
ESAIM: COCV 18 (2012) 259–276 ESAIM: Control, Optimisation and Calculus of Variations

DOI: 10.1051/cocv/2010051 www.esaim-cocv.org

DIMENSION REDUCTION FOR FUNCTIONALS
ON SOLENOIDAL VECTOR FIELDS

Stefan Krömer1

Abstract. We study integral functionals constrained to divergence-free vector fields in Lp on a thin
domain, under standard p-growth and coercivity assumptions, 1 < p < ∞. We prove that as the
thickness of the domain goes to zero, the Gamma-limit with respect to weak convergence in Lp is always
given by the associated functional with convexified energy density wherever it is finite. Remarkably,
this happens despite the fact that relaxation of nonconvex functionals subject to the limiting constraint
can give rise to a nonlocal functional as illustrated in an example.
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1. Introduction

This article is devoted to the study of the “effective” value per unit volume of functionals constrained to
solenoidal (i.e., divergence-free) vector fields defined on a thin domain ω× (0, ε), in the limit as the thickness ε
goes to zero. We assume that on a domain with finite thickness, our functional (which we call the “energy”,
although its meaning might be different from a physical point of view) is given by a integral of the form

Gε(v) :=

⎧⎪⎨
⎪⎩

1
ε

∫
ω×(0,ε)

g
(
y′, v(y)

)
dy if v ∈ Vε,

+ ∞ if v ∈ Lp(ω × (0, ε); RN) \ Vε

where N ≥ 2, ω is a bounded domain in R
N−1, y = (y′, yN) ∈ ω × (0, ε), g : ω × R

N → R is a given energy
density, and Gε is finite only in the class of solenoidal vector fields on ω× (0, ε) in Lp for some 1 < p <∞, i.e.,

Vε :=
{
v ∈ Lp(ω × (0, ε); RN) | div v = 0

}
.

Here and throughout the rest of this article, differential constraints as for v above are understood in the sense
of distributions, in particular, div v = 0 for a v ∈ Lp(ω× (0, ε); RN) means that

∫
ω×(0,ε)

v ·∇ϕdy = 0 for all test
functions ϕ ∈ C∞

c (ω× (0, ε)) (smooth functions with compact support, scalar-valued). Using rescaled variables
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1 Universität zu Köln, Köln, Germany. skroemer@math.uni-koeln.de

Article published by EDP Sciences c© EDP Sciences, SMAI 2010

http://dx.doi.org/10.1051/cocv/2010051
http://www.esaim-cocv.org
http://www.edpsciences.org


260 S. KRÖMER

given by x = (x′, xN ) = (y′, ε−1yN ) and u(x) = v(x′, εxN ), Gε is transformed into a functional defined on a
fixed domain:

Fε(u) :=
{ ∫

Ω
f
(
x, u(x)

)
dx, if u ∈ Uε, with Ω := ω × (0, 1),

+∞ if u ∈ Lp(Ω; RN ) \ Uε,

where f(x, ·) = g(x′, ·) for x = (x′, xN ) ∈ R
N−1 × R,

Uε :=
{
u ∈ Lp(Ω; RN )

∣∣ divε u = 0
}

and
divε u := div′ u′ + 1

ε∂Nu
N :=

(∑N−1
α=1 ∂αu

α
)

+ 1
ε∂Nu

N

for u = (u′, uN ) = (u1, . . . , uN). As this does not further complicate our approach, we allow f to explicitly
depend on xN as well below. We assume that

f : Ω × R
N → R is a Carathéodory function2 (f:0)

satisfying the following structural conditions:

(growth) |f(x, μ)| ≤ C |μ|p + C, (f:1)

(coercivity) f(x, μ) ≥ 1
C |μ|p − C, (f:2)

with constants C > 0 and 1 < p <∞, for every μ ∈ R
N and a.e. x ∈ Ω.

Using the notion of Γ-convergence introduced by De Giorgi [9,10], the effective energy in the limit ε → 0+

is expressed by the Γ-limit of Fε with respect to weak convergence in Lp. For an introduction to the theory of
Γ-convergence, the reader is referred to [4,7]. We use the notation

Γ(Lp
weak) − lim inf Fε(u) := inf

{
lim inf
ε→0+

Fε(uε)
∣∣ uε ⇀ u weakly in Lp

}
,

Γ(Lp
weak) − lim supFε(u) := inf

{
lim sup
ε→0+

Fε(uε)
∣∣ uε ⇀ u weakly in Lp

}
.

Below, we omit the topology indicated in brackets as throughout this paper, this is always the weak topology
in Lp. We say that Γ − limFε exists if Γ − lim inf Fε and Γ − lim supFε coincide, in which case this quantity
is denoted by Γ − limFε. In particular, the use of the weak topology in Lp causes a process of relaxation in
the limit, roughly speaking because energetically favorable microstructures of a characteristic size converging
to zero as ε→ 0 are allowed along the sequences generating the effective (macroscopic) limiting energy.

The corresponding problem of dimension reduction for functionals depending on gradients instead of
divergence-free fields was investigated by Le Dret and Raoult [18–20] and stimulated a great deal of further
research, including the study of different scalings, partially with energy densities that are realistic from the
point of view of hyperelasticity (see [15] and the references therein), as well as extensions to non-flat limiting
surfaces [22,23].

Recently, dimension reduction problems for Ginzburg-Landau-type functionals, involving a magnetic potential
which is divergence-free as a choice of gauge, were studied in [1,6]. In both cases, the relevant parts of the energy
density (apart from compact perturbations) are convex and thus no relaxation occurs during the limit process,
avoiding the main difficulty of our problem. Relaxation and homogenization of functionals constrained to
solenoidal matrix fields were treated in [2,29] (for related results and some physical background also see [16,28]),
as well as in [5,12,14] for a more general constraint of the form Au = 0. In this context, A is a linear differential
operator assumed to satisfy Murat’s condition of constant rank [26], and apart from the examples in [21,24,31],

2I.e. measurable in its first and continuous in its second variable.
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very little is known if this condition is violated. In our framework, divε satisfies the condition of constant rank
for each ε, but the associated limiting operator div0 (div0 u := ∂Nu

N for u : Ω → R
N ) does not. From the point

of view of the theory for A-free fields developed in [5,14], this means that important bounds for the projection
operator onto divε-free fields and its complementary projection are not uniform in ε and projecting tends to
create large errors as ε → 0+ (cf. Rem. 2.8). Hence, we can (and do) use the projection only along sequences
that are asymptotically divε-free in a very strong sense (cf. Lem. 2.9).

As we shall see, the divergence-free dimension reduction problem with nonconvex energy density exhibits some
intriguing features that do not occur in the gradient case. In particular, it turns out that dimension reduction
and direct relaxation in the limit setting do not yield the same result in general. While the former simply
leads to convexification by our main theorem stated below, the latter may give rise to a nonlocal functional as
illustrated by the example discussed in Proposition 3.3.

Unless indicated otherwise, we assume throughout that

N ≥ 2, ω ⊂ R
N−1 is open and bounded, Ω := ω × (0, 1) and 1 < p <∞.

