x), ϕ′(x))CN dx (2.11)

where

(Tf ′(x), ϕ(x))CN

∣∣∣1
0

= (Tf ′(1), ϕ(1))CN − (Tf ′(0), ϕ(0))CN

= (Φ+Tf ′(1), ϕ(V ))CN − (Φ−Tf ′(0), ϕ(V ))CN

= −(Γu(V ), ϕ(V ))CN − (Sf(V ), ϕ(V ))CN (2.12)

by assuming that ϕ satisfies ϕ(1) = (Φ+)Tϕ(V ), ϕ(0) = (Φ−)Tϕ(V ).
Now we define a bilinear functional B[ψ1, ψ2] on H1

e (G) by

B[ψ1, ψ2] =
∫ 1

0

(Tψ′
1(x), ψ

′
2(x))CN dx+ (Sψ1(V ), ψ2(V ))CN , ∀ψ1, ψ2 ∈ H1

e (G).
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Obviously,

B[ψ, ψ] =
∫ 1

0

(Tψ′(x), ψ′(x))CN dx+ (Sψ(V ), ψ(V ))CN := ||ψ||H1
e (G)

is an equivalent norm on H1
e (G), and |B[ψ1, ψ2]| ≤ ||ψ1||H1

e (G)||ψ2||H1
e (G). So B is a coercive and bounded bilinear

functional on H1
e (G). Then by Lax-Milgram’s lemma, there is unique a solution f ∈ H1

e (G) satisfying (2.11),
and hence f satisfies (2.10), which implies f ∈ H2(E). Since we have used

Φ+Tf ′(1) − Φ−Tf ′(0) = −Γg(V ) − Sf(V ) = −Γu(V ) − Sf(V )

in (2.12), so it holds that (f, g) = (f, u) ∈ D(A). So A is surjective.
The inverse operator theorem asserts that A−1 is bounded, i.e., 0 ∈ ρ(A). Note that D(A) ⊂ H2(E)×H1

e (G),
so the Sobolev Embedding Theorem ensures that A−1 is a compact operator on H. Finally the assertion that
A generates a C0 semigroup S(t) of contraction on H follows from Lumer-Phillips Theorem [18]. �

3. Controller design of bush-type network – the “cutting-edge” method

In this section, we study the controller design and stability of the closed loop system. The controller design
means that we choose the coefficients αv and βv in (2.2)–(2.4), of which some precisely take positive values, and
the others are 0. The choice approach is based on the so-called “cutting-edge” method. The design procedure
is the same as the one described in Section 1. The purpose of the controller design is to stabilize the system.
The main result is stated in Theorem 3.1 in Section 3.1; its precise proof in theory is given in Section 3.2 by
the spectral analysis approach.

3.1. Main result

In this subsection we state the control strategy for the system (2.2)–(2.4). To simplify the statement, we
need the following definition.

Definition 3.1. (i) If there exist two successive edges ec
k, e

c
k+1 in the cycle C such that the wave speed ratio√

mc
k/T c

k√
mc

k+1/T c
k+1

is irrational, then we say that the cycle C satisfies condition (A), or precisely, the edge pair (ec
k, e

c
k+1)

satisfies condition (A);
(ii) By imposing the boundary control on G, we mean that all the boundary vertices are equipped with

velocity feedback controllers, i.e., αk
j,i > 0, ∀vk

j,i ∈ VB;
(iii) By imposing an interior nodal controller at vc

k, k ∈ Ic \IT , we mean that a velocity feedback controller
is equipped at the interior vertex vc

k on cycle C, which is not a root of some tree, i.e., αc
k > 0, k ∈ Ic \ IT ;

(iv) By imposing an interior point controller at q on ec
k, k ∈ Ic, we mean that a velocity feedback controller

is equipped at the point q on the interior edge ec
k of cycle C, i.e., the equations on edge ec

k change into⎧⎨⎩
T c

ky
c
k,xx(x, t) = mc

ky
c
k,tt(x, t), x ∈ (0, q) ∪ (q, 1)

yc
k(q−, t) = yc

k(q+, t)
T c

ky
c
k,x(q−, t) − T c

ky
c
k,x(q+, t) = −αc

k,qy
c
k,t(q, t)

where αc
k,q > 0 and q ∈ (0, 1) such that q/(1 − q) is irrational.

The interior nodal controller and the interior point controller are said to be interior controllers.

The theorem below gives the main result of this paper, which includes the strategy of the controller design,
i.e., the number and locations of the feedback controllers for a bush-type wave network.

Theorem 3.1 (main theorem). Let G = C ∪ T be a bush-type graph, and the wave system on G be given
by (2.2)–(2.4). Firstly, we impose the boundary control on G, which has at most NB controllers equipped
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at the boundary vertices and only one βv > 0. Next, we impose at most three interior controllers at appropriate
positions on cycle C in the following manner:
Case 1. If cycle C satisfies condition (A), i.e., there is an edge pair (ec

k, e
c
k+1) satisfying condition (A), then

we impose at most three interior nodal controllers at their start and end points vc
j , j ∈ {k, k + 1, k + 2} \ IT ,

which are not the roots of the trees;
Case 2. If cycle C fails to satisfy condition (A), then for one edge ec

k = [vc
k, v

c
k+1] on C, we impose an interior

point controller at q on ec
k, and at most two interior nodal controllers at vc

j , j ∈ {k, k + 1} \ IT .
With this control strategy, the system (2.2)–(2.4) is asymptotically stabilized by at most NB + 3 controllers.

