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FLAT OUTPUTS OF TWO-INPUT DRIFTLESS CONTROL SYSTEMS

Shun-Jie Li1 and Witold Respondek1

Abstract. We study the problem of flatness of two-input driftless control systems. Although a
characterization of flat systems of that class is known, the problems of describing all flat outputs
and of calculating them is open and we solve it in the paper. We show that all x-flat outputs are
parameterized by an arbitrary function of three canonically defined variables. We also construct a
system of 1st order PDE’s whose solutions give all x-flat outputs of two-input driftless systems. We
illustrate our results by describing all x-flat outputs of models of a nonholonomic car and the n-trailer
system.
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Introduction

The notion of flatness has been introduced by Fliess et al. [5–7] in order to describe the class of control systems
whose set of trajectories can be parameterized by a finite number of functions and their time-derivatives. More
formally, a system with m controls is flat if we can find m functions (of the state and control variables and their
time-derivatives), called flat outputs, such that the evolution in time of the state and control can be expressed
in terms of flat outputs and their time derivatives (see Sect. 1 for a precise definition and references).

As an introductory example, consider the nonholonomic car or, equivalently, a unicycle-like robot towing a
trailer (see, e.g., [16]), shown in Figure 1. Denote by (x, y) ∈ R

2 the position of the mid-point of the rear wheels,
and by θ0 and θ1, respectively, the angles between the front and rear wheels and the x-axis. The controls u1

and u2 allow to move (forward and backward) the car and to turn. The car is subject to two nonholonomic
constraints: the wheels are not allowed to slide. This leads to the following model given by a driftless, i.e.,
control-linear, system on R

2 × S1 × S1:

Σcar :

⎛
⎜⎜⎝
ẋ
ẏ

θ̇0
θ̇1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

cos(θ1 − θ0) cos θ0
cos(θ1 − θ0) sin θ0

sin(θ1 − θ0)
0

⎞
⎟⎟⎠ u1 +

⎛
⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎠u2.
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shunjie.li@insa-rouen.fr; witold.respondek@insa-rouen.fr

Article published by EDP Sciences c© EDP Sciences, SMAI 2011

http://dx.doi.org/10.1051/cocv/2011181
http://www.esaim-cocv.org
http://www.edpsciences.org


FLAT OUTPUTS OF TWO-INPUT DRIFTLESS CONTROL SYSTEMS 775

x

y

θ1

θ0

Figure 1. The nonhonomic car.

It is well known, as proved by Fliess et al. [6] (see also [13]), that the nonholonomic car is flat and that the
position (x, y) of the mid-point of the rear wheels is a flat output. Indeed, the following coordinates change

x1 = x
x2 = y
x3 = tan θ0
x4 = tan(θ1 − θ0) sec3 θ0

for θ0 ∈
(
−π2 , π2

)
and θ1 − θ0 ∈

(
−π2 , π2

)
, followed by the invertible feedback

v1 = u1 cos(θ1 − θ0) cos θ0
v2 = u1 sec3 θ0 sin(θ1 − θ0)

(
3 tan(θ1 − θ0) tan θ0 − sec2(θ1 − θ0)

)
+ u2 sec3 θ0 sec2(θ1 − θ0),

brings the system Σcar into the chained form:

⎧⎪⎪⎨
⎪⎪⎩
ẋ1 = v1
ẋ2 = x3v1
ẋ3 = x4v1
ẋ4 = v2.

It is easy to see that the pair of functions h = (h1, h2) = (x1, x2) = (x, y) are flat outputs for the chained form.

Indeed, we have x1 = h1, x2 = h2, x3 = ḣ2

ḣ1

, x4 = 1
ḣ1

d
dt

(
ḣ2

ḣ1

)
, v1 = ḣ1 and v2 = ẋ4. The applied transformation,

consisting of a change of coordinates and feedback, is invertible which proves that, indeed, h = (x, y) is a flat
output of the nonholonomic car.

The presented procedure, to express the state and control in terms of h and its time-derivatives, exhibits
three singularities: two in the state space

(
at θ0 = ±π2 and θ1 − θ0 = ±π2

)
and one in the control space (when

u1(t) = v1(t) = 0). Let us analyze those singularities.
First, the singularity at u1(t) = 0 (at least at u1(t) ≡ 0) seems to be intrinsic: we cannot see how the angles

θ0(t) and θ1(t) evolve if the observed point (x(t), y(t)) does not move.
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Secondly, θ0 = ±π2 is not a singularity of the flat output h = (x, y). Indeed, around a point such that
θ0 = ±π2 , we can choose the following coordinates change:

x1 = y
x2 = x
x3 = cot θ0
x4 = − tan(θ1 − θ0) csc3 θ0,

for θ0 ∈ (0, π), including θ0 = π
2 (or θ0 ∈ (−π, 0), including θ0 = −π2 ) and θ1 − θ0 ∈ (−π2 , π2 ), followed

by a suitable feedback transformation, which brings the system Σcar into the chained form around θ0 = ±π2 .
Therefore, the nonholonomic car is flat, with (x, y) as a flat output, at any q = (x, y, θ0, θ1) where θ1−θ0 �= ±π2 .
Actually, the singularities at θ0 = ±π2 are related with the domain of inversion: when calculating θ0 in terms of

x, y, ẋ = u1 cos(θ1 − θ0) cos θ0 and ẏ = u1 cos(θ1 − θ0) sin θ0, we have to invert either tan θ0 = ẏ
ẋ or cot θ0 = ẋ

ẏ .

Thirdly, and most interestingly, the nature of the singularity at θ1 − θ0 = ±π2 is completely different. It is
an intrinsic singularity of the flat output h = (x, y) (see Sect. 2.1 for details), nevertheless the nonholonomic
car is flat at θ1 − θ0 = ±π2 if we choose another flat output! To see this, define two functions

ψ1(x, y, θ0) = x sin θ0 − y cos θ0
ψ2(x, y, θ0) = x cos θ0 + y sin θ0

and consider the change of coordinates (local diffeomorphism)

y1 = θ0
y2 = ψ1(x, y, θ0)
y3 = ψ2(x, y, θ0)
y4 = cot(θ1 − θ0) − ψ1(x, y, θ0)

followed by the invertible feedback

v1 = u1 sin(θ1 − θ0)
v2 = u1 sin(θ1 − θ0)(csc2(θ1 − θ0) − ψ2(x, y, θ0)) − u2 csc2(θ1 − θ0),

which also brings Σcar into the chained form, but this time around θ1 − θ0 = ±π2 ,

⎧⎪⎪⎨
⎪⎪⎩
ẏ1 = v1
ẏ2 = y3v1
ẏ3 = y4v1
ẏ4 = v2.

Thus (h̄1, h̄2) = (θ0, ψ1) = (θ0, x sin θ0 − y cos θ0) is another flat output of the nonholonomic car, valid around
θ1 − θ0 = ±π2 , but singular at θ1 − θ0 = 0,±π (notice that the same singularity v1(t) = u1(t) = 0, as previously,
occurs in the control space).

A series of natural questions arises: are there other flat outputs of the nonholonomic car and, if so, how
many and how to describe them? More generally, how to characterize all flat outputs of any 2-input driftless
control system and how to describe their singular loci and singular controls? The aim of this paper is to give
complete answers to those questions.

This paper is organized as follows. In Section 1, we define the crucial notion of flatness and recall a description
of flat driftless 2-input systems. In Section 2, we give our main results. Namely, we characterize all flat outputs
of driftless 2-input systems and give a way of parameterizing them: it turns out that all flat outputs can be
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parameterized by an arbitrary function of three intrinsically defined variables. We also construct a system of
1st order PDE’s whose solutions are flat outputs of a given system. We illustrate our results by describing, in
Section 3, all flat outputs of the nonholonomic car (1-trailer system) which we have just discussed and then the
n-trailer system. We prove our results in Section 4.

1. Flatness of driftless two-input control systems

The notion of flatness has been introduced in control theory by Fliess et al. [5–7] (see also [1,12,13,25,27–
29,31]), and has attracted a lot of attention because of its extensive applications in constructive controllability
and trajectory tracking, compare [21] and references therein. A similar notion (of underdetermined systems
of differential equations that are integrable without integration) has already been studied by Cartan [3] and
Hilbert [10].

Throughout this paper, the word smooth will always mean C∞-smooth. Consider the smooth nonlinear
control system

Ξ : ẋ = f(x, u),
where x ∈ X , an n-dimensional manifold, and u ∈ U , an m-dimensional manifold. Roughly speaking, the
system Ξ is said to be flat if there exist an integer k and smooth functions hi = hi(x, u, u̇, . . . , u(k)), 1 ≤ i ≤ m,
(called flat outputs), as well as smooth maps γ and δ, such that the state x and the control u can be represented
as

x = γ(h, ḣ, . . . , h(k))
u = δ(h, ḣ, . . . , h(k)),

(1.1)

where h = (h1, . . . , hm)�.
There are three integers (and not only k) hidden. Of course, we need less derivatives of u (say, up to u(r)),

to define hi than to get the representation of the state x and the control u (say up to h(k)). Moreover, the
representation (1.1) is, in general, only locally valid (in both: the state and control spaces) and we have to specify
how many derivatives of u (say, up to u(l), higher order derivatives being arbitrary) are involved in defining a
neighborhood in the space of controls such that along the corresponding state trajectories the representation
(1.1) holds. Those observations lead us to give the following definition.

Given any integer l, we associate to Ξ its l-prolongation Ξl given by

Ξl :

ẋ = f(x, u0)
u̇0 = u1

...
u̇l = ul+1,

which can be considered as a control system on X l = X ×U ×R
ml, whose state variables are (x, u0, u1, . . . , ul)

and whose m controls are the m components of ul+1. Denote ūl = (u0, u1, . . . , ul). For any integer p ≥ r we
define by πp

r : Xp → Xr the projection πp
r (x, u0, . . . , ur, ur+1, . . . , up) = (x, u0, . . . , ur).

Definition 1.1. The system Ξ is flat at (x0, ū
l
0) ∈ X l = X × U × R

ml if there exist a neighborhood Ol

of (x0, ū
l
0), an open subset Or ⊂ Xr, where −1 ≤ r ≤ l, satisfying πl

r(Ol) ⊂ Or, and m smooth functions
hi = hi(x, u0, u1, . . . , ur), 1 ≤ i ≤ m, called flat outputs, defined in Or and having the following property: there
exist an integer k and smooth functions γi, 1 ≤ i ≤ n, and δj , 1 ≤ j ≤ m, such that we have

xi = γi(h, ḣ, . . . , h(k))

uj = δj(h, ḣ, . . . , h(k)),

where h = (h1, . . . , hm)�, meaning that the compositions on the right hand sides are well defined in (πk+r
r )−1(Or)

and the equations hold along any trajectory x(t) given by a control u(t) that satisfy (x(t), u(t), u̇(t), . . . , u(l)(t)) ∈
Ol.
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When necessary to indicate the number of derivatives on which the flat outputs hi depend, we will specify
that the system Ξ is (x, u, . . . , ur)-flat and in the particular case of hi = hi(x), that is r = −1, we will say that
the system is x-flat.

Our definition is equivalent to the standard “infinite dimensional” definition of flatness (based on a Lie-
Bäcklund framework [7,13,28]), which is more compact but unable to specify the constants r, l and k that
are important in our analysis. The above definition exhibits a role of three integers involved in the notion of
flatness: r, l and k. Clearly, r shows on how many derivatives of u flat outputs depend while k calculates the
number of time-derivative of hi’s needed to express all components of x and u. Finally, l indicates the number
of derivatives of u necessary to define a neighborhood in which the desired representation of xi and ui (flatness
property) is defined.