Theorem 1.1. Suppose that (f:0)–(f:2) are satisfied. Then Γ − limε→0+ Fε (with respect to weak convergence
in Lp) exists, and it has the representation

Γ − limFε(u) =
{
F ∗∗(u) :=

∫
Ω f

∗∗(x, u) dx if u ∈ U0,
+∞ if u ∈ Lp(Ω; RN ) \ U0,

where for each x, f∗∗(x, ·) denotes the convex envelope of f(x, ·) and

U0 :=
{
u ∈ Lp(Ω; RN )

∣∣ ∂Nu
N = 0 in Ω

}
.

It is fairly easy to see that both Γ − lim supFε(u) and Γ − lim inf Fε(u) are finite if and only if u ∈ U0

(Lems. 2.2 and 2.3), and the lower bound for Γ − lim inf Fε(u) is of course a simple consequence of the weak
lower semicontinuity of convex functionals (Prop. 2.6). However, the upper bound, Γ − lim supFε(u) ≤ F ∗∗(u)
for u ∈ U0, is far more difficult than in the gradient case. The main issue here is that a priori, we do not
know whether or not Γ − lim supFε is a local integral functional. The usual trick for a proof of this property,
based on “localizing” a sequence uε that weakly converges to zero by multiplying it with suitable smooth cut-
off functions with the desired support. In the gradient case, the fields u with finite Γ-limit are independent
of xN , whence it suffices to localize in the first N − 1 variables. By contrast, in our setting, only the last
component uN is independent of xN , and we have to somehow localize in xN as well. But using a cut-off in XN

as described above does not work, because the distance of the modified sequence to the set of divε-free fields
in Lp may be of an order approaching 1/ε which is an error too large to handle. Indeed, our proof of the upper
bound in Section 4 (culminating in Prop. 4.9) does not use this kind of truncation in direction xN , instead
relying on a rather explicit construction of suitable sequences with small support in direction of xN which are
asymptotically divε-free in the sense that their distance to Uε with respect to the norm of Lp goes to zero as
ε→ 0+ (by Lem. 2.9). A prototype of this construction for a simple example is presented in Proposition 3.5.

2. Preliminary observations

We first observe that both Γ − lim supFε(u) and Γ − lim inf Fε(u) are finite if and only if u ∈ U0. The
following simple density result turns out to be useful.

Lemma 2.1. With respect to the strong topology in Lp(Ω; RN ), U0 ∩ C∞(Ω; RN ) is dense in U0.

Proof. Let u ∈ U0, and extend u = (u1, . . . , uN) to a function in Lp
loc(R

N ; RN ) such that uj = 0 on R
N \ Ω for

j = 1, . . . , N − 1, uN = 0 on R
N \ (ω × R) and uN (x′, xN ) is still constant in xN for a.e. x′ ∈ ω. Mollifying in

the usual way yields a sequence (uk)k∈N in C∞(RN ; RN ) ∩ U0 with uk → u strongly in Lp(Ω; RN ). �
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Lemma 2.2. Let vn be a bounded sequence in Lp(Ω) with vn ⇀ v∞ weakly in Lp(Ω), and suppose that ∂Nvn → 0
in the sense of distributions. Then v∞ is constant in xN . In particular, if (uε) ⊂ Uε and uε ⇀ u weakly in Lp,
then u ∈ U0.

Proof. For every ϕ ∈ C∞
0 (ω) and every η ∈ C∞

0 ((0, 1)), we have

0 = lim
n→∞

∫
ω

∫
(0,1)

vn(x′, xN )ϕ(x′)η̇(xN ) dxNdx′ =
∫

ω

∫
(0,1)

v∞(x′, xN )ϕ(x′)η̇(xN ) dxNdx′.

In particular, since ϕ was arbitrary, we get∫
(0,1)

v∞(x′, xN )η̇(xN ) dxN = 0 for a.e. x′ ∈ ω and every η ∈ C∞
0 ((0, 1)),

which in turn implies that v∞(x′, xN ) is constant in xN . �

Lemma 2.3. For every u ∈ U0, there exists a sequence (uε) ⊂ Uε such that uε − u→ 0 in Lp(Ω; RN ).

Remark 2.4. Using Lebesgue’s theorem, (f:0) and (f:1), we get that limFε(uε) =
∫
Ω
f(x, u) dx <∞, and thus

Γ − lim supFε(u) <∞ for every u ∈ U0.

Proof of Lemma 2.3.
Step 1: Assume in addition that u ∈ C1(Ω; RN).

For j = 1, . . . , N − 1 define uj
ε := uj , and let

uN
ε (x′, xN ) := uN(x′, xN ) − ε

∫ xN

0

div′ u(x′, t) dt,

where div′ u = ∂1u
1 + . . . + ∂N−1u

N−1. We thus have that divε uε = 0 and uε → u strongly in Lp, whence
vε := uε has the asserted properties.
Step 2: The general case.

By Lemma 2.1, there exists a sequence (uk) ⊂ C1(Ω; RN )∩U0 with uk → u strongly in Lp(Ω; RN ) as k → ∞.
For each k and each ε, we define uk,ε ∈ Uε as in the first step, using uk instead of u. Now choose (k(ε))ε>0 with
k(ε) → ∞ slow enough such that ε

∥∥uk(ε)

∥∥
C1(Ω;RN )

→ 0 as ε → 0. As a consequence, uε := uk(ε),ε converges
to u strongly in Lp, and it satisfies divε uε = 0 by construction. �

To prove the lower bound Γ−lim inf Fε(u) ≥ F ∗∗(u) for u ∈ U0, we first recall the well known characterization
of weak lower semicontinuity of convex functionals:

Theorem 2.5 (see [17] or [13], e.g.). Suppose that f satisfies (f:0). Then the functional J : Lp(Ω,RN ) → [0,∞],
J(u) :=

∫
Ω
f(x, u) dx, is lower semicontinuous with respect to weak convergence in Lp if and only if f(x, ·) is

convex for a.e. x ∈ Ω.

As an immediate consequence, we have:

Proposition 2.6 (lower bound). Suppose that the assumptions of Theorem 1.1 hold. Then for every u ∈ U0,

Γ − lim inf Fε(u) ≥ F ∗∗(u).

For the upper bound, we have to construct a suitable sequence (uε) ⊂ Uε such that uε ⇀ u in Lp and
Fε(uε) → F ∗∗(u), starting from a given u ∈ U0. The main problem here is the constraint divε uε = 0. In
particular, we rely on a projection onto divε-free fields, which is based on the following special case of the
projection used in [14].
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Lemma 2.7. Let 1 < p < ∞ and let Q ⊂ R
N be an open cube. For every ε > 0, there exists a linear operator

Pε : Lp(Q; RN ) → Lp(Q; RN ) with the following properties:
(i) divε Pεu = 0 on R

N for every u ∈ Lp(Q; RN ), where Pεu is extended Q-periodically.
(ii) Pεw = w for every w ∈ Lp(Q; RN ) such that divε w = 0 on R

N , where w is identified with its Q-periodic
extension to R

N .
(iii) ‖Pεu‖Lp(Q;RN ) ≤ Cε ‖u‖Lp(Q;RN ) for every u ∈ Lp(Q; RN ), with a constant Cε > 0 independent of u.
(iv) ‖(I − Pε)u‖Lp(Q;RN ) ≤ Cε‖ divε u‖W−1,p(Q) for every u ∈ Lp(Q; RN ), with a constant Cε > 0 indepen-

dent of u.

