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ROOT GROWTH: HOMOGENIZATION IN DOMAINS WITH TIME
DEPENDENT PARTIAL PERFORATIONS

Yves Capdeboscq1 and Mariya Ptashnyk2

Abstract. In this article we derive a macroscopic model for the time evolution of root density, starting
from a discrete mesh of roots, using homogenization techniques. In the microscopic model each root
grows vertically according to an ordinary differential equation. The roots growth rates depend on
the spatial distribution of nutrient in the soil, which also evolves in time, leading to a fully coupled
non-linear problem. We derive an effective partial differential equation for the root tip surface and for
the nutrient density.
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1. Introduction

In this work, we consider the growth of a system of parallel and densely distributed cylindrical roots. The
roots growth direction is dictated by gravity: fixed and vertical. The rate of growth of each root depends on the
the nutrient concentration c in the surrounding soil. The time evolution of the length ρ of each root depends
on the length of the root, its horizontal position and on c. It is modelled by a differential equation

dρ
dt

= r(t, x, ρ, c),

see Section 2 for the precise form of the function r. The nutrient concentration is affected (decreased) by
the roots growth. Away from the roots, the evolution of the nutrient concentration in the soil is given by a
conservation law,

∂tc−∇x · (D(x)∇xc) = 0 in the soil,
where the function D determines the diffusion of the nutrient in the soil. The nutrient consumption of each
plant happens on the surface of its root,

D∇c · ν = −g(c) on any root surface,

where, at each point y on a root surface, ν(y) is the outward normal, and g is a non-negative function. Precise
assumptions on D and g are detailed in Section 2.
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Figure 1. Sketch of a configuration at time t. The roots grow vertically, and are planted
following a rectangular lattice. They are of variable length. The nutrient c is located in the
three dimensional domain below the surface, except on the locus of the roots.

The goal of this work is to derive a macroscopic model of root growth, in presence of many roots. We
assume that the roots are planted periodically in a square patch, with a periodicity cell εZ where Z =
{(y1, y2) ∈ [0, 1] × [0, 1]}. Each root has a cross-section εS, where

S = {(y1, y2) s.t. |(y1, y2) − (1/2, 1/2)| < α},

with α < 1/2. We derive an effective model for the root density in the soil and for the nutrient concentration
when ε tends to zero.

The motivation for this work is plant physiology. The plant anchorage, water and nutrient uptake depend
on the root growth and on the root architecture. Thus understanding root growth is of particular interest to
plant physiologists, and different models have been developed. Some models are centred on the topological
description of the complicated network of root system, Other focus on the growth of individual roots from
which such networks would occur. In early models the change of length of a single root (or of a root mass) was
modelled using ordinary differential equation [5,11], namely dl/dt = vf(l), for a given growth rate v.

The growth of a single root branch can also be modelled by a combination of discrete and continuous ansatz [6].
In such a case, the growth (in length) of each single cell in a root branch is described by an ordinary differential
equation. A discrete cell concentration model then provides a model for the growth of a whole root branch.

The general principle of root architecture models is to define a dynamic topological network of organs at
various stages using morphogenetic models, and to simulate the growth of these organs using concepts such
as sources and sinks, [9,12,15,17–19]. The morphogenetic rules are defined using the Lindenmayer algorithm
(L-system). Interactions between modules (root branches) and environment can be captured by generalisations
of L-systems. Some root architecture models allow the growth direction to depend on the gradient of nutrient
concentration in the soil (or medium) [7,20]. Models of root architecture based on root branching density were
considered in [9].

For a very dense root network, representative for roots growing in a flooding soil or in medium, one can
consider the root density distribution and define a continuous model for the growth of a root network [4]. This
model is a system consisting of a transport equation for the root tip density n, and an ordinary differential
equation for root length density ρ,

∂tn+ ∇ · (vn) = f(ρ), ∂tρ = |v|n,

where v is a growth velocity vector. The growth velocity depends on the root density and on the nutrient
concentration in the medium or in the soil.

The model we study here does not attempt to address the difficult issue of roots inter-twinning. Our focus
is to rigorously connect a discrete root model to a continuous one, taking into account the influence of the
environment. We make an important simplifying assumption, namely that the roots grow vertically. In this
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simplified framework, the main mathematical difficulty is that the three-dimensional domain in which the
nutrient is defined, that is, the soil below the square patch outside of the roots, depends non-linearly on time
and on ε.