Remark 3.1. In the control strategy, we choose only one βv > 0 at a boundary vertex, which aims to remove
the zero eigenvalue. According to the control strategy given in Theorem 3.1, NB + 3 controllers is a sufficient
condition to stabilize asymptotically the bush-type wave networks, but not a necessary one. In fact, for a
concrete bush-type graph, we can use fewer than NB + 3 controllers to stabilize the system. The examples will
be given in Section 4.

3.2. Proof of the main result

In this subsection, we give a complete proof of Theorem 3.1, especially, the asymptotic stability of the closed
loop system. Our proof is based on Theorem 1.1. We shall show that each tree corresponds to an invariant
subspace similar to X1 described in Theorem 1.1, of which the proof includes the idea of “cutting-edge”. By
the decomposition of space H, we can “cut” all the trees in the graph under the boundary control. Finally we
prove that the three interior controllers can stabilize the rest cycle. The whole proof is complete by the spectral
analysis approach. Since the proof is very long, we finish it by three steps. The first step decomposes the graph;
in the second step we “cut” each tree; and in the third step we “cut” the rest cycle.

Step 1. Decomposition of G
Here we shall give a division of the bush-type graph G, which will correspond with the decomposition of

space H under the control strategy.
According to the geometric structure of a bush-type graph, we separate it into the following parts:

G = ∪k∈IT Tk ∪ C.

Introduce the following spaces defined on tree Tk, k ∈ IT and cycle C:

L2(Ek) = {f = {fk
j,i}

∣∣ fk
j,i ∈ L2(0, 1), ek

j,i ∈ Ek}, L2(Ec) = {f = {f c
k}
∣∣ f c

k ∈ L2(0, 1), k ∈ Ic}

Hn(Ek) = {f = {fk
j,i}

∣∣ fk
j,i ∈ Hn(0, 1), ek

j,i ∈ Ek}, Hn(Ec) = {f = {f c
k}
∣∣ f c

k ∈ Hn(0, 1), k ∈ Ic}
Hn

e (Tk) = {f ∈ Hn(Ek)
∣∣ f(1) = (Φ+

k )T f(Vk), f(0) = (Φ−
k )T f(Vk)}

Hn
e (C) = {f ∈ Hn(Ec)

∣∣ f(1) = (Φ+
c )T f(Vc), f(0) = (Φ−

c )T f(Vc)}
where Φ+

k and Φ−
k are the incoming and outgoing matrices of tree Tk; Φ+

c and Φ−
c are the incoming and outgoing

matrices of cycle C.
Similar as Hn

e (G), the space Hn
e (Tk) denotes the functions in Hn(Ek) that satisfy the geometric continuity

condition at vertices in Vk∩VIT ; andHn
e (C) denotes the functions inHn(Ec) that satisfy the geometric continuity

condition at vertices in Vc.
Let the state spaces Hk and Hc corresponding to the tree Tk, k ∈ IT and the cycle C be as follows:

Hk = H1
e(Tk) × L2(Ek), Hc = H1

e(C) × L2(Ec).

Then we have
H ⊂

⊕
k∈IT

Hk

⊕
Hc.
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This decomposition is corresponding to the graph division.
Let S(t) be the C0 semigroup generated by A. We shall show that the invariant stable space described in

Theorem 1.1 with property
Hs = {f ∈ H

∣∣ lim
t→∞S(t)f = lim

t→∞S∗(t)f = 0}

will be given by {f ∈ H
∣∣ f(vc

k) = 0, k ∈ IT } under the boundary control. The proof is based on a stability
theorem according to Lyubich and Phóng’s theorem [16].

Lemma 3.1. Let X be a Banach space, and let A generate a uniformly bounded C0 semigroup T (t) on X. If
the spectrum of A satisfies σ(A) ⊂ {λ | λ < 0}, then the semigroup T (t) is asymptotically stable.

For our problem, the operator A is resolvent compact, hence σ(A) consists of isolated eigenvalues with finite
multiplicities. By Lemma 3.1, it suffices to verify that there is no eigenvalue of A on the imaginary axis iR.
Since Theorem 2.1 says that 0 ∈ ρ(A), so we only need to prove that for any λ ∈ iR, λ �= 0, if there exists
(f, g) ∈ D(A) such that A(f, g) = λ(f, g), then it must be (f, g) = 0.

Step 2. “Cutting-edge” of the trees Tk, k ∈ IT
In what follows, we assume that for λ ∈ iR, λ �= 0, there exists (f, g) ∈ D(A) such that A(f, g) = λ(f, g).

For any fixed k ∈ IT , denote by (fk, gk) the restriction of (f, g) on the tree Tk. We shall prove that under the
boundary control, we have fk(x) = gk(x) ≡ 0. The procedure of the proof is a process of “cutting-edge” from
the boundary edges to the cycle.