Here, on a given domain W−1,p denotes the dual space of W 1,p′
0 with p′ = p/(p− 1).

Proof. For ξ = (ξ′, ξN ) ∈ R
N \ {0}, (ξ′, 1

εξ) ∈ R
1×N has full rank independent of ξ �= 0, which means that for

fixed ε, divε satisfies Murat’s condition of constant rank [26]. Hence, Lemma 2.14 in [14] applies with A := divε

and T = Pε. �
Remark 2.8. If p = 2 (avoiding the use of general Fourier multiplier theorems), it is easy to see from the proof
of Lemma 2.14 in [14] that (iii) and (iv) actually hold with constants independent of ε. However, we do not
exploit this fact, and in any case, the factor 1

ε hidden in the divε on the right hand side of (iv) is still a major
obstacle even if the constant in (iv) does not blow up as ε→ 0+.

For technical reasons, it is important for us to be able to work with sequences which are not divε-free but
can be projected to divε-free sequences with an error that is negligible in the limit ε → 0+. The following
application of Lemma 2.7 gives a useful sufficient criterion for sequences with this property.

Lemma 2.9. Let Ω ⊂ R
N be open and bounded, let 1 < p <∞ and let εn → 0+. Then there exists a sequence

σn → 0+ such that the following holds: For every sequence (un) ⊂ Lp(Ω; RN ) with un ⇀ 0 in Lp and

∥∥divεn un

∥∥
W−1,p(Ω)

+
∥∥∥(u′n, 1

εn
uN

n

)∥∥∥
W−1,p(Ω;RN )

≤ σn, (2.1)

where u′n := (u1
n, . . . , u

N−1
n ), there exists a sequence (vn) ⊂ Lp(Ω; RN ) such that divεn vn = 0 in Ω and un−vn →

0 in Lp(Ω; RN ).

Proof. For every k ∈ N choose a function ϕk ∈ C∞
c (Ω; [0, 1]) such that ϕk(x) = 1 for every x ∈ Ω with

dist (x; ∂Ω) ≥ 1
k . Moreover, choose a cube Q containing Ω and a sequence σ̃n → 0+ such that Cεn σ̃n → 0 with

the constants of Lemma 2.7 (iv) (which also depend on Q). We define

σn :=
∥∥ϕj(n)

∥∥−1

W 2,∞(Ω)
σ̃n and ũn := ϕj(n)un

with a sequence of integers j(n) → ∞ (fast enough) such that un − ũn → 0 in Lp(Ω; RN ). Since

divεn(ϕkun) = ϕk divεn un + ∇ϕk ·
(
u′n,

1
εn
uN

n

)
,

we have that

‖divεn(ϕkun)‖W−1,p ≤ ‖ϕk‖W 2,∞(Ω)

(
‖divεn un‖W−1,p +

∥∥∥(u′n, 1
εn
uN

n

)∥∥∥
W−1,p

)
.

Hence, (2.1) implies that

Cεn ‖divεn ũn‖W−1,p(Ω) = Cεn ‖divεn ũn‖W−1,p(Q) ≤ Cεn σ̃n → 0

as n → ∞. The sequence vn := Pnũn ∈ Lp(Q; RN), restricted to Ω, now has the desired properties by
Lemma 2.7. �
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Applying Lemma 2.9 is not easy because σn might converge to zero extremely fast. Nevertheless, it turns
out to be possible for certain sequences constructed below, first in Proposition 3.5 for a simple example and
then in Proposition 4.3 as the first step in proof of the upper bound.

3. An example and a related relaxation problem

When studying the dimension reduction problem for functionals depending on gradients (instead of divergence-
free functions), one usually relies on a characterization of the associated relaxed functional in the limit setting,
both as a lower semicontinuity result for the lower bound and as a first step in the construction of a sequence
for the upper bound. In our framework, the associated relaxed functional in the limit setting corresponds to the
functional F̃0 introduced below. Although F̃0 does not play a role in the proof our main result, we briefly discuss
it here to point out the somewhat surprising fact that F̃0 does not always give the right limiting model for the
divergence-free dimension reduction problem and may even be nonlocal, in sharp contrast to the gradient case.
In addition, the crucial idea for the proof of the upper bound in our main result is developed in Proposition 3.5
for a simple model problem.

In the following, we consider the functional

F̃ (u) :=
{ ∫

Ω
f(x, u) dx if u ∈ U0,

+∞ if u /∈ U0.

By definition, the relaxed functional associated to F̃ is given by the lower semicontinuous hull of F̃ with respect
to weak convergence in Lp. For u ∈ Lp(Ω; RN ), it can be expressed by

F̃0(u) := Γ − lim F̃ (u) = inf
{

lim inf F̃ (un)
∣∣∣ un ⇀ u weakly in Lp

}
. (3.1)

Here, note that since F̃ does not depend on n, Γ − lim inf F̃ = Γ − lim sup F̃ . Moreover, U0 is weakly closed
in Lp, whence F̃0(u) is finite if and only if u ∈ U0.

Proposition 3.1 (partial representation of F̃0). Let f : ω × R
N → [0,∞) (identified with f : Ω × R

N → R

constant in xN ) satisfy (f:0)– (f:2). Then for every u ∈ Lp(ω; RN) (identified with u = (u1, . . . , uN ) ∈ Lp(Ω; RN )
with uj independent of xN for every j = 1, . . . , N), we have F̃0(u) = F ∗∗(u), the convexified functional.

Proof. Since f ≥ f∗∗ and F ∗∗ is weakly lower semicontinuous in Lp(Ω; RN ), it is clear that F̃0(u) ≥ F ∗∗(u).
On the other hand, for any u ∈ Lp(Ω; RN ) which is constant in xN , we have

F̃0(u) = inf
{

lim inf F̃ (un)
∣∣∣ un ⇀ u weakly in Lp(Ω; RN ), ∂Nu

N
n = 0 ∈ R

}
≤ inf

{
lim inf F̃ (un)

∣∣∣ un ⇀ u weakly in Lp(Ω; RN ), ∂Nun = 0 ∈ R
N
}

= inf
{

lim inf
∫

ω

f(x′, ũn) dx′
∣∣∣∣ ũn ⇀ u weakly in Lp(ω; RN )

}

=
∫

ω

f∗∗(x′, u) dx′ =
∫

Ω

f∗∗(x′, u) dx,

where we used that
∫

ω f
∗∗(x′, v) dx′ is the weakly lower semicontinuous hull of v �→ ∫

ω f(x′, v) dx′ in Lp. �

Example 3.2. Let p = 6, let N = 2, let f : R
2 → R be the three-well potential given by

f(μ) := |μ− ζ1|2 |μ− ζ2|2 |μ− ζ3|2 ,
with ζ1 := (0,−1), ζ2 := (1, 0), ζ3 := (0, 1),
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and consider the function u0 ∈ U0 given by

u0(x1, x2) :=
{

(0, 0) if x2 ∈ (0, 1
2 ],

(1, 0) if x2 ∈ (1
2 , 1).

