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A SIMPLE PROOF OF THE CHARACTERIZATION OF FUNCTIONS
OF LOW AVILES GIGA ENERGY ON A BALL VIA REGULARITY

Andrew Lorent
1

Abstract. The Aviles Giga functional is a well known second order functional that forms a model
for blistering and in a certain regime liquid crystals, a related functional models thin magnetized

films. Given Lipschitz domain Ω ⊂ R2 the functional is Iε(u) = 1
2

∫
Ω

ε−1
∣∣1 − |Du|2∣∣2 + ε

∣∣D2u
∣∣2 dz

where u belongs to the subset of functions in W 2,2
0 (Ω) whose gradient (in the sense of trace) satisfies

Du(x) · ηx = 1 where ηx is the inward pointing unit normal to ∂Ω at x. In [Ann. Sc. Norm. Super.
Pisa Cl. Sci. 1 (2002) 187–202] Jabin et al. characterized a class of functions which includes all limits

of sequences un ∈ W 2,2
0 (Ω) with Iεn(un) → 0 as εn → 0. A corollary to their work is that if there

exists such a sequence (un) for a bounded domain Ω, then Ω must be a ball and (up to change of sign)
u := limn→∞ un = dist(·, ∂Ω). Recently [Lorent, Ann. Sc. Norm. Super. Pisa Cl. Sci. (submitted),
http://arxiv.org/abs/0902.0154v1] we provided a quantitative generalization of this corollary over
the space of convex domains using ‘compensated compactness’ inspired calculations of DeSimone et al.
[Proc. Soc. Edinb. Sect. A 131 (2001) 833–844]. In this note we use methods of regularity theory and
ODE to provide a sharper estimate and a much simpler proof for the case where Ω = B1(0) without
the requiring the trace condition on Du.
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1. Introduction

Let

Iε (u) :=
∫

Ω

ε−1
∣∣∣1 − |Du|2

∣∣∣2 + ε
∣∣D2u

∣∣2 dz. (1.1)

The functional Iε forms a model for blistering and (in certain regimes) for a model for liquid crystals [6,17]. In
addition there is a closely related functional modeling thin magnetic films [1,8–10,19]. For function u ∈W 2,2

0 (Ω)
we refer to Iε(u) as the Aviles Giga energy of u.

For an example of a candidate minimizer take the distance function from the boundary ψ(x) := dist(x, ∂Ω)
convolved by a standard convolution kernel ρε with support of diameter ε. It has been conjectured that for
convex domains Ω, the minimizers of Iε have the structure suggested by this construction, i.e. they are in some
quantitative sense close to the distance function from the boundary, Section 5.3 [4,13].
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The first progress on this conjecture was achieved by Jin and Kohn [17] whose showed that if Iε is minimized
over

Λ (Ω) :=
{
v ∈W 2,2

0 (Ω) : ∂v
∂ηz

= 1 where ηz is the inwards
pointing unit normal to ∂Ω at z

}
(1.2)

where Ω is taken to be an ellipse then as ε → 0 the energy of the minimizer of Iε tends to the energy of
ψ ∗ ρε. Their method was to take arbitrary u ∈ Λ(Ω) and to construct vectors fields Σ1, Σ2 out of third order
polynomials of the partial derivatives of u that have the property that the divergence of these vectors fields is
bounded above by Iε(u). Using the trace condition ∂u

∂η = 1 and the fact that Ω is an ellipse the lower bound
provided by the divergence of Σ1,Σ2 can be explicitly calculated and shown to be asymptotically sharp as ε→ 0.

As has been discussed in [2,4,17] the functional Iε minimized overW 2,2
0 (Ω) has many features in common with

the functional Jp(v) =
∫
JDv

|Dv+ −Dv−|p dH1 for the case p = 3, when minimized over the space Dv ∈ BV (Ω)
with |Dv(x)| = 1 a.e. x and v = 0 on ∂Ω. Aviles and Giga [5] showed that if Ω is convex and polygonal then
the distance function is the minimizer of J1 over the subspace of piecewise affine functions satisfying these
conditions. They conjectured the same is true for p = 3.

From a somewhat different direction a strong result has been proved [16] by Jabin et al. who characterized
a class of functions which includes all limits of sequences un ∈W 2,2

0 (Ω) with Iεn(un) → 0 as εn → 0. A corollary
to their work is that if there exists such a sequence (un) for a bounded domain Ω, then Ω must be a ball and
(up to change of sign) u := limn→∞ un = dist(·, ∂Ω). In [18], a quantitative generalization of this corollary was
achieved for the class of bounded convex domains, a corollary to the main result of [18] is the following.

Theorem 1.1 ([18]). Let Ω be a convex set with diameter 2, C2 boundary and curvature bounded above by ε−
1
2 .

Let Λ(Ω) be defined by (1.2). There exists positive constants C > 1 and λ < 1 such that if u is a minimizer of
Iε over Λ(Ω), then

‖u− ζ‖W 1,2(Ω) ≤ C

(
ε+ inf

y
|Ω�B1(y)|

)λ
(1.3)

where ζ(z) = dist(z, ∂Ω).

We take constant λ = 1
2731 and thus the control represented by inequality (1.3) is far from optimal. Theo-

rem 1.1 follows from Theorem 1 of [18] which is a characterization of domains Ω and functions u for which the
Aviles energy is small, more specifically there exists a constant γ such that given u ∈ Λ(Ω) such that Iε(u) = β

then |Ω�B1(0)| ≤ cβγ and
∫
B1(0)

∣∣∣Du(z) + z
|z|
∣∣∣2 dz ≤ cβγ , here we can take γ = 512−1. The proof of Theorem 1

of [18] is fairly involved, it relies heavily on the characterization of ‘entropies’ for the Aviles Giga energy that
was achieved in [9] (see Lem. 3). While the calculations in [18] are elementary and self contained, they can
appear quite unmotivated to those unfamiliar with the background of [9]. In addition the trace condition on
the gradient in the definition of Λ(Ω) is used in an essential way.

The proof of Theorem 1 requires quite a careful construction of an upper bound of the Aviles Giga energy of
a minimizer on a domain with smooth boundary that is ‘close’ to a ball, then the theorem follows by application
of Theorem 1 [18]. The many steps required to complete the proof result in a gradual loss of control resulting
in the constant λ = 1

2731 ·
The propose of this note is twofold, firstly to provide a simple proof of a characterization of the minimizers

of the Aviles Giga energy on a ball with a sharper estimate and secondly to prove the result without the trace
condition on the gradient, specifically to characterize the minimizers over W 2,2

0 (B1(0)). Additionally we find it
worthwhile to introduce new methods to study the characterization of minimizers of Iε, the regularity theory
and ODE approach of this note is quite different from previous methods of [5,16–18]. Our main theorem is:

Theorem 1.2. Let u be a minimizer of Iε over W 2,2
0 (B1(0)). Then there exists ξ ∈ {1,−1}∫

B1(0)

∣∣∣∣Du(x) + ξ
x

|x|

∣∣∣∣2 dx ≤ cε
1
6

(
log
(
ε−1
)) 13

6
.
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The desirability of a simpler proof with a better estimate has already been discussed, it is of interest to prove
a characterization without a trace condition on the gradient due to the fact this is a strong assumption that
is inappropriate for a number of physical models. More specifically the condition Du(x) · η = 1 for x ∈ ∂Ω is
not natural in the context of blistering, Gioia and Ortiz [13] proposed instead Du(x) · ηx = 0. The original
functional proposed by Aviles and Giga [4] to study liquid crystals also has this trace condition. In addition for
the micro-magnetic analogue of functional Iε there is nothing like a pointwise condition on the trace [8,10]. This
micro-magnetic functional is given by Mε(v) = ε−1

∫
R2 |H(ṽ)|2+ε

∫
Ω
|Dv|2 where H is the Hodge projection onto

curl free vector fields and ṽ is the extension of v to 0 outside Ω, this functional is minimized over W 1,2(Ω : S1).
As mentioned, in the proof of Theorem 1 [18] the trace condition is used in an essential way, this is also true
of the proof of Theorem 5.1 [17]. In order to achieve a characterization for less rigid functionals, methods need
to be developed that do not use this trace condition. A related but different micro-magnetic functional Eε was
studied by Ignat and Otto [15]. They also achieved a characterization of minimizers Eε showing that minimizers
converge to Neel Walls, the focus of Eε was to provide a two dimensional approximation of the micro-magnetic
energy in the absence of an external field and crystal anisotropy.