In general, the three integers can be different as shown by the following analysis of the nonholonomic car,
considered in Introduction, for which we have r = −1, l = 0 and k = 3. Indeed, the system is x-flat because its
flat outputs h1 and h2 (as well as h̄1 and h̄2) depend on configurations only. We have l = 0 since the system is
x-flat in a neighborhood O0 of any (q0, u0

0) ∈ R
2×S1×S1×R

2 such that the first component u0
10 of the control

value u0
0 satisfies u0

10 �= 0. The shape of O0 depends on the point q0 (see Introduction) and on the control value
u0

0 but O0 cannot be replaced by a neighborhood in the state space R
2×S1×S1 only (that is, l cannot be taken

as minus one) because u0
10 = 0 is an intrinsic singularity of flatness (see Thm. 1.2 below). Finally, k = 3 because

we have to use the time derivatives of order three of h1 and h2 in order to describe all states and controls.
In this paper, we deal only with two-input driftless (equivalently, control-linear) systems of the form

Σ : ẋ = f1(x)u1 + f2(x)u2,

on an (n + 2)-dimensional manifold M , where f1 and f2 are C∞-smooth vector fields independent everywhere
on M and u = (u1, u2)� ∈ R

2. To this system, we associate the distribution D spanned by the vector fields
f1, f2, which will be denoted by D = span {f1, f2}. Consider another two-input driftless system

Σ̃ : ˙̃x = f̃1(x̃)ũ1 + f̃2(x̃)ũ2,

where f̃1 and f̃2 are C∞-smooth vector fields on M̃ . Form the matrices f(x) = (f1(x), f2(x)) and f̃(x̃) =
(f̃1(x̃), f̃2(x̃)). The systems Σ and Σ̃ are feedback equivalent if there exist an invertible (2 × 2)-matrix β,
whose entries βij , 1 ≤ i, j ≤ 2, are C∞-smooth functions on M , and a diffeomorphism Ψ : M → M̃ such
that DΨ(x)f(x)β(x) = f̃(Ψ(x)). It is easily seen that Σ and Σ̃ are locally feedback equivalent if and only
if the associated distributions D = span {f1, f2} and D̃ = span {f̃1, f̃2} are locally equivalent via Ψ, i.e.,
DΨ(x)(D(x)) = D̃(Ψ(x)).

The derived flag of a distribution D is the sequence of modules of vector fields D(0) ⊂ D(1) ⊂ · · · defined
inductively by

D(0) = D and D(i+1) = D(i) + [D(i),D(i)], for i ≥ 0.

The Lie flag of D is the sequence of modules of vector fields D0 ⊂ D1 ⊂ · · · defined inductively by

D0 = D and Di+1 = Di + [D0,Di], for i ≥ 0.

In general, the derived and Lie flags are different though for any point x, the inclusion Di(x) ⊂ D(i)(x) holds,
for i ≥ 0. A characteristic vector field of a distribution D is a vector field f that belongs to D and satisfies
[f,D] ⊂ D. The characteristic distribution of D, which will be denoted by C, is the subdistribution spanned by
all its characteristic vector fields. It follows directly from the Jacobi identity that the characteristic distribution
is always involutive but, in general, it need not be of constant rank.

The problem of flatness of driftless 2-input systems has been studied and solved by Martin and Rouchon [20]
(see also [19] and a related work of Cartan [3]). Their important result proves that a system is flat if and only
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if its associated distribution D satisfies, on an open and dense subset M ′ of M , the conditions

rankD(i) = i+ 2, 0 ≤ i ≤ n. (1.2)

A distribution D is called a Goursat structure (also a “système en drapeau” in [15] and a Goursat flag in [22])
if it satisfies the conditions (1.2) at any point x ∈M . It is known since the work of von Weber [32], Cartan [3]
and Goursat [9] that the conditions (1.2) imply that on an open and dense subset M ′′ of M , the distribution
D can be brought into the Goursat normal form, or equivalently, the corresponding control system is locally
feedback equivalent to the chained form:

Σchain :

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ż1 = v1
ż2 = z3v1
ż3 = z4v1

...
żn+1 = zn+2v1
żn+2 = v2.

(1.3)

It is easy to see that Σchain is x-flat with x-flat outputs chosen as h = (h1, h2) = (z1, z2) and provided that the
control v1 �= 0 (compare Introduction, where we brought the nonholonomic car system into the chained form
for dimM = 4). Giaro et al. [8] were the first to observe the existence of singular points in the problem of
transforming a distribution of rank two into the Goursat normal form. Murray [23] proved that the feedback
equivalence of Σ to the chained form Σchain (or, in other words, equivalence of the associated distribution to
the Goursat normal form), around an arbitrary point x0 requires, in addition to (1.2), the regularity condition
(see Them. 1.2 below)

dimD(i)(x0) = dimDi(x0), 0 ≤ i ≤ n. (1.4)

A natural question arises: can Σ be locally flat at a singular point of D, i.e., at a point not satisfying the
regularity condition (1.4)? In other words, can a driftless 2-input system be flat without being locally equivalent
to the chained form? Theorem 1.2 answers this question (in what concerns x-flatness).

Let D be any distribution of rank two such that rankD(1) = 3 and rankD(2) = 4. Then there exists
a distribution C1 ⊂ D of corank one which is characteristic for D(1), i.e., [C1,D(1)] ⊂ D(1). Indeed, the
above rank assumptions imply that (after permuting f1 and f2, if necessary) there exists a smooth function
α such that [f2, [f1, f2]] = α[f1, [f1, f2]] modD(1). It follows that [f2 − αf1, [f1, f2]] = 0 modD(1) and hence
C1 = span {f2 − αf1}. Let Using(x) be the 1-dimensional subspace of R

2 such that for any feedback control
(u1(x), u2(x))� = u(x) ∈ Using(x), we have f1(x)u1(x) + f2(x)u2(x) ∈ C1(x) (clearly, Using(x) is spanned by
(α(x),−1)�). Any control u(t) ∈ Using(x(t)) will be called singular and the trajectories of the system governed
by a singular control remain tangent to the characteristic subdistribution C1. We have just given the definition
of Using(x) for dimM ≥ 4 (since we have used rankD(2) = 4). If dimM = 3, we define Using(x) = 0 ∈ R

2. Note
that if l = 0, we will denote a fixed control value by u0 (instead of more complicated u0

0).

Theorem 1.2. Consider a 2-input driftless control system Σ : ẋ = f1(x)u1 + f2(x)u2, where x ∈ M , an
(n + 2)-dimensional manifold, n ≥ 1. Assume that the distribution D = span {f1, f2} associated to Σ is a
Goursat structure, that is, satisfies rankD(i) = i + 2, for 0 ≤ i ≤ n, everywhere on M . Then the following
conditions are equivalent:

(i) Σ is x-flat at (x0, ū
l
0) ∈M × R

2(l+1), for a certain l ≥ 0;
(ii) Σ is x-flat at (x0, u0) ∈M × R

2;
(iii) dimD(i)(x0) = dimDi(x0), for 0 ≤ i ≤ n, and u0 �∈ Using(x0);
(iv) Σ is locally, around x0, feedback equivalent to the chained form Σchain and u0 �∈ Using(x0).
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We assume that D satisfies rankD(i) = i+ 2, for 0 ≤ i ≤ n, so the characteristic distribution C1 and the set
of singular controls Using are well defined. The above theorem implies that a driftless 2-input system is never
flat at (x0, u0) such that u0 ∈ Using(x0). Therefore any x-flat outputs (ϕ1, ϕ2) become singular in the control
space (at u0 ∈ Using) but they may also exhibit singularities in the state space M . To formalize this, assume
that a pair of functions (ϕ1, ϕ2) defined in an open set M ⊂M (for simplicity M stands for an open set O−1)
are x-flat outputs at a point (x0, u0) ∈ M × R

2, that is, there exists a neighborhood O0 ⊂ M × R
2, satisfying

O0 ⊂ π−1(M), where π(x, u) = x, in which the conditions of Definition 1.1 hold. Denote by M̃ ⊂ M the set
of points such that for any x ∈ M̃, the pair of functions (ϕ1, ϕ2) is an x-flat output at (x, u) for some control
u = u(x). The complement of M̃, i.e., M\M̃, will be called the singular locus of (ϕ1, ϕ2) and denoted by
Sing(ϕ1, ϕ2), that is, for any x ∈ Sing(ϕ1, ϕ2), the pair (ϕ1, ϕ2) is not an x-flat output.

The interest of the above theorem is two-fold. First, together with its proof, it will allow us to characterize
all x-flat outputs of driftless 2-input systems (see Sect. 2). Secondly, it shows that a Goursat structure is x-flat
at points x0 satisfying dimD(i)(x0) = dimDi(x0), for 0 ≤ i ≤ n, only, that is, at regular points of D. Martin
and Rouchon asked in [19] (see also [20]) whether a Goursat structure D is flat (dynamically linearizable) at
points that do not satisfy dimD(i)(x0) = dimDi(x0). So our result gives a negative answer to their question
(for x-flatness). Any Goursat structure can be brought into a generalization of the Goursat normal form, called
Kumpera-Ruiz normal form (see [15,22,26]). It follows that none of Kumpera-Ruiz normal forms is x-flat (except
for the regular Kumpera-Ruiz normal form, that is, Goursat normal form). In particular, the system

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ1 = x5u1

ẋ2 = x3x5u1

ẋ3 = x4x5u1

ẋ4 = u1

ẋ5 = u2

which is historically the first discovered Kumpera-Ruiz normal form [8], is not x-flat at any point of its singular
locus {x ∈ R

5 : x = 0}. This answers negatively another question of [19].
It is known (see [14,16,22,26]) that the model of n-trailer system is a Goursat structure at any configuration

point but is equivalent to the chained form out of the singular locus only, that is, if all angles θi+1 − θi between
two consecutive wheels are not ±π2 (except for θ1−θ0 which is the most far from the top of the train). Therefore
our theorem implies that at any singular configuration θi+1 − θi = ±π2 , i ≥ 1, the n-trailer system is not x-flat.

The proof of Theorem 1.2 is given in Section 4.2 and is based on normal forms at singular points (introduced
in [15,22,26] and called in the latter the Kumpera-Ruiz normal forms) and on the following result which is of
independent interest (and is also proved in Sect. 4.2). It turns out that flat outputs and the chained form Σchain

are compatible: in fact, for any given pair of flat outputs (ϕ1, ϕ2) of a system feedback equivalent to Σchain, we
can bring the system, locally, to the chained form Σchain for which ϕ1 and ϕ2 + k0ϕ1, for a suitable constant
k0 ∈ R, serve as the two top variables (after permuting ϕ1 and ϕ2, if necessary).

To state that compatibility result precisely, observe that if (ϕ1, ϕ2) is a flat output at (x0, ū
l
0), then so is

(ϕ̃1, ϕ̃2), where ϕ̃i = ϕi − li, where li ∈ R. By taking li = ϕi(x0), 1 ≤ i ≤ 2, we can always assume (and
we will do it throughout the paper) that the flat output satisfies ϕ1(x0) = ϕ2(x0) = 0. We will say that local
coordinates z = (z1, . . . , zn)� = Ψ(x) are centered at x0 if the local diffomorphism z = Ψ(x) satisfies Ψ(x0) = 0.

