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VIABILITY, INVARIANCE AND REACHABILITY FOR CONTROLLED
PIECEWISE DETERMINISTIC MARKOV PROCESSES

ASSOCIATED TO GENE NETWORKS

Dan Goreac1

Abstract. We aim at characterizing viability, invariance and some reachability properties of con-
trolled piecewise deterministic Markov processes (PDMPs). Using analytical methods from the theory
of viscosity solutions, we establish criteria for viability and invariance in terms of the first order normal
cone. We also investigate reachability of arbitrary open sets. The method is based on viscosity tech-
niques and duality for some associated linearized problem. The theoretical results are applied to general
On/Off systems, Cook’s model for haploinsufficiency, and a stochastic model for bacteriophage λ.
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1. Introduction

Markov processes have been intensively used to describe variability features of various cellular processes.
To our best knowledge, Markovian tools have first been employed in connection to molecular biology in [15].
The natural idea was to associate to each reaction network a pure jump model. Due to the large number of
molecular species involved in the reactions, direct simulation of these models turns out to be very slow. To
increase proficiency, hybrid models are adopted in [13]. They distinguish the discrete components from the
“continuous” ones. Using partial Kramers-Moyal expansion, the authors of [13] replace the initial pure jump
process with an appropriate piecewise deterministic Markov one.

One may reduce the complexity of PDMPs by restricting the model to some invariant set containing the initial
data, whenever this is known. Compact invariant sets are also needed for efficiently implementing algorithms.
Another important issue that can be approached using invariance are the stable points. In particular, a fixed
point for which one finds arbitrarily small surrounding invariant sets is stable in the sense of Lyapunov.

We begin by characterizing ε-viability of controlled PDMPs via some associated control problem. A closed
set of constraints K is said to be viable (or ε-viable) with respect to some dynamic control system if, starting
from K, one is able to find suitable controls keeping the trajectory in K (or, at least in some arbitrarily small
neighborhood of the set of constraints). Viability properties have been extensively studied in both deterministic
and stochastic settings (for Brownian diffusions), starting from the pioneer work of Nagumo. The methods used
to describe this property for deterministic or diffusion processes rely either on the Bouligand-Severi contingent
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cone (cf. [2,3,16]) or on viscosity solutions [4–7,10,19]. Using analytical tools from viscosity theory, we provide
a geometrical characterization of ε-viability and invariance of some set of constraints K with respect to the
controlled piecewise deterministic Markov process. As for the Brownian diffusion case (cf. [7]), the criterion
involves the normal cone to the set of constraints and is completely deterministic. Similar arguments allow to
characterize the invariance of the set of constraints. We emphasize that these geometrical conditions can be
rather easily checked for PDMPs associated to gene networks. In order to illustrate these theoretical assertions,
two examples are considered. For general On/Off models, we show how the invariance criterion can be used in
order to reduce the state space to a compact set. We also characterize points that can be chosen as candidates
for stability (in the sense that one finds arbitrarily small surrounding regions that are invariant). Another
biological example is a model for bacteriophage λ (described in [17]). Although it is more complex, one can still
use the invariance criterion to characterize candidates for stability. It turns out that only one such point exists
in the absence of impulsive exterior control factors.

The second aim of the paper is to characterize the reachability property of arbitrary open sets with respect
to the controlled piecewise deterministic Markov process. The criterion is obtained using viscosity methods.
Recently, the paper [11] has provided a linear programming formulation for discounted control problems in
the framework of SDEs driven by standard Brownian motion. The reachability problem can be connected to
the value function of some appropriate piecewise deterministic control system. Using the idea in [11], we give
a criterion involving the dual formulation of the linearized version of the initial problem. To illustrate this
result, we consider Cook’s model for haploinsufficiency introduced in [12]. Our criterion allows to prove that,
starting from any arbitrary point, one reaches any arbitrarily given open region, with positive probability.

The paper is organized as follows: In Section 1.1 we briefly recall the construction of controlled PDMPs and
state the main (standard) assumptions. Section 2 is devoted to the study of viability property (Sect. 2.1) and
invariance (Sect. 2.2) with respect to the PDMP. The criteria involve the normal cone to the set of constraints
and the characteristics of the process. Section 3 deals with the reachability property. We use a Krylov-type
argument to provide some dual formulation of the associated control problem. In Section 4.1 we recall some
rudiments on the PDMPs associated to a system of chemical reactions. We consider two biological examples:
the On/Off model (Sect. 4.2) and the bacteriophage λ (Sect. 4.3). We first study the compact invariant sets
for the On/Off model. For a particular case (the so-called Cook model for haploinsufficiency), we prove that
every open set can be reached with positive probability, starting from any initial point. In the case of the
bacteriophage λ (described in [17]), our invariance criterion allows to identify the stable point of the system.
The Appendix provides the comparison principle and some stability results for viscosity solutions.

1.1. Construction of controlled PDMPs and main assumptions

We let U be a compact metric space (the control space) and R
N be the state space, for some N ≥ 1.

Piecewise deterministic control processes have been introduced by Davis [14]. Such processes are given by
their local characteristics: a vector field f : R

N ×U → R
N that determines the motion between two consecutive

jumps, a jump rate λ : R
N × U → R+ and a transition measure Q : R

N × U × B (RN
) → P (RN

)
. Here

B (RN
)

is the Borel σ-field on R
N and P (RN

)
stands for the family of probability measures on R

N . For every
A ∈ B (RN

)
, the function (u, x) �→ Q (x, u,A) is assumed to be measurable and, for every (x, u) ∈ R

N × U ,
Q (x, u, {x}) = 0.

We summarize the construction of controlled piecewise deterministic Markov processes (PDMP). Whenever
u ∈ L

0
(
R

N × R+;U
)

(u is a Borel measurable function) and (t0, x0) ∈ R+ × R
N , we consider the ordinary

differential equation {
dΦt0,x0,u

t = f
(
Φt0,x0,u

t , u (x0, t− t0)
)
dt, t ≥ t0,

Φt0,x0,u
t0 = x0.

We choose the first jump time T1 such that the jump rate λ
(
Φ0,x0,u

t , u (x0, t)
)

satisfies

P (T1 ≥ t) = exp
(
−
∫ t

0

λ
(
Φ0,x0,u

s , u (x0, s)
)
ds
)
.
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The controlled piecewise deterministic Markov processes (PDMP) is defined by

Xx0,u
t = Φ0,x0,u

t , if t ∈ [0, T1) .

The post-jump location Y1 has Q
(
Φ0,x0,u

τ , u (x0, τ) , ·
)

as conditional distribution given T1 = τ. Starting from
Y1 at time T1, we select the inter-jump time T2 − T1 such that

P (T2 − T1 ≥ t / T1, Y1) = exp

(
−
∫ T1+t

T1

λ
(
ΦT1,Y1,u

s , u (Y1, s− T1)
)
ds

)
.

We set
Xx0,u

t = ΦT1,Y1,u
t , if t ∈ [T1, T2) .

The post-jump location Y2 satisfies

P (Y2 ∈ A / T2, T1, Y1) = Q
(
ΦT1,Y1,u

T2
, u (Y1, T2 − T1) , A

)
,

for all Borel set A ⊂ R
N . And so on.

Throughout the paper, unless stated otherwise, we assume the following:
(A1) The function f : R

N × U −→ R
N is uniformly continuous on R

N × U and there exists a positive real
constant C > 0 such that

|f (x, u) − f (y, u)| ≤ C |x− y| , and |f (x, u)| ≤ C, (A1)

for all x, y ∈ R
N and all u ∈ U.

(A2) The function λ : R
N × U −→ R+ is uniformly continuous on R

N × U and there exists a positive real
constant C > 0 such that

|λ (x, u) − λ (y, u)| ≤ C |x− y| , and λ (x, u) ≤ C, (A2)

for all x, y ∈ R
N and all u ∈ U.

(A3) For each bounded uniformly continuous function h ∈ BUC
(
R

N
)
, there exists a continuous function

ηh : R −→ R such that ηh (0) = 0 and

sup
u∈U

∣∣∣∣∫
RN

h (z)Q (x, u, dz)−
∫

RN

h (z)Q (y, u, dz)
∣∣∣∣ ≤ ηh (|x− y|) . (A3)

(A4) For every x ∈ R
N and every decreasing sequence (Γn)n≥0 of subsets of R

N ,

inf
n≥0

sup
u∈U

Q (x, u,Γn) = sup
u∈U

Q
(
x, u,∩

n
Γn

)
. (A4)

Remark 1.1. We have kept (A3) as it appears in Soner [18]. However, this assumption may be somewhat
weakened by imposing:

(A3’) For each bounded uniformly continuous function h ∈ BUC
(
R

N
)
, there exists a continuous function

ηh : R −→ R such that ηh (0) = 0 and

sup
u∈U

∣∣∣∣λ (x, u)
∫

RN

h (z)Q (x, u, dz)− λ (y, u)
∫

RN

h (z)Q (y, u, dz)
∣∣∣∣ ≤ ηh (|x− y|) .

It is obvious that whenever one assumes (A3) and λ (·) is bounded, the assumption (A3’) holds true. Moreover,
all the proofs in this paper can be obtained (with minor changes) when (A3’) replaces (A3).
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2. A geometric condition for viability and invariance

2.1. Conditions for viability

This subsection aims at characterizing the viability property of a nonempty, closed set K ⊂ R
N . In analogy

to the deterministic framework, this property is proved to be connected to some geometric condition involving
the normal cone to K. The proof of the characterization relies on the viscosity solution concept. We begin the
subsection by recalling the notions of viability (respectively ε-viability) and normal cone.

