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Some errors were introduced in (3.8) when summarizing the derivations of Section 3.2 (specifically in the sec-
ond line of (3.8b) and third line of (3.8c)), hence we here rewrite the whole corrected summary for completeness.

Algorithm summary for the simplex case. Given adequate sampling rules, precompute the correspond-
ing [I∗],

• Sampling:

{
Cn =

√
U−1

n

X̂
(i)+
n = X̂+

n + LnCnI(i), 1 ≤ i ≤ p + 1.
(3.8a)

• Prediction:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

X̂−
n+1 = Eα(A(X̂∗+

n ))

X̂
(i)−
n+1 =

∣∣∣∣∣∣∣
X̂−

n+1 + [A(X̂∗+
n )]Dα[V ∗]T ([V ∗]Dα[V ∗]T )−1/2I(i) with resampling

or
A(X̂(i)+

n ) without resampling
Ln+1 = [X∗−

n+1]Dα[V ∗]T ∈ Md,p

P−
n+1 = Ln+1(P V

α )−1LT
n+1.

(3.8b)

• Correction:
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Z
(i)
n+1 = H(X̂(i)−

n+1 ),
{HL}n+1 = [Z∗

n+1]Dα[V ∗]T

Un+1 = P V
α + {HL}T

n+1W
−1
n+1{HL}n+1 ∈ Mp

X̂+
n+1 = X̂−

n+1 + Ln+1U
−1
n+1{HL}T

n+1W
−1
n+1(Zn+1 − Eα(Z∗

n+1))
P+

n+1 = Ln+1U
−1
n+1L

T
n+1.

(3.8c)
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Next, although the other algorithm summary (3.14) was algebraically correct, it implicitly assumed the
matrix Dm to be invertible, which does not always hold. Hence, we rewrite the whole algorithm without using
this assumption.

Algorithm summary for the general case. Given adequate sampling rules, precompute the correspond-
ing [V ∗], P V

α = [V ∗]Dα[V ∗]T , [I∗] = ([V ∗]Dα[V ∗]T )−
1
2 [V ∗], and DV = Dα[V ∗]T (P V

α )−1[V ∗]Dα.
• Sampling:

{
Cn =

√
U−1

n

X̂
(i)+
n = X̂+

n + LnCnI(i), 1 ≤ i ≤ r.
(3.14a)

• Prediction:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

X̂−
n+1 = Eα(A(X̂∗+

n ))

X̂
(i)−
n+1 = X̂−

n+1 + [A(X̂∗+
n ) − X̂−

n+1]D
1
2
α ΥpI

(i), resampling with SVD
Ln+1 = [X∗−

n+1]Dα[V ∗]T ∈ Md,p

P−
n+1 = Ln+1(P V

α )−1LT
n+1.

(3.14b)

• Correction:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[Z̃] = [H(X̂∗
n+1) − Eα(H(X̂∗

n+1))]
Dm = [Z̃]T W−1

n+1[Z̃] ∈ Mr

Un+1 = P V
α + [V ∗]Dα

(
�+ Dm(Dα − DV )

)−1
DmDα[V ∗]T ∈ Mp

{HL}n+1 = [Z̃](�+ DαDm)−1
(
�+ DV

(
�+ Dm(Dα − DV )

)−1
Dm

)
Dα[V ∗]T

X̂+
n+1 = X̂−

n+1 + Ln+1U
−1
n+1{HL}T

n+1W
−1
n+1(Zn+1 − Eα(Z∗

n+1))
P+

n+1 = Ln+1U
−1
n+1L

T
n+1.

(3.14c)

We provide the proof for the correction step (3.14c) which contains the alternative equations valid without
any assumption on Dm. First, we can write the filter in the form

K̂n+1 = P X̃Z̃

α (P Z̃

α)−1,

and we will compute this operator using the matrix inversion lemma to obtain a tractable algorithm. To this
end we introduce the following compact notation

[X̃ ] = [X̂∗
n+1 − X̂−

n+1], [Z̃] = [Z∗
n+1 − Eα(Z∗

n+1)],

and we then have

K̂n+1 = [X̃]Dα[Z̃]T (Wn+1 + [Z̃]Dα[Z̃]T )−1

= [X̃]Dα[Z̃]T
(
W−1

n+1 − W−1
n+1[Z̃](D−1

α + [Z̃]T W−1
n+1[Z̃])−1[Z̃]T W−1

n+1

)
= [X̃]Dα

(
�r − [Z̃]T W−1

n+1[Z̃](D−1
α + [Z̃]T W−1

n+1[Z̃])−1
)
[Z̃]T W−1

n+1.