Proposition 3.3 (possible nonlocal character of F̃0). In the situation of Example 3.2, we have that

F̃0(u0) > 0 =
|ω×(0,

1
2 )|

|Ω| F̃0((0, 0)) +
|ω×(

1
2 ,1)|

|Ω| F̃0((1, 0)).

In particular, F̃0(u) cannot be written in the form
∫
Ω
V (u) dx with some function V : R

2 → R, and F̃0(u0) >
F ∗∗(u0).

Remark 3.4. As recently discovered in [8], the lower semicontinuous hull with respect to strong convergence
in L2 of certain integral functionals of the form u �→ ∫

Ω
f(u,∇u) dx can also be nonlocal, if there is a lack of

coercivity with respect to the gradient variable.

Proof of Proposition 3.3. Since f∗∗ = 0 on the closed triangle formed by ζ1, ζ2 and ζ3, F̃0((0, 0)) = F̃0((1, 0)) = 0
by Proposition 3.1. To prove that F̃0(u0) > 0, we proceed indirectly. Suppose that F̃0(u0) = 0. By a standard
diagonalization argument, we may choose a sequence un ∈ U0 with un ⇀ u0 weakly in L6(Ω,R2) such that
F̃0(u0) = lim F̃ (un). By passing to a subsequence (not relabeled), we may assume that un generates a Young
measure νx, which for a.e. x ∈ Ω is a probability measure on R

2, and by the fundamental theorem for Young
measures (see [3,13,25], e.g.), also exploiting that f ≥ 0, we get that

0 = F̃0(u0) = lim
∫

Ω

f(un)dx ≥
∫

Ω

∫
R2
f(ξ)dνx(ξ)dx.

Since f vanishes only on {ζ1, ζ2, ζ3}, this implies that νx is supported in {ζ1, ζ2, ζ3} for a.e. x, i.e.,

νx =
∑3

j=1 σj(x)δζj , (3.2)

where δz denotes the Dirac mass concentrated at the point z in R
2. Moreover, since

∫
R2 ξ dνx(ξ) = u0(x) and

νx is a probability measure for a.e. x, the coefficients σj(x) ∈ [0, 1] are determined by the linear system

∑3
j=1 σj(x)ζj = u0(x) and

∑3
j=1 σj(x) = 1.

One easily checks that the unique solution of this system is given by

σ1(x) = 1
2 , σ2(x) = 0, σ3(x) = 1

2 if x2 ≤ 1
2 (i.e., u0(x) = (0, 0)),

σ1(x) = 0, σ2(x) = 1, σ3(x) = 0 if x2 >
1
2 (i.e., u0(x) = (1, 0)),

(3.3)

where x = (x1, x2). In addition, the marginal of νx on the second coordinate axis,

ν2
x(A) := νx(R ×A) for A ⊂ R Borel-measurable,

is the Young measure generated by u2
n. Since un ∈ U0, u2

n(x) is independent of x2 for each n and consequently,
ν2

x only depends on x1. This contradicts (3.2), because the latter implies that ν2
x = σ1(x)δ−1+σ2(x)δ0+σ3(x)δ1,

and the coefficients given by (3.3) are not constant in x2 (only piecewise constant). �
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The dimension reduction problem is different because the constraint divε uε = 0 is actually genuinely less
restrictive than ∂Nu

N
ε = 0:

Proposition 3.5. In the situation of Example 3.2, for every given pair of sequences εn → 0+ and σn → 0+,
there exists a bounded sequence (un) ⊂ L∞(Ω; RN ) such that un ⇀ 0 in Lp,

∫
Ω

f(un + u0) dx→
∫

Ω

f∗∗(u0) dx = 0, (3.4)

and

‖divεn un‖W−1,p(Ω) +
∥∥∥(u′n, 1

εn
uN

n

)∥∥∥
W−1,p(Ω;RN )

≤ σn (3.5)

for every n. In particular, un can be projected onto Uεn with an error that goes to zero strongly in Lp by
Lemma 2.9, and since divεn u0 = div′ u′0 = 0, this entails that Γ − lim inf Fεn(u0) ≤ 0 < F̃0(u0).

Proof. For each n fix a function ϕn ∈ C∞
c ((0, 1); [0, 1]) such that ϕn = 1 on [εn, 1 − εn], and for k ∈ N let

wk(t) =
(
w1

k(t), w2
k(t)

)
:=

⎧⎨
⎩
ζ3 = (0, 1) if 0 < t ≤ 1

2k ,

ζ1 = (0,−1) if 1
2k < t ≤ 1

k ,

extended periodically to a function wk : R → R
2 with period 1

k . Note that

wk ⇀
1
2 ζ3 + 1

2ζ1 = (0, 0) weakly in Lp(T ; R2) (3.6)

for any bounded open set T ⊂ R. We define vk,n ∈ Lp(Ω; R2) by

vk,n(x1, x2) :=

⎧⎨
⎩
ϕn(2x2)wk( 1

εn
x1) if 0 < x2 <

1
2 ,

0 if 1
2 ≤ x2 < 1.

Observe that although vk,n is not continuous, its jumps do not contribute to divεn vk,n (as a distribution), and
thus the latter is actually a function with

divεn vk,n(x1, x2) = 2
εn
ϕ̇n(2x2)w2

k

(
1
εn
x1

)
.

In particular, as k → ∞ for fixed n, divεn vk,n ⇀ 0 weakly in Lp(Ω) as a consequence of (3.6), and thus
divεn vk,n → 0 strongly in W−1,p(Ω), by compact embedding. Analogously, we get that (v1

k,n,
1
εn
v2

k,n) → 0
in W−1,p(Ω; RN ) as k → ∞. Hence, we may choose k = k(n) with k(n) → ∞ as n → ∞ fast enough such
that (3.5) holds for un := vk(n),n. Again using (3.6), it is not difficult to check that un ⇀ 0 weakly in Lp, and
since f(ζ1) = f(ζ2) = 0, un is bounded in L∞ and

∣∣{un �= ζ1} ∩ {un �= ζ2}
∣∣→ 0, (3.4) holds as well. �

Remark 3.6. The choice of the dimension N = 2 is not crucial for Example 3.2, it is just the simplest possible
case. In fact, a completely analogous argument can be used for suitable potentials f with N + 1 wells in R

N

for any N ≥ 2.
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4. The upper bound

In this section, we provide the remaining part of the proof of Theorem 1.1, namely the upper bound

Γ − lim supFε(u) ≤ F ∗∗(u) for u ∈ U0,

by constructing a suitable recovery sequence. In particular, we need some results from convex analysis:

Lemma 4.1 (Carathéodory’s theorem, see [30], e.g.). Let g : R
N → [0,∞) be continuous. Then for every

ξ ∈ R
N and every δ > 0, there exists an m ∈ {0, . . . , N} and ξj ∈ R

N , θj ∈ (0, 1], j = 0, . . . ,m, such that∑
j θj = 1, ξ =

∑
j θjξj,

g∗∗(ξ) ≤ ∑m
j=0θjg(ξj) ≤ g∗∗(ξ) + δ,

and the vectors ξj − ξ0, j = 1, . . . ,m, are linearly independent. Here, g∗∗ denotes the convex envelope of g.