Proposition 1.3. Consider a driftless 2-input smooth control system Σ, defined on a manifold M of dimension
n + 2, whose associated distribution D satisfies rankD(i) = rankDi = i + 2, for 0 ≤ i ≤ n. Given any pair
(ϕ1, ϕ2) of flat outputs at (x0, u0) ∈M×R

2, there exists a feedback transformation (Ψ, β) around x0 bringing the
system Σ into the chained form Σchain, given by (1.3), and centered at x0, such that z1 = ϕ1 and z2 = ϕ2 +k0ϕ1

(after permuting ϕ1 and ϕ2, if necessary), where k0 ∈ R is a constant.
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2. Characterization of flat outputs

2.1. Main theorems

Recall a useful result due to Cartan [3] whose proof can be found in [15,20,26].

Lemma 2.1 (Cartan). Consider a rank two distribution D defined on a manifold M of dimension n + 2,
for n ≥ 2. If D satisfies rankD(i) = i + 2, for 0 ≤ i ≤ n, everywhere on M , then each distribution D(i), for
0 ≤ i ≤ n−2, contains a unique involutive subdistribution Ci+1 that is characteristic for D(i+1) and has constant
corank one in D(i).

Theorem 1.2 implies that the only Goursat structures that are x-flat are those equivalent to the chained form
(equivalently, whose associated distribution D is equivalent to the Goursat normal form). For this reason, we will
consider in two theorems below such distributions only. Moreover, any distribution equivalent to the Goursat
normal form obviously satisfies the assumptions of Lemma 2.1 and defines the involutive distribution Cn−1 that
is characteristic distribution for D(n−1) and of corank one in D(n−2). Recall that Using(x) is defined as the
1-dimensional subspace of R

2 formed by all u(x) = (u1(x), u2(x))� such that u1(x)f1(x) + u2(x)f2(x) ∈ C1(x)
and Using(x) = (0, 0) for n = 1. For n = 1, i.e., dimM = 3, and any pair ϕ = (ϕ1, ϕ2) of smooth functions we
will define a 1-dimensional subspace Uϕ

sing(x) of U = R
2 as Uϕ

sing(x) = {u(x) ∈ R
2 : u1(x)f1(x) + u2(x)f2(x) ∈

(span { dϕ1, dϕ2})⊥(x)}. Notice that for g ∈ D, the condition g(x0) /∈ Cn−1(x0) (used below) states actually
that g(x0) /∈ C1(x0).

Theorem 2.2 (characterization of flat outputs, first version). Consider a driftless 2-input smooth control
system Σ defined on a manifold M of dimension n+2 ≥ 4 whose associated distribution D satisfies rankD(i) =
rankDi = i+2, for 0 ≤ i ≤ n. Fix x0 ∈M and let g be an arbitrary vector field in D such that g(x0) /∈ Cn−1(x0)
and let ϕ1, ϕ2 be two smooth functions defined in a neighborhood M of x0. Then (ϕ1, ϕ2) is an x-flat output of
Σ at (x0, u0), u0 �∈ Using(x0), if and only if the following conditions hold:

(i) dϕ1(x0) ∧ dϕ2(x0) �= 0, i.e., dϕ1 and dϕ2 are independent at x0;

(ii) Lcϕ1 ≡ Lcϕ2 ≡ Lc

(
Lgϕ2

Lgϕ1

)
≡ 0, for any c ∈ Cn−1, where the functions ϕ1 and ϕ2 are ordered such that

Lgϕ1(x0) �= 0 which is always possible due to item (iii) below ;
(iii) (Lgϕ1(x0), Lgϕ2(x0)) �= (0, 0);

Moreover, if a pair of functions (ϕ1, ϕ2) satisfies (i) everywhere in M and forms an x-flat output at (x, u) for
any x ∈ M̃ and certain u = u(x), where M̃ is open and dense in M, then

Sing(ϕ1, ϕ2) = {x ∈ M : (Lgϕ1(x), Lgϕ2(x)) = (0, 0)}.

Theorem 2.3 (characterization of flat outputs, second version). Consider a driftless 2-input smooth control
system Σ defined on a manifold M of dimension n+2 ≥ 3 whose associated distribution D satisfies rankD(i) =
rankDi = i + 2, for 0 ≤ i ≤ n. Fix x0 ∈ M and let ϕ1, ϕ2 be two smooth functions defined in a neighborhood
M of x0. Then (ϕ1, ϕ2) is an x-flat output of Σ at (x0, u0), u0 �∈ Using(x0) (u0 /∈ Uϕ

sing(x0), if n = 1), if and
only if the following conditions hold:

(i)′ dϕ1(x0) ∧ dϕ2(x0) �= 0, i.e., dϕ1 and dϕ2 are independent at x0;
(ii)′ L = (span { dϕ1, dϕ2})⊥ ⊂ Dn−1 in M;
(iii)′ D(x0) is not contained in L(x0).

Moreover, if a pair of functions (ϕ1, ϕ2) satisfies (i)′ everywhere in M and forms an x-flat output at (x, u) for
any x ∈ M̃ and certain u = u(x), where M̃ is open and dense in M, then

Sing(ϕ1, ϕ2) = {x ∈ M : D(x) ⊂ L(x)}.

Remark 2.4. Notice that Theorem 2.3 is valid for any n ≥ 1 (i.e., dimM ≥ 3) while Theorem 2.2 is true for
n ≥ 2 only (i.e., dimM ≥ 4). In fact, in Theorem 2.2 we use the characteristic distribution Cn−1 of D(n−1)
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but if dimM = 3, such a distribution does not exist and therefore Theorem 2.2 can not be applied in that
case. Observe that if dimM = 3, then (iii)′ is satisfied automatically so for any (ϕ1, ϕ2) satisfying (i)′ and
(ii)′, the singular locus Sing(ϕ1, ϕ2) in the state space M is empty. On the other hand, for dimM = 3, each
flat output ϕ = (ϕ1, ϕ2) defines its singular control Uϕ

sing(x) for which ϕ fails to be a flat output (although any
3-dimensional system is flat for any u0 �= (0, 0), as stated in Theorem 1.2-(iii)).

Remark 2.5. The two items (iii) and (iii)′ are equivalent (which will be shown in the proofs of the two theorems)
under the condition rankD(i) = rankDi = i+2, for 0 ≤ i ≤ n, and thus the two ways of describing the singular
locus of an x-flat output (ϕ1, ϕ2) coincide: {x ∈ M : (Lgϕ1(x), Lgϕ2(x)) = (0, 0)} = {x ∈ M : D(x) ⊂ L(x)}.
Remark 2.6. The conditions of both theorems are verifiable, i.e., given a pair of functions (ϕ1, ϕ2) in a
neighborhood of a point x0, we can easily verify whether (ϕ1, ϕ2) forms an x-flat output of a control system
under considerations and verification involves derivations and algebraic operations only (without solving PDE’s
or bringing the system into a normal form). Moreover, the theorems allow us to find the singular locus of a
given flat output (ϕ1, ϕ2).

A natural question to ask is if there exists a lot of pairs (ϕ1, ϕ2) which satisfy the conditions of Theorem 2.2
or 2.3? In other words, is there a lot of pairs (ϕ1, ϕ2) which are x-flat outputs for a 2-input driftless control
system? This question has an elegant answer given by the following theorem. Recall that Cn−1 denotes the
characteristic distribution of D(n−1).

Theorem 2.7 (non-uniqueness and parameterization of x-flat outputs). Consider a driftless 2-input smooth
control system Σ whose associated distribution D satisfies rankD(i) = rankDi = i + 2, for 0 ≤ i ≤ n, locally
around a point x0 ∈ M , an (n + 2)-dimensional manifold. Let g be an arbitrary vector field in D such that
g(x0) /∈ Cn−1(x0). Then for a given arbitrary smooth function ϕ1 such that Lcϕ1 = 0, for any c ∈ Cn−1,
and Lgϕ1(x0) �= 0, there always exists a function ϕ2 such that (ϕ1, ϕ2) is an x-flat output of Σ at (x0, u0),
u0 �∈ Using(x0). Moreover, if for a given function ϕ1 as above, the pairs (ϕ1, ϕ2) and (ϕ1, ϕ̃2) are both x-flat
outputs of Σ at (x0, u0), then span { dϕ1, dϕ2}(x) = span { dϕ1, dϕ̃2}(x), for any x in a neighborhood of x0.

Remark 2.8. Observe that x-flat outputs (h1, . . . , hm) and (h̃1, . . . , h̃m) of a system with m controls such that
span { dh1, . . . , dhm} = span { dh̃1, . . . , dh̃m} can be considered as statically equivalent. Indeed, in that case
there exist smooth functions Hi and H̃i of m variables such that hi = Hi(h̃1, . . . , h̃m) and h̃i = H̃i(h1, . . . , hm).
It thus follows from Theorem 2.7 that for a given arbitrary ϕ1 (satisfying the assumptions of the theorem), the
choice of ϕ2 is unique in the sense that all functions ϕ2 giving x-flat outputs (ϕ1, ϕ2) yield, actually, statically
equivalent x-flat outputs.

According to Theorem 2.7 and Remark 2.8 there are as many x-flat outputs as functions ϕ1 satisfying
Lcϕ1 ≡ 0, for any c ∈ Cn−1, and (Lgϕ1)(x0) �= 0, that is, as many as functions of well chosen three variables.
In fact, the distribution Cn−1 is involutive and of corank three in TM and therefore any ϕ1 is of the form
ϕ1 = Φ(ψ1, ψ2, ψ3) where Φ is any function of three variables and ψ1, ψ2, ψ3 are arbitrary independent functions
whose differentials dψi, 1 ≤ i ≤ 3, annihilate Cn−1. The regularity condition (Lgϕ1)(x0) �= 0 assures that
dϕ1(x0) does not annihilate D(x0).

Let Flat(ϕ1) be the codistribution spanned, around x0, by the differentials of all x-flat outputs at x0 deter-
mined by a function ϕ1, i.e., Flat(ϕ1) = span { dϕ1, dϕ2}, where ϕ2 is any function such that (ϕ1, ϕ2) is an
x-flat output. Clearly, Flat(ϕ1) is well defined because of Theorem 2.7.

Corollary 2.9. If Flat(ϕ1) = span { dϕ1, dϕ2}, then Flat(ϕ1) = Flat(ϕ2), locally around x0.

This corollary is easy to prove and here we omit its proof.

2.2. Finding x-flat outputs

The importance of Theorem 2.2 is that it not only allows to check whether a given pair of functions forms
an x-flat output but also, together with Theorem 2.7, to express explicitly a system of 1st order PDE’s to be
solved in order to calculate all x-flat outputs for a given 2-input driftless system.
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To this aim, choose n − 1 vector fields c1, . . . , cn−1 spanning the characteristic distribution Cn−1 of D(n−1).
Recall that Cn−1 can be easily calculated as (see, e.g., [2])

Cn−1 = {f ∈ D(n−1) : f� dω ∈ (D(n−1))⊥},

where ω is any non-zero differential 1-form annihilating D(n−1). Fix a vector field g of D such that g(x0) �∈
Cn−1(x0). According to Theorems 2.2 and 2.7, in order to find ϕ1, we have to solve the following system of 1st
order PDE’s

Lciϕ1 = 0, 1 ≤ i ≤ n− 1,
Lgϕ1(x0) �= 0.

The above system possesses solutions (since Cn−1 is involutive) and the space of solutions is that of functions
of three variables (since corank (Cn−1 ⊂ TM) = 3).

Now we will establish a system of equations for ϕ2. According to Theorem 2.2, it is given by

Lciϕ2 = 0, 1 ≤ i ≤ n− 1

Lci

(
Lgϕ2

Lgϕ1

)
= 0, 1 ≤ i ≤ n− 1.