Let us now set
Dm = [Z̃]T W−1

n+1[Z̃] ∈ Mr,

which – unlike for P Z̃
α – can be computed in practice, since its dimension is equal to the number of sigma-points.



408 P. MOIREAU AND D. CHAPELLE

We thus have

K̂n+1 = [X̃ ]Dα(�− Dm(D−1
α + Dm)−1)[Z̃]T W−1

n+1,

= [X̃ ]Dα(�+ DmDα)−1[Z̃]T W−1
n+1, (1)

where we have used the matrix inversion lemma in the second line. Note that the invertibility of a matrix
�+ AB with both A and B symmetric positive matrices is a standard property (e.g. one-to-one can be proven
by decomposing R

r into the direct sum of KerA and ImA). Then, by the same argument as in Proposition 3.1,
the filter can also be written in the form

K̂n+1 = Ln+1(P V

α )−1[V ∗]Dα(�+ DmDα)−1[Z̃]T W−1
n+1, (2)

with
Ln+1 = [X̂∗−

n+1]Dα[V ∗]T .

Note that the term [Z̃]T in (1) cannot be treated in the same manner since the sigma-points propagated by the
observation operator do not satisfy the original constraints. In addition to the gain, we also need to compute
the a posteriori covariance matrix in order to resample at the next step. We have

P+
n+1 = P−

n+1 − P X̃Z̃

α (P Z̃

α)−1(P X̃Z̃

α )T (3)

= P−
n+1 − [X̃]Dα

(
�− Dm(D−1

α + Dm)−1
)
DmDα[X̃]T . (4)

We now use the matrix inversion lemma as in (1) to simplify

P+
n+1 = P−

n+1 − [X̃]Dα(�+ DmDα)−1DmDα[X̃ ]T

= P−
n+1 − Ln+1(P V

α )−1[V ∗]Dα(�+ DmDα)−1DmDα[V ∗]T (P V

α )−1LT
n+1

= Ln+1

(
(P V

α )−1 − (P V

α )−1[V ∗]Dα(�+ DmDα)−1DmDα[V ∗]T (P V

α )−1
)
LT

n+1.

The advantage of this last form is that we can again write

P+
n+1 = Ln+1U

−1
n+1L

T
n+1,

with
U−1

n+1 = (P V

α )−1 − (P V

α )−1[V ∗]Dα(�+ DmDα)−1DmDα[V ∗]T (P V

α )−1.

Hence, defining DV ∈ Mr as
DV = Dα[V ∗]T (P V

α )−1[V ∗]Dα,

we can simplify – with another application of the matrix inversion lemma

Un+1 = P V

α + [V ∗]Dα

(
�+ Dm(Dα − DV )

)−1
DmDα[V ∗]T .

This identity of course requires that
(
� + Dm(Dα − DV )

)
be invertible, which can be established by proving

that Dα − DV is a symmetric positive matrix. We have by definition, indeed,

[V ∗]DV [V ∗]T = P V

α (P V

α )−1P V

α = [V ∗]Dα[V ∗]T ,

hence, for any vector R ∈ R
r in the range of the rows of [V ∗]

RT (Dα − DV )R = 0.
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If we now consider S ∈ R
r Dα-orthogonal to this range, namely, satisfying

[V ∗]DαS = 0,

we have
ST DV S = ST Dα[V ∗]T (P V

α )−1[V ∗]DαS = 0,

hence,
ST (Dα − DV )S = ST DαS ≥ 0,

which shows that Dα − DV is positive as claimed.
It is now obvious that by defining

{HL}n+1 = [Z̃](�+ DαDm)−1
(
�+ DV

(
�+ Dm(Dα − DV )

)−1
Dm

)
Dα[V ∗]T ,

we can rewrite the filter in the following form

X̂+
n+1 = X̂−

n+1 + Ln+1U
−1
n+1{HL}T

n+1W
−1
n+1(Zn+1 − Eα(Z∗

n+1)).

Finally, we point out that this algorithm is implemented in the Verdandi2 opensource data assimilation
library.

2http://verdandi.gforge.inria.fr/

http://verdandi.gforge.inria.fr/