Due to A(f, g) = λ(f, g), we have gk = λfk and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fk
j,i

′′(x) = (ρk
j,i)

2λ2fk
j,i(x), x ∈ (0, 1)

fk
1,i(0) = f(vc

k), i = 1, 2, . . . , Nk,1

fk
j,i(1) = fk

j+1,l(0) = f(vk
j,i), vk

j,i ∈ VIT , e
k
j+1,l ∈ E−(vk

j,i)

fk
j,i(1) = f(vk

j,i), vk
j,i ∈ VB

T k
j,if

k
j,i

′(1) −
∑

ek
j+1,l∈E−(vk

j,i)
T k

j+1,lf
k
j+1,l

′(0) = 0, vk
j,i ∈ VIT

T k
j,if

k
j,i

′(1) = −αk
j,ig(v

k
j,i) − βk

j,if(vk
j,i), vk

j,i ∈ VB

(3.1)

where ρk
j,i =

√
mk

j,i/T
k
j,i.

Note that
0 = λ〈(f, g), (f, g)〉H = 〈A(f, g), (f, g)〉H = −(Γg(V ), g(V ))CN .

According to the control strategy in Theorem 3.1, we have αk
j,i > 0 for all the boundary vertices vk

j,i ∈ VB . Thus
the above equality implies that g(vk

j,i) = gk
j,i(1) = 0, vk

j,i ∈ VB, and hence fk
j,i(1) = f(vk

j,i) = 0, vk
j,i ∈ VB . The

last equation in (3.1) reads that fk
j,i

′(1) = 0. Therefore on the boundary edges ek
j,i, f

k
j,i satisfy the differential

equation {
fk

j,i
′′(x) = (ρk

j,i)
2λ2fk

j,i(x), x ∈ (0, 1)

fk
j,i(1) = fk

j,i
′(1) = 0, i = 1, 2, . . . , Nk,j .

(3.2)

The uniqueness theory of the ordinary differential equation asserts that (3.2) has unique a zero solution.
Now we consider the pk-order edges of the tree Tk. They are boundary edges of Tk according to the definition

of pk. Thanks to the previous argument, we have fk
pk,i(x) ≡ 0, i = 1, 2, . . . , Nk,pk

. So we can “cut” these edges
from Tk.

Next we consider the (pk − 1)-order edges of Tk, whose end points are vk
pk−1,i, i = 1, 2, . . . , Nk,pk−1. If

vk
pk−1,i ∈ VB, then we already have fk

pk−1,i(x) ≡ 0. If vk
pk−1,i ∈ VI , then it is the start point of some pk-order

edges. Since we have derived that fk
pk,l(x) ≡ 0, the connective conditions in (3.1) indicate that fk

pk−1,i(1) =
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fk
pk−1,i

′(1) = 0. Again using the uniqueness theory of the ordinary differential equation we get fk
pk−1,i(x) ≡ 0.

Thus we can “cut” all the (pk − 1)-order edges from Tk.
Generally, suppose that we have obtained

fk
j+1,i(x) = . . . = fk

pk−1,i(x) = fk
pk,i(x) ≡ 0, (3.3)

which means that we have “cut” all the edges of Tk whose orders are larger than j. Then for the j-order edges
of Tk, whose end points are vk

j,i, if vk
j,i ∈ VB, then we already have fk

j,i(x) ≡ 0. If vk
j,i ∈ VI , then it is the start

point of some (j + 1)-order edges. The connective conditions in (3.1) yield that fk
j (1) = fk

j
′(1) = 0. For the

same reason as before, we have fk
j,i(x) ≡ 0. So we can also “cut” all the j-order edges of Tk.

By induction, we get fk(x) ≡ 0. By now we have “cut” all the edges of the tree Tk. Therefore (fk(x), gk(x)) ≡
(0, 0).

Step 3. “Cutting-edge” of the cycle C
When we “cut” all the edges of the trees in G, we readily have f(vc

k) = 0, k ∈ IT , where (f, g) is given in
Step 2. Now we show that under the control strategy stated in the two cases in Theorem 3.1, the rest cycle can
also be “cut”.

Denote by (f c, gc) the restriction of (f, g) on the cycle C, then gc = λf c, and⎧⎪⎪⎨⎪⎪⎩
f c

k
′′(x) = (ρc

k)2λ2f c
k(x), x ∈ (0, 1), k ∈ Ic

f c
k−1(1) = f c

k(0) = f(vc
k), k ∈ Ic

T c
k−1f

c
k−1

′(1) − T c
kf

c
k
′(0) −

∑Nk,1
i=1 T k

1,if
k
1,i

′(0) = −αc
kg(v

c
k), k ∈ Ic

(3.4)

where ρc
k =

√
mc

k/T
c
k .

Since we have “cut” all the trees, then at the vertices vc
k, k ∈ IT , we have

f c
k−1(1) = f c

k(0) = f(vc
k) = g(vc

k) = 0, k ∈ IT , and

fk
1,i

′
(0) = 0, i = 1, 2, . . . , Nk,1, k ∈ IT .