The last n − 1 equations are equivalent to (Lgϕ1)LciLgϕ2 − (Lgϕ2)LciLgϕ1 = 0, 1 ≤ i ≤ n − 1. Applying
L[ci,g]ψ = LciLgψ − LgLciψ and taking into account that Lciϕ1 = Lciϕ2 = 0, we get

(Lgϕ1)L[ci,g]ϕ2 − (L[ci,g]ϕ1)Lgϕ2 = 0, 1 ≤ i ≤ n− 1,

which we rewrite as
Lviϕ2 = 0, 1 ≤ i ≤ n− 1,

where the vector fields v1, . . . , vn−1 are given by vi = (Lgϕ1)[ci, g] − (L[ci,g]ϕ1)g, 1 ≤ i ≤ n − 1. We want
to emphasize that the vector fields vi are easily calculable in terms of the vector fields g, c1, . . . , cn−1 and the
chosen solution ϕ1. So finally, we have to solve the system Lciϕ2 = Lviϕ2 = 0 which, surprisingly, consists of
2(n − 1) 1st order PDE’s on an (n + 2)-dimensional manifold. We will show below that this system reduces,
actually, to n equations.

2.3. Reducing equations for the flat output second component

By Cartan’s Lemma 2.1 we have C1 ⊂ C2 ⊂ · · · ⊂ Cn−1 and corank (Ci ⊂ D(i−1)) = 1, for 1 ≤ i ≤
n − 1. Thus we can always choose vector fields c1, . . . , cn−1 such that Cn−1 = span {c1, . . . , cn−1} and Cn−2 =
span {c1, . . . , cn−2}. and hence cn−1(x0) �∈ Cn−2(x0). Fix a vector field g ∈ D such that g(x0) �∈ Cn−1(x0) and
clearly we have D(n−2) = span {c1, . . . , cn−2, cn−1, g}. We claim that the system

Lciϕ2 = 0, 1 ≤ i ≤ n− 1
Lviϕ2 = 0, 1 ≤ i ≤ n− 1,

(2.5)

where vi = (Lgϕ1)[ci, g]−(L[ci, g]ϕ1)g, can be reduced to a system of n equations. Since Cn−2 is the characteristic
distribution of D(n−2), we get

[ci, g] = βig mod Cn−1, 1 ≤ i ≤ n− 2, (2.6)
where βi, for 1 ≤ i ≤ n− 2, are smooth functions defined in a neighborhood of x0. Equation (2.6) implies that
(recall that Lcϕ1 = 0, for any c ∈ Cn−1)

L[ci, g]ϕ1 = Lβigϕ1 = βiLgϕ1. (2.7)
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Therefore, for 1 ≤ i ≤ n− 2,

vi = (Lgϕ1)[ci, g] − (L[ci,g]ϕ1)g

= (Lgϕ1)βig − βi(Lgϕ1)g mod Cn−1

= 0 mod Cn−1.

It follows that the equations Lciϕ2 = 0, for ci ∈ Cn−1, imply Lviϕ2 = 0, 1 ≤ i ≤ n−2, and therefore the system
(2.5) is equivalent to the following system of n equations

Lciϕ2 = 0, 1 ≤ i ≤ n− 1
Lvn−1ϕ2 = 0,

(2.8)

where vn−1 = (Lgϕ1)[cn−1, g] − (L[cn−1,g]ϕ1)g. Notice that ϕ1 solves the system (2.8). We are thus looking
for a solution ϕ2 of (2.8), independent with ϕ1, and by the Frobenious theorem the system (2.8) possesses two
independent solutions if and only if the distribution L = span {c1, . . . , cn−1, vn−1} = Cn−1 ⊕ span {vn−1} is
involutive.

Below we will show that L is, indeed, involutive and to this end it is sufficient to show that [ci, vn−1] ∈ L,
for any 1 ≤ i ≤ n − 1. Since D(n−2) = span {c1, . . . , cn−1, g}, we have D(n−1) = D(n−2) + [D(n−2),D(n−2)] =
span {c1, . . . , cn−1, g, [cn−1, g]}. The fact that Cn−1 = span {c1, . . . , cn−1} is the characteristic distribution of
D(n−1) implies that

[ci, [cn−1, g]] = ξig + τi[cn−1, g] mod Cn−1, 1 ≤ i ≤ n− 1, (2.9)

where ξi, τi are smooth functions defined in a neighborhood of x0, and thus

L[ci,[cn−1,g]]ϕ1 = ξiLgϕ1 + τiL[cn−1,g]ϕ1, 1 ≤ i ≤ n− 1. (2.10)

Observing that

L[ci,g]ϕ1 = LciLgϕ1 − LgLciϕ1 = LciLgϕ1

L[ci,[cn−1, g]]ϕ1 = LciL[cn−1,g]ϕ1 − L[cn−1,g]Lciϕ1 = LciL[cn−1,g]ϕ1

(2.11)

and applying the relations (2.6)–(2.10), we have, for 1 ≤ i ≤ n− 2,

[ci, vn−1] = [ci, (Lgϕ1)[cn−1, g]] − [ci, (L[cn−1,g]ϕ1)g]

= (Lgϕ1)[ci, [cn−1, g]] + (LciLgϕ1)[cn−1, g] − (L[cn−1,g]ϕ1)[ci, g] − (LciL[cn−1,g]ϕ1)g

= Lgϕ1 (ξig + τi[cn−1, g]) + βi(Lgϕ1)[cn−1, g]

−(L[cn−1,g]ϕ1)βig −
(
ξi(Lgϕ1)g + τi(L[cn−1, g]ϕ1)g

)
mod Cn−1

= (τi + βi)vn−1 mod Cn−1
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which implies that [ci, vn−1] ∈ L , for 1 ≤ i ≤ n− 2. Now consider the case i = n − 1, that is, the Lie bracket
[cn−1, vn−1]. Applying (2.9) and (2.10) for i = n− 1, we get

[cn−1, vn−1] = [cn−1, (Lgϕ1)[cn−1, g]] − [cn−1, (L[cn−1,g]ϕ1)g]

= (Lgϕ1)[cn−1, [cn−1, g]] + (Lcn−1Lgϕ1)[cn−1, g]
−(L[cn−1,g]ϕ1)[cn−1, g] − (Lcn−1L[cn−1,g]ϕ1)g

= (Lgϕ1)[cn−1, [cn−1, g]] − (Lcn−1L[cn−1,g]ϕ1)g

= ξn−1(Lgϕ1)g + τn−1(Lgϕ1)[cn−1, g]

−(ξn−1(Lgϕ1)g + τn−1(L[cn−1,g]ϕ1)g
)

mod Cn−1

= τn−1vn−1 mod Cn−1,

which implies that [cn−1, vn−1] ∈ L. In conclusion, the distribution L is involutive and hence the system (2.8)
is solvable. Together with the analysis of Section 2.2, we get the following theorem.

Theorem 2.10. Assume that a driftless two-input control system Σ, defined on an (n+ 2)-dimensional mani-
fold M , is x-flat at (x0, u0), u0 �∈ Using(x0), that is, the associated distribution D is, locally at x0, equivalent to
the Goursat normal form. Let Cn−1 = span {c1, . . . , cn−1} be the characteristic distribution of D(n−1) such that
cn−1(x0) �∈ Cn−2(x0) and g any vector field in D such that g(x0) �∈ Cn−1(x0). Then

(i) For any smooth function ϕ1 such that

(Flat 1) Lciϕ1 = 0, 1 ≤ i ≤ n− 1,
Lgϕ1(x0) �= 0,

the distribution L = span {c1, . . . , cn−1, v} is involutive, where v = (Lgϕ1)[cn−1, g] − (L[cn−1,g]ϕ1)g.
(ii) A pair of functions (ϕ1, ϕ2) forms an x-flat output of Σ at (x0, u0), u0 �∈ Using(x0), if and only if after

a permutation (if necessary) ϕ1 satisfies (Flat 1), dϕ1(x0) ∧ dϕ2(x0) �= 0, and ϕ2 satisfies

(Flat 2) Lciϕ2 = 0, 1 ≤ i ≤ n− 1,
Lvϕ2 = 0.

Remark 2.11. In (ii) only one implication may need permuting ϕ1 and ϕ2. Indeed, if (ϕ1, ϕ2) satisfies (Flat 1)
and (Flat 2), then it is an x-flat output (and no permutation is needed). If (ϕ1, ϕ2) is an x-flat output, then at
least one ϕi, 1 ≤ i ≤ 2, satisfies Lgϕi(x0) �= 0 and we choose ϕ1 such that Lgϕ1(x0) �= 0.

Example 2.12. To illustrate the above-presented procedure of finding flat outputs, we will consider the case
of 2-input system Σ : ẋ = f1(x)u1 + f2(x)u2 on a 4-dimensional manifold M . Assume that the system is x-flat,
that is, the associated distributions D = span {f1, f2} satisfies the conditions of Theorem 2.10. Choose a vector
field c ∈ C1 characteristic for D(1) and g ∈ D such that g(x0)∧ c(x0) �= 0. According to the above procedure we
take as ϕ1 an arbitrary solution of

Lcϕ1 = 0
Lgϕ1(x0) �= 0

and, in order to find ϕ2, we have to solve

Lcϕ2 = 0
Lvϕ2 = 0
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where v = (Lgϕ1)[c, g] − (L[c, g]ϕ1)g. Notice that the above system of three 1st order PDE’s contains a fourth
one; indeed, we have Lvϕ1 = (Lgϕ1)L[c,g]ϕ1 − (L[c,g]ϕ1)Lgϕ1 = 0. The system

Lcϕi = Lvϕi = 0, 1 ≤ i ≤ 2, (2.12)

admits two independent functions ϕ1 and ϕ2 as solutions if and only if the distribution span{c, v} is integrable.
A direct calculation shows that this is the case. All becomes clear: the involutive distribution span{c, v} is just
the distribution L of Theorem 2.3 while ϕ1 and ϕ2 satisfying (2.12) are x-flat outputs since their differentials
span the codistribution L⊥. We also see that L is not unique: different choices of ϕ1 lead to different vector fields
v which, in turn, give different distributions L = span {c, v}, although all of them are involutive and thus define
(via span { dϕ1, dϕ2} = L⊥) non equivalent flat outputs. This is in a perfect accordance with Theorem 2.7.

3. Applications

3.1. A complete description of x-flat outputs for the nonholonomic car system

Come back to the example of the nonholonomic car Σcar that we analyzed in Introduction:

Σcar :

⎛
⎜⎜⎝
ẋ
ẏ

θ̇0
θ̇1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

cos(θ1 − θ0) cos θ0
cos(θ1 − θ0) sin θ0

sin(θ1 − θ0)
0

⎞
⎟⎟⎠ u1 +

⎛
⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎠u2.

We have a characteristic vector field c = ∂
∂θ1

and take

g = cos(θ1 − θ0) cos θ0
∂

∂x
+ cos(θ1 − θ0) sin θ0

∂

∂y
+ sin(θ1 − θ0)

∂

∂θ0
·

As a first x-flat output we can take any function ϕ1 satisfying Lcϕ1 = ∂ϕ1
∂θ1

≡ 0 and Lgϕ1(q) �= 0, that is any
function ϕ1 = ϕ1(x, y, θ0) such that Lgϕ1(q) �= 0. Let us choose one such ϕ1 then ϕ2 satisfies Lcϕ2 = Lvϕ2 = 0,
where the vector field v is given by

v = (Lgϕ1)[c, g] − (L[c,g]ϕ1)g

= −∂ϕ1

∂θ0
cos θ0

∂

∂x
− ∂ϕ1

∂θ0
sin θ0

∂

∂y
+

(
∂ϕ1

∂x
cos θ0 +

∂ϕ1

∂y
sin θ0

)
∂

∂θ0
·

Therefore ϕ2 can be taken as any function ϕ2(x, y, θ0) satisfying Lvϕ2 = 0 and ( dϕ1 ∧ dϕ2)(q) �= 0. Given
ϕ1 as above, the space of solutions for ϕ2 is thus parameterized by one function of two variables but any two
solutions ϕ2 and ϕ̃2 give statically equivalent flat outputs, that is span { dϕ1, dϕ2} = span { dϕ1, dϕ̃2}. On the
other hand, different choices of ϕ1 will lead to nonequivalent pairs (ϕ1, ϕ2) of x-flat outputs.