Lemma 4.2. Suppose that the assumptions of Lemma 4.1 hold. If, in addition, there exist constants p > 1 and
C > 0 such that

1
C |μ|p − C ≤ g(μ) ≤ C |μ|p + C for every μ ∈ R

N , (4.1)

then the assertion of Lemma 4.1 stays true even for δ = 0, and in this case,

|ξj | ≤ K(|ξ| + 1) for j = 0, . . . ,m, (4.2)

where K is a constant that only depends on p and C.

Proof. With some background in convex analysis, this is not hard to prove, and we just sketch some details: It
is well known that the convex envelope of g can be represented as

g∗∗(ξ) = sup
{
A(ξ) | A : R

N → R affine and A ≤ g
}
, ξ ∈ R

N .

If g is (lower semi-)continuous and has superlinear growth, the supremum is attained at a suitable affine
function A (see [13], e.g.), and A always touches g from below at suitable points ξj as in Lemma 4.1 with δ = 0.
In addition, as a consequence of (4.1), we have that

1
C |μ|p − C ≤ Aξ(μ) ≤ C |μ|p + C for every μ ∈ co{ξj}

(the convex hull of the points ξj , j = 0, . . . ,m). Clearly, the existence of an affine function satisfying the
latter implies that co{ξj} is bounded for fixed ξ, and it is not difficult to obtain more precise estimates that
yield (4.2). �

The following result is the crucial step towards the upper bound for Γ − lim supFε in the general case.

Proposition 4.3. Let N ≥ 2, let 1 ≤ p < ∞, let I ⊂ (0, 1) be an open interval and let εn → 0+. Then for
every sequence τn → 0+ and every pair of points ζ1, ζ2 ∈ R

N and numbers γ1, γ2 ∈ (0, 1) such that ζN
1 �= ζN

2 ,
γ1ζ1 + γ2ζ2 = 0 and γ1 + γ2 = 1, there exists a sequence (vn) ⊂ L∞(RN ; RN ) such that

‖vn‖L∞ ≤ max{|ζ1| , |ζ2|}, (4.3)

‖divεn vn‖W−1,p(Ω) +
∥∥∥(v′n, 1

εn
vN

n

)∥∥∥
W−1,p(Ω;RN )

≤ τn (4.4)

for every n ∈ N,

vn ⇀ 0 in Lp
loc(R

N ; RN ) as n→ ∞, supp(vn) ⊂ R
N−1 ×⋃z∈Z

(
εnz + εnI

[εn]
)
, (4.5)
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where I [ε] := { t ∈ I | dist (t; ∂I) ≥ ε}, and

|{vn = ζj} ∩ U | −→
n→∞ γj |U | |I| for every measurable set U ⊂ R

N (4.6)

and j = 1, 2.

Remark 4.4. The assumption ζN
1 �= ζN

2 is actually obsolete. The case of equality is only excluded above
because it is much simpler and will be treated separately in Proposition 4.6 below.

Proof of Proposition 4.3. For each n ∈ N fix a function ϕn ∈ C∞
c (R; [0, 1]) such that ϕn = 1 on I [2εn] and

ϕn = 0 on R \ I [εn], and define

ψn ∈ C∞(R; [0, 1]), ψn :=
∑
z∈Z

ϕn(· + z).

Furthermore, for k ∈ N let

wk(t) :=

{
ζ1 if 0 < t ≤ γ1

1
k ,

ζ2 if −γ2
1
k < t ≤ 0,

extended periodically to a function wk : R → R
N with period 1

k . Note that

wk ⇀ γ1ζ1 + γ2ζ2 = 0 weakly in Lp
loc(R; RN ). (4.7)

With a fixed unit vector ζ⊥12 ∈ R
N perpendicular to ζ1 − ζ2, we define vk,n ∈ L∞(RN ; RN ) by

vk,n(x) := ψn

(
1
εn
xN

)
wk

((
1

ε2
n
x′, 1

εn
xN

)
· ζ⊥12

)
.

Observe that although x �→ wk

(
( 1

ε2
n
x′, 1

εn
xN ) · ζ⊥12

)
is not continuous, it is divεn -free (as a distribution), and

thus divεn vk,n is actually a function with

divεn vk,n(x) = 1
ε2

n
ψ̇n

(
1

εn
xN

)
wN

k

((
1
ε2

n
x′, 1

εn
xN

)
· ζ⊥12

)
.

In particular, as k → ∞ for fixed n, divεn vk,n ⇀ 0 weakly in Lp(Ω) due to (4.7), and thus divεn vk,n → 0
strongly in W−1,p(Ω), by compact embedding. Analogously, we get that (v′k,n,

1
εn
vN

k,n) → 0 in W−1,p(Ω; RN )
as k → ∞. Hence, we may choose k = k(n) with k(n) → ∞ as n → ∞ fast enough such that (4.4) holds for
vn := vk(n),n, and (4.3), (4.5) and (4.6) hold by construction. �

Carathéodory’s theorem requires convex combination of up to N + 1 points, but Proposition 4.3 only admits
two points. The following elementary lemma allows us to handle general convex combinations by breaking them
into suitable pairs of two. Essentially, it states that if ξ =

∑
j θjξj is a convex combination with ξ ∈ H , where

H is an affine hyperplane, then ξ can be rewritten as a convex combination of points ξ̄ij ∈ H , such that each
ξ̄ij is a convex combination of two of the original points, i.e., ξ̄ij = βijξj + βjiξi:

Lemma 4.5. Let m ≤ N , let ξj ∈ R
N , θj ∈ (0, 1] for j = 0, . . . ,m such that

∑m
j=0 θj = 1 and the vectors

ξj − ξ0, j = 1, . . . ,m, are linearly independent, and define

βij :=

⎧⎪⎨
⎪⎩

ξN
i −ξN

ξN
i −ξN

j

if (ξN
i − ξN )(ξN

j − ξN ) < 0,

1 if i = j and ξN
j = ξN ,

0 else.
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Here, note that βij ∈ [0, 1] and βij +βji = 1 if (ξN
i − ξN )(ξN

j − ξN ) < 0. Then there exists numbers αij ∈ [0, 1],
i, j ∈ {0, . . . ,m}, such that

αij = αji, αij = 0 whenever βij = 0,
m∑

j=0

j∑
i=0

αij = 1, (4.8)

θj =
m∑

i=0

αijβij , (4.9)

and

ξ = 1
2

m∑
i,j=0

αij

(
βijξj + βjiξi

)
=
∑
i<j

αij

(
βijξj + βjiξi

)
+
∑

j

αjjβjjξj . (4.10)

Proof. Let H := {y ∈ R
N | yN = ξN}. Since ξ ∈ S := co{ξj | j = 0, . . . ,m}∩H (where coA denotes the convex

hull of a set A), which is a convex polyhedral set, ξ can be written as a convex combination of the extreme
points of S. Such an extreme point is either given by ξj for some j such that ξN

j = ξN , or it is the intersection
of H with a line segment of the form co{ξi, ξj}, for indices i, j such that ξi and ξj lie on opposite sides of H
(i.e., (ξN

i − ξN )(ξN
j − ξN ) < 0). Note that co{ξj, ξi} ∩ H = {βijξj + βjiξi} in this case. Hence, there exist

αij ∈ [0, 1] such that αij = αji, αij = 0 if βij = 0,
∑

i≤j αij = 1 and (4.10) holds. Moreover, since αij = αji,
we have that

ξ = 1
2

m∑
i,j=0

αij

(
βijξj + βjiξi

)
=

m∑
j=0

(
m∑

i=0

αijβij

)
ξj .