Definition 2.1. 1. A nonempty, closed set K ⊂ R
N is said to be viable with respect to the controlled piecewise

deterministic Markov process X if, for every initial point x ∈ K, there exists an admissible control process
u ∈ L

0
(
R

N × R+;U
)

such that Xx,u
t ∈ K, P-almost surely, for all t ≥ 0.

2. A nonempty, closed set K ⊂ R
N is said to be ε-viable with respect to the controlled piecewise deterministic

process X if, for every initial point x ∈ K and every ε > 0, there exists an admissible control process uε ∈
L

0
(
R

N × R+;U
)

such that

E

[∫ ∞

0

e−t
(
dK

(
Xx,uε

t

)
∧ 1
)

dt
]
≤ ε.

Here, dK stands for the distance function to the closed set K.

Definition 2.2. Let K ⊂ R
N be a closed subset and let x be a point of K. The normal cone to K at x, denoted

by NK (x), is defined as

NK (x) =
{
p ∈ R

N : ∀ε > 0, ∃η > 0 such that ∀y ∈ K ∩B (x, η) , 〈p, y − x〉 ≤ ε |y − x|} .
We recall that B (x, η) =

{
y ∈ R

N : |y − x| ≤ η
}
.

The definition of the ε-viability property of a nonempty, closed set K ⊂ R
N can, alternatively, be given with

respect to the value function

v(x) = inf
u∈L0(RN×R+;U)

E

[∫ ∞

0

e−t (dK (Xx,u
t ) ∧ 1) dt

]
, (2.1)

for all x ∈ R
N . Indeed, with this notation, the set K is ε-viable if and only if the restriction of v to K is zero.

We consider the associated Hamilton-Jacobi integro-differential equation

v (x) − dK (x) ∧ 1 +H (x,∇v (x) , v) = 0, (2.2)

for all x ∈ R
N , where the Hamiltonian is given by

H (x, p, ψ) = sup
u∈U

{
−〈f (x, u) , p〉 − λ (x, u)

∫
RN

(ψ (z) − ψ (x))Q (x, u, dz)
}
. (2.3)

Under the assumptions (A1)–(A3), the function v is known to satisfy (cf. [18], Thm. 1.1), in the viscosity sense,
equation (2.2). We are going to need a slightly more general definition for the viscosity subsolution (respectively
supersolution) then the one used in [18].

Definition 2.3. A bounded, upper (lower) semicontinuous function v is a viscosity subsolution (supersolution)
of (2.2) if, for any test-function ϕ ∈ C1

b (Nx), on some neighborhood Nx of x ∈ R
N , whenever x is a maximum

(minimum) point of v − ϕ,
v (x) − dK (x) ∧ 1 +H (x,∇ϕ (x) , v) ≤ 0 (≥ 0).

A bounded, continuous function v is a viscosity solution of (2.2) if it is both subsolution and supersolution.
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At this point, we introduce a technical assumption on the transition measure Q which provides a comparison
principle. It states that the probability for the post jump position to be arbitrarily far away from the pre-
jump one is uniformly small. We emphasize that this assumption is made in order to give a simple proof for
the comparison principle. However, it is not essential; one can, as an alternative, strengthen (A3) as in [1],
Section 3 (see also [8]). Moreover, the main results of the paper hold true independently of this assumption,
whenever a comparison principle for semicontinuous functions holds true.

(A5) We assume that
inf
n≥1

sup
x∈RN ,u∈U

Q
(
x, u,RN

�B (x, n)
)

= 0. (A5)

Remark 2.4. Assumption (A5) is obviously satisfied whenever the jumps do not depend on the pre-jump
state x nor on the control u. If q ∈ P (RN

)
is a probability measure, we let Q be such that∫

RN

h (z)Q (x, u, dz) =
∫

RN

h (x+ z) q (dz) ,

for all continuous function h ∈ Cb

(
R

N
)

and all x ∈ R
N , u ∈ U. Then

Q
(
x, u,RN

�B (x, n)
)

= q
(
R

N
�B (0, n)

)
,

for all x ∈ R
N , u ∈ U, n ≥ 1 and (A5) holds true. We emphasize that all the piecewise deterministic processes

associated to chemical reactions (see Sect. 4.1) satisfy (A5).

Proposition 2.5 (comparison principle). Let W be a bounded u.s.c. viscosity subsolution of (2.2) and let V
be a bounded l.s.c. viscosity supersolution of (2.2). Moreover, we assume that either W or V is uniformly
continuous. Then

W (x) ≤ V (x) ,

for all x ∈ R
N .

The arguments for the proof are standard. For reader’s convenience, we give the proof in the Appendix.
The main result of the subsection is the following characterization of the ε-viability property with respect to

the controlled piecewise deterministic Markov process.

Theorem 2.6. Given a nonempty, closed set K ⊂ R
N , the following properties are equivalent:

(i) K is ε-viable.
(ii) The following assertions hold simultaneously:

(a) For every x ∈ ∂K, and every p ∈ NK (x) ,

inf
u∈U

{〈f (x, u) , p〉 + λ (x, u)Q (x, u,Kc)} ≤ 0.

(b) For every x ∈
◦
K,

inf
u∈U

{λ (x, u)Q (x, u,Kc)} ≤ 0.

Proof. We begin with proving that (ii) ⇒ (i). We claim that the function

V (x) =
{

0, if x ∈ K,
1, otherwise.

is a viscosity supersolution for (2.2). By definition, V is lower semi-continuous. Obviously, the supersolution
condition holds true for all x ∈ R

N
� ∂K. Let us now fix a point x ∈ ∂K. If ϕ ∈ C1

b (Nx) , for some Nx ⊂ R
N
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neighborhood of x, is such that (V − ϕ) admits a global minimum at x, then ∇ϕ (x) ∈ NK (x). Thus, the
condition (ii) yields

V (x) − (dK (x) ∧ 1) +H (x,∇ϕ (x) , V ) = − inf
u∈U

{〈f (x, u) ,∇ϕ (x)〉 + λ (x, u)Q (x, u,Kc)} ≥ 0.

It follows that V is a bounded viscosity supersolution for (2.2). Using the Comparison Principle, we get

v(x) ≤ V (x) = 0,

for all x ∈ K and the ε-viability of K follows.
To prove the converse, we introduce, for every m ∈ N

∗, the value function vm, defined by

vm(x) = mv (x) = inf
u∈L0(RN×R+;U)

E

[∫ ∞

0

me−t (dK (Xx,u
t ) ∧ 1) dt

]
,

for all x ∈ R
N . Then, Theorem 1.1 in [18] yields that vm is the unique bounded viscosity solution of

vm (x) −m (dK (x) ∧ 1) +H (x,∇vm (x) , vm) = 0, (2.4)

where the Hamiltonian H is given by (2.3).
Step 1. We claim that there exists a positive constant c > 0 such that, for all x ∈ Kc and all m ≥ 1,

vm (x) ≥ mc (dK (x) ∧ 1)2 . (2.5)

We recall that on the set {T1 > t} , Xx,u
t = Φ0,x,u

t . Since f is bounded, there exist a positive constant c1 which
is independent of x, u and t such that ∣∣∣Φ0,x,u

t − x
∣∣∣ ≤ c1t,

for all t ≥ 0. Thus, on the set
{
T1 >

dK(x)∧1
2c1

}
one gets

dK (Xx,u
s ) ∧ 1 ≥ dK (x) ∧ 1

2
> 0,

for all s ≤ dK(x)∧1
2c1

. Using the Assumptions (A1)–(A2), one easily proves that

E

[∫ ∞

0

me−t (dK (Xx,u
t ) ∧ 1) dt

]
≥ mE

[∫ dK(x)∧1
2c1

0

e−t dK (x) ∧ 1
2

dt1{
T1>

dK(x)∧1
2c1

}
]

≥ Cm (dK (x) ∧ 1)2 .

Hence, (2.5) holds true for all x ∈ Kc.

Step 2. Let us fix x ∈ ∂K. We consider an arbitrary p ∈ NK (x) and introduce the test function

ϕ (y) = 〈p, y − x〉 −m
1
4 |y − x|2 ,

for all y ∈ R
N . We let xm ∈ B (x, 2) be such that

vm (xm) − ϕ (xm) ≤ vm (y) − ϕ (y) , (2.6)
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for all y ∈ B (x, 2). One notices that, for m large enough, xm ∈ B (x, 1). Indeed, this is a simple consequence
of the fact that vm (x) = ϕ (x) = 0 and, thus,

0 ≤ vm (xm) ≤ ϕ (xm) ≤ 〈p, xm − x〉 −m
1
4 |xm − x|2 . (2.7)

Moreover, for m large enough, the inequality (2.6) holds true for all y ∈ R
N . The inequalities (2.5) and (2.7)

yield
mc (dK (xm) ∧ 1)2 ≤ vm (xm) ≤ 〈p, xm − x〉 −m

1
4 |xm − x|2 .