Let IΓ = {k ∈ Ic \ IT | αc
k > 0}. Thanks to the equality

0 = λ〈(f, g), (f, g)〉H = 〈A(f, g), (f, g)〉H = −(Γg(V ), g(V ))CN ,

we also have

f c
k−1(1) = f c

k(0) = f(vc
k) = g(vc

k) = 0, k ∈ IΓ.

The above lead to the equations⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

f c
k
′′(x) = (ρc

k)2λ2f c
k(x), x ∈ (0, 1), k ∈ Ic

f c
k−1(1) = f c

k(0) = f(vc
k) = 0, k ∈ IT ∪ IΓ

f c
k−1(1) = f c

k(0) = f(vc
k), k ∈ Ic \ {IT ∪ IΓ}

T c
k−1f

c
k−1

′(1) − T c
kf

c
k
′(0) = 0, k ∈ Ic.

(3.5)

From (3.5) we see that if there is one k0 ∈ Ic such that f c
k0

(x) ≡ 0, then f c(x) ≡ 0, and hence (f c, gc) = (0, 0).
Therefore we need only to prove the existence of such a k0 under the control strategy. In the following, we
verify this in the two cases listed in Theorem 3.1.
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Case 1. The cycle C satisfies condition (A)
If the cycle C satisfies condition (A), according to the control strategy stated in Theorem 3.1, for some k ∈ Ic,

we have {k, k+ 1, k + 2} ∈ IT ∪ IΓ, where IΓ = {k ∈ Ic \ IT | αc
k > 0}. That is, each vc

j , j ∈ {k, k + 1, k + 2} is
either equipped with an interior nodal controller or a root of some tree. In this case, we have

⎧⎪⎪⎨⎪⎪⎩
f c

j
′′(x) = (ρc

j)
2λ2f c

j (x), x ∈ (0, 1), j = k, k + 1

f c
k(0) = f c

k+1(0) = f c
k(1) = f c

k+1(1) = 0

T c
kf

c
k
′(1) − T c

k+1f
c
k+1

′(0) = 0.

(3.6)

Note that the general solution of the differential equation in (3.6) is of the form

f c
j (x) = ac

j coshλρc
jx+ bcj sinhλρc

jx, j = k, k + 1 (3.7)

where ac
j , b

c
j ∈ C are constant coefficients.

Substituting (3.7) into the boundary conditions in (3.6) yields

⎧⎪⎪⎨⎪⎪⎩
ac

k = ac
k+1 = 0

bck sinhλρc
k = bck+1 sinhλρc

k+1 = 0

T c
kρ

c
kb

c
k coshλρc

k = T c
k+1ρ

c
k+1b

c
k+1.

Since the cycle C satisfies condition (A), so sinhλρc
k and sinhλρc

k+1 never vanish simultaneously, which implies
that at least one of bck and bck+1 is 0. Hence at least one of f c

k(x) and f c
k+1(x) is a zero function. Therefore we

have f c(x) ≡ 0. This means that we can “cut” all the edges of the rest cycle. The desired result follows.

Case 2. The cycle C fails to satisfy condition (A)
If the cycle C fails to satisfy condition (A), then for any two edges ec

i , e
c
j of C, the wave speed ratio ρc

j/ρ
c
i

is rational. In this case, it is not sufficient to stabilize the system even if all the interior nodal controllers are
equipped. According to the control strategy stated in Theorem 3.1, we choose an edge ec

k = [vc
k, v

c
k+1] of C, and

an interior point vq ∈ (vc
k, v

c
k+1) such that q/(1 − q) is irrational, where q ∈ (0, 1) is the arc length between vc

k

and vq. Then we impose at most three interior controllers at vc
k, vc

k+1 and vq, which are the collocated velocity
feedback controllers. Under this control strategy, we assert that f c

k(x) ≡ 0.
Firstly we observe that under this control strategy, the system equation on the edge ec

k is given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mc
ky

c
k,tt(x, t) = T c

ky
c
k,xx(x, t), x ∈ (0, q) ∪ (q, 1)

yc
k(q−, t) = yc

k(q+, t) = y(vq, t)

T c
ky

c
k,x(q−, t) − T c

ky
c
k,x(q+, t) = −αqyt(vq, t)

yc
k(0, t) = yc

k−1(1, t) = y(vc
k, t)

T c
k−1y

c
k−1,x(1, t) − T c

ky
c
k,x(0, t) −

∑Nk,1
i=1 T k

1,iy
k
1,i,x(0, t) = −αc

kyt(vc
k, t)

yc
k(1, t) = yc

k+1(0, t) = y(vc
k+1, t)

T c
ky

c
k,x(1, t) − T c

k+1y
c
k+1,x(0, t) −

∑Nk+1,1
i=1 T k+1

1,i yk+1
1,i,x(0, t) = −αc

k+1yt(vc
k+1, t).