This is another way of expressing ξ as a convex combination of the points ξj . Since ξj − ξ0, j = 1, . . . , N ,
are linearly independent, the coefficients of the convex combination are uniquely determined, and comparison
yields (4.9). �

Combining multiple instances of Proposition 4.3 with Lemma 4.5, we obtain:

Proposition 4.6. Let N ≥ 2, let 1 ≤ p <∞, let J ⊂ (0, 1) be an open interval and let εn → 0+. Moreover, let
m ≤ N , let ξj ∈ R

N and θj ∈ (0, 1], j = 0, . . . ,m, be such that

∑
jθjξj = 0,

∑
j θj = 1,

and the vectors ξj − ξ0, j = 1, . . . ,m, are linearly independent. Then for every sequence σn → 0+, there exist
sequences (yn), (zn) ⊂ L∞(RN ; RN ) such that

‖yn‖L∞ ≤ maxj |ξj | and ‖zn‖L∞ ≤ maxj |ξj | , (4.11)

∂Ny
N
n = div′ y′n = 0 on R

N , (4.12)

‖divεn zn‖W−1,p(Ω) +
∥∥∥(z′n, 1

εn
zN

n

)∥∥∥
W−1,p(Ω;RN )

≤ σn (4.13)

for every n ∈ N,
yn ⇀ 0, zn ⇀ 0 in Lp(ω × J ; RN ) as n→ ∞,

supp(yn) ∪ supp(zn) ⊂ R
N−1 ×Kn for a compact set Kn ⊂ J

(4.14)

and
|{yn + zn = ξj} ∩ U | −→

n→∞ θj |U | , for every measurable U ⊂ R
N−1 × J (4.15)

and every j ∈ {0, . . . ,m}.
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Proof. Let αij and βij be as in Lemma 4.5 with ξ = 0, and divide the unit interval (0, 1) into pairwise disjoint
open subintervals Iij , 0 ≤ i ≤ j ≤ m (some possibly empty), such that |Iij | = αij . For ε > 0 let

Tij(ε) := R
N−1 ×

⋃
k∈Z

(εk + εIij), ξ̄ij :=
{
βjiξi + βijξj if i �= j,
ξj if i = j.

For i ≤ j, we define bounded sequence (yij,n)n, (zij,n)n ⊂ L∞(RN ; RN ) as follows:

yij,n := χTij(εn)ξ̄ij ,

where χTij(εn) denotes the characteristic function of the set Tij(εn). For every j, we set zjj,n := 0. For i < j, let
zij,n be the sequence obtained in Proposition 4.3, applied with I := Iij , τn := 1

(m+1)(m+2)εnσn, ζ1 := ξi − ξ̄ij ,
ζ2 := ξj − ξ̄ij , γ1 := βji and γ2 := βij = 1 − βji. In particular, Proposition 4.3 gives that∣∣{zij,n = ξi − ξ̄ij} ∩ U

∣∣ −→
n→∞ βji |Iij | |U | = βjiαij |U | ,∣∣{zij,n = ξj − ξ̄ij} ∩ U
∣∣ −→

n→∞ βij |Iij | |U | = βijαij |U | , (4.16)

for every measurable U ⊂ R
N , and

supp(zij,n) ⊂ R
N−1 ×⋃k∈Z

(
εnk + εnI

[εn]
ij

)
with a compact I [εn]

ij ⊂ Iij (4.17)

for every i ≤ j (for i = j, (4.16) and (4.17) are trivial). In addition,

‖divεn zij,n‖W−1,p(Ω) +
∥∥∥(z′ij,n, 1

εn
zN

ij,n

)∥∥∥
W−1,p(Ω;RN )

≤ 1
(m+1)(m+2)εnσn (4.18)

for every n and every i ≤ j. Now let

z̃n(x) :=
m∑

j=0

j∑
i=0

zij,n(x) and ỹn(x) :=
m∑

j=0

j∑
i=0

yij,n(x) for x ∈ R
N .

Note that at any given x, at most one term contributes in each of the double sums above; more precisely,
z̃n = zij,n and ỹn = yij,n on Tij(εn). Moreover,

ỹn ⇀
n→∞

m∑
j=0

j∑
i=0

|Iij | ξ̄ij =
∑
i<j

αij(βijξj + βjiξi) +
∑

j

αjjβjjξj = 0

weakly in Lp(Ω; RN ), and
∂N ỹ

N
n = div′ ỹ′n = 0 on R

N

since ỹn(·, xN ) is constant for every xN ∈ R and ỹN
n = ξ̄N

ij = 0 a.e. in Tij(εn). By (4.18), we obtain that

∥∥divεn z̃n

∥∥
W−1,p(Ω)

+
∥∥∥(z̃′n, 1

εn
z̃N

n

)∥∥∥
W−1,p(Ω;RN )

≤
m∑

j=0

j∑
i=0

1
(m+1)(m+2) (εn + 1)σn = εn+1

2 σn ≤ σn (4.19)

for n ∈ N. By (4.16), we get that

|{ỹn + z̃n = ξj} ∩ U | −→
n→∞

(
|Ijj | +

∑
i	=j

βijαij

)
|U | = θj |U | (4.20)
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for every j and every measurable U ⊂ R
N , where the latter equality is due to (4.9) combined with the fact that∣∣I [εn]

jj

∣∣ = αjj = βjjαjj . Finally, define

zn := χRN−1×Kn
z̃n and yn := χRN−1×Kn

ỹn

where
Kn :=

⋃
k∈Zn(J)

(
εnk + εn[0, 1]

)
and Zn(J) := {k ∈ Z | εnk + εn[0, 1] ⊂ J} .

Clearly, (4.11), (4.14) and (4.15) are satisfied, the latter as a consequence of (4.20). In addition,

zn = 0 and yN
n = ξN = 0 in a neighborhood of R

N−1 × ∂Kn,

the former by (4.17). Consequently, ∂Ny
N
n = ∂N ỹ

N
n = 0 and div′ y′n = div′ ỹ′n = 0 on R

N , and (4.19) im-
plies (4.13). �

The next result essentially yields the upper bound in the piecewise constant case.

Proposition 4.7. Let f# be a function satisfying (f:0)–(f:2) and let u# ∈ U0. Moreover, let Jk ⊂ (0, 1) be a
finite number of pairwise disjoint open intervals covering (0, 1) up to a set of measure zero, let ωh ⊂ ω be a
finite number of open, pairwise disjoint sets covering ω up to a set of measure zero, and suppose that for each
(h, k) and each μ ∈ R

N ,

u# and f#(·, μ) are constant on Qh,k, where Qh,k := ωh × Jk.