This implies
lim

m→∞m (dK (xm) ∧ 1)2 = 0, lim
m→∞ xm = x and lim

m→∞m
1
4 |xm − x|2 = 0, (2.8)

and
lim

m→∞ vm (xm) = 0. (2.9)

We claim that
lim sup
m→∞

m
1
4 |xm − x| = 0. (2.10)

We assume that, on the contrary, there exists some positive real constant δ > 0 such that

m
1
4 |xm − x| > δ, (2.11)

for m sufficiently large. For every m ≥ 1, we choose some ym ∈ K such that

dK (xm) = |xm − ym| . (2.12)

The equalities (2.8) imply that lim
m→∞ ym = x. Together with the choice of p ∈ NK (x) , the last limit yields

〈p, ym − x〉 ≤ δ

2
|ym − x| , (2.13)

for every m large enough. To simplify the notation, we assume that (2.13) holds true for all m ≥ 1. Using the
inequalities (2.7), (2.13) and (2.11), we have

0 ≤ 〈p, xm − x〉 −m
1
4 |xm − x|2

≤ 〈p, ym − x〉 + 〈p, xm − ym〉 −m
1
4 |xm − x| (|ym − x| − |xm − ym|)

≤ δ

2
|ym − x| + |p| dK (xm) − δ |ym − x| +m

1
4 dK (xm) |xm − x| .

Therefore,

δ < m
1
4 |xm − x| ≤ m

1
4 (|ym − x| + dK (xm))

≤
(

2
δ
|p| + 1

)
m

1
4 dK (xm) +

2
δ
m

1
2 dK (xm) |xm − x| . (2.14)

We allow m→ ∞ in the inequality (2.14) and recall that (2.8) holds true to come to a contradiction. It follows
that (2.10) must hold true.

We recall that the function vm is a bounded, continuous viscosity supersolution of (2.4) to get

vm (xm) −m (dK (xm) ∧ 1)

≥ inf
u∈U

{
〈p, f (xm, u)〉 − 2m

1
4 〈xm − x, f (xm, u)〉 + λ (xm, u)

∫
RN

(vm (z) − vm (xm))Q (xm, u, dz)
}
.
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Assumption (A1) yields

〈p, f (x, u)〉 = 〈p, f (xm, u)〉 − 2m
1
4 〈xm − x, f (xm, u)〉 + 〈p, f (x, u) − f (xm, u)〉 + 2m

1
4 〈xm − x, f (xm, u)〉

≤ 〈p, f (xm, u)〉 − 2m
1
4 〈xm − x, f (xm, u)〉 + C |p| |xm − x| + Cm

1
4 |xm − x| , (2.15)

for all m ≥ 1 and all u ∈ U . Here C is a generic real positive constant that is independent of m ≥ 1 and
u ∈ U and may change from one line to another. Let us fix m0 ≥ 1. Then, for all m ≥ m0 and all u ∈ U , by
Assumptions (A2)–(A3), we obtain

λ (xm, u)
∫

RN

mc (dK (z) ∧ 1)2Q (xm, u, dz) − λ (xm, u) vm (xm)

≥ cm0λ (x, u)
∫

RN

(dK (z) ∧ 1)2Q (xm, u, dz)− C |xm − x|m0 − Cvm (xm)

≥ cm0λ (x, u)
∫

RN

(dK (z) ∧ 1)2Q (x, u, dz) −m0Cη(dK∧1)2 (|xm − x|) − C |xm − x|m0 − Cvm (xm)

≥ λ (x, u)Q (x, u,Kc) − CQ (x, u,Km0) −m0Cη(dK∧1)2 (|xm − x|) − C |xm − x|m0 − Cvm (xm) , (2.16)

where we use the notation

Km0 =
{
z ∈ Kc : dK (z) <

1√
m0c

}
.

Finally, using (2.15) and (2.16), we get

{〈p, f (x, u)〉 + λ (x, u)Q (x, u,Kc)}
≤ 〈p, f (xm, u)〉 − 2m

1
4 〈xm − x, f (xm, u)〉 + C |p| |xm − x| + Cm

1
4 |xm − x|

+ λ (xm, u)
∫

RN

(vm (z) − vm (xm))Q (xm, u, dz) + C sup
u∈U

Q (x, u,Km0)

+m0Cη(dK∧1)2 (|xm − x|) + C |xm − x|m0 + Cvm (xm) , (2.17)

for all m ≥ m0 and all u ∈ U . We take in (2.17) the infimum over u ∈ U, then lim sup as m → ∞ and recall
that the inequalities (2.8), (2.9), (2.10) hold true, to have

inf
u∈U

{〈p, f (x, u)〉 + λ (x, u)Q (x, u,Kc)} ≤ C sup
u∈U

Q (x, u,Km0) (2.18)

for all m0 ≥ 1. Notice that (Km0) is a decreasing sequence of sets such that ∩m0≥1Km0 = φ. Then, using
Assumption (A4), the inequality (2.18) yields

inf
u∈U

{〈p, f (x, u)〉 + λ (x, u)Q (x, u,Kc)} ≤ 0. (2.19)

Step 3. For x ∈
◦
K, we take the test function ϕ (y) = − |y − x|2 for all y ∈ R

N . The same arguments as in
Step 2 give

inf
u∈U

{λ (x, u)Q (x, u,Kc)} ≤ 0. (2.20)

�

2.2. Conditions for invariance

Another problem, closely related to viability is the invariance of a nonempty, closed set K ⊂ R
N . Whenever

this property is satisfied, the controlled PDMP remains in K independently on the control process and as soon
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as the initial datum x ∈ K. Suppose that the initial states of the model to which the PDMP is associated are
known. Then, one may reduce the complexity by restricting the model to some invariant set containing the
initial data. We begin by recalling the notion of invariance.

Definition 2.7. A nonempty, closed set K ⊂ R
N is said to be (strongly) invariant with respect to the piecewise

deterministic Markov process X if, for every initial point x ∈ K and every admissible control process u,
Xx,u

t ∈ K, P-almost surely, for all t ∈ R+.

The invariance property is related to an optimal control problem for which the value function vinv is given
by

vinv (x) = sup
u∈L0(RN×R+;U)

E

[∫ ∞

0

e−t (dK (Xx,u
t ) ∧ 1) dt

]
, (2.21)

for all x ∈ R
N . The main result of the section is

Theorem 2.8. Let K ⊂ R
N be a nonempty, closed subset. The following statements are equivalent:

(i) The set K is invariant.
(ii) The value function vinv (x) = 0, for all x ∈ K.
(iii) For every x ∈ ∂K, every p ∈ NK (x) , and every u ∈ U,

〈f (x, u) , p〉 + λ (x, u)Q (x, u,Kc) ≤ 0.

Proof. We only need to prove that (ii) and (iii) are equivalent. We begin by proving that (iii) implies (ii). By
Theorem 1.1 in [18], the function

w = −vinv

is the unique bounded viscosity solution of the Hamilton-Jacobi integro-differential equation

w (x) + dK (x) ∧ 1 +H (x,∇w,w) = 0, (2.22)

where the Hamiltonian is given by (2.3). As in the proof of Theorem 2.6, one notices that the function

V (x) = −1Kc(x), for all x ∈ R
N

is a viscosity subsolution of (2.22). By the comparison principle, we get that

vinv (x) ≤ 0,

for all x ∈ K. The statement follows. The proof of the converse relies on the same arguments as Steps 1–3 of
Theorem 2.6. �

3. Reachability of open sets

Stability issues are very important for biological networks. For deterministic models, one can easily decide
whether the system is stable, bistable, etc. However, the behavior is much less obvious for a piecewise deter-
ministic approach. One should expect that the trajectories of the controlled PDMP starting from some region
around the stable point converge to it. Alternatively, a point for which arbitrarily small surrounding regions are
invariant (or at least viable) is a good candidate for stability. Thus, the issue of stability may be addressed via
viability techniques. In the case of multiple stable points, given an arbitrary initial state, it would be interesting
to know to which of these regions the trajectories of the PDMP are directed. The goal of this section is to
address the problem of reachability.

As in the case of viability, the techniques we use rely on the theory of viscosity solutions for a class of
Hamilton-Jacobi integro-differential equations. We are going to introduce a slight difference in our coefficients
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allowing to consider a control couple. To this purpose, we make the following notations: We let the vector field
f̃ : R

N × U ×B (0, 1) −→ R
N be given by

f̃
(
x, u1, u2

)
= f

(
x+ u2, u1

)
, (3.1)

for all x ∈ R
N , u1 ∈ U and u2 ∈ B (0, 1) . Similarly, the function λ̃ : R

N × U ×B (0, 1) −→ R+ is given by

λ̃
(
x, u1, u2

)
= λ

(
x+ u2, u1

)
, (3.2)

and

Q̃
(
x, u1, u2, A

)
= Q

(
x+ u2, u1, A+ u2

)
,

where A+ u2 =
{
a+ u2 : a ∈ A

}
, for all x ∈ R

N , u1 ∈ U , u2 ∈ B (0, 1) and all Borel set A ⊂ R
N .

Remark 3.1. 1. It is obvious that, for every h ∈ Cb

(
R

N
)

and every x ∈ R
N , u1 ∈ U , u2 ∈ B (0, 1) ,∫

RN

h (z) Q̃
(
x, u1, u2, dz

)
=
∫

RN

h
(
z − u2

)
Q
(
x+ u2, u1, dz

)
.

2. One can easily check that the assumptions (A1)–(A2) and (A5) hold true for the characteristic
(
f̃ , λ̃, Q̃

)
replacing (f, λ,Q) and the set of control U replaced by U ×B (0, 1) .