(3.8)
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By the variable transforms x̃ = x
q , x ∈ (0, q) and x̂ = x−q

1−q , x ∈ (q, 1), we can transform the system (3.8) into
the standard form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mc
k,q−yc

k,q−,tt(x̃, t) = T c
k,q−yc

k,q−,x̃x̃(x̃, t), x̃ ∈ (0, 1)

mc
k,q+yc

k,q+,tt(x̂, t) = T c
k,q+yc

k,q+,x̂x̂(x̂, t), x̂ ∈ (0, 1)

yc
k,q−(1, t) = yc

k,q+(0, t) = y(vq, t)

T c
k,q−yc

k,q−,x̃(1, t) − T c
k,q+yc

k,q+,x̂(0, t) = −αqy(vq, t)

yc
k,q−(0, t) = yc

k−1(1, t) = y(vc
k, t)

T c
k−1y

c
k−1,x(1, t) − T c

k,q−yc
k,q−,x̃(0, t) −

∑Nk,1
i=1 T k

1,iy
k
1,i,x(0, t) = −αc

kyt(vc
k, t)

yc
k,q+(1, t) = yc

k+1(0, t) = y(vc
k+1, t)

T c
k,q+yc

k,q+,x̂(1, t) − T c
k+1y

c
k+1,x(0, t) −

∑Nk+1,1
i=1 T k+1

1,i yk+1
1,i,x(0, t) = −αc

k+1yt(vc
k+1, t)

(3.9)

where the coefficients are T c
k,q− = T c

k/q, m
c
k,q− = mc

kq, T
c
k,q+ = T c

k/(1 − q), mc
k,q+ = mc

k(1 − q), and the
functions are yc

k,q−(x̃, t) = yc
k(x, t), x ∈ (0, q) and yc

k,q+(x̂, t) = yc
k(x, t), x ∈ (q, 1).

Denote by Cq the cycle C added a vertex vq at q on edge ec
k. The graph Gq = Cq ∪ T is also of bush-type.

The wave system on Gq with an interior point controller at q falls into the systems described by (2.2)–(2.4),
which has the same structure as the old one under the control strategy stated in Theorem 3.1. In particular,
Cq satisfies condition (A). According to Case 1, we have f c

k(x) ≡ 0. So we can “cut” all the edges of Cq.
To summarize the result of Step 1 to Step 3, we have proved that iR ∩ σ(A) = ∅ by “cutting-edge” method.

So Lemma 3.1 indicates that the system (2.2)–(2.4) is asymptotically stable under the control strategy shown
in Theorem 3.1. The proof is then complete.

Remark 3.2. From the proof above we see that the boundary controllers aim to stabilize the wave equation
on the trees of G, and the three interior controllers aim to stabilize the wave equation on the rest cycle. Such a
control strategy can asymptotically stabilize the wave system on bush-type graphs. The proof is completed by
“cutting-edge” step by step from the boundary edges of the trees Tk to the cycle C. This method can also be
used in the controller design for other complex graphs.

4. Examples

In this section, we give some examples of bush-type graph. The 1-D wave systems on these graphs fall into
the model in Theorem 3.1. Here we address that for a concrete graph, we use fewer than NB + 3 controllers to
stabilize the wave system asymptotically.

In figures shown in this section, the small rings stand for the controllers at vertices; the cross stands for the
interior point controller at q on some edge.

4.1. Example 1

In this example, the graph G is shown in Figure 2.
Step 1. Impose the boundary controllers.
Step 2. If there is an edge pair of the cycle satisfying condition (A), and one of the start and end points of the
two edges is the root of some tree, then only two interior nodal controllers at vertices of the cycle are needed to
stabilize the system asymptotically. For example, if the edge pair (ec

8, e
c
1) satisfies condition (A), then we only

need to add two interior nodal controllers at the start points vc
1 and vc

8 of ec
1 and ec

8, since the end point vc
2 of ec

1

is a root, i.e., vc
2 ∈ IT . This is shown in the left picture of Figure 2.

Step 3. In other cases, we choose an edge whose start (or end) point is the root of some tree and impose an
interior nodal controller to its end (or start) point and an interior point controller at q. Under this control
strategy, we stabilize the system, shown in the right picture of Figure 2 for instance.
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Figure 2. Example 1.

Therefore, we have used five boundary controllers and two interior controllers to asymptotically stabilize the
wave network expanded on Figure 2. Moreover, no matter the cycle C satisfies condition (A) or not, we can
use two controllers to stabilize asymptotically the system on C, provided that there is at least one tree in the
graph G.

4.2. Example 2

This example includes a more complex graph that has more trees as shown in Figure 3.
Step 1. Impose the boundary controllers.
Step 2. If there exists an edge pair of the cycle satisfying condition (A), and their start and end points are the
roots of some trees (e.g., the edge pairs (ec

1, e
c
2) or (ec

5, e
c
6)), then there is no need to impose interior controller

to asymptotically stabilize the system, shown in the left picture of Figure 3 for instance.
Step 3. In other cases, we choose an edge whose start point and end point are the roots of some trees. We
need only one interior point controller at q on this edge to stabilize the system, shown in the right picture of
Figure 3 for instance.

4.3. Example 3

In this example we consider an extreme case: G = C shown as in Figure 4, where three controllers in the
cycle C are really needed.