This paper is structured as follows. The precise description of the model we consider is given in Section 2. In
Section 3, we introduce our main results. We show in Proposition 3.1 that the microscopic model introduced in
Section 2 is well-posed. The effective macroscopic problem obtained in the limit ε→ 0 is given by Theorem 3.2.
The rest of the paper is devoted to the proof of these results. Section 4 is devoted to the proof of Proposition 3.1,
whereas Section 5 is devoted to the proof of Theorem 3.2. We conclude this paper by remarks on possible
extensions of this work.

2. Problem formulation

In this section, we detail the mathematical model we consider. We refer to Ω as the cubic domain Ω = (0, 1)3.
A point in Ω is denoted x = (x1, x2, x3), we use the notation that x′ = (x1, x2). When referring to microscopic
variables, we write y = (y1, y2, y3), and y′ = (y1, y2). On the microscopic level, we denote Z = (0, 1)2 the two
dimensional unit cell and the cross section of a root is S = {|y′− (1/2, 1/2)| < α} where 0 < α < 1/2. The part
of the unit cell not occupied by the root is Y = Z \ S̄.

We denote by ε = 1/N the small parameter. It is the ratio between the minimum distance between the
centre of base of two roots and the size of the domain Ω, and N is a positive integer. We note N(ε) = ε−2, the
number of roots. The parameter i denotes a multi-index, i ∈ {1, . . . , N(ε)} = {(i1, i2) ∈ {0, . . . , N − 1}2}. The
base of the i-th root is

Sε
i = ε(S + i) = {x = (x′, 0) with (x′/ε− i) ∈ S} ,

and, at time t ≥ 0 the i-th root is Rε
t,i, given by

Rε
t,i = Sε

i × (0, ρ(iε, t)),

and we note the set of all roots at time t by Rε
t = ∪N(ε)

i=0 R
ε
t,i. The immersed boundary of Rε

t,i is Γε
t = ∪N(ε)

i=0 ∂R
ε
t,i\

(Sε
i × {0}).
The time-dependent domain where the evolution equation for the nutrient c is defined is

Ωε
t = Ω \Rε

t .

The initial root length distribution ρ0 is regular and given at N(ε) grid points iε by ρ0(iε). The initial i-th root
is Rε

0,i = Sε
i × (0, ρ0(iε)), and the initial set of roots is Rε

0 = ∪N(ε)
i=0 R

ε
0,i. The initial domain is Ωε

0 = Ω\Rε
0, and

the initial immersed root boundary is Γε
0 = ∪N(ε)

i=0 ∂R
ε
0,i\(Sε

i × 0).
In the time dependent domain Ωε

t , the concentration cε is a solution of the following parabolic problem

∂tc
ε −∇ · (Dε∇cε) = 0 in Ωε

t , t ∈ (0, T ),
D∇cε · ν = −ελcε on Γε

t , t ∈ (0, T ), (2.1)
D∇cε · ν = 0 on ∂Ωε

t \ Γε
t , t ∈ (0, T ),

cε = c0 in Ωε
0,

where λ > 0 represents the rate of absorption of nutrient by the root axis, and where D is the diffusion
coefficient. We assume that this coefficient is smooth, D ∈ C1(Ω̄), and non-degenerate for all time: there exists
a two positive constants 0 < d0 ≤ d1 <∞ such that

0 < d0 < D ≤ d1 for all x ∈ Ω̄.
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The initial density of nutrient is smooth, that is,

c0 ∈ C1
(
Ω̄
)

and c0 ≥ 0.

We also assume that the initial distribution of root lengths is regular, namely

ρ0 ∈ C1
(
[0, 1]2

)
and 0 < ρ0 ≤ K.