Throughout the section we are going to strengthen (A3) and assume:
(B) For each bounded uniformly continuous function h ∈ BUC

(
R

N
)
, there exists a continuous function

ηh : R −→ R such that ηh (0) = 0 and

sup
u1∈U,u2∈B(0,1)

∣∣∣∣∫
RN

h
(
z − u2

)
Q
(
x+ u2, u1, dz

)− ∫
RN

h
(
z − u2

)
Q
(
y + u2, u, dz

)∣∣∣∣ ≤ ηh (|x− y|) . (B)

Remark 3.2. Similarly to Remark 1.1, one can alternatively assume:
(B’) For each bounded uniformly continuous function h ∈ BUC

(
R

N
)
, there exists a continuous function

ηh : R −→ R such that ηh (0) = 0 and

sup
u1∈U,u2∈B(0,1)

{
λ
(
x+ u2, u1

) ∫
RN h

(
z − u2

)
Q
(
x+ u2, u1, dz

)
−λ (y + u2, u1

) ∫
RN h

(
z − u2

)
Q
(
y + u2, u, dz

) }
≤ ηh (|x− y|) .

For every ε > 0, we denote by Eε the class of measurable processes u2 : R
N × R+ −→ B (0, ε) . For every

admissible control couple
(
u1, u2

) ∈ L
0
(
R

N × R+;U
) × Eε, we let Xx,u1,u2

· be the piecewise deterministic

process associated with the characteristic
(
f̃ , λ̃, Q̃

)
. Obviously, Xx,u1,0

· is associated with (f, λ,Q) .

Let us consider an arbitrary nonempty, open set O ⊂ R
N .

Definition 3.3. Given an initial condition x ∈ Oc (or even x ∈ R
N ), the set O is reachable starting from x if

there exists some admissible control process u such that the set{
Xx,u,0

t ∈ O, t ∈ [0,∞)
}

has positive probability.
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In connection to this property, we define, for every ε ≥ 0, the value function

vε(x) = inf
u1∈L0(RN×R+;U),u2∈Eε

E

[∫ ∞

0

−e−t
(
dOc

(
Xx,u1,u2

t + u2
t

)
∧ 1
)

dt
]
, (3.3)

for all x ∈ R
N .

Remark 3.4. It is obvious that, whenever v0(x) = 0, the set O is not reachable starting from the point x.
On the other hand, whenever v0(x) < 0, there exist a constant δ > 0, an admissible control process u0 ∈
L

0
(
R

N × R+;U
)

and T > 0 such that E

[∫ T

0 e−t
(
dOc

(
Xx,u0,0

t

)
∧ 1
)

dt
]
> δ. It follows that the set{

Xx,u0,0
t ∈ O, for some t ∈ [0, T ]

}
must have positive probability. Thus, O is reachable from x if and only

if v0(x) < 0.

Theorem 1.1 in Soner [18] yields that vε is the unique bounded viscosity solution of the following Hamilton-
Jacobi integro-differential equation:

0 = vε (x) + sup
|u2|≤ε

{
dOc (x+ u2) ∧ 1 + sup

u1∈U

{
− 〈f (x+ u2, u1

)
,∇vε (x)

〉
−λ (x+ u2, u1

) ∫
RN

(vε (z) − vε (x)) Q̃
(
x, u1, u2, dz

)}}
, (3.4)

for all x ∈ R
N . For the particular case ε = 0, the value function v0 is the unique bounded uniformly continuous

viscosity solution of
v0 (x) + dOc (x) ∧ 1 +H

(
x,∇v0 (x) , v0

)
= 0, (3.5)

for all x ∈ R
N , where the Hamiltonian H is given by (2.3).

Remark 3.5. As a consequence of the definition of Q̃, for every ε > 0 and every u2 ∈ B (0, ε), the function
w (·) = vε

(· − u2
)

is a viscosity subsolution of (3.5).

We get the following convergence theorem:

Theorem 3.6. There exists a decreasing function η : R+ −→ R+ that satisfies limε→0 η (ε) = 0 and such that

sup
x∈RN

∣∣vε(x) − v0 (x)
∣∣ ≤ η (ε) , (3.6)

for all ε > 0.

Proof. We recall that v0 is uniformly continuous (cf. Thm. 1.1 in Soner [18]) and let

ω0 (r) = sup
{∣∣v0(x) − v0(y)

∣∣ : x, y ∈ R
N , |x− y| ≤ r

}
, (3.7)

for all r > 0, be its continuity modulus. Let us fix x ∈ R
N and ε > 0. We denote by Φt0,x0,u1,u2

· the flow
associated to the vector field f̃ . Standard estimates and the assumption (A1) yield the existence of some
positive constant C > 0 which is independent of x and ε > 0 such that∣∣∣Φ0,x,u1,u2

t − Φ0,x,u1,0
t

∣∣∣ ≤ Cε, (3.8)

for all t ∈ [0, 1] , and all
(
u1, u2

) ∈ L
0
(
R

N × R+;U
)× Eε. The constant C is generic and may change from one

line to another. We emphasize that throughout the proof, C may be chosen independent of x ∈ R
N , ε > 0
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and of
(
u1, u2

) ∈ L
0
(
R

N × R+;U
)×Eε. Using the dynamic programming principle (Soner [18], equation (0.8)),

for every admissible control process u1 ∈ L
0
(
R

N × R+;U
)
, the following inequality holds true

v0 (x) ≤ E

[∫ T1∧1

0

−e−t
(
dOc

(
Xx,u1,0

t

)
∧ 1
)

dt+ e−T1∧1v0
(
Xx,u1,0

T1∧1

)]
. (3.9)

We consider an arbitrary admissible control couple
(
u1, u2

) ∈ L
0
(
R

N × R+;U
) × Eε. For simplicity, we

introduce the following notations:

ui
t = ui (x, t) , i = 1, 2,

λ1 (t) = λ
(
Φ0,x,u1,0

t , u1
t

)
, Λ1 (t) = exp

(
−
∫ t

0

λ1 (s) ds
)
,

λ1,2 (t) = λ
(
Φ0,x,u1,u2

t + u2
t , u

1
t

)
, Λ1,2 (t) = exp

(
−
∫ t

0

λ1,2 (s) ds
)
,

for all t ≥ 0. We denote the right-hand member of the inequality (3.9) by I. Then, I is explicitly given by

I =
∫ 1

0

λ1(t)Λ1 (t)
∫ t

0

−e−s
(
dOc

(
Φ0,x,u1,0

s

)
∧ 1
)

dsdt

+
∫ 1

0

λ1(t)Λ1 (t) e−t

∫
RN

v0 (z)Q
(
Φ0,x,u1,0

t , u1
t , dz

)
dt

+ Λ1 (1)
∫ 1

0

−e−t
(
dOc

(
Φ0,x,u1,0

t

)
∧ 1
)

dt+ Λ1 (1) e−1v0
(
Φ0,x,u1,0

1

)
= I1 + I2 + I3 + I4.

Using the inequality (3.8) and the assumption (A2), one gets

I1 ≤
∫ 1

0

λ1,2(t)Λ1,2 (t)
∫ t

0

−e−s
(
dOc

(
Φx,u1,u2

s + u2
s

)
∧ 1
)

dsdt+ Cε, (3.10)

I3 ≤ Λ1,2 (1)
∫ 1

0

−e−t
(
dOc

(
Φx,u1,u2

t

)
∧ 1
)

dt+ Cε. (3.11)

For the term I2, one has

I2 ≤
∫ 1

0

λ1,2(t)Λ1,2 (t) e−t

∫
RN

v0
(
z − u2

t

)
Q
(
Φx,u1,u2

t + u2
t , u

1
t , dz

)
dt+ C

(
ε+ ηv0 (Cε) + ω0 (ε)

)
≤
∫ 1

0

λ1,2(t)Λ1,2 (t) e−t

∫
RN

vε (z) Q̃
(
Φx,u1,u2

t , u1
t , u

2
t , dz

)
dt+ C

(
ε+ ηv0 (Cε) + ω0 (ε)

)
+
(∫ 1

0

λ1,2(t)Λ1,2 (t) e−tdt
)

sup
z∈RN

∣∣v0(z) − vε(z)
∣∣ . (3.12)

Finally,

I4 ≤ Λ1,2(1)e−1v0
(
Φx,u1,u2

1

)
+ C

(
ω0 (Cε) + ε

)
≤ Λ1,2(1)e−1vε

(
Φx,u1,u2

1

)
+ C

(
ω0 (Cε) + ε

)
+ Λ1,2(1)e−1 sup

z

(
v0(z) − vε(z)

)
. (3.13)
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We substitute (3.10)-(3.13) in (3.9). We take the infimum over the family of
(
u1, u2

) ∈ L
0
(
R

N × R+;U
)× Eε

and use the dynamic programming principle (cf. Soner [18], equation (0.8)) to have

v0 (x) ≤ vε(x) + C
(
ε+ ηv0 (Cε) + ω0 (Cε)

)
+
(∫ 1

0

λ1,2(t)Λ1,2 (t) e−tdt+ Λ1,2 (1) e−1

)
sup

z

(
v0(z) − vε(z)

)
.

We notice that∫ 1

0

λ1,2(t)Λ1,2 (t) e−tdt+ Λ1,2 (1) e−1 = 1 −
∫ 1

0

e−
∫ t
0 λ̃
(
Φx,u1, u2

s ,u1
s,u2

s

)
dse−tdt ≤ 1 − e−(λmax+1).

Thus,

v0 (x) − vε(x) ≤ C
(
ε+ ηv0 (Cε) + ω0 (Cε)

)
+
(
1 − e−(λmax+1)

)
sup

z

(
v0(z) − vε(z)

)
.