Obviously, the number of the boundary vertices is 0 (i.e., NB = 0). Therefore, no boundary controller is
needed. We need only to consider the interior controller design according to Theorem 3.1.
Step 1. If there is an edge pair, for example (ec

4, e
c
5), in G = C satisfying condition (A), then we add three

interior nodal controllers at their start and end points vc
4, v

c
5 and vc

6 to asymptotically stabilize it, shown in the
left figure of Figure 4.
Step 2. If G = C fails to satisfy condition (A), then we arbitrarily choose an edge ec

k, k ∈ Ic (e.g. ec
4), and

impose an interior point controller at q on ec
4, and two interior nodal controllers at its start point vc

4 and end
point vc

5, shown in the right figure of Figure 4.

Remark 4.1. In Example 1, the graph has 15 vertices and 5 boundary vertices. We can asymptotically stabilize
the system by at most 7 controllers. In Example 2, the graph has 25 vertices and 12 boundary vertices. We
use at most 13 controllers to asymptotically stabilize the system. They need fewer number of controllers than
that stated in Theorem 3.1. In Example 3, the graph has no tree-shaped structure. We impose 3 controllers
on the cycle C to asymptotically stabilize the system. Note that NB = 0 in this example, so the number of the
controllers is the same as described in Theorem 3.1.
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Figure 3. Example 2.
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4.4. Reduction of the boundary controllers

In preceding examples we concern with reducing the number of interior controllers. In this subsection, we
emphasize that for a concrete graph, the number of boundary controllers can also be reduced according to its
shape and physical parameters in the wave equation. For instance, if we have

mc
k = mk

j,i = T c
k = T k

j,i = 1, k ∈ Ic, j = 1, 2, . . . , pk, i = 1, 2, . . . , Nk,j (4.1)

in Examples 1 and 2, then four controllers can asymptotically stabilize the system in Example 1; and seven
controllers can asymptotically stabilize the system in Example 2. The positions of the controllers are shown in
Figure 5. The proof of their stability is also carried out by “cutting-edge” method.

As an example, we briefly present the stabilization analysis of the wave network shown in the left figure of
Figure 5. It is based on the proof of Theorem 3.1. The procedure of the “cutting-edge” is shown in Figure 6,
where the dots denote the vertices at which the displacements are 0.
Step 1. Since the boundary vertices v2

2,2, v
5
2,1 ∈ IΓ are equipped with controllers, we “cut” the edges e22,2, e

5
2,1

and e51,2. The rest subgraph is G1 shown in the left figure of Figure 6. Now the displacements at vertices vc
5 and

v2
1,2 are 0.

Step 2. Since vc
5 ∈ IT is a root, vc

6 is imposed with a controller, and there is an interior point controller at q on
edge ec

5, so we can “cut” edge ec
5, thus the edges ec

6, e
c
7, e

c
8, e

c
1 can also be “cut”. The rest subgraph is G2 shown

in the right figure of Figure 6. Now the displacement at vertex vc
2 is also 0.
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Figure 5. Controller design for Examples 1 and 2 when all the parameters are 1.
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Figure 6. “Cutting-edge” of Example 1 under the controller design in Figure 5.

Step 3. Now we analyze the eigenvalue problem of the rest subgraph G2 on the imaginary axis under the
assumption (4.1). Similar to the proof of Theorem 3.1, we can prove that this eigenvalue problem has only
zero solution. So the rest subgraph G2 can be “cut”. Hence the wave network in Example 1 is asymptotically
stabilized by the control strategy shown in the left figure of Figure 5.

The stabilization analysis of the system shown in the right figure of Figure 5 can be similarly carried out.

5. Conclusion

In this paper, we introduce the “cutting-edge” method in the controller design. Using this method, we can
get the control strategy which includes the number and locations of the controllers, and the asymptotic stability
of the closed form. For bush-type wave networks, we prove theoretically the validity of the “cutting-edge”
method. As asserted in Theorem 3.1, at most NB + 3 controllers can stabilize the bush-type wave networks
asymptotically. Moreover, for a concrete graph, we can further reduce the number of controllers according to
its shape and physical parameters in the wave equations, as shown in the examples in Section 4.
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A. appendix

Here we list some definitions and proofs omitted in the previous sections. Some symbols used here may be
different from the ones in the previous sections only for simplicity and clarity.

A.1. Notions in graph theory

Definition A.1 ([5]). Let G be a simple connected and directed graph with vertex set V = {v1, v2, . . . , vm}
and edge set E = {e1, e2, . . . , en}.

The adjacency matrix of G is the matrix A = (aij)m×m, whose entry aij = 1 if there is an edge e ∈ E such
that e = [vi, vj ]; and aij = 0 otherwise. Moreover, if aij = 1, we say that vi and vj are adjacent.

The incoming incidence matrix of G, denoted by Φ+, is an m× n matrix whose entry φ+
ij is defined by

φ+
ij =

{
1, vi is the end point of ej

0, otherwise,

and the outgoing incidence matrix of G, denoted by Φ−, is also an m× n matrix whose entry φ−ij is defined by

φ−ij =
{

1, vi is the start point of ej

0, otherwise.

The incidence matrix Φ is defined by Φ := Φ+ − Φ−.
For v ∈ V , d+(v) denotes the number of the incoming edges at the vertex v, which is called the in-degree

of v, and d−(v) denotes the number of the outgoing edges of v, which is called the out-degree at v; the number
d(v) := d+(v) + d−(v) is said to be the degree of the vertex v.