The evolution of ρε
i is defined by the differential equation

d
dt
ρε

i =
cs(t, i, ε)√

1 + cs2(t, i, ε)
(K − ρε

i ), (2.2)

ρε
i (0) = ρ0(εx′i),

where K < 1 is the maximum possible root length, where the growth velocity cs(t, i, ε) depends on time, and
on the amount of nutrient available. This dynamic models the fact that the roots have a maximal size K, a
maximal growth rate (equal to 1) and grow faster if more nutrient is available. The specific choice cs/

√
1 + cs2

is arbitrary. We suppose in this work that the quantity cs is given by

cs(t, i, ε) =
∫

Ωε
t∩B((iε,ρε

i ),r0)
cε(t, x) dx, (2.3)

where r0 is a fixed positive constant. The definition (2.3) means that cs, and in turn the growth rate, depends
on the total concentration of nutrient within a distance r0 of the tip of the root. This root growth model is
inspired by [10,16]. It is related to the model studied in [4], where the growth velocity depends on the nutrient
concentration with a saturation effect: the roots can only take up to a maximal nutrient concentration. Note
that this implies

0 ≤ d
dt
ρε

i ≤ K, and ρ0(εx′i) ≤ ρε
i ≤ K for all i and t. (2.4)

3. Main results

The goal of this paper is to derive a macroscopic model corresponding to the microscopic model (2.1)–(2.3)
when ε tends to zero, i.e. for a very dense root structure. In Section 4, we show that the microscopic model
(2.1)–(2.3) is well-posed, in the sense, that the solution exists, is unique, and is controlled by the initial condition.

Proposition 3.1. For every ε > 0 there exists a unique weak solution cε of (2.1) and ρε of (2.2). The
concentration cε satisfies the estimate

‖cε‖L∞(0,T ;L∞(Ωε
t )) + ‖∂tc

ε‖L2(0,T ;L2(Ωε
t )) + ‖∇cε‖L∞(0,T ;L2(Ωε

t )) + ε1/2‖cε‖L∞((0,T );L2(Γε
t )) ≤ μ,

where μ depends on ‖c0‖H1(Ωε
0), ‖c0‖L∞(Ωε

0), ‖ρ0‖C1((0,1)2) and K only. Furthermore, cε is non negative.

In fact, in the course of the proof of Proposition 3.1, we verify that the solution of (2.1) can be computed as
a limit of an iterative procedure involving only the resolution of linear elliptic systems, see Section 4.3.

Section 5 is devoted to the rigorous derivation of the limit macroscopic model. The main result of this paper
is the following.
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Theorem 3.2. The solutions of the microscopic model (2.1)–(2.3) converge to the solution ρ ∈ W 1,∞(0, T ;W 1,∞

((0, 1)2)), c ∈ L2(0, T ;H1(Ω)) ∩H1(0, T ;L2(Ω)) of the system

v∗∂tc− div (D∗∇c) +R∗c = 0 in Ω × (0, T ), (3.1)
D∗∇c · ν = 0 on ∂Ω × (0, T ),

c (t = 0, x) = c0 in Ω.

The functions v∗ and R∗ are given by

v∗(t, x) =

{
|Y | when x3 < ρ(t, x′),
1 otherwise,

and R∗(t, x) =

{
λ |∂S| when x3 < ρ(t, x′),
0 otherwise.

The matrix-valued function D∗ is diagonal, with entries

D∗
11(t, x) = D∗

22(t, x) =

{
D(x)(d∗ + |Y |) when x3 < ρ(t, x′),
D(x) otherwise,

and D∗
33(t, x) = D(x). The constant d∗ is a given by

d∗ =
∫

Y

∂y1ω1dy,

where the corrector function ω1 ∈ H1(Y ) is the Z-periodic solution of

−Δω1 = 0 in Y, −∇(ω1 − y1) · ν = 0 on ∂S,

∫
Y

ω1dy = 0.

The effective root length ρ is the solution of the differential equation

∂tρ =
cs(t, x′)√

1 + cs2(t, x′)
(K − ρ) in (0, T ) × (0, 1)2 (3.2)

ρ(t = 0, x′) = ρ0(x′) in (0, 1)2,

where the growth rate depends on the concentration c by means of the relation

cs(t, x′) =
∫

Ω∩B((x′,ρ(t,x′)),r0)

c(t, ζ) dζ. (3.3)

Remark. Note that in the effective nutrient concentration model, the space dependence of the coefficients is
now solely due to ρ, which determines the surface x3 = ρ(t, x′) which is the boundary between two regimes for
the coefficients v∗, D∗ and R∗. The differential equation satisfied by ρ is unchanged, in terms of its dependence
on cs. But since cs depends itself on ρ and c, the dynamic is in fact modified. This effective model for c has
a reaction term, λ|∂S|c, where roots are present. This accounts for the uptake of nutrients by the roots. The
macroscopic velocity of the moving boundary between the domain with roots and the domain without roots
reflect the non-local feature of the microscopic growth velocity of a single root. As expected, this macroscopic
model is simpler than the microscopic one, but it retains a strong dependence on the initial root distribution
and nutrient density. It is easy to see that if D, c0 and ρ0 are constant, the root boundary will be flat. In other
situations, the surface x3 = ρ(t, x′) will be more complex.
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Figure 2. A piecewise linear interpolation of the root lengths, where ρ̃ε is constant on the
squares limiting the disk cross-sections of the roots, and piecewise linear and continuous else-
where.