Here, λmax = sup
{
λ (x, u) : x ∈ R

N , u ∈ U
}
<∞. The conclusion follows by taking the supremum over x ∈ R

N

and recalling that C is independent of x and ε > 0. �

We introduce the function μ∗ : R
N −→ R defined by

μ∗ (x) = sup
{
μ ∈ R : ∃ϕ ∈ C1

b

(
R

N
)

such that ∀ (y, u) ∈ R
N × U,

μ ≤ Uuϕ (y) − (dOc (y) ∧ 1) + (ϕ (x) − ϕ (y))} , (3.14)

where

Uuϕ (y) = 〈∇ϕ (y) , f (y, u)〉 + λ (y, u)
∫

RN

(ϕ (z) − ϕ (y))Q (y, u, dz) , (3.15)

for all y ∈ R
N . This function is inspired by the results in [11]. It corresponds to the dual form of some

linearized formulation for the discounted control problem. In fact, one can interpret the initial problem by using
occupational measures. In a second step, the set of occupational measures can be enlarged to a set of measures
satisfying appropriate conditions. These conditions involve the infinitesimal generator of the underlying process
and can be interpreted as a classical constraint. Minimizing on this set leads to the same value function. Duality
techniques then allow to give a formulation much like μ∗ (but for generators associated to Brownian diffusion
processes).

The main result of the section gives the equality between the reachability value function v0 and μ∗.

Theorem 3.7. For every x ∈ R
N , the equality

v0(x) = μ∗(x) (3.16)

holds true.

Proof. We begin by proving that
v0(x) ≥ μ∗(x), (3.17)

for all x ∈ R
N . We fix x ∈ R

N and (μ, ϕ) ∈ R × C1
b

(
R

N
)

such that

μ ≤ Uuϕ (y) − (dOc (y) ∧ 1) + (ϕ (x) − ϕ (y)) ,

for all y ∈ R
N , u ∈ U. Then, for every u ∈ L

0
(
R

N × R+;U
)
,

μ ≤ Uutϕ
(
Xx,u,0

t

)
+ ϕ (x) − ϕ

(
Xx,u,0

t

)
−
(
dOc

(
Xx,u,0

t

)
∧ 1
)
,
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for all t ≥ 0. By abuse of notation,

Uutϕ
(
Xx,u,0

t

)
= Uu

(
Xx,u,0

Ti
,t−Ti

)
ϕ
(
Xx,u,0

t

)
, whenever Ti ≤ t < Ti+1,

where Ti are the jump times appearing in Section 1.1. Using Itô’s formula (cf. Thm. 31.3 in [14]), the last
inequality yields

μ ≤ lim
T→∞

E

[∫ T

0

e−t
(
Uutϕ

(
Xx,u,0

t

)
− ϕ

(
Xx,u,0

t

))
dt

]

+ ϕ (x) + E

[∫ ∞

0

−e−t
(
dOc

(
Xx,u,0

t

)
∧ 1
)

dt
]

= lim
T→∞

e−T
E

[
ϕ
(
Xx,u,0

T

)]
+ E

[∫ ∞

0

−e−t
(
dOc

(
Xx,u,0

t

)
∧ 1
)

dt
]

= E

[∫ ∞

0

−e−t
(
dOc

(
Xx,u,0

t

)
∧ 1
)

dt
]
. (3.18)

We recall the definition (3.14) of μ∗ (x) and the inequality (3.17) follows from (3.18).
In order to complete the proof of the theorem, we still have to prove that

μ∗(x) ≥ v0(x). (3.19)

Let us consider (ρε) a sequence of standard mollifiers ρε (y) = 1
εN ρ

(
y
ε

)
, y ∈ R

N , ε > 0, where ρ ∈ C∞ (
R

N
)

is
a positive function such that

Supp(ρ) ⊂ B (0, 1) and
∫

RN

ρ(x)dx = 1.

We introduce the functions

V ε = vε ∗ ρε, (3.20)

for all ε > 0. We claim that these functions are (viscosity) subsolutions of (3.5). The proof follows the same
arguments as Lemma 2.7 in Barles and Jakobsen [9]. For convenience, we give the proof in the Appendix. Using
the fact that V ε is a subsolution of (3.5), one gets

V ε(x) ≤ μ∗ (x) .

It follows, from (3.6) that (
v0 ∗ ρε

)
(x) ≤ μ∗ (x) + η (ε) .

We allow ε → 0 in the last inequality, and recall that v0 is continuous, to finally get (3.19). The proof of the
theorem is now complete. �

The previous result gives the following interesting characterization of the reachability of the set O:

Criterion 3.8. Let x ∈ R
N be an arbitrary initial state. Then the controlled piecewise deterministic Markov

process starting from x reaches O if and only if there exists n ∈ N
∗ such that for every ϕ ∈ C1

b

(
R

N
)

there exist
u ∈ U, y ∈ R

N such that

Uuϕ (y) − dOc (y) ∧ 1 + (ϕ (x) − ϕ (y)) < −n−1. (3.21)
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4. Biological examples

4.1. Biochemical reactions and mathematical assumptions

We begin by recalling some rudiments on piecewise deterministic Markov processes associated to gene net-
works. For further contributions on gene networks modelling the reader is referred to [13]. We suppose that
the biological evolution is given by a family of genes G = {gi : i = 1, N} interacting through a finite set of
reactions R. Every reaction r ∈ R can be represented as

αr
1g1 + αr

2g2 + . . .+ αr
NgN

kr−→ βr
1g1 + . . .+ βr

NgN

and it specifies that αr
i molecules of i type (with 1 ≤ i ≤ N) called reactants interact in order to form the

products (βr
i molecules of i type, with 1 ≤ i ≤ N). The reaction does not occur instantaneously and one needs to

specify the reaction speed kr > 0. Also, the presence of all species is not required (αr
i , β

r
i ∈ N, for all 1 ≤ i ≤ N).

The species are partitioned in two classes called continuous, respectively discrete component. This partition (for
further considerations, see [13]) induces a partition of the reactions. In sum, we distinguish between reactions
contributing to the continuous flow (C = {1, 2, ...,M1}) and jump reactions (J = {M1 + 1, ..., card (R)}). To
every reaction r ∈ R, one associates:

1) a stoichiometric column vector θr = βr − αr ∈ R
N ;

2) a propensity function λr : R
N −→ R+.

For a C-type reaction, λr (x) = kr

N∏
i=1

x
αr

i

i , for all x ∈ R
N .

For a J -type reaction, one should require further regularity as xi → 0. The jump mechanism will specify
that the number of molecules of type i diminishes by αr

i . Therefore, in order to insure positive components,
rather then introducing λr (x) as for continuous reactions, one could consider

λr (x) = kr

N∏
i=1

αr
i >0

x
αr

i

i χ

(
xi

αr
i

)
,

for some regular function χ such that 0 ≤ χ ≤ 1, χ (y) = 0, for 0 ≤ y ≤ 1 and χ (y) = 1, for y ≥ 1 + err (where
err is a positive constant).

The next step consists in the construction of two matrices M1 whose columns are the vectors αr , where r ∈ C,
respectively M2 whose columns are the vectors αr, where r ∈ J . The flow is the given by

f (x) = M1 × (λ1 (x) , λ2 (x) , ..., λM1 (x)) ,

the jump intensity
λ (x) =

∑
r∈J

λr (x)

and, whenever λ (x) > 0, the transition measure Q is given by

Q (x, dz) =
∑

r∈J

λr (x)
λ (x)

δx+θr (dz) .

One can suppose that all λr are bounded by a reasonable constant λmax > 0, by replacing λr (x) by λr (x)∧λmax.
Then, it is obvious that (A1) and (A2) hold true. If h ∈ BUC

(
R

N
)
,∣∣∣∣λ (x+ e)

∫
RN

h (z − e)Q (x+ e, dz)− λ (y + e)
∫

RN

h (z − e)Q (y + e, dz)
∣∣∣∣

≤ ∑
r∈J

|λr (x+ e)h (x+ θr) − λr (y + e)h (y + θr)| ≤ c (|x− y| + ωh (|x− y|)) ,
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for all x, y, e ∈ R
N , where c depends on the Lipschitz constant of λr, λmax and ‖h‖∞ and ωh is the continuity

modulus of h. This implies that (B’) (and a fortiori (A3’)) hold true. The assumption (A4) is a simple
consequence of the fact that Q (x, ·) is a probability measure for every x ∈ R

N . Also, one easily notices that

Q

(
x,RN

�B

(
x, sup

r∈J
|θr|
))

= 0,

which implies (A5). It follows that all the assumptions we have made throughout the paper are naturally
satisfied for piecewise deterministic systems associated to regulatory gene networks.

4.2. On/Off model

A two-state model is often employed to describe different situations in the molecular biology. Usually, the
two states describe either the presence or the absence of some rare molecular specie. Whenever the gene γ is
inactive (represented by γ = 0), the molecule X degrades at a rate r0, while as, whenever γ is active (γ = 1),
the molecule X increases at a rate proportional to some given r1.