The proof of Theorem 1.2 requires establishing the essentially folklore fact that critical points of the Aviles
Giga energy have W 2,3 regularity and their gradients satisfy certain natural Caccioppoli inequalities. The much
more subtle question of regularity of critical points of functional Mε has been studied by Carbou [7] and Hardt
and Kinderlehrer [14]. The non-local term in Mε makes the Euler Lagrange equation harder to study and in
some sense weaker regularity has been proved, it is not clear if the Caccioppoli inequalities needed for the proof
presented in this note are available via the methods of [7]. Working with a three dimensional model, different
methods are used in [14] and Caccioppoli inequalities are established off a discrete set2.

Roughly speaking the main open problems related to the Aviles Giga functional are either: (A) conjectures
on how the energy concentrates, specifically the Γ-convergence conjecture of [2] and related problems; or (B)
conjectures about the minimizer of Iε. It is know from [17] that for non-convex domains the minimizer does
not need to be the distance function from the boundary (contrast this with the main theorem of [3] which
showed that for a sequence εn → 0, the minimizer mn of the micro-magnetics functional Mεn must converge
to the rotated gradient of distance function for any connected open Lipschitz domain). However as mentioned
for general convex domains the conjecture remains largely open, in [18] we developed methods that prove the
conjecture for convex domains with low Aviles Giga energy, it is likely these methods could be used to prove the
same result for general low energy domains with C2 boundary. For domains with Aviles Giga energy of order
O(1) neither the methods of [18] or this note yield much. A very attractive open problem is to characterize
the minimizers in the case where Ω is an ellipse, given the sharp lower bound provided by [17] in this case
there seems to be much concrete information about this problem – yet it appears to be out of reach of current
methods.

2. Proof sketch

Beyond the regularity issues mentioned in the introduction the proof reduces to essentially applying an ODE
and using the Pythagorean theorem. In order to sketch the main strategy of the proof we will make a number
of assumptions that we will later show are not needed.

We start by assuming for a moment that the cardinality of the set of critical points of Du is 1, i.e.

Card ({x ∈ B1(0) : |Du(x)| = 0}) = 1. (2.1)

In addition let us temporarily assume we have the (in the sense of trace) boundary condition

Du(x) = − x

|x| for x ∈ ∂B1(0). (2.2)

2It appears possible that the methods of [14] would establish the appropriate Caccioppoli inequalities everywhere in the interior
if the arguments were carried through for the two dimensional model, if this is the case the strategy of this note would likely yield
a characterization of minimizers of Mε for where Ω = B1(0).
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So let z0 ∈ B1(0) be the point for which |Du(z0)| = 0. Take y0 = −z0R ∩ ∂B1(0) and let X(0) = y0,
dX
dt (s) = Du(X(s)). For z ∈ {X(s) : s ∈ [0, t]} let tz denote the tangent to this curve at z. Now for any t > 0

u(X(t)) = u(X(t)) − u(X(0)) =
∫
{X(s):s∈[0,t]}

Du(z) · tzdH1z.

If we also assume

|Du(z)| � 1 for z ∈ {X(s) : s ∈ [0, t]} (2.3)

then we could conclude that

|u(X(t))| � H1(X(s) : s ∈ [0, t]) ≥ |X(t) −X(0)| .

Now by (2.2) we know that the path X(t) has to run into B1(0) and can not escape this domain, so we must
have X(t) → z0 as t→ ∞ we have |u(z0)| ≥ |z0 −X(0)| = |z0| + 1.

As will be established later in Lemma 3.3, infv∈W 2,2
0 (B1(0)) Iε(v) ≤ cε log(ε−1). Hence if u is a minimizer of Iε,∫

B1(0)

∣∣∣1 − |Du|2
∣∣∣2 dx ≤ cε2 log(ε−1) (2.4)

so we know u ‘is close to being’ 1-Lipschitz and thus |u(z0)| � 1, hence |z0| � 0 and |u(z0)| � 1. Again since u
is close to 1-Lipschitz,

|u(x)| � 1 for any x ∈ B
ε
1
4
(0). (2.5)

Now for y ∈ ∂B1(0) let ex(y) =
∫
[x,y]

∣∣∣1 − |Du|2
∣∣∣dH1. Let Jx(z) = z−x

|z−x| , note that |DJx(z)| ≤ 2
|x−z| , so by

the Co-area formula ∫
∂B1(0)

ex(y)dH1y =
∫
S1

∫
J−1
x (θ)

∣∣∣1 − |Du(z)|2
∣∣∣ dH1zdH1θ

=
∫
B1(0)

∣∣∣1 − |Du(z)|2
∣∣∣ |DJx(z)|dz

≤ c

∫
B1(0)

∣∣∣1 − |Du(z)|2
∣∣∣ |z − x|−1 dz.

Now by Fubini and (2.4) we have∫
B
ε
1
4

(0)

∫
B1(0)

∣∣∣1 − |Du(z)|2
∣∣∣ |z − x|−1 dzdx ≤ cε

5
4
√

log(ε−1)

thus we can assume we chose x ∈ B
ε
1
4
(0) such that

∫
∂B1(0)

ex(y)dH1y ≤ cε
3
4
√

log(ε−1). Now

∫
[x,y]

∣∣∣∣Du(z) +
y − x

|y − x|

∣∣∣∣2 dH1z =
∫

[x,y]

|Du(z)|2 + 2Du(z) · y − x

|y − x| + 1dH1z

≤ 2 |x− y| − 2u(x) + ex(y)
(2.5)

� ex(y), (2.6)
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So

∫
B1(0)

∣∣∣Du(z) + z−x
|z−x|

∣∣∣2
|z − x| dz ≤ c

∫
y∈∂B1(0)

∫
[x,y]

∣∣∣∣Du(z) +
y − x

|y − x|

∣∣∣∣2 dH1zdH1y

(2.6)

≤ c

∫
y∈∂B1(0)

ex(y) dH1y

≤ cε
3
4

√
log
(
ε−1
)
. (2.7)

As for ‘most’ z ∈ B1(0),
∣∣∣ z|z| − z−x

|z−x|
∣∣∣ ≤ cε

1
8 so we have

∫
B1(0)

∣∣∣Du(z) + z
|z|
∣∣∣2 dz

(2.7)

≤ cε
1
8 .

Now the big assumptions we made are (2.1), (2.3) and to a lesser extent (2.2). The main work of this note
is to find substitutes for these assumptions.

What assumption (2.1) provides is the existence of a long integral path of the vector field Du which using
assumption (2.3) we can show is close to a straight line. In order to find such a path, it is sufficient to show
that the set of critical points of Du are merely low in number, using the energy upper bound and regularity of
minimizers of Iε that is what we will be able to do.