Then for every pair of sequences εn → 0+ and τn → 0+, there exist two sequences (vn), (wn) ⊂ L∞(Ω; RN ) such
that vn ⇀ 0 and wn ⇀ 0 in Lp(Ω; RN ),

|vn(x)| ≤ K
( |u#(x)| + 1

)
and |wn(x)| ≤ K

( |u#(x)| + 1
)

for a.e. x ∈ Ω, (4.21)

where K is a constant that only depends on the constants in (f:1) and (f:2),

divεn vn = 0 on R
N , (4.22)

‖divεn wn‖W−1,p(Ω) +
∥∥∥(w′

n,
1
εn
wN

n

)∥∥∥
W−1,p(Ω;RN )

≤ τn (4.23)

for every n ∈ N, and

lim
n→∞

∫
Ω

f#(x, u + vn + wn) dx =
∫

Ω

f∗∗
# (x, u) dx, (4.24)

where for every x, f∗∗
# (x, ·) denotes the convex envelope of f#(x, ·).

Proof.
Step 1: We first show the assertion with (4.22) replaced by the condition

∂Nv
N
n = 0 on R

N and
∥∥div′ v′n

∥∥
L∞(Ω)

≤ (εn)−
1
2 . (4.25)

Clearly, it is enough to define vn and wn on each Qh,k and prove the asserted properties with Qh,k instead of Ω,
as long as the restriction of vn and wn to any one Qh,k has compact support in this set. Hence, we consider h
and k to be fixed below.

Let (σn) ⊂ (0,∞) be a sequence with σn → 0+ (fast enough, as specified later), and define

uh,k := u#(x) and gh,k(μ) := f#(x, μ+ uh,k) for x ∈ Qh,k and μ ∈ R
N .
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By Lemmas 4.1 and 4.2, 0 ∈ R
N can be written as a convex combination 0 =

∑m
j=0 θjξj such that ξj − ξ0,

j = 1, . . . ,m, are linearly independent and

∑m
j=0θjf#(x, ξj + u#(x)) =

∑m
j=0θjgh,k(ξj) = g∗∗h,k(0) = f∗∗

# (x, u#(x)), (4.26)

for every x ∈ Qh,k. Moreover, as a consequence of (4.2),

maxj |ξj | ≤ K
( |uh,k| + 1

)
, (4.27)

with a constant K only depending on the constants in (f:1) and (f:2). Proposition 4.6 applied with J = Jk

yields two sequences (yn), (zn) ⊂ L∞(RN ; RN ) such that yn ⇀ 0 and zn ⇀ 0 in Lp
loc,

|yn(x)| ≤ K
( |uh,k| + 1

)
and |zn(x)| ≤ K

( |uh,k| + 1
)

for x ∈ R
N , (4.28)

∂Ny
N
n = div′ y′n = 0 on R

N , (4.29)

‖divεn zn‖W−1,p(Ω) +
∥∥∥(z′n, 1

εn
zN

n

)∥∥∥
W−1,p(Ω;RN )

≤ σn, (4.30)

yn and zn vanish in a neighborhood of R
N−1 × ∂Jk (depending on n), (4.31)

and

lim
n→∞

∫
Qh,k

gh,k(yn + zn) dx =
∣∣Qh,k

∣∣ m∑
j=0

θjgh,k(ξj), (4.32)

the latter due to (4.15) and Lebesgue’s theorem. Together with (4.26), (4.32) yields that

lim
n→∞

∫
Qh,k

gh,k(yn + zn) dx =
∫

Qh,k

g∗∗h,k(0) dx. (4.33)

To obtain functions with compact support in Qh,k, we have to cut off yn and zn near (∂ωh) × Jk. For this
purpose choose a sequence of functions ηn ∈ C∞

c (ωh; [0, 1]) in such a way that

ηn ↗ 1 pointwise and ‖∇ηn‖L∞ ≤ (εn)−
1
2 1

K
(
|uh,k|+1

) ·
Below, we identify ηn with a function in C∞(RN ) that is constant in xN . In particular, we have that

(1 − ηn)yn → 0 and (1 − ηn)zn → 0 pointwise a.e. on Qh,k. (4.34)

We define
vn := ηnyn and wn := ηnzn.

By construction, these functions have compact support in Qh,k, vn ⇀ 0 in Lp and wn ⇀ 0 in Lp, and (4.28)
entails (4.21). In addition, we have (4.25), its second part since by (4.29), div′ v′n = (∇′ηn) · y′n = (∇ηn) · yn

and thus ∥∥div′ v′n
∥∥

L∞ ≤ ‖∇ηn‖L∞ ‖yn‖L∞ ≤ (εn)−
1
2 .

By Lebesgue’s theorem, (4.33) and (4.34) yield (4.24) for Qh,k instead of Ω. Finally,

divεn(ηnzn) = (∇′ηn) · z′n + ηn divεn zn,
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whence

‖divεn(ηnzn)‖W−1,p(Qh,k) +
∥∥∥((ηnzn)′ , 1

εn
(ηnzn)N

)∥∥∥
W−1,p(Qh,k;RN )

≤ ‖ηn‖W 2,∞(RN )

(
‖divεn zn‖W−1,p(Ω) +

∥∥∥(z′n, 1
εn
zN

n

)∥∥∥
W−1,p(Ω;RN )

)
≤ ‖ηn‖W 2,∞(RN ) σn

by (4.30). With σn := τn(‖ηn‖W 2,∞)−1, this gives (4.23) for Qh,k instead of Ω.
Step 2: We still have to modify vn to obtain (4.22) instead of (4.25), while maintaining the other asserted
properties. For x ∈ R

N let

ṽn(x) := vn(x) −
(
0, εn

∫ xN

0

div′ v′n(x′, t) dt
)

for x = (x′, xN ) ∈ Ω, with vn as in the first step. Since ∂Nvn = 0, we have divε ṽn = 0 on Ω by construction,
and due to the second part of (4.25),

‖vn − ṽn‖L∞ ≤ (εn)
1
2 → 0.

As a consequence of the latter, (4.21), (4.23) and (4.24) also hold for ṽn instead of vn (in case of (4.21) with a
slightly larger constant). �

The proof of the upper bound in the general framework relies on approximation and the following well-known
property of Carathéodory functions.

Proposition 4.8 (Scorza-Dragoni, e.g. see [11]). Let Ω ⊂ R
N be open and bounded and let f : Ω×R

N → R be
a Carathéodory function. Then for every δ > 0, there exists a compact set Ω̃ ⊂ Ω such that |Ω \ Ω̃| < δ and f
is continuous on Ω̃ × R

N .

Proposition 4.9 (upper bound). Assume (f:0)–(f:2), let u ∈ U0 and let εn → 0+. Then for every δ > 0, there
exists a sequence (un) ⊂ Uεn such that un ⇀ u in Lp(Ω; RN ), and

lim
n→∞

∫
Ω

f(x, un) dx ≤
∫

Ω

f∗∗(x, u) dx + δ. (4.35)

Remark 4.10. Since (f:2) yields a bound on ‖un‖Lp independent of δ, a diagonalization argument similar to
the one in the third step of the proof below shows that the assertion of Proposition 4.9 stays true even for δ = 0.