From the mathematical point of view, the system will be given by a process (X(t), γ(t)) on the state space
E = R × {0; 1}. The component X(t) follows a differential dynamic depending on the hidden variable

dX
dt

=
{ −r0(X), if γ(t) = 0,

r1(X), if γ(t) = 1,

where r0(x) ≥ 0 is a bounded, Lipschitz-continuous consumption term and r1(x) ≥ 0 is a bounded, Lipschitz
continuous production term. To be more precise, the PDMP associated to the model has the characteristic
(f, λ,Q) given by fγ(x) = −r0 (x) (1 − γ) + r1 (x) γ, λγ(x) = λγ , Q(γ, x;A) = Q((γ, x);A) = δ((1−γ),x)(A), for
all γ ∈ {0, 1} , x ∈ R, and all A ⊂ R

2. The vector field for the γ component can be considered to be 0. One
should expect 0-consumption whenever X = 0 and γ = 0 i.e. r0(0) = 0, and no production whenever X = αmax

(some maximum level) and γ = 1, i.e. r1(αmax) = 0. The assumptions (A1)-(A5) are obviously satisfied.

Proposition 4.1. The set K = [0, αmax]×{0, 1} is invariant with respect to the PDP associated to the On/Off
model.

Proof. If x ∈ [0, αmax] , then, by the definition of Q,

Q ((0, x) ,Kc) = Q ((1, x) ,Kc) = 0.

One notices that N[0,αmax] (0) = R− and N[0,αmax] (αmax) = R+. We recall that N[0,αmax] (x) stands for the
normal cone to [0, αmax] at x ∈ [0, αmax] . For every p ≤ 0,

pf0 (0) = −pr0 (0) = 0 and pf1 (0) ≤ 0.

For every p ≥ 0,
pf0 (αmax) = −pr0 (αmax) ≤ 0 and pf1 (αmax) = 0.

Thus, by applying Theorem 2.8, one gets the invariance of K. �

Remark 4.2. The arguments of the previous proposition yield that [a, b] × {0, 1} is invariant if and only if

r0(a) = r1(b) = 0.

Therefore, a point x0 is stable whenever one is able to find a sequence ε↘ 0 such that r0(x0−ε) = r1(x0+ε) = 0.
In particular, a necessary condition is that r0(x0) = r1(x0) = 0.
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We now focus on Cook’s model introduced in [12] for stochastic gene expression and its implications on
haploinsufficiency. This basic model of gene expression, product accumulation and product degradation can be
given by the following reaction system:

G
ka

�
kd

G*
Jp→ P

kp→

This model considers a gene to switch randomly between inactive state (G) and active state (G*). The activation
(respectively deactivation) rate is denoted by ka (respectively kd). When active, each gene expresses a product
(P) at a rate Jp. The product is degraded at rate kp. One can represent this model as a particular case of the
On/Off system by considering

r0(x) = kpx, r1(x) = Jp − kpx, λ0 = ka, λ1 = kd, and αmax =
Jp

kp
· (4.1)

The following result is a consequence of Criterion 3.8:

Proposition 4.3. For every real constants a, b such that 0 < a < b < αmax, we let O = (a, b) × {0, 1} . Then,
for every x ∈ (0, αmax) , the set O is reachable with respect to the PDMP associated with Cook’s model starting
from (0, x) .

Proof. Let us fix x ∈ (0, αmax). One seeks to apply Criterion 3.8. We reason by contradiction and assume, that,
for every n ∈ N

∗, there exists ϕn, ψn ∈ C1
b (R) such that{ −n−1 ≤ −ϕ′

n (y) kpy + kaψn (y) − (1 + ka)ϕn (y) − d[0,a]∪[b,αmax] (y) + ϕn (x) ,
−n−1 ≤ ψ′

n (y) (Jp − kpy) − (1 + kd)ψn (y) + kdϕn (y) − d[0,a]∪[b,αmax] (y) + ϕn (x) , (4.2)

for all y ∈ [0, 1] . We multiply the first inequality by y
1+ka−kp

kp and integrate on (0, z] , for z > 0, to get

kpz
1+ka

kp ϕn (z) ≤ kp

1 + ka
z

1+ka
kp
(
n−1 + ϕn (x)

)
+ ka

∫ z

0

y
1+ka−kp

kp ψn (y) dy −
∫ z

0

y
1+ka−kp

kp d[0,a]∪[b,αmax] (y) dy,

or again

ϕn (z) ≤ 1
1 + ka

(
n−1 + ϕn (x)

)
+
ka

kp

∫ z

0 y
1+ka−kp

kp ψn (y) dy

z
1+ka

kp

− 1
kp

∫ z

0 y
1+ka−kp

kp d[0,a]∪[b,αmax] (y) dy

z
1+ka

kp

, (4.3)

for all z ∈ (0, αmax] . We multiply the second inequality in (4.2) by (Jp − kpy)
1+kd−kp

kp and integrate on [z, αmax) ,
for z < αmax, to get

ψn (z) ≤ 1
1 + kd

(
n−1 + ϕn (x)

)
+ kd

∫ αmax

z (Jp − kpy)
1+kd−kp

kp ϕn (y) dy

(Jp − kpz)
1+kd

kp

−
∫ 1

z
(Jp − kpy)

1+kd−kp
kp d[0,a]∪[b,αmax] (y) dy

(Jp − kpz)
1+kd

kp

, (4.4)

for all z ∈ [0, αmax) . We denote by an the maximum value of ϕn on [0, αmax] . It follows that

ψn (z) ≤ 1
1 + kd

(
n−1 + ϕn (x)

)
+

kd

1 + kd
an −

∫ αmax

z (Jp − kpy)
1+kd−kp

kp d[0,a]∪[b,αmax] (y) dy

(Jp − kpz)
1+kd

kp

,
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for all z ∈ [0, αmax) . We substitute the last inequality in (4.3), to have

ϕn (z) ≤ ka + kd + 1
(1 + ka) (1 + kd)

(
n−1 + ϕn (x)

)
+

kakd

(1 + ka) (1 + kd)
an − f(z), (4.5)

for all z ∈ (0, αmax) . The function f is defined by

f (z) =
1
kp

∫ z

0

⎛⎝y 1+ka−kp
kp d[0,a]∪[b,αmax] (y) + kay

1+ka−kp
kp

∫
αmax
y

(Jp−kpu)

1+kd−kp
kp d[0,a]∪[b,αmax](u)du

(Jp−kpy)

1+kd
kp

⎞⎠ dy

z
1+ka

kp

,

for all z ∈ (0, αmax) . One notices that

lim
z→0+

f(z) =
ka

(1 + ka)J
1+kd

kp
p

∫ b

a

(Jp − kpu)
1+kd−kp

kp d[0,a]∪[b,αmax] (u) du > 0.

Therefore, f (z) > δ, for some positive constant δ. In particular, the inequality (4.5) written for z = x gives

ϕn (x) ≤ ka + kd + 1
kakd

n−1 + an − (1 + ka) (1 + kd)
kakd

δ.

We return to (4.5) to obtain

ϕn (z) ≤ ka + kd + 1
kakd

n−1 + an − (1 + ka) (1 + kd)
kakd

δ, (4.6)

for all z ∈ (0, αmax) . Finally, taking the supremum over z ∈ (0, αmax) , yields

0 < δ ≤ ka + kd + 1
(1 + ka) (1 + kd)

n−1.

The last inequality fails to hold for large enough n. The assertion of our proposition follows. �
Remark 4.4. The reachability result is also true when starting from a generic point (1, x) replacing (0, x) .

We now illustrate (Fig. 1) the viability result in Proposition 4.1 and the reachability properties given by
Proposition 4.3. We use the classical description of the PDMP associated with Cook’s model. The invariant set
is represented in green ([0, αmax]) and we simulate a trajectory starting from a randomly chosen initial value for
the protein. The time horizon is chosen very small (100) and the trajectory is represented in red. The reachable
set is given by randomly generated a, b ∈ (0, αmax) and is represented by the blue border lines. Whenever the
sample remains in the target set for two consecutive time steps, the trajectory is represented in blue (figure in
color available online at www.esaim-cocv.org).

4.3. Bacteriophage λ

We consider the model introduced in [17] to describe the regulation of gene expression. The model is derived
from the promoter region of bacteriophage λ. The simplification proposed by the authors of [17] consists in
considering a mutant system in which only two operator sites (known as OR2 and OR3) are present. The
gene cI expresses repressor (CI), which dimerizes and binds to the DNA as a transcription factor in one of the
two available sites. The site OR2 leads to enhanced transcription, while OR3 represses transcription. Using
the notations in [17], we let X stand for the repressor, X2 for the dimer, D for the DNA promoter site, DX2

www.esaim-cocv.org
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Figure 1. Invariance and reachability properties for Cook’s model.

for the binding to the OR2 site, DX∗
2 for the binding to the OR3 site and DX2X2 for the binding to both

sites. We also denote by P the RNA polymerase concentration and by n the number of proteins per mRNA
transcript. The dimerization, binding, transcription and degradation reactions are summarized by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2X
K1

� X2,

D +X2

K2

� DX2,

D +X2

K3

� DX∗
2 ,

DX2 +X2

K4

� DX2X.

DX2 + P
Kt→ DX2 + P + nX

X
Kd→ .