4. Well-posedness of the model problem

The goal of this section is to prove that the model given by (2.1)–(2.3) is well posed, that is, that there exists
a unique solution to the problem, and furthermore that the solutions cε and ρε are controlled by the initial
data in appropriate norms, independently of ε. Our approach to this problem will be to study the properties
of the solutions, assuming they exist, then prove existence using a compactness argument, and finally prove
uniqueness using the regularity of the weak solutions. The main difficulty here is the time dependence of the
domain. The dependence of the domain on the small parameter ε is classical in homogenization.

We start by mapping the problem to a time-independent domain.

4.1. Transformation to the time-independent domain Ωε
0

Because the domain on which the problem is posed is time dependent, we cannot directly apply general
results on the existence and regularity of cε and ρε. We therefore construct a change of variable mapping Ωε

t to
a fixed domain Ωε

0.
For 0 < L0 < L1 < 1, and 0 ≤ z ≤ 1, consider the function ϕ(L0, L1, z) = ϕ̃(L0, z/L1) such that z →

ϕ(L0, L1, z) ∈ C2([0, 1]) maps [0, 1] onto [0, 1], satisfies ϕ(L0, L1, L1) = L0 and ϕ(L0, L1, 1) = 1. It is given by
given by

ϕ̃(L0, z) = zL0 for z ∈ [0, 1],

= zL0 + (z − 1)3
L2

1(L1 − L0)
(1 − L1)3

for z ∈ [1, L−1
1 ].

Note that ∂3ϕ, ∂23ϕ and ∂33ϕ are continuous functions on [0,K] × (0, 1) × [0, 1].
Choose a continuous, piecewise C1 function ρ̃ε matching exactly the root lengths on each root, that is,

ρ0 ≤ ρ̃ε < K, and ρ̃ε(t, x′) = ρε
i (t) for all i ∈ {1, . . . , Nε} and x′ ∈ Sε

i , t > 0. (4.1)

Note that the upper bound K is consistent with the other constraints, as K is the upper asymptotic limit of
ρε

i for all i. Specifically, choose ρ̃ε to be a piecewise linear interpolation between the root lengths (as done in
Fig. 2 for example).

Note that this spatial interpolation is linear in each ρε
i , and is time independent. Therefore, ∂tρ̃

ε is the same
spatial interpolation between the time derivatives ∂tρ

ε
i . In particular, it takes its values in (0,K).

The spatial variation of ρ̃ε depends on ε. To quantify this dependence, we introduce

V (ρε)(t, x′) = max

{
|ρε

i (t) − ρε
j(t)|

ε
, over all i, j s.t. |i− j| ≤ 2, |x′/ε− i| ≤ 1

}
. (4.2)



862 Y. CAPDEBOSCQ AND M. PTASHNYK

Because ρ̃ε is a linear interpolant we see that for some constant C > 0 independent of x′ and ε, and t,

CV (ρε)(t, x′) ≤ |∇x′ ρ̃ε(t, x′)| ≤ 1
C
V (ρε)(t, x′) for all x′ ∈ (0, 1)2, t > 0. (4.3)

Note that V (ρε) depends on ε. Similarly, we have, with obvious notations,

CV (∂tρ
ε)(t, x′) ≤ |∇x′∂tρ̃

ε(t, x′)| ≤ 1
C
V (∂tρ

ε)(t, x′) for all x′ ∈ (0, 1)2, t > 0.