To illustrate this, take ϕ1 = x, then v = cos θ0 ∂
∂θ0

and Lcϕ2 = Lvϕ2 = 0 imply that ϕ2 is any function

of the form ϕ2 = ϕ2(x, y) satisfying ∂ϕ2
∂y

(q) �= 0 (because of ( dϕ1 ∧ dϕ2)(q) �= 0). All such functions satisfy

span { dx, dϕ2} = span { dx, dϕ̃2} and we can take, for instance, ϕ2 = y. This gives the well-known flat
output (x, y).

To see another choice, take ϕ1 = θ0, then v = − cos θ0 ∂∂x − sin θ0 ∂∂y and the general solution of Lcϕ2 =

Lvϕ2 = 0 is ϕ2 = ϕ2(θ0, x sin θ0 − y cos θ0), which gives as an x-flat output (θ0, x sin θ0 − y cos θ0), the second
flat output of the car system (see Introduction). Notice that the singular loci of the two choices of x-flat outputs
are different. In fact, Sing(x, y) = {θ1 − θ0 = ±π2 } and Sing(θ0, x sin θ0 − y cos θ0) = {θ1 − θ0 = 0,±π}.
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x

y

(x,y)
θ0

θ1

θn−1

θn

Figure 2. The n-trailer system.

Now take ϕ1 = x + θ0 around cos θ0 �= 0, then v = − cos θ0 ∂∂x − sin θ0 ∂∂y + cos θ0 ∂
∂θ0

. Thus the general

solution of Lcϕ2 = Lvϕ2 = 0 is ϕ2 = ϕ2(x+ θ0, y − ln | cos θ0|)). We can take, for instance, ϕ2 = y − ln | cos θ0|
which gives a third x-flat output (x+ θ0, y − ln | cos θ0|) of Σcar and its singular locus is defined by

Sing(x+ θ0, y − ln | cos θ0|) = {cos θ0 = 0} ∪ {cos(θ1 − θ0) cos θ0 + sin(θ1 − θ0) = 0}.

3.2. A complete description of x-flat outputs for the nonholonomic n-trailer system

Consider the kinematic model of a unicycle-like mobile robot towing n trailers such that the towing hook of
each trailer is located at the center of its unique axle (with the assumption that the distances between any two
consecutive trailers are equal), shown in Figure 2. The n-trailer system is subject to nonholonomic constraints:
it is assumed that the wheels of each individual trailer are aligned with the body and are not allowed to slip [16].
This model and its control properties have attracted a lot of attention (see the books [17,18]; and the papers
[6,14,24,26,30]). We use here the following description introduced in [26].

Consider the n-trailer system Σn
tr defined on R

2 × (S1)n+1, for n ≥ 0,

Σn
tr : q̇ = f1(q)u1 + f2(q)u2, q ∈ R

2 × (S1)n+1,

where the vector fields f1 and f2 are given by

f1 = π0 cos θ0 ∂∂x + π0 sin θ0 ∂∂y +
n−1∑
i=0

πi+1 sin(θi+1 − θi)
∂

∂θi

f2 = ∂
∂θn

with πi =
∏n

j=i+1 cos(θj−θj−1) and πn = 1. The configuration of this system is described by q = (x, y, θ0, . . . , θn)
∈ R

2×(S1)n+1, where (x, y) denotes the position of the last trailer while θ0, . . . , θn represent the angles between
each trailer’s axle and the x-axis.

According to Theorem 1.2, the n-trailer system is locally x-flat at any (q0, u0) such that dimD(i)(q0) =
dimDi(q0), 0 ≤ i ≤ n (equivalently D is equivalent to the Goursat normal form around q0) and u0 �∈ Using(q0).
The former condition yields cos(θi,0 − θi−1,0) �= 0, i ≥ 2, and the latter means that u0 = (u10, u20) satisfies
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u10 �= 0. In other words, the n-trailer is x-flat along a trajectory q(t) besides those time instances t0 at which
the angle between two consecutive trailers becomes ±π2 (except for the angle between the last trailer and one

before the last which can be any) or those instances at which the velocity q̇(t0) becomes parallel to ∂
∂θn

, that
is, the whole n-trailer movement stops.

Let D be the distribution associated to the n-trailer system Σn
tr, that is D = span {f1, f2}. It is easy to check

that rankD(i) = i+ 2, for 0 ≤ i ≤ n+ 1, and that, see e.g., Lemma 4.10 in [26], the characteristic distribution
Ci of D(i), for 1 ≤ i ≤ n, is given by

Ci = span {c1, . . . , ci} = span

{
∂

∂θn
, . . . ,

∂

∂θn−i+1

}
·

Taking g = f1 we have clearly D(i) = span {c1, . . . , ci+1, g}, for 1 ≤ i ≤ n − 1, around any point q0 such that
cos(θi,0−θi−1,0) �= 0. According to the analysis performed in Section 2.2, and summarized in Theorem 2.10, as a

first flat output around a given point q0 ∈ R
2×(S1)n+1, we can take any function ϕ1 satisfying Lciϕ1 = ∂ϕ1

∂θi
≡ 0,

for 1 ≤ i ≤ n, and Lgϕ1(q0) �= 0, that is any function ϕ1 = ϕ1(x, y, θ0) such that Lgϕ1(q0) �= 0. Let us choose
one such ϕ1 and then ϕ2 has to satisfy

Lciϕ2 = 0, 1 ≤ i ≤ n
Lvnϕ2 = 0, (3.13)

where vn = (Lgϕ1)[cn, g] − (L[cn,g]ϕ1)g (notice that the dimension of the state space is n+ 3). The conditions
Lciϕ2 = 0, 1 ≤ i ≤ n, imply that ϕ2 = ϕ2(x, y, θ0) and now we consider the equation Lvnϕ2 = 0. We have

g = ηg̃ +
n−1∑
i=1

πi+1 sin(θi+1 − θi)cn−i+1,

where η =
∏n−1

i=1 cos(θi+1 − θi) and g̃ = cos(θ1 − θ0) cos θ0 ∂∂x + cos(θ1 − θ0) sin θ0 ∂∂y + sin(θ1 − θ0) ∂
∂θ0

. Recall

that around q0 under consideration θi+1,0 − θi,0 �= ±π2 . So η �= 0 and by a direct calculation we check that
Lvnϕ2 = 0 if and only if Lṽnϕ2 = 0, where

ṽn = (Lg̃ϕ1)[cn, g̃] − (L[cn,g̃]ϕ1)g̃

= −∂ϕ1

∂θ0
cos θ0

∂

∂x
− ∂ϕ1

∂θ0
sin θ0

∂

∂y
+

(
∂ϕ1

∂x
cos θ0 +

∂ϕ1

∂y
sin θ0

)
∂

∂θ0
·

Given any ϕ1 = ϕ1(x, y, θ0) such that Lgϕ1(q0) �= 0, the space of solutions of Lṽnϕ2 = Lciϕ2 = 0 is
that of functions of two variables. Moreover any two solutions ϕ2 and ϕ̃2 give equivalent x-flat outputs
span { dϕ1, dϕ2} = span { dϕ1, dϕ̃2} = L⊥, where L = span {c1, . . . , cn, v} = span {c1, . . . , cn, ṽ} (as we have
already discussed in Sect. 2.3). This equivalence is very easy to prove and so we omit it here. Therefore ϕ2

can be taken as any function ϕ2 = ϕ2(x, y, θ0) satisfying Lṽnϕ2 = 0 and ( dϕ1 ∧ dϕ2)(x0) �= 0. The space of
solutions is thus defined on {q : η(q) �= 0}, i.e., on {q : θi+1 − θi �= ±π2 , 1 ≤ i ≤ n− 1}.

Take ϕ1 = x, then ṽn = cos θ0 ∂
∂θ0

and Lciϕ2 = Lṽnϕ2 = 0, for 1 ≤ i ≤ n, imply that ϕ2 is any function

of the form ϕ2(x, y) satisfying ∂ϕ2
∂y

(q0) �= 0 (because of ( dϕ1 ∧ dϕ2)(q0) �= 0). All such functions satisfy

span { dx, dϕ2} = span { dx, dϕ̃2} and we can take, for instance, ϕ2 = y.
To see another choice, take ϕ1 = θ0, then ṽn = − cos θ0 ∂∂x − sin θ0 ∂∂y and the general solution of Lciϕ2 =

Lṽnϕ2 = 0 is ϕ2 = ϕ2(θ0, x sin θ0 − y cos θ0), and we can take, for instance ϕ2 = x sin θ0 − y cos θ0.
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It is interesting to notice that the family of all x-flat outputs of the n-trailer system coincides with the
family of all x-flat outputs of the nonholonomic car, more precisely of the car defined as the tail consisting of
the last and one-before-the-last trailers (those indexed, respectively, by i = 0 and i = 1) controlled by towing
(forward and backward) and rotating the one-before-the-last trailer. Indeed, the families of x-flat outputs
coincide because they are given by any ϕ1 = ϕ1(x, y, θ0) and any ϕ2(x, y, θ0) satisfying Lṽnϕ2 = 0 (for the
n-trailer) and Lv1ϕ2 = 0 (for the car) but, clearly, these two equations are equivalent (compare Sect. 3.1).

4. Proof of main theorems

4.1. Useful results

In this section we give a series of results that we will use in the subsequent sections when proving our
theorems. We start with a weaker version of Proposition 1.3 proving that the statement of the latter holds on
open and dense subset.

Lemma 4.1. Consider a driftless 2-input smooth control system Σ defined on a manifold M of dimension n+2.
Let ϕ1, ϕ2 be two functions defined on M . If (ϕ1, ϕ2) is an x-flat output of Σ at (x0, u0), then there exists
an open neighborhood M of x0 and an open and dense subset M̃ of M such that ϕ1, ϕ2 are defined in M
and around any point q ∈ M̃ there exist coordinates (z1, . . . , zn+2), centered at q, in which Σ is locally feedback
equivalent to the chained form Σchain, given by (1.3), such that z1 = ϕ1 and z2 = ϕ2 + k0ϕ1, where k0 ∈ R is a
constant (after permuting ϕ1 and ϕ2, if necessary).