Now if we define v(z) = u(εz) then v satisfies Δ2v+ div
((

1 − |Dv|2
)
Dv
)

= 0 which is an Elliptic equation

with right-hand side bounded in H−1,p(Bε−1(0)) for all p > 1. Thus it is not hard to believe Dv is Holder so if
|Dv(z0)| = 0 for some z0 then there must be a constant c0 such that sup {|Dv(z)| : z ∈ Bc0(z0)} ≤ 1

2 so after
rescaling we have that for every z1 such that |Du(z1)| = 0 we have that sup {|Du(z)| : z ∈ Bc1ε(z0)} ≤ 1

2 . Thus
by (2.4) we have that we can have as most c log(ε−1) critical points of Iε that are spaced out by ε. So cutting
B1(0) into N =

[
4cπ

log(ε−1)

]
equal angles slices which we denote by T1, T2, . . . , TN then at least half of them do

not have any critical points of Du. So if T1 is one of them, taking y0 to be the center of the arc T1 ∩ ∂B1(0)
the ODE X(0) = y0, dX

dt (s) = Du(X(s)) has to run until it hits ∂T1.
Now the second main assumption we made is (2.3). Again since for minimizer u we know that Iε(u) ≤

cε log(ε−1), so ∫
B1(0)

∣∣∣1 − |Du|2
∣∣∣ ∣∣D2u

∣∣dx ≤ cε log
(
ε−1
)
.

Take v ∈ S1, for all but c(ε log(ε))
1
3 lines L parallel to v we have that

∫
L

∣∣∣1 − |Du|2
∣∣∣ ∣∣D2u

∣∣dH1x ≤ (ε log(ε))
2
3 .

Now on the line L if there is a point z1 ∈ L with
∣∣∣1 − |Du(z1)|2

∣∣∣ ≥ 5(ε log(ε−1))
1
3 then we must be able

to find z2, z3 we have inf
{∣∣∣1 − |Du(y)|2

∣∣∣ : y ∈ [z2, z3]
}

≥ 4(ε log(ε−1))
1
3 and

∣∣∣1 − |Du(z3)|2
∣∣∣ ≥ 5(ε log(ε−1))

1
3 ,∣∣∣1 − |Du(z2)|2

∣∣∣ ≤ 4(ε log(ε−1))
1
3 then

(ε log(ε))
2
3 ≥

∫ z3

z2

∣∣∣1 − |Du(y)|2
∣∣∣ ∣∣D2u(y)

∣∣dH1y ≥ 4
(
ε log

(
ε−1
)) 1

3
∫ z3

z2

∣∣D2u(y)
∣∣ dH1y ≥ 4(ε log(ε))

2
3

which is a contradiction. Thus for most lines L we know that sup
{∣∣∣1 − |Du(z)|2

∣∣∣ : y ∈ L ∩B1(0)
}
≤ 5(ε log(ε))

1
3 .

For vector w ∈ R2 define 〈w〉 := {λw : λ ∈ R} and given subspace V let PV denote the orthogonal projection
onto V . For subset S ⊂ Rn let |S| denote the Lebesgue n-measure of S. Now if we run an ODE X(0) = y0,
dX
dt (s) = Du(X(s)) between 0 and t then taking v = X(t)−X(0)

|X(t)−X(0)| then we have a set G ⊂ P〈v〉([X(0), X(t)])

with
∣∣P〈v〉([X(0), X(t)])\G

∣∣ ≤ c(ε log(ε−1))
1
3 and if z ∈ {X(s) : s ∈ [0, t]} ∩ P−1

〈v〉 (x) for some x ∈ G, then∣∣∣|Du(z)|2 − 1
∣∣∣ ≤ 5(ε log(ε))

1
3 thus the part of the path {X(s) : s ∈ [0, t]} that is in the set P−1

〈v〉 (G) is such that
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|Du(z)| � 1. So the H1 measure of the set of points x ∈ {X(s) : s ∈ [0, t]} for which we can assume |Du(x)| � 1
is of measure as least |X(0) −X(t)| − c(ε log(ε−1))

1
3 and hence assumption (2.3) can in effect be justified. It

is worth noting that the idea of following integral curves of the vector field given by Du (where u is the limit
of a sequence of functions whose Aviles Giga energy tends to zero) was used by [16] and a similar idea later
by [15].

Finally we also assumed (2.2), the only purpose of this assumption was to allow us to run an ODE starting
from y0 ∈ ∂B1(0) without it immediately trying to leave the domain. Recall y0 was the point at the center of
the arc ∂T1 ∩ ∂B1(0). If instead of starting at this point we started at y0 + c

ηy0
(log(ε−1))2 then running the ODE

forwards and backwards until both ends hit ∂T1, then we will have a path of length (at least) c(log(ε−1))−2

which will be very close to a straight line, see Figure 1. Let s < 0, r > 0 be such that X(s), X(e) are the
endpoints of the path (where we assume without loss of generality X(s) is closer to ∂B1(0) than X(e)). If
we are able to show that X(s) ∈ ∂T1 ∩ ∂B1(0) then the argument can proceed very much as described in
the paragraphs above. The only way this can fail is if the path is (close to) a line of length c(log(ε−1))−1

and runs, (roughly speaking) parallel to ∂T1 ∩ ∂B1(0). However as |u(X(e)) − u(X(s))| ≥ c(log(ε−1))−1 this
implies we must have |u(X(e))| ≥ c(log(ε−1))−1, but since the path is close to ‘parallel’ to ∂B1(0)∩∂T1 we have
dist(X(e), ∂B1(0)) ≤ c log(ε−1)−2 which contradicts 1-Lipschitz type property as represented by inequality (2.4),
thus we must have that X(s) ∈ ∂T1 ∩ ∂B1(0). By use of this argument assumption (2.2) can be avoided.

3. The E.L. equation

Note that if u is a critical point of Iε it weakly satisfies the E.L. equation i.e.

εΔ2u+ ε−1div
((

1 − |Du|2
)
Du
)

= 0. (3.1)

Let w ∈ W 1,1 define wi := ∂w
∂xi

, similarly for v ∈W 2,1, s ∈ W 3,1 define vij := ∂2v
∂xi∂xj

and sijk := ∂3s
∂xi∂xj∂xk

.

Lemma 3.1. Suppose u ∈ W 2,2(Ω) is a weak solution of (3.1). Define Ωε−1 := ε−1Ω and let v : Ωε−1 → R be
defined by v (z) := u (εz) ε−1, then v satisfies

Δ2v + div
((

1 − |Dv|2
)
Dv
)

= 0 (3.2)

weakly in Ωε−1 .

Proof. Follows directly from the definition of u. �
Lemma 3.2. We will show that any v ∈ W 2,2 (Ωε−1) that satisfies (3.2) weakly in Ωε−1 is such that for any
U ⊂⊂ Ωε−1 , v ∈W 3,2 (U) and v satisfies∫ 2∑

i,j,p=1

vijpφijp +
((

1 − |Dv|2
)
·Dv

)
p
Dφp dz = 0 (3.3)

for any φ ∈ C1
0 (U).

Proof. Given set S ⊂ R2, let d(x, S) = inf {|z − x| : z ∈ S} and define Nδ(S) := {x : d(x, S) < δ}. �
Step 1. For δ > 0 let Πδ := Ωε−1\Nδ(∂Ωε−1). We will show that D2v ∈ W 1,2(Π3δ).

Proof of Step 1. Let g(x) := Dv(x)
(
1 − |Dv(x)|2

)
and w := Δv. Since v ∈W 2,2(Ωε−1), by Poincare’s inequal-

ity (Thm. 2, Sect. 4.5.2 [12]) Dv ∈ Lp(Ωε−1) for any p <∞, hence g ∈ Lq(Ωε−1) for any q <∞. So∫
wΔφ =

∫
g ·Dφ for any φ ∈ C∞

0 (Ωε−1).
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Let ρ ∈ C∞
0 (B1) be the standard convolution kernel and define ρσ(z) = ρ

(
z
σ

)
σ−2. Given function f ∈ W 1,1

we denote the convolution of f and ρσ by f ∗ ρσ. Let ϕ ∈ (0, δ) and define wϕ := w ∗ ρϕ and gϕ := g ∗ ρϕ. Now
for any φ ∈ C∞

0 (Ωε−1), defining φϕ = φ ∗ ρϕ we have∫
wϕΔφ =

∫
wΔφϕ =

∫
g ·Dφϕ =

∫
gϕ ·Dφ

which gives that Δwϕ(z) = −divgϕ(z) for any z ∈ Πδ. Let ψ ∈ C∞
0 (Πδ) with ψ = 1 on Π2δ and |Dψ| < cδ−1

and
∣∣D2ψ

∣∣ < cδ−2. Define s(x) = wϕ(x)ψ(x), so

Δs = −divgϕψ + 2Dwϕ ·Dψ + wϕΔψ.