Define the m×m diagonal matrix D = diag(d(v1), d(v2), . . . , d(vm)). A direct verification shows that [5]

ΦΦT = D −A.

A.2. Proof of S + ΦTΦT being positive definite

Proposition A.1. Let G be a simple connected and directed graph with vertex set V = {v1, v2, . . . , vm} and edge
set E = {e1, e2, . . . , en}. Set n×n diagonal matrix T = diag(T1, T2, . . . , Tn) with entries Tk > 0, k = 1, 2, . . . , n,
and m ×m diagonal matrix S = diag(β1, β2, . . . , βm) with entries βk ≥ 0, k = 1, 2, . . . ,m and

∑m
k=1 βk > 0.

Then S + ΦTΦT is a positive definite matrix.

Proof. Note that T is a positive definite matrix, and S is a nonnegative matrix. Then for any y ∈ Cm, we have

(Sy, y)Cm + (ΦTΦTy, y)Cm = (Sy, y)Cm + (TΦTy,ΦT y)Cn ≥ 0,

which implies that S + ΦTΦT is a nonnegative matrix. To prove that it is a positive definite matrix, we need
only to prove that it is a nonsingular matrix.

Let Φ = (φij)m×n, a simple calculation gives

ΦTΦT =

(
n∑

k=1

φikTkφjk

)
m×m

:= (Tij)m×m

where

Tij =

⎧⎨⎩
0, vi and vj are not adjacent
−Tk, vi and vj are adjacent and ek = [vi, vj ] or ek = [vj , vi]∑

k∈I(vi)
Tk, i = j

(A.1)

where the index set I(vi) = {k | ek = [vi, vj ] or ek = [vj , vi], j = 1, 2, . . . ,m}.
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Thus (A.1) reads that the sum of the elements of each line (column) of matrix ΦTΦT is zero, i.e.,⎧⎪⎪⎨⎪⎪⎩
Tii = −

m∑
j=1,j �=i

Tij = −
m∑

j=1,j �=i

n∑
k=1

φikTkφkj

Tii = −
m∑

j=1,j �=i

Tji = −
m∑

j=1,j �=i

n∑
k=1

φjkTkφki

(A.2)

i.e., ΦTΦT is diagonally dominant.
Without loss of generality we assume that β1 > 0 and βj = 0, j �= 1. Now we calculate the determinant of

S + ΦTΦT :

det(S + ΦTΦT ) =

∣∣∣∣∣∣∣∣∣∣∣

T11 + β1 T12 T13 · · · T1m

T21 T22 T23 · · · T2m

T31 T32 T33 · · · T3m

...
... · · · · · ·

...
Tm1 Tm2 Tm3 · · · Tmm

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

β1 T12 T13 · · · T1m

0 T22 T23 · · · T2m

0 T32 T33 · · · T3m

...
... · · · · · ·

...
0 Tm2 Tm3 · · · Tmm

∣∣∣∣∣∣∣∣∣∣∣
= β1

∣∣∣∣∣∣∣∣∣
T22 T23 · · · T2m

T32 T33 · · · T3m

... · · · · · ·
...

Tm2 Tm3 · · · Tmm

∣∣∣∣∣∣∣∣∣
.

Since the matrix ⎡⎢⎢⎢⎣
T22 T23 · · · T2m

T32 T33 · · · T3m

... · · · · · ·
...

Tm2 Tm3 · · · Tmm

⎤⎥⎥⎥⎦
is a weakly diagonally dominant, so its determinant is nonzero. Therefore, det(S+ ΦTΦT ) �= 0, i.e., S+ΦTΦT

is a positive definite matrix. The proof is then complete. �

A.3. The proof of Theorem 1.1

The proof will be carried out by three steps.
Step 1. The subspace X1 is closed and invariant under T (t) and T ∗(t).

Clearly, X1 is a closed subspace of X . We now prove that X1 is invariant under T ∗(t), i.e., for any x ∈ X1,
we have T ∗(s)x ∈ X1, ∀s ≥ 0.

Since T (t) is a semigroup of contraction, so is T ∗(t). Thus for any x ∈ X ,

||T ∗(t+ s)x|| = ||T ∗(t)T ∗(s)x|| ≤ ||T ∗(s)x||, ∀t, s ≥ 0.

This implies that ||T ∗(t)x|| is a decreasing function in t. Hence

z(t) = ||T ∗(t)x||2 − ||T ∗(t+ s)x||2 → 0, t→ ∞.

Note that

z(t) = (T ∗(t)x, T ∗(t)x) − (T ∗(t+ s)x, T ∗(t+ s)x)

= ||[I − T (s)T ∗(s)]
1
2 T ∗(t)x||2 → 0, t→ ∞
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where we have used the fact that I − T (s)T ∗(s) is a self-adjoint and non-negative operator. So we have

[I − T (s)T ∗(s)]T ∗(t)x→ 0, t→ ∞.

Hence
T ∗(s)[I − T (s)T ∗(s)]T ∗(t)x = [I − T ∗(s)T (s)]T ∗(t+ s)x→ 0, t→ ∞, x ∈ X.