Proof. Let (ϕ1, ϕ2) be an x-flat output of Σ at (x0, u0). There exists an open neighborhood M of x0 such
that (ϕ1, ϕ2) is an x-flat output at (x, u) for any x ∈ M and u = u(x). Recall that we can assume that
ϕ1(x0) = ϕ2(x0) = 0 (by replacing ϕi by ϕi − ϕi(x0), if necessary). It is known (see, e.g., [7,13,28]) that the
differentials of flat output are independent at x0 and thus we put x1 = ϕ1, x2 = ϕ2, and complete them to
a coordinate system ξ = (x1, x2, . . . , xn+2). Consider the (2 × 2)-matrix D = (Dij) given by Dij = Lgjϕi,
1 ≤ i, j ≤ 2. It is immediate to see that rankD(q) ≤ 1, for any q ∈ M. Indeed, if the rank were two then by a
suitable invertible feedback u = β(x)v we would get

ϕ1 = x1, ẋ1 = v1
ϕ2 = x2, ẋ2 = v2

which contradicts the flatness assumption because ϕ(j)
i = v

(j−1)
i , for 1 ≤ i ≤ 2, and any j ≥ 1, and thus the

coordinates x3, . . . , xn+2 could not be represented as functions of ϕ(j)
i , j ≥ 0. Therefore on an open and dense

subset M′ of M, rankD(q) = 1, for q ∈ M′. Fix q ∈ M′ and apply around q a suitable invertible feedback
u = β(x)v in order to get (if necessary, we permute ϕ1 and ϕ2, and replace ϕi by ϕi − ϕi(q))

x1 = ϕ1, ẋ1 = v1
x2 = ϕ2, ẋ2 = ψ̃(x)v1

where ψ̃(x) is a smooth function. Define ϕ̃1 = ϕ1, ϕ̃2 = ϕ2 − ψ̃(q)ϕ1 and clearly (ϕ̃1, ϕ̃2) is also a flat output.
We replace x2 by ϕ̃2 = x2 − ψ̃(q)x1 and then in the new coordinates, the system becomes

ẋ = g1(x)v1 + g2(x)v2,

where the flat outputs and their derivatives are

x1 = ϕ̃1 = ϕ1, ẋ1 = v1
x2 = ϕ̃2 = ϕ2 + k0ϕ1, ẋ2 = ψ(x)v1 = (ψ̃(x) + k0)v1

where k0 = −ψ̃(q) and ψ(x) is a smooth function that satisfies ψ(q) = 0.
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Consider the vector fields

g1 = ∂
∂x1

+ ψ(x) ∂
∂x2

+
n+2∑
i=3

g1i(x)
∂

∂xi

g2 =
n+2∑
i=3

g2i(x)
∂

∂xi
·

We claim that for any q in an open and dense subset M′′ of M′ there exists ρ such that

Lg2L
μ
g1
ψ ≡ 0, for 0 ≤ μ ≤ ρ− 2,

Lg2L
ρ−1
g1

ψ(q) �= 0,

and, moreover, that ρ = n for any q ∈ M′′. In other words, ρ = n is the relative degree of the single-input
system ẋ = f + vg, where f = g1, g = g2 and v = v2, equipped with the output y = ψ.

To prove our claim, first, observe that ρ exists on an open and dense subset M′′ of M′. If not, on an open
set in M′, we would have Lg2L

μ
g1
ψ ≡ 0 for any μ ≥ 0, which contradicts the flatness of Σ since v2 could not be

expressed in terms of ϕ̃(j)
i , i = 1, 2, j ≥ 0. Thus ρ exists and is locally constant on an open and dense subset

M′′′ of M′′, with a priori different constant values on different connected components of M′′′. We claim that on
each connected component the constant value of ρ is n. On one hand, we have ρ ≤ n since Lg2ϕ̃1 = Lg2 ϕ̃2 = 0.
On the other hand, if ρ < n, then we put ṽ2 = (Lg2L

ρ−1
g1

ψ)v2 + (Lρ
g1
ψ)v1 which is an invertible feedback,

because of the definition of ρ. Now knowing ϕ̃1 and ϕ̃2, we can obtain v1 = ˙̃ϕ1 and ψ =
˙̃ϕ2
˙̃ϕ1

, then ρ − 1

functions Lμ
g1
ψ = ψ(μ), 1 ≤ μ ≤ ρ − 1, (by successive differentiations) and finally the control ṽ2. This gives

two controls and ρ+ 2 < n+ 2 functions, so one function among x3, . . . , xn+2 is missing. This contradicts the
flatness assumption. We thus have proved that on an open and dense subset M′′′ of M′, the relative degree ρ
is well defined and equals n.

Fix an arbitrary q ∈ M′′′, we can assume that g1i(q) = 0, for 3 ≤ i ≤ n+2 (if not, we replace xi by xi−kix1,
for 3 ≤ i ≤ n+ 2, where ki = g1i(q). We claim that the differentials of the functions x1, x2, ψ, Lg1ψ, . . . , L

n−1
g1

ψ
are independent at q ∈ M′′′. To this end, we will use the following result (see, e.g., Isidori [11]): if two vector
fields f and g and a function φ satisfy

Lgφ = LgLfφ = · · · = LgL
k−2
f φ = 0, LgL

k−1
f φ = λ,

where λ is a function, then for any 1 ≤ j ≤ k − 1,

Ladj
f gφ = Ladj

f g(Lfφ) = · · · = Ladj
f g(L

k−j−2
f φ) = 0, Ladj

f g(L
k−j−1
f φ) = (−1)jλ.

We apply this result to f = g1, g = g2, φ = ψ and k = n so λ = Lg2L
n−1
g1

ψ and, in particular, λ(q) �= 0. Since,
Lg2ϕ̃1 = 0 and Lg1 ϕ̃1 = 1, it follows that

Ladg1g2 ϕ̃1 = L[g1,g2]ϕ̃1 = Lg1Lg2 ϕ̃1 − Lg2Lg1 ϕ̃1 = 0

and by induction we prove easily that Ladj
g1g2

ϕ̃1 = 0. Moreover, ψ = Lg1ϕ̃2 implies that

Ladg1g2 ϕ̃2 = · · · = Ladn−1
g1

g2
ϕ̃2 = 0

Ladn
g1

g2 ϕ̃2(q) = (−1)nLg2L
n
g1
ϕ̃2(q) = (−1)nLg2L

n−1
g1

ψ(q) �= 0.
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Evaluating the differential forms dϕ̃i and dLj
g1
ψ, 0 ≤ j ≤ n− 1, on the vector fields g2, adg1g2, . . . , adn

g1
g2, g1

we get (notice that Lg1 ϕ̃2 = ψ)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

dϕ̃1

dϕ̃2

dψ
dLg1ψ

...
dLn−1

g1
ψ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
(
g2, adg1g2, . . . , adn

g1
g2, g1

)
=

⎛
⎜⎜⎜⎜⎝

0 0 · · · 0 1
0 0 · · · (−1)nλ ψ
· · · · · · · · · ∗ ∗
0 −λ · · · · · · · · ·
λ ∗ · · · · · · ∗

⎞
⎟⎟⎟⎟⎠ .

The determinant of the above matrix is nonzero since λ(q) �= 0, and therefore the functions ϕ̃1, ϕ̃2, ψ, Lg1ψ, . . . ,
Ln−1

g1
ψ are independent. It follows that

z1 = ϕ̃1

z2 = ϕ̃2

z3 = ψ
z4 = Lg1ψ

...
zn+2 = Ln−1

g1
ψ

is a valid local change of coordinates in a neighborhood of any q ∈ M̃ = M′′′, centered at q, in which the system
after applying the feedback ṽ1 = v1, ṽ2 = (Ln

g1
ψ)v1 + (Lg2L

n−1
g1

ψ)v2 (invertible since (Lg2L
n−1
g1

ψ)(q) �= 0) takes
the chained form Σchain while the top two variables are given by z1 = ϕ̃1 = ϕ1 and z2 = ϕ̃2 = ϕ2 + k0ϕ1, with
k0 = −ψ̃(q) = − ϕ̇2

ϕ̇1
(q) ∈ R. �

Although the above lemma was proved at generic points only, it implies the following result in a whole
neighborhood of the point x0 under consideration. Recall that for any Goursat structure D we denote by Cn−1

the characteristic distribution of D(n−1) (see Lem. 2.1).

Corollary 4.2. Consider a Goursat structure D on M of dimension n+ 2, that is, rankD(i) = i+ 2, for 0 ≤
i ≤ n, hold everywhere on M . If the associated control system Σ is x-flat at (x0, u0) ∈M ×R

2, u0 �∈ Using(x0),
then for any x-flat output (ϕ1, ϕ2) at (x0, u0), there exists an open neighborhood M of x0 in which we have
Lcϕi = 0, for i = 1, 2 and any c ∈ Cn−1.

Proof. Let (ϕ1, ϕ2) be an x-flat output of Σ at (x0, u0). By Lemma 4.1, there exists an open neighborhood M
(where ϕ1, ϕ2 are defined) of x0 and an open and dense subset M̃ of M such that around any q ∈ M̃, the
system Σ is feedback equivalent to the chained form Σchain, given by (1.3), with z1 = ϕ1 and z2 = ϕ2 + k0ϕ1

(after permuting ϕ1 and ϕ2, if necessary), where k0 ∈ R is a constant. We have Cn−1 = span
{
∂
∂z4

, . . . , ∂
∂zn+2

}
and hence Lcϕi = 0, for i = 1, 2 and any c ∈ Cn−1 on M̃ and hence on M (since M̃ is dense and the functions
ϕi as well as the distribution Cn−1 are well defined on the whole M). �

4.2. Proof of Theorem 1.2

We will show the implications (iii) ⇒ (iv) ⇒ (ii) ⇒ (i) ⇒ (iii).

(iii) ⇒ (iv): It is a well known result (proved by Murray in [23]) that dimD(i)(x0) = dimDi(x0) = i + 2,
0 ≤ i ≤ n, are necessary and sufficient for local feedback equivalence to the chained form.

(iv) ⇒ (ii): It is obvious for a system in the chained form Σchain, given by (1.3), that ϕ1 = z1 and ϕ2 = z2
yield flatness for v1 �= 0 and the latter means that we can take in (ii) any u0 �∈ Using(x0). To see that v1 = 0 is
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not a singular control, if n = 1, introduce the new coordinate z̃2 = z2 − z1z3 to transform the chain form into

ż1 = v1
˙̃z2 = −z1v2
ż3 = v2

for which (ϕ̃1, ϕ̃2) = (z̃2, z3) is an x-flat output at (z0, v0) such that v20 �= 0. It follows that for n = 1, i.e.,
dimM = 3, the singular control is Using = (0, 0) only.

(ii) ⇒ (i): Obvious.
(i) ⇒ (iii): This is the only difficult implication. Its proof will be based on Corollary 4.2 and on the result

that assures that any Goursat structure can be brought into the following polynomial normal form, called
Kumpera-Ruiz normal form, as proved by Pasillas-Lépine and Respondek [26] (see also Cheaito and Mormul
[4], Mormul [22] and Kumpera and Ruiz [15]):

Theorem 4.3 (Kumpera-Ruiz normal form). Assume that n ≥ 2. Any Goursat structure defined on a man-
ifold M of dimension n + 2 is locally equivalent, at any point x0 in M , to a distribution spanned in a small
neighborhood of zero by a pair of vector fields that have the following form:

f1 =
m∑

i=0

(
i−1∏
j=0

xj
kj

)(
ki−1∑
j=1

(xi
j + cij)

∂

∂xi
j+1

+
∂

∂xi+1
1

)
, f2 =

∂

∂x0
1

, (4.14)

where the coordinates xi
j, for 0 ≤ i ≤ m + 1 and 1 ≤ j ≤ ki, are centered at x0 (that means that x(x0) = 0);

the integer m is such that 0 ≤ m ≤ n− 2; and ki, for 0 ≤ i ≤ m − 1, satisfy k0 ≥ 1, . . . , km−1 ≥ 1, km ≥ 3,
km+1 = 1 and

∑m+1
i=0 ki = n+ 2; the constants cij, for 1 ≤ j ≤ ki − 1, are real constants.

Remark 4.4. In the above normal form, the integer m gives the number of singularities of the Kumpera-Ruiz
normal form. When m = 0, the Kumpera-Ruiz normal form coincides with the Goursat normal form (since in
this case all constants cij can be eliminated).