Now div(gϕψ) = divgϕψ + gϕ ·Dψ and 2Dwϕ ·Dψ = div(2wϕDψ) − 2wϕΔψ and thus

Δs = div(−gϕψ + 2wϕDψ) + gϕ ·Dψ − wϕΔψ. (3.4)

Let X = Ds, so by (3.4) we have that

curl(X) = 0 and div(X + gϕψ − 2wϕDψ) = gϕ ·Dψ − wϕΔψ. (3.5)

For any C2 vector field V , let H(V ) denote the Hodge projection of V onto the subspace of curl free vector
fields, i.e. H(V ) = −DΔ−1divV , so H(V ) satisfies div(H(V ) + V ) = 0 and curlH(V ) = 0 on R2. So from (3.5)
then we have

curl(X −H(gϕψ − 2wϕDψ)) = 0 and div(X −H(gϕψ − 2wϕDψ)) = gϕ ·Dψ − wϕΔψ. (3.6)

Let η ∈ C∞(R2) be such that
Dη = X −H(gϕψ − 2wϕDψ), (3.7)

so finally we have
Δη = gϕ ·Dψ − wϕΔψ. (3.8)

Now recall X = Ds where s = wϕψ. Thus Ds = Dwϕψ + wϕDψ and thus for any p ∈ [1, 2],

‖X‖Lp(R2) ≤ c‖Dwϕ‖Lp(R2) + c‖wϕ‖Lp(R2) ≤ c‖w ∗Dρϕ‖Lp(R2) + c‖wϕ‖Lp(R2)

≤ cϕ
2−3p
p ‖D2u‖L2(Ωε−1 ) ≤cϕ

2−3p
p . (3.9)

And by Lp boundedness of Hodge projection we know

‖H(gϕψ − 2wϕDψ)‖Lp(R2) ≤ c‖gϕψ − 2wϕDψ‖Lp(R2) ≤ c‖gϕ‖Lp(Ωε−1 ) + c‖wϕ‖Lp(Ωε−1 ) ≤ c. (3.10)

Thus for p = 3
2 we have ‖Dη‖

L
3
2 (R2)

(3.10),(3.9),(3.7)

≤ cϕ− 5
3 . What we need to do is obtain an ϕ independent bound

on Dη, we will achieve this by use of (3.8). First note by Holder gϕ · Dψ − wϕΔψ ∈ L
3
2 (R2) from (3.8) by

standard Lp estimates on Riesz transforms (see Prop. 3, Sect. 1.3, Chap. 3 [20]) we know

‖D2η‖
L

3
2 (R2)

≤ c‖gϕ‖
L

3
2 (Ωε−1 )

+ c‖wϕ‖
L

3
2 (Ωε−1 )

≤ c. (3.11)

So Dη ∈ W 1, 32 (R2) and thus by Sobolev embedding theorem (Thm. 1, Sect. 4.5.1 [12]) we have ‖Dη‖L6(R2) ≤

c‖D2η‖
L

3
2 (R2)

(3.11)

≤ c. As SptX ⊂ Πδ ⊂ Ωε−1 , ‖Ds‖L2(R2) = ‖Ds‖L2(Ωε−1 ) ≤ c and using L2 boundedness of the
Hodge projection

‖Ds‖L2(R2)

(3.7)

≤ ‖Dη‖L2(Ωε−1 ) + ‖H(gϕψ − 2wϕDψ)‖L2(Ωε−1 ) ≤ c. (3.12)
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Since Ds = Dwϕψ+wϕDψ, so ‖Dwϕψ‖L2(R2)

(3.12)

≤ c+‖wϕDψ‖L2(R2). Now wϕ = �vϕ and so ‖wϕDψ‖L2(R2) ≤
c‖D2vϕ‖L2(Πδ) ≤ c for any ϕ > 0. Hence

‖Dwϕ‖L2(Π2δ) < c for all ϕ > 0. (3.13)

Let q ∈ C∞
0 (Π2δ) with q ≡ 1 on Π3δ. Let zϕ = vϕ,1q so �zϕ = �vϕ,1q + 2Dvϕ,1 · Dq + vϕ,1�q. Thus as

�vϕ,1 = wϕ,1

‖�zϕ‖L2(R2) ≤ ‖�vϕ,1q‖L2(R2) + 2‖Dvϕ,1 ·Dq‖L2(R2) + ‖vϕ,1�q‖L2(R2)

(3.13)

≤ c.

Now as we have seen before by L2 estimates on Riesz transforms, this implies D2zϕ ∈ L2(R2). As D2zϕ =
D2vϕ,1q + 2Dvϕ,1 ⊗Dq + vϕ,1D

2q we have that∫
Π3δ

∣∣D2vϕ,1
∣∣2 dx ≤ c

∫
R2

∣∣D2zϕ
∣∣2 dx+ c

∫
R2

|Dvϕ,1|2 + c

∫
R2

|vϕ,1|2 dx ≤ c for every ϕ > 0. (3.14)

Arguing in exactly the same way gives
∫
Π3δ

∣∣D2vϕ,2
∣∣2 dx ≤ c for every ϕ > 0, thus∫

Π3δ

∣∣D3vϕ
∣∣2 ≤ c for every ϕ > 0.

Now for any ϕn → 0, D2vϕn is a bounded sequence in W 1,2(Π3δ), so for some subsequence kn, D2vϕkn ⇀

ζ ∈ W 1,2(Π3δ : R2×2). Clearly ζ = D2v for a.e. in Π3δ. Let i, j, k ∈ {1, 2} and φ ∈ C∞
0 (Π3),∫

v,ijφ,k = lim
n→∞

∫
vϕkn ,ijφ,kdx

= lim
n→∞

∫
−vϕkn ,ijkφdx

=
∫

−ζij,kφdx.

Thus v,ij ∈W 1,2(Π3δ) for any i, j ∈ {1, 2} and hence D2v ∈ W 1,2(Π3δ). �

Step 2. We will show that v satisfies (3.3).

Proof of Step 2. Take any arbitrary φ ∈ C∞(Ωε−1), letting ψh(z) := φ(z+hep)−φ(z)
h we know from (3.2)∫ ∑

i,j

vij (y)φijp (y) +
(
1 − |Dv (y)|2

)
Dv (y)Dφp (y) dy

= lim
h→0

h−1

∫ 2∑
i,j=1

vij (y)ψhij (y) +
(
1 + |Dv (y)|2

)
Dv (y)Dψh (y) dy

= 0 (3.15)

thus integrating by parts ∫ ∑
i,j

vijpφij +
((

1 − |Dv|2
)
Dv
)
p
Dφdy = 0.