Proof of Proposition 4.9. Using a series of approximations, the assertion is reduced to Proposition 4.6. Any
expression of the form “A ≈ B” below means that A = B + e, with an error e whose modulus is controlled by
a suitable fraction of δ.
Step 1: Assume that u ∈ U0 is continuous in Ω and f is continuous on Ω̃× R

N , for some compact Ω̃ ⊂ Ω. We
claim that in this case, there exists sequences (un) ⊂ Uεn and (rn) ⊂ Lp(Ω; RN ) such that un ⇀ 0 and rn → 0
in Lp,

lim
n→∞

∫
Ω̃

f(x, un − rn) dx = lim
n→∞

∫
Ω̃

f(x, un) dx ≈
∫

Ω̃

f∗∗(x, u) dx (4.36)

and
|un(x) − rn(x)| ≤ (2K + 1)(|u(x)| + 1) for a.e. x ∈ Ω, (4.37)

where K is the constant in (4.28) (which, unlike un and rn, is independent of Ω̃).
For the proof, we divide Ω into sets of the form Qh,k = ωh × Jk and define associated piecewise constant

approximations of u and f as follows: For x ∈ Qh,k, let u#(x) = (u1
#, . . . , u

N
#)(x) be given by

uj
#(x) := inf

{
max{uj(y), 0} ∣∣ y ∈ Qh,k

}
+ sup

{
min{uj(y), 0} ∣∣ y ∈ Qh,k

}
,
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for j = 1, . . . , N , whence u# is a piecewise constant function in U0 such that |uj
#| ≤ |uj |. Moreover, for x ∈ Qh,k

let

f#(x, ·) := f(xh,k, ·) with a fixed xh,k ∈
{

Ω̃ ∩Qh,k if |Ω̃ ∩Qh,k| > 0,
Qh,k otherwise.

Note that xh,k can always be chosen in such a way that f# satisfies (f:1) and (f:2) with the original constants.
In the following, let

S := BR(0) ⊂ R
N , with R := (2K + 1)(‖ũ‖L∞(Ω̃;RN ) + 1),

where K is the constant in (4.28). If the mesh size (the maximal side length of the boxes Qh,k) is small enough,
we get that

max
x∈Ω̃

|u(x) − u#(x)| ≈ 0 and max
x∈Ω̃, μ∈S

|f(x, μ) − f#(x, μ)| ≈ 0 (4.38)

by the uniform continuity of u and f on compact sets. With the sequences vn and wn of Proposition 4.6,
using (4.38), (4.21) and the uniform continuity of f on Ω̃ × S, we thus have that

∫
Ω̃

f(x, u+ vn + wn) dx ≈
∫

Ω̃

f(x, u# + vn + wn) dx ≈
∫

Ω̃

f#(x, u# + vn + wn) dx

uniformly in n. Similarly, (4.38) and the uniform continuity of f∗∗ on Ω̃ × S yield that

∫
Ω̃

f∗∗(x, u) dx ≈
∫

Ω̃

f∗∗(x, u#) dx ≈
∫

Ω̃

f∗∗
# (x, u#) dx.

Here, note that if f is uniformly continuous on Ω̃ × {Kμ + η | μ ∈ S, η ∈ B1(0)}, then f∗∗ is uniformly
continuous on Ω̃ × S as a consequence of Lemma 4.2. Together with (4.24), we infer that

lim
n→∞

∫
Ω̃

f(x, u+ vn + wn) dx ≈
∫

Ω̃

f∗∗(x, u) dx. (4.39)

Finally, by Lemmas 2.3 and 2.9 applied to u and wn, respectively, there exists a sequence (rn) ⊂ Lp(Ω; RN )
such that rn → 0 in Lp and divεn(u+wn + rn) = 0 on Ω. By Lebesgue’s theorem, (f:0) and (f:1), we have that

lim
n→∞

∫
Ω

f(x, u + vn + wn) dx = lim
n→∞

∫
Ω

f(x, u + vn + wn + rn) dx, (4.40)

also using that u ∈ Lp is fixed and (vn), (wn) are bounded in L∞. Combining (4.39) and (4.40), we infer (4.36)
for un := u+ vn + wn + rn, and (4.37) is a consequence of (4.28) and the fact that |u#| ≤ |u| a.e. in Ω.

Step 2: Assume that u ∈ U0 is continuous in Ω.
As a consequence of Proposition 4.8, there exists a compact subset Ω̃ of Ω such that f is continuous on

Ω̃ × R
N , and

∣∣Ω \ Ω̃
∣∣ is small enough such that

∫
Ω\Ω̃

|f∗∗(x, u)| dx ≈ 0 (4.41)

and

sup
v∈V

∫
Ω\Ω̃

|f(x, v(x))| dx ≈ 0, (4.42)
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where V :=
{
v ∈ Lp(Ω; RN ) | |v| ≤ (2K + 1)(|u| + 1) a.e.

}
. Here, note that the set {f(·, v(·)) | v ∈ V } ⊂ L1(Ω)

is equiintegrable by (f:1). With the sequences (un) ⊂ Uεn and (rn) ⊂ Lp(Ω; RN ) of Step 1, we thus have that

lim
n→∞

∫
Ω

f(x, un − rn) = lim
n→∞

∫
Ω

f(x, un) ≈
∫

Ω

f∗∗(x, u)

due to (4.36), (4.41), (4.37) and (4.42).
Step 3: The general case.

By Lemma 2.1, there exists a sequence (ũk) ⊂ U0 ∩ C(Ω̄; RN ) with ũk → u in Lp(Ω). Let (ũk,n) ⊂ Uεn

and (r̃k,n) ⊂ Lp(Ω; RN ) denote the sequences corresponding to ũk obtained in the previous step. By (4.37),
ũk,n − r̃k,n is bounded in Lp, uniformly in k and n. Since ũk,n − r̃k,n ⇀ uk in Lp as n → ∞, ũk → u in Lp as
k → ∞, r̃k,n → 0 in Lp as n→ ∞, and

lim
n→∞

∫
Ω

f(x, ũk,n) ≈
∫

Ω

f∗∗(x, ũk) −→
k→∞

∫
Ω

f∗∗(x, u),

there exist diagonal sequences

un := ũk(n),n ∈ Uεn and rn := r̃k(n),n ∈ Lp(Ω; RN )

with k(n) → ∞ slow enough such that un − rn ⇀ u in Lp, rn → 0 in Lp, and

lim
n→∞

∫
Ω

f(x, un) ≈
∫

Ω

f∗∗(x, u).

Here, note that since the dual of Lp is separable, the weak topology on bounded subsets of Lp is metrizable,
which allows us to extract a weakly convergent diagonal subsequence from a sequence of equibounded weakly
convergent sequences using the associated metric. �
Remark 4.11. It is natural to ask whether our result also holds for functionals on Div-free matrix fields (i.e.,
each column is divergence-free). The approach presented here extends in a straightforward way to fields with
values in R

N×M for M ≤ N−1, but it does not work for M ≥ N . In fact, our construction for the upper bound,
based on Carathéodory’s theorem, can only be expected to work if Div-quasiconvexity implies convexity. Here,
note that Div-quasiconvexity (or S-quasiconvexity in the terminology of [27]) always implies convexity along
directions of rank ≤ N −1. For similar reasons, more general differential constraints of the form Au = 0 are out
of reach at the moment, certainly if A-quasiconvexity (as defined in [14]) does not imply convexity. We expect
that in such cases, the convex envelope in Theorem 1.1 has to be replaced by a suitable variant of a quasiconvex
envelope. We hope to address this in a future work, maybe for Div-free matrix fields with M ≥ N as a first
step.
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