In order to prove (i) ⇒ (iii), assume that Σ is x-flat at (x0, ū
l
0), for a certain l ≥ 0, and that there

exists an integer 2 ≤ i ≤ n such that dimD(i)(x0) �= dimDi(x0). Since D is a Goursat structure and
dimD(i)(x0) �= dimDi(x0), for certain 2 ≤ i ≤ n, by Theorem 4.3, there exists a new coordinate system
(x0

1, . . . , x
0
k0
, . . . , xm

1 , . . . , x
m
km
, xm+1

1 ) in which D takes, in a small neighborhood of zero, the Kumpera-Ruiz nor-
mal form with m ≥ 1 and

∑m
i=0 ki = n+1 , i.e., D = span {f1, f2} where f1 and f2 are given by (4.14). A direct

calculation shows that D(j) = span
{

∂
∂x0

1

, . . . , ∂
∂x0

j+1

, f1

}
, 1 ≤ j ≤ k0 − 1, and Cj = span

{
∂
∂x0

1

, . . . , ∂
∂x0

j

}
,

1 ≤ j ≤ k0 − 1. Observing that[
∂

∂x0
k0

, f1

]
=

m∑
i=1

(
i−1∏
j=1

xj
kj

)(
ki−1∑
j=1

(xi
j + cij)

∂

∂xi
j+1

+
∂

∂xi+1
1

)

and
∂

∂x1
1

= f1 − x0
k0

[
∂

∂x0
k0

, f1

]
−

k0−1∑
j=1

(x0
j + c0j)

∂

∂x0
i+1

,

we then get

D(k0) = D(k0−1) + [D(k0−1), D(k0−1)]

= span

{
∂

∂x0
1

, . . . ,
∂

∂x0
k0

,
∂

∂x1
1

,

m∑
i=1

(
i−1∏
j=1

xj
kj

)(
ki−1∑
j=1

(xi
j + cij)

∂

∂xi
j+1

+
∂

∂xi+1
1

)}
,
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and Ck0 = span
{

∂
∂x0

1

, . . . , ∂
∂x0

k0

}
. In the same way, we obtain that Cki+j = Cki ⊕ span

{
∂

∂xi+1
1

, . . . , ∂
∂xi+1

j

}
,

for 0 ≤ i ≤ m, 1 ≤ j ≤ ki and km + j ≤ n− 1. Therefore, finally, the characteristic distribution Cn−1 of D(n−1)

is given by

Cn−1 = span
{

∂

∂x0
1

, . . . ,
∂

∂x0
k0

, . . . ,
∂

∂xm
1

, . . . ,
∂

∂xm
km−2

}
=
(

span
{

dxm
km−1, dxm

km
, dxm+1

1

})⊥
.

For simplicity, we denote the coordinates xm
km−1, x

m
km
, xm+1

1 by y1, y2, y3, respectively, and denote the remaining
n− 1 coordinates xi

j by x1, . . . , xn−1, that is,

(x, y) = (x1, . . . , xn−1, y1, y2, y3) = (x0
1, . . . , x

0
k0
, x1

1 . . . , x
m
1 , . . . , x

m
km−1, x

m
km
, xm+1

1 ).

In (x, y)-coordinates, the control system Σ associated to the Kumpera-Ruiz normal form (4.14), reads as

ΣKR :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = u1

ẋ2 = γ2(x, y)u2

...
ẋn−1 = γn−1(x, y)u2

ẏ1 = xrβ1(x, y)u2

ẏ2 = xrβ2(x, y)u2

ẏ3 = xrβ3(x, y)u2

where β1, β2, β3 and γj , for 2 ≤ j ≤ n − 1, are smooth functions defined in a neighborhood of 0 ∈ R
n+2,

1 ≤ r ≤ n−1 is an integer, and the characteristic distribution Cn−1 is given by Cn−1 = span
{ ∂
∂x1

, . . . , ∂
∂xn−1

}
=

(span { dy1, dy2, dy3})⊥. By our assumption, ΣKR is x-flat at (0, ūl
0) ∈ R

n+2 × R
2(l+1) and let (ϕ1, ϕ2) be an

x-flat output defined in a neighborhood O of 0 ∈ R
n+2. Being a Goursat structure, ΣKR satisfies dimD(i)(z) =

dimDi(z), 0 ≤ i ≤ n, for any z = (x, y) in an open and dense subset O′ of O and by Corollary 4.2 and the form

of Cn−1, we conclude that ∂ϕ1
∂xi

= ∂ϕ2
∂xi

= 0, 1 ≤ i ≤ n− 1, holds in O′ and, since O′ is dense in O, also in O.

It follows that ϕi = ϕi(y1, y2, y3) for i = 1, 2. Moreover, the fact that (ϕ1, ϕ2) is an x-flat output at (0, ūl
0)

implies that ϕ1, ϕ2, ϕ̇1, ϕ̇2 must be independent at (0, u0) ∈ R
n+2×R

2, where u0 = (u10, u20), (see, e.g., [7,28]).
Calculating the derivatives ϕ̇i, for i = 1, 2, we get

ϕ̇i =
3∑

j=1

xrβju2
∂ϕi

∂yj
= Fi(x, y1, y2, y3, u2), i = 1, 2.

Then

dϕ̇i = dFi =
n−1∑
j=1

∂Fi

∂xj
· dxj +

3∑
j=1

∂Fi

∂yj
· dyj +

∂Fi

∂u2
· du2, i = 1, 2

and at (0, u0),

dϕ̇i(0, u0) = dFi(0, u0) =
∂Fi

∂xr
(0, u0) · dxr , i = 1, 2,

which implies that ( dϕ1 ∧ dϕ2 ∧ dϕ̇1 ∧ dϕ̇2)(0, u10, u20) = 0, independently of the values of u10 and u20, which
gives a contradiction. Therefore if a system associated to a Goursat structure is x-flat at (x, ūl

0), for some ūl
0,

then we have dimD(i)(x0) = dimDi(x0), 0 ≤ i ≤ n.
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4.3. Proof of Theorem 2.2

Proof. Sufficiency: Take any 2-input system whose associated distribution satisfies dimD(i)(x) = dimDi(x) =
i + 2 everywhere in a neighborhood of x0 and choose two functions fulfilling (i)−(iii). We can bring Σ to the
chained form Σchain, given by (1.3), in coordinates (z1, . . . , zn+2), centered at x0, i.e., transforming x0 into
0 ∈ R

n+2, and its associated distribution is given by D = span {g1, g2}, where

g1 = ∂
∂z1

+ z3
∂
∂z2

+ · · · + zn+2
∂

∂zn+1

g2 = ∂
∂zn+2

·

The characteristic distribution Cn−1 is given by Cn−1 = span
{
∂
∂z4

, . . . , ∂
∂zn+2

}
, and the condition Lcϕi = 0,

for any c ∈ Cn−1, of item (ii) implies that ϕi = ϕi(z1, z2, z3), for i = 1, 2. We assume ϕ1(0) = ϕ2(0) = 0 (if not,
we replace ϕi by ϕi − ϕi(0), for i = 1, 2, see Sect. 1). Item (iii) implies that there exists ϕi (say ϕ1, if not, we

permute) such that Lg1ϕ1(0) = ∂ϕ1
∂z1

(0) �= 0. Due to (i) we can complete ϕ1 and ϕ2 by a function ϕ3(z1, z2, z3)
such that ( dϕ1 ∧ dϕ2 ∧ dϕ3)(0) �= 0 and we have ϕ̇i = ψi(z1, z2, z3, z4)u1, 1 ≤ i ≤ 3, where ψi = Lg1ϕi. Since

ψ1(0) = Lg1ϕ1(0) �= 0, we introduce new coordinates z̃1 = ϕ1, z̃2 = ϕ2 − ψ2
ψ1

(0)ϕ1, z̃3 = ϕ3 − ψ3
ψ1

(0)ϕ1, followed
by z̃i = zi, 4 ≤ i ≤ n and apply the invertible feedback ũ1 = ψ1u1 to get

Σ :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

˙̃z1 = ũ1

˙̃z2 = ψ̃2ũ1

˙̃z3 = ψ̃3ũ1

˙̃zi = z̃i+1
ũ1
ψ1
, for 4 ≤ i ≤ n+ 1

˙̃zn+2 = u2,

where ψ̃i = ψi
ψ1

− ψi
ψ1

(0) satisfy ψ̃i(0) = 0, for 2 ≤ i ≤ 3. Notice that the characteristic distribution Cn−1 =

span
{
∂
∂z̃4

, . . . , ∂
∂z̃n+2

}
(since z̃i = ψi(z1, z2, z3), for 1 ≤ i ≤ 3). It thus follows from Lc

(
Lg1ϕ2

Lg1ϕ1

)
= 0,

c ∈ Cn−1, that ψ̃2 = ψ2(z1, z2, z3, z4)
ψ1(z1, z2, z3, z4)

− ψ2
ψ1

(0) is actually a function of z̃1, z̃2, z̃3 only. Moreover, the condition

rankD(n) = rankDn = n + 2 implies that ∂ψ̃3
∂z̃4

(0) �= 0 and a direct calculation shows that Lg̃2L
μ
g̃1
ψ̃2 ≡ 0 for

0 ≤ μ ≤ n− 2 and Lg̃2L
n−1
g̃1

ψ̃2(0) �= 0, where

g̃1 = ∂
∂z̃1

+ ψ̃2
∂
∂z̃2

+ ψ̃3
∂
∂z̃3

+ z̃5
ψ1

∂
∂z̃4

+ · · · + z̃n+2

ψ1

∂
∂z̃n+1

g̃2 = ∂
∂z̃n+2

·

Therefore the function ψ̃2 satisfies the conditions of ψ from the proof of Lemma 4.1, and following that proof we
can thus bring the system into the chained form (1.3), with (z̃1, z̃2) = (ϕ1, ϕ2 + k0ϕ1), where k0 = −ψ2

ψ1
(0) ∈ R,

which proves that (ϕ1, ϕ2 + k0ϕ1) is indeed an x-flat output at (x0, u0), u0 �∈ Using(x0) and so is (ϕ1, ϕ2).
Necessity: Assume that Σ is x-flat at (x0, u0), u0 �∈ Using(x0), and let (ϕ1, ϕ2) be an x-flat output defined

in a neighborhood M of x0. It is well known (see [7,13,28]) that dϕ1(x0) ∧ dϕ2(x0) �= 0. By Lemma 4.1, we
can bring Σ, around any point q ∈ M̃ (open and dense in M), into the chained form Σchain, given by (1.3),
with z1 = ϕ1, z2 = ϕ2 + k0ϕ1, where k0 ∈ R is a constant, and q is transformed into z0 = 0 ∈ R

n+2. We
have Cn−1 = span

{
∂
∂z4

, . . . , ∂
∂zn+2

}
. By a direct calculation we get that Lgϕ1(0) �= 0 for any g ∈ D such that
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g(0) �∈ Cn−1(0), and that Lcϕ1 ≡ Lcϕ2 ≡ Lc

(
Lgϕ2

Lgϕ1

)
≡ 0, for any c ∈ Cn−1 and g as above, which gives the

item (ii) on M̃. Now observe that the flat outputs ϕ1, ϕ2 are well defined in M and so is the characteristic
distribution Cn−1 (since the distribution D associated to Σ satisfies rankD(i) = i+ 2, for 0 ≤ i ≤ n, everywhere
in M). It follows by continuity that Lcϕ1 ≡ Lcϕ2 ≡ (Lgϕ1)(LcLgϕ2) − (Lgϕ2)(LcLgϕ1) ≡ 0 holds also on M
thus implying (ii) on M.