Therefore, for any x ∈ X and s ≥ 0, it holds that

[I − T ∗(s)T (s)]T ∗(t)x→ 0, t→ ∞.

For any x, y ∈ X ,

([I − T (s)T ∗(s)]T ∗(t)x, y) = (x, T (t)[I − T (s)T ∗(s)]y) → 0, t→ ∞

([I − T ∗(s)T (s)]T ∗(t)x, y) = (x, T (t)[I − T ∗(s)T (s)]y) → 0, t→ ∞
which implies in the sense of weak convergence that

(weak) T (t)[I − T (s)T ∗(s)]y → 0, (weak) T (t)[I − T ∗(s)T (s)]y → 0, t→ ∞. (A.3)

Now let x ∈ X1, then we have

(weak) T (t+ s)T ∗(s)x = T (t)x− T (t)[I − T (s)T ∗(s)]x→ 0, t→ ∞.

For any x ∈ X1 ∩ D(A∗), there exists a y ∈ X such that x = R∗(λ,A)y, λ ∈ ρ(A). Since R(λ,A) is compact,
so is R∗(λ,A). By the property of compact operator, we have, in the sense of norm of X , that

T (t+ s)T ∗(s)x = T (t+ s)T ∗(s)R∗(λ,A)y → 0, t→ ∞.

Noting that X1 ∩D(A∗) = X1, the Uniformly Boundedness Theorem asserts that

T (t+ s)T ∗(s)x→ 0, t→ ∞, ∀x ∈ X1.

Besides, it obviously holds that

lim
t→∞ ||T ∗(t)T ∗(s)x|| = lim

t→∞ ||T ∗(s+ t)x|| = 0, x ∈ X1.

Therefore, T ∗(s)x ∈ X1, i.e., X1 is invariant under T ∗(t). Similarly, we can prove that X1 is invariant under
T (t).

Step 2. The subspace X2 is closed and invariant under T (t) and T ∗(t).
Since T (t)T ∗(t) is a self-adjoint operator, so ||T (t)x|| = ||T ∗(t)x|| = ||x|| is equivalent to

x = T (t)T ∗(t)x = T ∗(t)T (t)x. (A.4)

Thus we can rewrite X2 as
X2 =

⋂
t≥0

N (I − T ∗(t)T (t)) ∩ N (I − T (t)T ∗(t)).

This indicates that X2 is a closed subspace of X . Moreover, from (A.4) we can also see that the restriction of
T (t) on X2 can be embedded in a C0 group [18]. Therefore, X2 is invariant under T (t) and T ∗(t).

Step 3. The subspaces X1 and X2 are orthogonal, and X = X1 ⊕X2.
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Since X is a Hilbert space and X1 is a closed subspace of X , then we have X = X1 ⊕X⊥
1 . Firstly, we shall

prove that X⊥
1 ⊂ X2. Indeed, let λ > 0, since R(λ,A) is compact, then we have from (A.3) that

T (t)R(λ,A)[I − T (s)T ∗(s)]x→ 0, T (t)R(λ,A)[I − T ∗(s)T (s)]x→ 0, t→ ∞

which implies that R(λ,A)[I − T (s)T ∗(s)]x ∈ X1 and R(λ,A)[I − T ∗(s)T (s)]x ∈ X1. Thus

[I − T (s)T ∗(s)]x = lim
λ→+∞

λR(λ,A)[I − T (s)T ∗(s)]x ∈ X1,

[I − T ∗(s)T (s)]x = lim
λ→+∞

λR(λ,A)[I − T ∗(s)T (s)]x ∈ X1.

In particular, for any y ∈ X⊥
1 , [I − T ∗(s)T (s)]y ∈ X1 and [I − T (s)T ∗(s)]y ∈ X1. Hence

0 = ([I − T ∗(s)T (s)]y, y) = ||y||2 − ||T (s)y||2, 0 = ([I − T (s)T ∗(s)]y, y) = ||y||2 − ||T ∗(s)y||2.

That is
||T ∗(s)y|| = ||T (s)y|| = ||y||, y ∈ X⊥

1 , s ≥ 0
i.e., X⊥

1 ⊂ X2.
Now we prove X2 ⊂ X⊥

1 . From the definition of X2, we get

([I − T ∗(s)T (s)]y, y) = 0, ([I − T (s)T ∗(s)]y, y) = 0, y ∈ X2

which implies that [I − T ∗(s)T (s)]y = [I − T (s)T ∗(s)]y = 0 since I − T (s)T ∗(s) is self-adjoint.
Thus for any x ∈ X1 and y ∈ X2, we have

([I − T ∗(s)T (s)]x, y) = 0, (x, [I − T (s)T ∗(s)]y) = 0

and hence

|(x, y)| = |(T ∗(s)T (s)x, y)| = |(T (s)x, T (s)y)| ≤ ||T (s)x||||T (s)y|| = ||T (s)x||||y|| → 0, s→ ∞

i.e., (x, y) = 0. So y ∈ X⊥
1 , hence X2 ⊂ X⊥

1 . Therefore, X2 = X⊥
1 . The proof is then complete.
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