To this biological system we associate a piecewise deterministic process on the state space E = {ν ∈ {0, 1}4 :∑4
i=1 νi = 1} × R

2. The characteristic is given by

fν (x1, x2) = f (x1, x2) =
(−2k1x1

2 − kdx1 + 2k−1x2, k1x
2
1 − k−1x2

)
,

f (ν, x) = (0, 0, 0, 0, fν (x)) ,

λ (ν, x) = k2x2χ (x2) ν1 + k3x2χ (x2) ν1 + k4x2χ (x2) ν2 + ktν2 + k−2ν2 + k−3ν3 + k−4ν4,

λ (ν, x)Q ((λ, x) ; dz) = k2x2χ (x2) ν1δ(x1,x2−1,ν1−1,ν2+1,ν3,ν4) (dz)

+ k3x2χ (x2) ν1δ(x1,x2−1,ν1−1,ν2,ν3+1,ν4) (dz)

+ k4x2χ (x2) ν2δ(x1,x2−1,ν1,ν2−1,ν3,ν4+1) (dz)

+ ktν2δ(x1+n,x2,ν1,ν2,ν3,ν4) (dz) + k−2ν2δ(x1,x2+1,ν1+1,ν2−1,ν3,ν4) (dz)

+ k−3ν3δ(x1,x2+1,ν1+1,ν2,ν3−1,ν4) (dz) + k−4ν4δ(x1,x2+1,ν1,ν2+1,ν3,ν4−1) (dz) ,
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for every (ν, x) ∈ E. The function χ is a smooth function such that 0 ≤ χ ≤ 1, χ (y) = 0 for y < 1 and
χ (y) = 1 for y ≥ 1 + err. We consider the stability question for this system. Obviously, whenever a point(
ν0, x0

)
is candidate to stability, one should at least expect that this point should be stable with respect to

the deterministic evolution. One easily notices that the unique equilibrium point for the ordinary equation
driven by the vector field fν must satisfy x0 = (0, 0) . Therefore, any candidate for stability with respect to the
piecewise deterministic evolution associated to the lambda phage should be of this form.

We shall prove that any small enough region surrounding (1, 0, 0, 0, 0, 0) is invariant with respect to the PDMP.
We emphasize that similar arguments can be used to infer that no other point has similar stability properties.
However, different invariant set may exist. Thus, bistability of bacteriophage λ should be understood as: a stable
state (0, 0, 1, 0, 0, 0) and some stability (invariance) region.

The main result of the subsection is:

Proposition 4.5. For every k2
d

4k1k−1
∧ 1 > ε > 0, the set

Kε = {(1, 0, 0, 0)} ×
[
0,

2k−1

kd
ε

]
× [0, ε]

is invariant with respect to the PDMP associated to the bacteriophage λ model.

Proof. We notice that, for every (x1, x2) ∈
[
0, 2k−1

kd
ε
]
× [0, ε] , one has

λ (1, 0, 0, 0, x1, x2) = 0.

The following table gives, for all the possible values of (x1, x2) , the explicit form of the normal cone to K̃ε =[
0, 2k−1

kd
ε
]
× [0, ε] at (x1, x2) and the expression of 〈p, f (x1, x2)〉 for every p = (p1, p2) ∈ NK̃ε

(x1, x2) .

x1 x2 NK̃ε
(x1, x2) 〈p, f (x1, x2)〉

0 0 (R−)2 0
0 (0, ε) R− × {0} 2p1k−1x2

0 ε R− × R+ (2p1 − p2) k−1ε(
0, 2k−1

kd
ε
)

0 {0} × R− p2k1x
2
1(

0, 2k−1
kd

ε
)

(0, ε) {0} × {0} 0(
0, 2k−1

kd
ε
)

ε {0} × R+ p2

(
k1x

2
1 − k−1ε

)
2k−1
kd

ε 0 R+ × R− −p1

(
8k1k2

−1
k2

d
ε2 + 2k−1ε

)
+ p2

4k1k2
−1

k2
d

ε2

2k−1
kd

ε (0, ε) R+ × {0} −p1

(
8k1k2

−1
k2

d
ε2 + 2k−1ε− 2k−1x2

)
2k−1
kd

ε ε R+ × R+ −p1
8k1k2

−1
k2

d

ε2 + p2k−1ε
(

4k1k−1

k2
d

ε− 1
)

The last column allows to conclude that 〈p, f (x1, x2)〉 ≤ 0, for all (x1, x2) ∈
[
0, 2k−1

kd
ε
]
× [0, ε] and all

p ∈ NKε (x1, x2) . The conclusion follows from Theorem 2.8. �

We illustrate the invariance result from the previous proposition in Figure 2. The reader is invited to notice
that, in the setting of the previous proposition, the trajectory should be purely deterministic (λ (1, 0, 0, 0, x1, x2) =
0, for every (x1, x2) ∈

[
0, 2k−1

kd
ε
]
× [0, ε]). We randomly simulate the parameter ε < k2

d

4k1k−1
∧ 1 and a starting

point (x1, x2) ∈
[
0, 2k−1

kd
ε
]
× [0, ε] . The simulated trajectory is represented in red and the bounds 2k−1

kd
ε and ε

are given in green (figure in color available online at www.esaim-cocv.org).

www.esaim-cocv.org
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Figure 2. Invariance properties for Bacteriophage λ.

5. Appendix

5.1. A1

We begin by sketching the proof of the comparison principle.

Proof of Proposition 2.5. Let us suppose that, for some positive constant θ > 0,

sup
x∈RN

(W (x) − V (x)) = θ > 0. (5.1)

For every δ > 0, we define
θδ = sup

x∈RN

(
W (x) − V (x) − δ |x|2

)
.

It is obvious that (θδ) is decreasing and limδ→0 θδ = θ. For every ε > 0, we introduce

Φε,δ (x, y) = W (x) − V (y) −
∣∣∣∣x− y

ε

∣∣∣∣2 − δ |x|2 , (5.2)

for all x, y ∈ R
N . We recall that W and V are bounded. Then, using the u.s.c. of Φε,δ, we get the existence of

some global maximum point (xε,δ, yε,δ) ∈ R
2N of Φε,δ. Standard arguments yield the existence of some xδ ∈ R

N

such that θδ = W (xδ) − V (xδ) − δ |xδ|2 , and{
(i) limε→0

∣∣∣xε,δ−yε,δ

ε

∣∣∣2 = 0, (ii) limε→0 xε,δ = limε→0 yε,δ = xδ,

(iii) limε→0W (xε,δ) = W (xδ) , (iv) limε→0 V (yε,δ) = V (xδ) .
(5.3)

We also obtain
lim
δ→0

δ |xδ|2 = 0. (5.4)
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We recall that W is a viscosity subsolution and consider the test function

ϕε,δ(x) = V (yε,δ) +
∣∣∣∣x− yε,δ

ε

∣∣∣∣2 + δ |x|2 ,

for all x ∈ R
N . We get

0 ≥W (xε,δ) − dK (xε,δ) ∧ 1 + sup
u∈U

{
− 2
ε2

〈f (xε,δ, u) , xε,δ − yε,δ〉

− 2δ 〈f (xε,δ, u) , xε,δ〉 − λ (xε,δ, u)
∫

RN

(W (z) −W (xε,δ))Q (xε,δ, u, dz)
}
.

≥W (xε,δ) − dK (xε,δ) ∧ 1 − Cδ |xε,δ| + sup
u∈U

{
− 2
ε2

〈f (xε,δ, u) , xε,δ − yε,δ〉

− λ (xε,δ, u)
∫

RN

(W (z) −W (xε,δ))Q (xε,δ, u, dz)
}
,

where C is a generic real constant that may change from one line to another. Standard estimates yield

0 ≥W (xε,δ) − dK (xε,δ) ∧ 1 − C (δ |xε,δ| + |W (xε,δ) −W (xδ)| + |xε,δ − xδ|)

+ sup
u∈U

{
− 2
ε2

〈f (xε,δ, u) , xε,δ − yε,δ〉 − λ (xδ, u)
∫

RN

(W (z) −W (xδ))Q (xε,δ, u, dz)
}
. (5.5)

In a similar way, one has

0 ≤ V (yε,δ) − dK (yε,δ) ∧ 1 + C (|V (yε,δ) − V (xδ)| + |yε,δ − xδ|)

+ sup
u∈U

{
− 2
ε2

〈f (yε,δ, u) , xε,δ − yε,δ〉 − λ (xδ, u)
∫

RN

(V (z) − V (xδ))Q (yε,δ, u, dz)
}
. (5.6)

Combining (5.5) and (5.6), we get

0 ≤ V (yε,δ) −W (xε,δ) + C

(∣∣∣∣xε,δ − yε,δ

ε

∣∣∣∣2 + |xε,δ − xδ| + |yε,δ − xδ|
)

(5.7)

+ C (δ |xε,δ| + |V (yε,δ) − V (xδ)| + |W (xε,δ) −W (xδ)|)

+ sup
u∈U

{
λ (xδ, u)

(∫
RN

(W (z) −W (xδ))Q (xε,δ, u, dz) −
∫

RN

(V (z) − V (xδ))Q (yε,δ, u, dz)
)}

.