Repeating the argument gives us (3.3). �
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Lemma 3.3. Let u ∈ W 2,2
0 (B1(0)) be the minimizer of Iε, then

Iε(u) ≤ cε log(ε−1). (3.16)

Proof. Let ρ be the standard rotationally symmetric convolution kernel with Sptρ ⊂ B2(0) and let ρε(z) :=
ρ( zε )ε

−2. Let w(x) = 1 − |x| and wε = w ∗ ρε. So if y ∈ B4ε(0)

∣∣D2wε(y)
∣∣ ≤ ∣∣∣∣∫ (w(z) − 1)D2ρε(y − z)dz

∣∣∣∣ ≤ cε−4

∫
B6ε(0)

|w(z) − 1|dz ≤ cε−1. (3.17)

Note Dw(y) = − y
|y| and D2w(y) = y⊗y

|y|3 − |y|−1
Id so

∣∣D2w(y)
∣∣ ≤ 4

|y| . So

∣∣D2wε(y)
∣∣ ≤ ∣∣∣∣∫ D2w(z)ρε(y − z)dz

∣∣∣∣ ≤ 4
∫
ρε(y − z)

|z| dz ≤ c

|y| for any y �∈ B4ε(0). (3.18)

Thus∫
B1(0)

∣∣D2wε
∣∣2 dy ≤

∫
B4ε(0)

∣∣D2wε
∣∣2 dy +

∫
B1(0)\B4ε(0)

∣∣D2wε
∣∣2 dy

(3.17),(3.18)

≤ c+ c

∫ 1

4ε

r−1dr ≤ c log(ε−1).

Now
{
x ∈ R2 : wε(x) = 0

}
is a circle of radius h � 1 so defining v(x) = wε

(
x
h

)
h, v ∈ W 2,2

0 (B1(0)) and∫
B1(0)

∣∣D2v
∣∣2 dx ≤ c log(ε−1). Now if x �∈ B4ε(0), |Dwε(x) −Dw(x)| =

∣∣∫ (Dw(z) −Dw(x))ρε(x− z)dz
∣∣ ≤ cε

|x| .

So
∣∣∣|Dwε(x)|2 − 1

∣∣∣2 ≤ c ||Dwε(x)| − 1|2 ≤ cε2

|x|2 . Thus∫
B1(0)

∣∣∣1 − |Dwε(x)|2
∣∣∣2 dx ≤ cε2 +

∫
B1(0)\B4ε(0)

∣∣∣1 − |Dwε(x)|2
∣∣∣2 dx

≤ cε2 +
∫ 1

4ε

ε2

r
dr

≤ c log(ε−1)ε2

and this establishes (3.16). �

Lemma 3.4. Let u ∈W 2,2
0 (B1(0)) be a minimizer of Iε. Let C1 be a some small positive constant to be chosen

later. Define A(x, α, β) := Bβ(x)\Bα(x). We divide B1(0) into N =
[
C−2
1 log(ε−1)

]
slices of equal angle, denote

their closure by T1, T2, . . . , TN . There must exists a set Π ⊂ {1, 2, . . . , N} with Card (Π) ≥ N
2 such that if i ∈ Π

inf
{
|Du (z)| : z ∈ Ti ∩A(0, c log(ε−1)ε, 1 − 2ε)

}
>

1
2

and

sup
{
|Du (z)| : z ∈ Ti ∩A(0, c log(ε−1)ε, 1 − 2ε)

}
< 2. (3.19)

Proof of Lemma 3.4. Define v (z) = u (εz) ε−1. Let Si = ε−1Ti for i = 1, 2, . . . , N . For i ∈ {2, 3, . . . , N − 1}
define

S̃i = Si−1 ∪ Si ∪ Si+1 and let S̃1 = SN−1 ∪ S1 ∪ S2, S̃N = SN−1 ∪ SN ∪ S1.

Define

G0 :=
{
i ∈ {1, 2, . . . , N} :

∫
S̃i

∣∣∣1 − |Dv|2
∣∣∣2 +

∣∣D2v
∣∣2 dz ≤ C1

}
. (3.20)

Note that by (3.16) of Lemma 3.3 we know
∫
Bε−1 (0)

∣∣∣1 − |Dv|2
∣∣∣2+∣∣D2v

∣∣2 dx ≤ c log(ε−1), so C1(N−Card (G0)) ≤

c log(ε−1), thus (assuming we chose C1 small enough) C−2
1
2 log(ε−1) ≤ Card (G0).
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Step 1. Let i ∈ G0, we will show that for any y0 ∈ S̃i such that B2 (y0) ⊂ S̃i and ψ ∈ C∞
0 (B2 (y0)) such that

ψ ≡ 1 on B1 (y0) we have ∫ ∣∣D3v
∣∣2 ψ6dz ≤ c. (3.21)

Proof of Step 1. Let Y = (4π)−1 ∫
B2(y0)

Dv, T = (4π)−1 ∫
B2(y0)

v and we define ṽ (z) = v (z)− Y · (z − y0)− T .
Let φ := ṽψ6. So φp = ṽpψ

6 + 6ṽψ5ψp and

φpi = vpiψ
6 + 6ṽpψ5ψi + 6ṽiψ5ψp + 6ṽ

(
ψ5ψp

)
i
. (3.22)

φpij = vpijψ
6 + 6vpiψ5ψj + 6vpjψ5ψi + 6ṽp

(
ψ5ψi

)
j

+ 6vijψ5ψp + 6ṽi
(
ψ5ψp

)
j
+ 6ṽj

(
ψ5ψp

)
i
+ 6ṽ

(
ψ5ψp

)
ij
. (3.23)

By the fact thatB2(y0) ⊂ S̃i we know
∫
B2(y0)

∣∣D2v
∣∣2 ≤ C1, by Poincare’s inequality this implies ‖Dṽ‖L2(B2(y0))

≤ c and ‖ṽ‖L2(B2(y0)) ≤ c. So from (3.23)∣∣∣∣∫ vijpφijp −
∫

(vijp)
2
ψ6

∣∣∣∣ (3.23)

≤ c‖vijpψ3‖L2

(
‖D2v‖L2(B2(y0)) + ‖Dṽ‖L2(B2(y0)) + ‖ṽ‖L2(B2(y0))

)
≤ c‖D3vψ3‖L2 . (3.24)

Now ∣∣∣∣∫ ((1 − |Dv|2
)
Dv
)
p
·Dφp dz

∣∣∣∣ =
∣∣∣∣∫ ((1 − |Dv|2

)
Dv
)
·Dφppdz

∣∣∣∣
≤

∣∣∣∣∫ ((1 − |Dv|2
)
Dv
)
·
(
Dφpp −Dvppψ

6
)
dz
∣∣∣∣

+
∣∣∣∣∫ ((1 − |Dv|2

)
Dv
)
·Dvppψ6dz

∣∣∣∣
(3.23)

≤ c‖
(
1 − |Dv|2

)
Dv‖L2(B2(y0))‖D2v‖L2(B2(y0))

+ ‖D3vψ3‖L2‖
(
1 − |Dv|2

)
Dvψ3‖L2

(3.20)

≤ c
(
1 + ‖D3vψ3‖L2(B2(y0))

)
. (3.25)

Recalling the fact that by Lemma 3.2, v satisfies (3.3) we have∣∣∣∣∣∣
∫ 2∑

i,j,p=1

(vijp)
2
ψ6dz

∣∣∣∣∣∣ (3.3)
=

∣∣∣∣∣∣
∫ 2∑

i,j,p=1

(vijp)
2
ψ6 − vijpφijp −

∫ ((
1 − |Dv|2

)
Dv
)
p
·Dφpdz

∣∣∣∣∣∣
(3.24),(3.25)

≤ c‖D3vψ3‖L2 + c.

And this establishes (3.21). �
Proof of Lemma 3.4 completed. By Theorem 2, Section 5.6 [11]

‖D2v‖L4(B2(y0)) ≤ ‖D2v‖W 1,2(B2(y0)) ≤ c+ ‖D3v‖L2(B2(y0))

(3.3)

≤ c.