It remains to prove (iii). Bring Σ, locally around x0 ∈ M, into the chained form Σchain given by (1.3), which
is always possible by the assumption of theorem. Then item (ii), which we have just proved on M, implies
that ϕi = ϕi(z1, z2, z3), for 1 ≤ i ≤ 2, and g = ∂

∂z1
+ z3

∂
∂z2

+ z4
∂
∂z3

mod Cn−1. If for i = 1 or 2, we have

Lgϕi(0) �= 0, then (iii) holds. So assume that Lgϕ1(0) = Lgϕ2(0) = 0 implying ∂ϕ1
∂z1

(0) = ∂ϕ2
∂z1

(0) = 0. We have

ϕ̇1 =
(
∂ϕ1
∂z1

+ z3
∂ϕ1
∂z2

+ z4
∂ϕ1
∂z3

)
u1 = (a+ bz4)u1

ϕ̇2 =
(
∂ϕ2
∂z1

+ z3
∂ϕ2
∂z2

+ z4
∂ϕ2
∂z3

)
u1 = (c+ dz4)u1

and thus ϕ̇1(0, u0) = ϕ̇2(0, u0) = 0, where u0 = (u10, u20) is the arbitrary nominal control (recall that the z-

coordinates are centered at zero). We have ∂ϕ̇1
∂u1

(0) = ∂ϕ̇2
∂u1

(0) = 0 and, since ( dϕ1∧ dϕ2∧ dϕ̇1∧ dϕ̇2)(0, u0) �= 0,

it follows that either ∂ϕ̇1
∂z4

(0, u0) �= 0 or ∂ϕ̇2
∂z4

(0, u0) �= 0. Therefore u10 �= 0 and we can assume that b(0) �= 0
(if d(0) �= 0, then we permute ϕ1 and ϕ2). The condition (Lgϕ1)(LcLgϕ2) − (Lgϕ2)(LcLgϕ1) ≡ 0, that we
have already proved, gives ad ≡ cb implying that the vectors (a, b) and (c, d) are collinear and, since b(0) �= 0,
there exists a smooth function η = η(z1, z2, z3) such that (c, d) = η(a, b) implying that ϕ̇1 = (a + bz4)u1

and ϕ̇2 = η(a + bz4)u1. It follows (recall that (a + bz4)(0) = 0) that dϕ̇1(0, u0) = u10 d(a + bz4)(0) and
dϕ̇2(0, u0) = u10η(0) d(a+ bz4)(0) thus contradicting the linear independence of dϕ̇1(0) and dϕ̇2(0). Therefore
Lgϕi(0) �= 0 for at least one 1 ≤ i ≤ 2 and the item (iii) holds as well. The above analysis also shows that at
any point x ∈ M that satisfies Lgϕ1(x) = Lgϕ2(x) = 0, the pair (ϕ1, ϕ2) fails to be an x-flat output. In other
words, Sing(ϕ1, ϕ2) = {x ∈ M : (Lgϕ1(x), Lgϕ2(x)) = (0, 0)}. �

Now we will show how Proposition 1.3 follows from Theorem 2.2.

Proof. (of Prop. 1.3) Let (ϕ1, ϕ2) be a pair of x-flat outputs at (x0, u0), u0 �∈ Using(x0). Then (ϕ1, ϕ2) satisfy
the items (i)−(iii) of Theorem 2.2 and we can follow around x0 the procedure described in the sufficiency part
of that theorem in order to bring Σ into the chained form Σchain such that z1 = ϕ1 and z2 = ϕ2 + k0ϕ1, where
k0 = −ψ2

ψ1
(0) ∈ R is a constant. �

4.4. Proof of Theorem 2.3

Proof. Sufficiency: We will prove separately the cases dimM = 3 and dimM ≥ 4.
Case (I): dimM = 3

Let ϕ1, ϕ2 be any functions satisfying (i)′ and (ii)′. Choose two vector fields g̃1, g2 such that D = span {g̃1, g2},
L = span {g2}. We have g̃1(x0) �∈ L(x0) and thus there exits a function ϕi such that Lg̃1ϕi(x0) �= 0, say

Lg̃1ϕ1(x0) �= 0. Introduce coordinates x1 = ϕ1, x2 = ϕ2 − Lg̃1ϕ2

Lg̃1ϕ1
(x0)ϕ1, complete them to a coordinate system

(x1, x2, x3), and define g1 = 1
Lg̃1ϕ1

g̃. Then the associated control system ẋ = u1g1(x) + u2g2(x) becomes

ẋ1 = u1

ẋ2 = ψ(x)u1

ẋ3 = η(x)u2
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where ψ and η are smooth functions satisfying ψ(x0) = 0 and η(x0) �= 0. The condition dimD(1)(x0) = 3

implies that g1, g2 and [g1, g2] are independent at x0 ∈ R
3 and hence ∂ψ

∂x3
(x0) �= 0. Replacing x3 by ψ and

applying a feedback to normalize ψ̇, we get

ẋ1 = u1

ẋ2 = x3u1

ẋ3 = u2

for which (x1, x2) =
(
ϕ1, ϕ2 − Lg̃1ϕ2

Lg̃1ϕ1
(x0)ϕ1

)
is an x-flat output at (x0, u0), where u0 = (u10, u20)� such that

u10 �= 0, and thus (ϕ1, ϕ2) is an x-flat output at (x0, u0), where u0 �= Uϕ
sing(x0). Indeed, (span { dϕ1, dϕ2})⊥ =

span { ∂
∂x3

} and u0 �= Uϕ
sing(x0) is equivalent to u10 �= 0.

Case (II): dimM ≥ 4
Take any 2-input system whose associated distribution satisfies dimD(i)(x) = dimDi(x) = i + 2 everywhere
in a neighborhood of x0 and choose two functions ϕ1 and ϕ2 fulfilling (i)′−(iii)′. We can bring Σ to the
chained form (1.3) in coordinates (z1, . . . , zn+2), transforming x0 into 0 ∈ R

n+2, and its associated distribution
is D = span {g1, g2}, where

g1 = ∂
∂z1

+ z3
∂
∂z2

+ · · · + zn+2
∂

∂zn+1

g2 = ∂
∂zn+2

·

The characteristic distribution Cn−1 is given by Cn−1 = span
{
∂
∂z4

, . . . , ∂
∂zn+2

}
. Item (ii)′ implies that Cn−1 ⊂

L = (span { dϕ1, dϕ2})⊥. Indeed, if there were a vector field f ∈ Cn−1 such that f /∈ L, then D(n−1) =
L + span{f} and hence

D(n) = D(n−1) + [D(n−1),D(n−1)]
= L + span{f} + [f,L]
= L + span{f}
= D(n−1)

which contradicts the condition rankD(n) = n + 2 . Therefore Cn−1 ⊂ L holds indeed. Consequently we have
Lcϕi ≡ 0, for i = 1, 2 and any c ∈ Cn−1, which implies that ϕi = ϕi(z1, z2, z3) for i = 1, 2. Moreover observing
that g2 ∈ Cn−1 ⊂ L, by item (iii)′ we conclude g1 /∈ L, which implies that there exists ϕi, 1 ≤ i ≤ 2, such that

Lg1ϕi(0) �= 0, say i = 1. In other words, we have Lg1ϕ1(0) = ∂ϕ1
∂z1

(0) �= 0. By (i)′ we can complete ϕ1 and ϕ2

by a function ϕ3(z1, z2, z3) such that ( dϕ1 ∧ dϕ2 ∧ dϕ3)(0) �= 0. The remaining part of the proof follows the
same line as that of Theorem 2.2.

Necessity: Assume that Σ is x-flat at (x0, u0), u0 �∈ Using(x0), and (ϕ1, ϕ2) is an x-flat output at (x0, u0)
(if n = 1, i.e., dimM = 3, we assume that u0 �∈ Uϕ

sing(x0)), defined in a neighborhood M of x0. It is well
known (see [7,13,28]) that dϕ1(x0)∧ dϕ2(x0) �= 0. Now we will prove the item (ii)′. Clearly, Lemma 4.1 applies
and thus there exists an open and dense subset M̃ ⊂ M with the properties claimed by the lemma. Around
any x ∈ M̃, there exists a local coordinate system (z1, . . . , zn+2) such that z1 = ϕ1, z2 = ϕ2 + k0ϕ1, where
k0 ∈ R, in which Σ takes the chained form Σchain (1.3) and x is transformed into 0 ∈ R

n+2. Then by a simple
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computation we get D(n−1) = span
{

∂
∂zn+2

, ∂
∂zn+1

, . . . , ∂
∂z3

, ∂
∂z1

+ z3
∂
∂x2

}
. Hence

L = (span { dϕ1, dϕ2})⊥
= (span { dz1, dz2})⊥

= span
{ ∂

∂zn+2
,

∂

∂zn+1
, . . . ,

∂

∂z3

}
⊂ D(n−1).

Now consider a point x ∈ M \ M̃. The distributions L = (span { dϕ1, dϕ2})⊥ and D(n−1) are of constant
rank and they are well defined at any point of M. Assume that L(x) = (span { dϕ1(x), dϕ2(x)})⊥ �⊂ D(n−1)(x),
then, because of constant ranks of L and D(n−1), the inclusion does not hold at any x̃ in an open neighborhood Õ
of x. Clearly, M̃∩Õ �= ∅ which gives a contradiction. In conclusion, we have L(x) = span { dϕ1(x), dϕ2(x)}⊥ ⊂
D(n−1)(x) for any point x in M. Observe that D(x0) �⊂ L(x0) holds if and only if there exists a vector field
g1 ∈ D such that (Lg1ϕ1(x0), Lg1ϕ2(x0)) �= (0, 0), which is just the item (iii) of Theorem 2.2. This shows the
equivalence of the two singular loci defined in Theorem 2.2 and Theorem 2.3 and proves, due to Theorem 2.2,
the necessity of (iii)′. �

4.5. Proof of Theorem 2.7

Proof. The results of Sections 2.2 and 2.3 show that for a given arbitrary smooth function ϕ1 such that Lcϕ1 = 0,
for any c ∈ Cn−1, and Lgϕ1(x0) �= 0, there always exists a function ϕ2, independent with ϕ1, such that (ϕ1, ϕ2)
is an x-flat output of Σ at (x0, u0), u0 �∈ Using(x0). By Proposition 1.3, we can introduce new coordinates by
z1 = ϕ1, z2 = ϕ2 + k0ϕ1, where k0 ∈ R, and complete them to a coordinate system (z1, . . . , zn+2) in which our
original system Σ takes, via a feedback transformation, the chained form Σchain, given by (1.3). Suppose that
there exists another function ϕ̃2 such that (ϕ1, ϕ̃2) = (z1, ϕ̃2) is an x-flat output of Σ at (x0, u0), u0 �∈ Using(x0).
Clearly, (ϕ1, ϕ̃2) is also an x-flat output of Σchain at (0, v0), v0 �∈ Using(0). Take g = ∂

∂z1
+z3 ∂

∂z2
+· · ·+zn+2

∂
∂zn+1

and let Cn−1 be the characteristic distribution of D(n−1), where D is the associated distribution of Σchain. By
the result of Sections 2.2 and 2.3, the function ϕ̃2 must satisfy the equations

Lcϕ̃2 = 0, ∀ c ∈ Cn−1,
Lvϕ̃2 = 0.

where v = (Lgϕ1)[cn−1, g] − (L[cn−1,g]ϕ1)g and cn−1 = ∂
∂z4

. Solving the above system of equations, we get

ϕ̃2 =
{
ϕ̃2(z1, z2) : ∂ϕ̃2

∂z2
(0) �= 0

}
. Thus

span { dϕ1, dϕ2}(z) = span { dz1, dz2}(z)
= span

{
dz1,

∂ϕ̃2

∂z1
(z) dz1 +

∂ϕ̃2

∂z2
(z) dz2

}
(z)

= span { dϕ1, dϕ̃2}(z),
for any z in a neighborhood of 0. Correspondingly, for the original system Σ, the above equality is true for any
point in a neighborhood of x0. �
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