On the other hand, we notice that∫
RN

(W (z) −W (xδ))Q (xε,δ, u, dz) −
∫

RN

(V (z) − V (xδ))Q (yε,δ, u, dz)

≤
∫

RN

(W (z) − V (z) −W (xδ) + V (xδ))Q (xε,δ, u, dz)

+
∫

RN

V (z) (Q (xε,δ, u, dz)−Q (yε,δ, u, dz)) .
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Thus, whenever V is continuous,∫
RN

(W (z) −W (xδ))Q (xε,δ, u, dz) −
∫

RN

(V (z) − V (xδ))Q (yε,δ, u, dz)

≤
∫

RN

(
δ |z|2 ∧ C

)
Q (xδ, u, dz) + η(δ|·|2∧C) (|xε,δ − xδ|) + ηV (|xε,δ − yε,δ|) , (5.8)

where ηδ and ηV are given by Assumption (A3) and are independent of u ∈ U . Similar estimates hold true if
W is continuous. We substitute (5.8) in (5.7) and take lim sup as ε→ 0 in (5.7) to obtain

0 ≤ −θδ + δ |xδ| + C sup
u∈U

∫
RN

(
δ |z|2 ∧ 1

)
Q (xδ, u, dz)

≤ −θδ + δ |xδ| + C sup
u∈U

{∫
B
(

xδ,δ− 1
4
) δ |z|2Q (xδ, u, dz) +Q

(
xδ, u,R

N
�B

(
xδ, δ

− 1
4

))}

≤ −θδ + C
(
δ |xδ|2 + δ |xδ| + δ

1
2

)
+ sup

(x,u)∈RN×U

Q
(
x, u,RN

�B
(
x, δ−

1
4

))
.

We allow δ → 0 in the last inequality and recall that (A5) holds true to have

0 ≤ −θ.

This comes in contradiction with (5.1). The proof is now complete. �

5.2. A2

The proof of Theorem 3.7 relies on the fact that the functions V ε defined by (3.20) are viscosity subsolutions
of the Hamilton-Jacobi integro-differential equation (3.5). The proof adapts the arguments used in Barles
and Jakobsen [9], Lemma 2.7. Following the proof of this lemma, we introduce, for every h > 0, u2 ∈ R

N ,

Qu2

h = u2 +
[−h

2 ,
h
2

)N
, ρh,u2

ε =
∫

Qu2
h
ρε(y)dy, and Ih (x) =

∑
u2∈hZN ρh,u2

ε vε
(
x− u2

)
. Thus, Ih is a convex

combination of bounded, uniformly continuous viscosity subsolutions of (3.5). Moreover, by classical results,
the discretization Ih converges uniformly to V ε. To conclude, we show that viscosity subsolutions are preserved
by convex combination and uniform convergence.

Proposition 5.1. Given two bounded, uniformly continuous viscosity subsolutions v1 and v2 of equation (3.5)
and two nonnegative real constants λ1, λ2 ∈ R+ such that λ1 + λ2 = 1, the convex combination λ1v1 + λ2v2 is
still a viscosity subsolution of (3.5).

Proof. The assertion is trivial when either λ1 = 0 or λ2 = 0. If λ1λ2 �= 0, we let x ∈ R
N and ϕ ∈ C1

b (Nx) be
a test function such that

λ1v1 (x) + λ2v2 (x) − ϕ (x) ≥ λ1v1 (y) + λ2v2 (y) − ϕ (y) , (5.9)

for all y ∈ R
N . We may assume, without loss of generality that ϕ ∈ Cb

(
R

N
)
. Indeed, whenever ϕ does not

satisfy this assumption, one can replace it with some ϕ0 defined as follows: first, notice that there exists some
r > 0 such that B (x, 2r) ⊂ Nx. We define

ϕ0 (y) = (ϕ (y) + λ1v1 (x) + λ2v2 (x) − ϕ (x))χ (y)

+ (λ1v1 (y) + λ2v2 (y)) (1 − χ (y)) ,
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for all y ∈ R
N , where χ is a smooth function such that 0 ≤ χ ≤ 1, χ(y) = 1, if y ∈ B (x, r) and χ(y) = 0, if

y ∈ R
N

�B (x, 2r). Then (5.9) holds true with ϕ0 instead of ϕ. The new function ϕ0 also satisfies

∇ϕ0 (x) = ∇ϕ (x) .

We introduce, for every ε > 0

Φε (x, y) = λ1v1 (x) + λ2v2 (y) − λ1ϕ (x) − λ2ϕ (y) − 1
ε2

|x− y|2 − |x− x|2 ,

for all x, y ∈ R
N . We recall that the functions v1, v2 and ϕ are bounded and continuous. This yields the existence

of a global maximum (xε, yε) of Φε. Moreover, by standard arguments,

lim
ε→0

xε = lim
ε→0

yε = x, lim
ε→0

∣∣∣∣xε − yε

ε

∣∣∣∣2 = 0. (5.10)

We consider the test function ψ given by

ψ (x) = −λ2λ
−1
1 v2 (yε) + ϕ (x) + λ2λ

−1
1 ϕ (yε) +

λ−1
1

ε2
|x− yε|2 + λ−1

1 |x− x|2 ,

for all x ∈ R
N . We recall that the function v1 is a viscosity subsolution for (3.5). Then,

v1 (xε) + dOc (xε) ∧ 1 +H

(
xε,∇ϕ (xε) +

2λ−1
1

ε2
(xε − yε) + 2λ−1

1 (xε − x) , v1

)
≤ 0.

Standard estimates yield

0 ≥ v1 (x) + dOc (x) ∧ 1 + sup
u∈U

{
−〈f (x, u) ,∇ϕ (x)〉 − 2λ−1

1

ε2
〈xε − yε, f (xε, u)〉

−λ (x, u)
∫

RN

(v1 (z) − v1 (x))Q (x, u, dz)
}

− C (|xε − x| + |v1 (xε) − v1 (x)| + |∇ϕ (xε) −∇ϕ (x)| + ηv1 (|xε − x|)) . (5.11)

In a similar way, we get

0 ≥ v2 (x) + dOc (x) ∧ 1 + sup
u∈U

{
−〈f (x, u) ,∇ϕ (x)〉 +

2λ−1
2

ε2
〈xε − yε, f (yε, u)〉

−λ (x, u)
∫

RN

(v2 (z) − v2 (x))Q (x, u, dz)
}

− C (|yε − x| + |v2 (yε) − v2 (x)| + |∇ϕ (yε) −∇ϕ (x)| + ηv2 (|yε − x|)) . (5.12)

Finally, using (5.11), (5.12) and (5.10), and passing to the limit as ε→ 0, yields

(λ1v1 + λ2v2) (x) + dOc (x) ∧ 1 +H (x,∇ϕ (x) , λ1v1 + λ2v2) ≤ 0. �

These arguments allow to obtain, by recurrence, that any convex combination of continuous, bounded vis-
cosity subsolutions is still a subsolution for (3.5).

Proposition 5.2 (stability). Let (vn)n be a sequence of continuous, uniformly bounded viscosity subsolutions
of (3.5). Moreover, we suppose that vn converges uniformly on compact sets to some continuous, bounded
function v. Then the function v is a viscosity subsolution of (3.5).
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Proof. We let x ∈ R
N and ϕ ∈ C1

b (Nx) be a test function such that v − ϕ has a global maximum at x. As in
the previous proposition, one can assume, without loss of generality, that ϕ ∈ Cb

(
R

N
)
. Classical arguments

yield the existence of some point xn ∈ R
N such that

vn (xn) − ϕ (xn) − |xn − x|2 ≥ vn (y) − ϕ (y) − |y − x|2 ,

for all y ∈ R
N and

lim
n→∞ xn = x.

We assume, without loss of generality, that |xn − x| ≤ 1, and xn ∈ Nx, for all n ≥ 1. Then,

0 ≥ vn (xn) + dOc (xn) ∧ 1 + sup
u∈U

{ −〈f (xn, u) ,∇ϕ (xn) + 2 (xn − x)〉
−λ (xn, u)

∫
RN (vn(z) − vn (xn))Q (xn, u, dz)

}
. (5.13)

We have

− 〈f (xn, u) ,∇ϕ (xn) + 2 (xn − x)〉 ≥ − 〈f (x, u) ,∇ϕ (x)〉 − C (|xn − x| + |∇ϕ(xn) −∇ϕ(x)|) , (5.14)

where C > 0 is a generic constant independent of n ≥ 1 and u ∈ U which may change from one line to another.
We also get

−λ (xn, u)
∫

RN

(vn(z) − vn (xn))Q (xn, u, dz)

≥ −λ (x, u)
∫

RN

(v(z) − v (x))Q (x, u, dz)− C (|xn − x| + |vn (xn) − v (x)| + ηv (|xn − x|))

− C sup
u∈U

∫
RN

|vn (z) − v (z)|Q (xn, u, dz) . (5.15)

Finally, for every m ≥ 1,

sup
u

∫
RN

|vn (z) − v (z)|Q (xn, u, dz)

≤ sup
z∈B(0,m+|x|+1)

(|vn(z) − v(z)|) + C sup
u∈U

Q
(
xn, u,R

N
� B (0,m+ |x| + 1)

)
≤ sup

z∈B(0,m+|x|+1)

(|vn(z) − v(z)|) + C sup
u∈U

Q
(
xn, u,R

N
� B (xn,m)

)
≤ sup

z∈B(0,m+|x|+1)

(|vn(z) − v(z)|) + C sup
y∈RN ,u∈U

Q
(
y, u,RN

�B (y,m)
)
. (5.16)

We substitute (5.14)-(5.16) in (5.13) and allow n→ ∞ to have

0 ≥ v (x) + dOc (x) ∧ 1 + sup
u∈U

{
−〈f (x, u) ,∇ϕ (x)〉 − λ (x, u)

∫
RN

(v(z) − v (x))Q (x, u, dz)
}

− C sup
y∈RN ,u∈U

Q
(
y, u,RN

�B (y,m)
)
, (5.17)

for all m ≥ 1. We conclude using the Assumption (A5). �



426 D. GOREAC

References

[1] O. Alvarez and A. Tourin, Viscosity solutions of nonlinear integro-differential equations. Ann. Inst. Henri Poincaré, Anal.
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