By Sobolev embedding this implies Dv is 1
2 -Holder in B1 (y0).
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Since
∫
B1(y0)

∣∣∣1 − |Dv|2
∣∣∣2 dz ≤ C1. Let L =

{
z ∈ B1 (y0) :

∣∣∣1 − |Dv|2
∣∣∣2 ≤

√
C1

}
so we have |B1 (y0) \L| ≤

√
C1. So B

4C
1
4
1

(y0) ∩ L �= ∅ so we can pick z1 ∈ B
4C

1
4
1

(y0) ∩ L. Since Dv is 1
2 Holder

||Dv (y0)| − 1| ≤ |Dv (y0) −Dv (z1)| + C
1
4
1

≤ c |y0 − z1|
1
2 + C

1
4
1

≤ cC
1
8
1 ,

assuming we chose C1 small enough this implies |Dv(y0)| ∈ (1
2 , 2). Since y0 is an arbitrary point in S̃i\N2(∂S̃i)

and Du(εy0) = Dv(y0) this implies (3.19). �

Lemma 3.5. Let u ∈ W 2,2(B1(0)). Suppose∫
B1(0)

∣∣∣1 − |Du|2
∣∣∣ ∣∣D2u

∣∣dz ≤ β (3.26)

and ∫
B1(0)

∣∣∣1 − |Du|2
∣∣∣ dz ≤ β. (3.27)

We will show that for any w ∈ S1 we can find a set Gw ⊂ Pw⊥ (B1(0)) with

|Pw⊥ (B1(0)) \Gw| ≤ β
1
3 (3.28)

and for any x ∈ Gw we have

sup
{
||Du (z)| − 1| : z ∈ P−1

w⊥ (x) ∩B1(0)
}
≤ 5β

1
3 . (3.29)

Proof. Let

Bw :=

{
x ∈ Pw⊥ (B1(0)) :

∫
P−1
w⊥ (x)∩B1(0)

∣∣∣1 − |Du|2
∣∣∣ ∣∣D2u

∣∣+ ∣∣∣1 − |Du|2
∣∣∣dz ≤ β

2
3

}
.

By Chebyshev’s inequality we have |Pw⊥ (B1(0)) \Bw| ≤ 2β
1
3 . For any x ∈ Pw⊥(B

1−β 2
3
(0)) we know

∣∣P−1
w⊥(x)∩

B1(0)| ≥ β
1
3 and so if in addition x ∈ Bw we have that there must exists zx ∈ P−1

w⊥(x) ∩ B1(0) such that
|1 − |Du(zx)|| ≤ β

1
3 .

Suppose x ∈ Bw ∩ Pw⊥(B
1−β 2

3
(0)) and for some yx ∈ P−1

w⊥(x) ∩ B1(0) we have |1 − |Du(yx)|| ≥ 5β
1
3 . Then

as we can assume without loss of generality that Du is continuous on P−1
w⊥(x) ∩ B1(0) and so there must

exists ax, bx ∈ P−1
w⊥(x) ∩B1(0) such that ||Du(ax)| − |Du(bx)|| ≥ β

1
3 and inf {|Du(x)| : x ∈ [ax, bx]} ≥ 1 + 4β

1
3 .

However by the fundamental theorem of calculus

4β
1
3 ||Du(ax)| − |Du(bx)|| ≤

∫ bx

ax

|1 − |Du||
∣∣D2u

∣∣ ≤ β
2
3

which is a contradiction. Thus taking Gw := Bw ∩ Pw⊥(B
1−β 1

3
(0)) completes the proof of the lemma. �

Lemma 3.6. Suppose ũ is a C2 function that satisfies (3.26), (3.27) and Λ ⊂ B1(0) is convex with the property
that inf {|Dũ(x)| : x ∈ Λ} > 1

3 and sup {|Dũ(x)| : x ∈ Λ} < 3.
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Given function X : R → R2 that solves X(0) = x and Ẋ(s) = Dũ(X(s)), suppose s1 < 0 < s2 are such that
X(s) ∈ Λ for any s ∈ [s1, s2] then

ũ(X(s2)) − ũ(X(s1)) ≥ (1 − β
1
3 ) |X(s2) −X(s1)| − cβ

1
3 . (3.30)

And if in addition X(s1), X(s2) �∈ Br(x) for some Br(x) ⊂ Ω, then

{X(s) : s ∈ [s1, s2]} ⊂ N
c β

1
6√
r

([X(s1), X(s2)]). (3.31)

Proof. Let w ∈ S1 be orthogonal to X(s2) − X(s1). Let Gw be the set satisfying (3.28) and (3.29) from
Lemma 3.5. Let P = {X(t) : t ∈ [s1, s2]} and Γ = P ∩ P−1

w⊥(Gw). So H1(Γ) ≥ |Pw⊥([X(s1), X(s1)]) ∩Gw| ≥
|X(s2) −X(s1)| − β

1
3 and so

ũ(X(s2)) − ũ(X(s1)) =
∫
P

Dũ(z) · tzdH1z

≥ (1 − cβ
1
3 )H1(Γ) +

1
3
H1(P\Γ)

≥ (1 − cβ
1
3 ) |X(s2) −X(s1)| +

1
3
H1(P\Γ) − cβ

1
3 (3.32)

which establishes (3.30). Now

ũ(X(s2)) − ũ(X(s1)) ≤
∫

[X(s1),X(s2)]

|Dũ(z)| dH1z

≤ (1 + cβ
1
3 ) |Pv⊥([X(s2), X(s1)] ∩Gw)| + 3 |Pv⊥([X(s2), X(s1)] \Gw)|

≤ |X(s2) −X(s1)| + cβ
1
3 (3.33)

now putting (3.32) and (3.33) together we have H1(P\Γ) ≤ cβ
1
3 . Now this and the second inequality of (3.32)

and inequality (3.33) imply that
|X(s2) −X(s1)| − cβ

1
3 ≥ H1(P ). (3.34)

If X(s1), X(s2) �∈ Br(x) then as X(0) = x ∈ P and as P is connected we know H1(P ) ≥ |X(s1) −X(0)| +

|X(s2) −X(0)| ≥ 2r which by (3.34) implies |X(s1) −X(s2)| ≥ r and so |X(s1) −X(s2)| (1 + cβ
1
3

r ) ≥ H1(P ).
Now letting tz denote the tangent to the curve P at point z we have∫

P

∣∣∣∣tz − X(s2) −X(s1)
|X(s2) −X(s1)|

∣∣∣∣2 dH1z =
∫
P

2 − 2tz ·
(
X(s2) −X(s1)
|X(s2) −X(s1)|

)
dH1z

= 2H1(P ) − 2 |X(s2) −X(s1)|

≤ cβ
1
3

r
·

By Holder’s inequality and the fundamental theorem of calculus this immediately implies (3.31). �

Lemma 3.7. Suppose u is a minimizer of Iε over W 2,2
0 (B1(0)). There exists r � ε

1
6 (log(ε−1))

13
6 and ξ ∈ {1,−1}

such that
inf {ξu(z) : z ∈ Br(0)} ≥ 1 − cε

1
6 (log(ε−1))

13
6 (3.35)

Proof. First recall that by Lemma 3.3, (3.16) we know that Iε(u) ≤ cε log(ε−1). Let T1, T2, . . . , TN be as defined
in Lemma 3.4. By Lemma 3.4 there exists i ∈ {1, 2, . . . , N} such that Ti satisfies (3.19). �
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By Lemma 3.2 we know u ∈ W 3,2(B1−2ε(0)). Now by approximation of Sobolev functions (see Thm. 3,
Sect. 5.33 [11]), for any small τ > 0 we can find ũ ∈ C∞(B1−2ε(0)) such that

‖ũ− u‖W 3,2(B1−2ε(0)) < τ. (3.36)

Since ∫
B1(0)

∣∣∣1 − |Du|2
∣∣∣2 dx ≤ cε2 log(ε−1) (3.37)

and ∫
B1(0)

∣∣∣1 − |Du|2
∣∣∣ ∣∣D2u

∣∣dx ≤ cε log(ε−1). (3.38)

By Sobolev embedding we have that u is 1
2 -Holder and thus

sup {|u(z)| : z ∈ ∂B1−2ε(0)} ≤ c
√
ε. (3.39)

Now assuming τ is small enough, as by Sobolev embeddingDũ is Holder continuous, ũmust satisfy sup {|ũ(z)| : z
∈ ∂B1−2ε(0)} ≤ c

√
ε and

inf
{
|Dũ (z)| : z ∈ A(0, c log(ε−1)ε, 1 − 2ε) ∩ Ti

}
>

1
3

and

sup
{
|Dũ (z)| : z ∈ A(0, c log(ε−1)ε, 1 − 2ε) ∩ Ti

}
< 3. (3.40)

It is also clear that for small enough τ , ũ satisfies Iε(ũ) ≤ cε log(ε−1).
Step 1. Let ϑ denote the center point of ∂B1−2ε(0) ∩ Ti define ς = 2(1 − cos( πN )), so ς � C4

1π
2

(log(ε−1))2 . Let
� = (1 − ς)ϑ. For any set A let conv(A) denote the convex hull of A. Note that (see Fig. 1)

dist (�, conv(∂B1−2ε(0) ∩ Ti)) >
ς

2
· (3.41)

LetX : R → R2 be the solution ofX(0) = � and Ẋ(s) = Dũ(X(s)). Let Ti := Ti∩A(0, c log(ε−1)ε, 1−2ε). Let
t2 > 0 be the smallest number such that X(t2) ∈ ∂Ti and let t1 < 0 be the largest number so that X(t1) ∈ ∂Ti.
Let s ∈ {t1, t2} be such that

d(X(s), ∂B1−2ε(0)) = min {d(X(t1), ∂B1−2ε(0)), d(X(t2), ∂B1−2ε(0))} . (3.42)

Let e ∈ {t1, t2} \ {s}. See Figure 1.
We will show X(s) ∈ ∂B1−2ε(0) ∩BC2

1(log(ε−1))−1/2(ϑ) and X(e) ∈ ∂Ti\∂B1−2ε(0).

Proof of Step 1. We claim

cos−1

(
X(s) −X(e)
|X(s) −X(e)| ·

ϑ

|ϑ|

)
≤ π

2
− 1

129
· (3.43)

Let ψ = cos−1
(
X(s)−X(e)
|X(s)−X(e)| ·

ϑ
|ϑ|
)
. Suppose (3.43) not true, i.e. ψ ≥ π

2 − 1
129 . Since X(s), X(e) �∈ Bς(ϑ) and

by (3.36)–(3.38) ũ satisfies (3.26), (3.27) for β = ε log(ε−1) so applying Lemma 3.6 we have that by (3.31)

� ∈ N
cε

1
6 (log(ε−1))

7
6
([X(s), X(e)]), (3.44)

i.e. points �,X(s2), X(s1) are roughly (with error cε
1
6 (log(ε−1))

7
6 ) aligned, so by (3.41) we must have

X(e) ∈ ∂Ti\∂B1−2ε(0)
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Figure 1. An integral path of the vector field Dũ going through ρ.

and in particular |X(e) −X(s)| > C2
1
2 (log(ε−1))−1. Note also by (3.42) and by (3.44) we have that

d(X(s), ∂B1−2ε(0)) ≤ c(log(ε−1))−2. (3.45)

Thus by (3.30)

|ũ(X(e)) − ũ(X(s))| ≥ C2
1

3
(log(ε−1))−1. (3.46)

Since ũ is 3-Lipschitz and d(X(s), ∂B1−2ε(0)) ≤ 2ς we have |ũ(X(s))| ≤ 6ς ≤ c
(log(ε−1))2 . Thus by (3.46) we

have

|ũ(X(e))| ≥ C2
1

4
(log(ε−1))−1. (3.47)

Now let L be the line parallel to [X(s), X(e)] that passes through �, by (3.31) we can pick ν ∈ L ∩
B
ε
1
6 (log(ε−1))

7
6
(X(s)) and let μ = (X(e) + 〈ϑ〉) ∩ (ν + ϑ⊥). Note that by trigonometry

d(μ, ∂B1−2ε(0)) ≤ d(ν, ∂B1−2ε(0)) + c(log(ε−1))−2. (3.48)

And so

d(μ, ∂B1−2ε(0)) ≤ d(X(s), ∂B1−2ε(0)) + c(log(ε−1))−2
(3.45)

≤ c(log(ε−1))−2. (3.49)

Recall we have assumed by contradiction that ψ ≥ π
2 − 1

129 . By (3.44) X(s), �, X(e) are with error
(ε

1
6 (log(ε−1)))

7
6 aligned and by (3.42) X(s) is closer (or equally close) to ∂B1−2ε(0) than X(e), so X(s) · ϑ

|ϑ| >

X(e) · ϑ
|ϑ| − cε

1
6 (log(ε−1))

7
6 , hence ψ ≤ π

2 + 1
129 . We will denote a triangle with corners at a, b, c by T (a, b, c).

Consider the right angle triangle T (ν,X(e), μ). Now let ψ̃ denote the angle of the corner of the triangle
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T (ν,X(e), μ) at X(e). By construction as |ν −X(s)| < ε
1
6 (log(ε−1))

7
6 so

∣∣∣ψ − ψ̃
∣∣∣ ≤ ε

1
6 (log(ε−1))

13
6 ≤ 1

128 − 1
129 ,

thus ψ̃ ∈
[
π
2 − 1

128 ,
π
2 + 1

128

]
. Thus

127
128

|ν −X(e)| ≤ |ν −X(e)| sin(ψ̃) ≤ |μ− ν| ≤ 2πC2
1(log(ε−1))−1.

So
|ν −X(e)| ≤ 8C2

1(log(ε−1))−1. (3.50)
Thus

|X(e) − μ| ≤ cos(ψ̃) |ν −X(e)|
(3.50)

≤ 8C2
1(log(ε−1))−1 cos

(
π

2
− 1

128

)
≤ C2

1(log(ε−1))−1

16
· (3.51)

Hence

d(X(e), ∂B1−2ε(0))
(3.51)

≤ d(μ, ∂B1−2ε(0)) +
C2
1(log(ε−1))−1

16
(3.49)

≤ C2
1(log(ε−1))−1

16
+ c(log(ε−1))−2.

Thus |ũ(X(e))| ≤ 3C2
1(log(ε−1))−1

16 + c
(
log(ε−1)

)2 which is a contradicts (3.47). So (3.43) is established.
Let ω = L ∩ (ϑ + ϑ⊥). Consider the right angle triangle T (ω, �, ϑ). By trigonometry we know that

|ω − ϑ| tan
(
π
2 − ψ

)
= ς which implies |ω − ϑ| ≤ 258ς, hence X(s) ∈ ∂B1−2ε(0) ∩ B C2

1(log(ε−1))−1

2

(ϑ). As we

know already X(e) ∈ ∂Ti\B1−2ε(0) this completes the proof of Step 1. �
Step 2. We will show ∣∣∣∣cos−1

(
X(s)
|X(s)| ·

(X(s) −X(e))
|X(s) −X(e)|

)∣∣∣∣ ≤ cε
1
6 log(ε−1)

7
6 . (3.52)

Proof of Step 2. Let θ = cos−1
(
X(s)
|X(s)| ·

(X(s)−X(e))
|X(s)−X(e)|

)
. Let

κ = (X(s) + (X(s))⊥) ∩ (X(e) + RX(s)) .

Note that the points X(s), X(e), κ forms the corners of a right-angle triangle where the angle at the point X(e)
is θ. Since κ �∈ Ti and as Ti is convex, [κ,X(e)] intersects ∂Ti at one point only, so let ζ = (κ,X(e)) ∩ ∂Ti.
We claim that ζ ∈ ∂B1−2ε(0). To see this suppose it is not true, then the line segment [κ,X(e)] must cross
one of the flat sides of ∂Ti. Recall the angle at 0 of the ‘pie slice’ Ti is 2π

N . So the angle between ϑ and
either of the sides of ∂Ti is π

N . However the line segment [κ,X(e)] is parallel to the line segment [0, X(s)] so

cos−1
(
ϑ
|ϑ| ·

κ−X(e)
κ−X(e)

)
< π

N . Now in order for [κ,X(e)] to cross the flat sides of ∂Ti without first intersecting
∂B1−2ε(0) it has to make a larger angle with ϑ than the flat sides of ∂Ti so this a contradiction. Thus the claim
is established and we have cos(θ) |X(s) −X(e)| ≥ |X(e) − ζ|.

Now since X(s) ∈ ∂B1−2ε(0) so |ũ(X(s))| ≤ c
√
ε and thus

ũ(X(e))
(3.30)

≥ (1 − c(ε log(ε−1))
1
3 ) |X(e) −X(s)| − c(ε log(ε−1))

1
3

≥ |X(e) − ζ|
cos θ

− c(ε log(ε−1))
1
3 . (3.53)
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By Lemma 3.5 there exists a line segment Γ ⊂ Ti parallel to [X(e), ζ] whose end points are within (ε log(ε−1))
1
3

of X(e), ζ and for which sup {||Dũ(z)| − 1| : z ∈ Γ} ≤ c(ε log(ε−1))
1
3 . Let a, b be the end points of Γ, so by the

fundamental theorem of calculus, |ũ(a) − ũ(b)| ≤ (1 + c(ε log(ε−1))
1
3 ) |a− b|. Since ũ is Lipschitz on Ti and

|ũ(ζ)| ≤ c
√
ε we have that |ũ(X(e))| ≤ (1 + c(ε log(ε−1))

1
3 ) |X(e) − ζ|, thus putting this together with (3.53) we

have

|X(e) − ζ| ≥ |X(e) − ζ|
(1 + c(ε log(ε−1))

1
3 ) cos θ

− c(ε log(ε−1))
1
3 . (3.54)

Recall Bς(�) ⊂ Ti and as we know X(s) is closer to ∂B1−2ε(0) than X(e), so by (3.44) we have that |X(e) − ζ| ≥
ς
2 , so by (3.54) we have cos(θ) ≥ 1 − cε

1
3 (log(ε−1))

7
3 which implies |θ| ≤ cε

1
6 (log(ε−1))

7
6 and this completes the

proof of Step 2. �

Proof of Lemma 3.7 completed. By Step 1 we know X(s) ∈ B C2
1(log(ε−1))−1

2

(ϑ), so the angle between the line

segment [X(s), 0] and the sides of ∂Ti is at least C2
1(log(ε−1))−1/4. So if we consider the triangle T (0, X(s), X(e)).

Let η be the angle of the triangle at corner 0, so η ≥ C2
1(log(ε−1))−1

4 · Recall the angle at corner X(s) is θ and
by (3.52) θ ≤ cε

1
6 (log(ε−1))

7
6 . So by the law of sins, |X(e)|

sin θ = |X(e)−X(s)|
sin η . So

|X(e)| ≤ 2 sin θ
sin η

≤ cε
1
6 (log(ε−1))

13
6 . (3.55)

Now as noted previously, (3.39) and (3.36), |ũ(X(s))| ≤ c
√
ε. So by (3.30) we have that

|ũ(X(e))| ≥ (1 − (ε log(ε−1))
1
3 ) |X(e)−X(s)| − c(ε log(ε−1))

1
3

≥ (1 − (ε log(ε−1))
1
3 )d(X(e), ∂B1−2ε(0)) − c(ε log(ε−1))

1
3

≥ 1 − cε
1
6 (log(ε−1))

13
6 · (3.56)

So we must have r ∈ (|X(e)| + 1
2ε

1
6 (log(ε−1))

13
6 , |X(e)| + cε

1
6 (log(ε−1))

13
6 ) such that

∫
∂Br(0)

∣∣∣1 − |Dũ|2
∣∣∣dH1z

(3.37),(3.36)

≤ cε
5
6 (log(ε−1))−

10
6 .

By the fundamental theorem of calculus we have that

|ũ(x) − ũ(y)| ≤ cε
5
6 (log(ε−1))−

10
6 for all x, y ∈ ∂Br(0). (3.57)

Let ξ = ũ(X(e))
|ũ(X(e))| . Pick z ∈ ∂Br(0) ∩ Ti, since ũ is Lipschitz on Ti we know

|ũ(z) − ũ(X(e))| ≤ cε
1
6 (log(ε−1))

13
6 . (3.58)

Thus for any x ∈ ∂Br(0)

ξũ(x)
(3.58)(3.57)

≥ ξũ(X(e)) − cε
1
6 (log(ε−1))

13
6

(3.56)

≥ 1 − cε
1
6 (log(ε−1))

13
6 , (3.59)

together with (3.36) (using the fact that (3.36) implies ‖ũ − u‖L∞(B1−2ε(0)) ≤ cε) this completes the proof of
Lemma 3.7. �
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Proof of Theorem 1.2 completed. Let r � ε
1
6 (log(ε−1))

13
6 , ξ ∈ {−1, 1} be the numbers that satisfy (3.35) from

Lemma 3.7. Let A(x) = x
|x| note |DA(x)| ≤ c

|x| . Note by Fubini∫
Br(0)

∫
B1(0)

∣∣∣1 − |Du(z)|2
∣∣∣ |DA(x− z)|dzdx

=
∫
B1(0)

(∫
Br(0)

|DA(x − z)|dx
)(

1 − |Du(z)|2
)

dz

≤ cε
√

log(ε−1). (3.60)

So there must exist a set G ⊂ Br(0) with |G| ≥ ε
1
3 (log(ε−1))

13
3 such that if x ∈ G we have∫

B1(0)

∣∣∣1 − |Du(z)|2
∣∣∣ |DA(x− z)|dz ≤ cε

1
3 . (3.61)

For θ ∈ S1, y ∈ R2 define lyθ := y + R+θ. Pick x ∈ G, by the Co-area formula∫
ψ∈S1

∫
lxψ

∣∣∣1 − |Du(z)|2
∣∣∣ dH1zdH1ψ ≤ cε

1
3 .

For each ψ ∈ S1 let xψ = ∂Br(0) ∩ lxψ, yψ = ∂B1(0) ∩ lxψ and eψ =
∫
lxψ

∣∣∣1 − |Du(z)|2
∣∣∣dH1z. So∫

[xψ,yψ]

|Du(z) + ξψ|2 dH1z =
∫

[xψ,yψ]

|Du(z)|2 + 2ξDu(z) · ψ + 1dH1z

≤ 2 |yψ − xψ | − 2ξu(xψ) + ceψ
(3.35)

≤ cε
1
6 (log(ε−1))

13
6 + ceψ. (3.62)

Thus ∫
B1(0)\Br(x)

∣∣∣∣Du(z) + ξ
z

|z|

∣∣∣∣2 dz ≤
∫
B1(0)\Br(x)

∣∣∣∣Du(z) + ξ
z

|z|

∣∣∣∣2 |DA(x − z)|dz

≤
∫
S1

∫
[xψ,yψ]

|Du(z) + ξψ| dH1zdH1ψ

(3.62)

≤ cε
1
6 (log(ε−1))

13
6 + c

∫
S1
eψdH1ψ

≤ cε
1
6 (log(ε−1))

13
6 .

Hence ∫
B1(0)

∣∣∣∣Du(z) + ξ
z

|z|

∣∣∣∣2 dz ≤
∫
Br(0)

∣∣∣∣Du(z) + ξ
z

|z|

∣∣∣∣2 dz + cε
1
6 (log(ε−1))

13
6

≤ c

∫
Br(0)

|1 − ||Du(z)| − 1||2 dz + cε
1
6 (log(ε−1))

13
6

≤ cε
1
6 (log(ε−1))

13
6 . �
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