The map Fε : (t, x1, x2, x3) → (t, x1, x2, ϕ(ρ0, ρ̃ε, x3)) is a change of variable between (0, T )×Ωε
t and (0, T )×Ωε

0.
The a priori bounds on ρε and ϕ allow to prove the following proposition.

Proposition 4.1. The transformation Fε from (0, T )× Ωε
t onto (0, T )× Ωε

0 satisfies

1
K

min
(0,1)2

ρ0 ≤ J (ρ̃ε) ≤ 1 +
3

1 −K
max
(0,1)2

(
K

ρ0
− 1
)
,

where J (ρ̃ε) is the Jacobian determinant of the transformation given by

J (ρ̃ε) = |det(DFε)| = ∂3ϕ(ρ0, ρ̃ε, x3).

Proof. We have

∂3ϕ(ρ0, ρ̃ε, x3) =
1
ρ̃ε
∂2ϕ̃

(
ρ0,

x3

ρ̃ε

)
·

For z ≤ 1, ∂2ϕ̃(ρ0, z) = ρ0. For 1 ≤ z ≤ 1/ρ̃ε, ∂2ϕ̃(ρ0, z) is non decreasing, since ρ̃ε ≥ ρ0, with

ϕ̃

(
ρ0,

1
ρ̃ε

)
= ρ0 + 3

ρ̃ε − ρ0

1 − ρ̃ε
≤ ρ0 + 3

K − ρ0

1 −K
,

since ρ̃ε ≤ K. Therefore,
ρ0

K
≤ ∂3ϕ(ρ0, ρ̃ε, x3) ≤ 1 +

3
ρ0

K − ρ0

1 −K
,

since ρ0 ≤ ρ̃ε ≤ K. �

We now proceed with change of variables in equations (2.1). Introducing the notation

w = f(ρ̃ε, t, x′, x3) = ϕ(ρ0, ρ̃ε, x3),

using the monotonicity and continuity of ϕ with respect to x3 and we obtain for c̃ε(t, x′, w) = cε(t, x′, f−1(ρ̃ε,
t, x′, w)) with the notation

c̃ε(t, x′, f(ρ̃ε, t, x′, x3)) = cε(t, x′, x3),

the following equations defined in the time independent domain Ωε
0,

v (ρ̃ε) ∂tc̃
ε + b (ρ̃ε) ∂w c̃

ε −∇ · (M (ρ̃ε)∇c̃ε) = 0 in (0, T )× Ωε
0,

M (ρ̃ε)∇c̃ε · ν = −εv (ρ̃ε)λc̃ε on (0, T ) × Γε
0, (4.4)

M (ρ̃ε)∇c̃ε · ν = 0 on (0, T ) × (∂Ωε
0 \ Γε

0),
c̃ε = c0(x′, w) in Ωε

0, at t = 0,
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where v (ρ̃ε) = 1/J (ρ̃ε), b (ρ̃ε) = ∂tf (ρ̃ε, ·) /J (ρ̃ε), and the matrix M (ρ̃ε) is given by

M (ρ̃ε) =
Dε

J (ρ̃ε)

⎛
⎝ 1 0

0 1 ∂x′f (ρ̃ε, ·)
∂x′f (ρ̃ε, ·)T |∂x′f (ρ̃ε, ·) |2 + |J (ρ̃ε) |2

⎞
⎠ ,

where Dε(x′, f(ρ̃ε)) = D(x′, x3). Remark that at t = 0, the map Fε is the identity map, therefore the initial
condition is preserved.

When no ambiguity exists on ρ̃ε, that is, everywhere but in Section 4.3, we will use the simpler notations

vε = v (ρ̃ε) , bε = b (ρ̃ε) , fε = f (ρ̃ε, ·) ,J ε = J (ρ̃ε) , and M ε = M (ρ̃ε) .

4.2. A priori estimates

For the sake of clarity, we recall the definition of a solution to (4.4).

Definition 4.2. The function c̃ε is a weak solution of (4.4) if c̃ε ∈ L2(0, T ;H1(Ωε
0)), ∂tc̃

ε ∈ L2(0, T ;L2(Ωε
0))

such that
τ∫

0

∫
Ωε

0

(
vε∂tc̃

εφ+ bε∂w c̃
εφ+M ε∇c̃ε∇φ

)
dx′dwdt = −ε

τ∫
0

∫
Γε

0

λvεc̃εφdγεdt (4.5)

for all φ ∈ L2(0, T ;H1(Ωε
0)), c̃

ε → c0 in L2(Ωε
0) as t → 0, and ρ̃ε is the piecewise linear interpolation of

ρε
i ∈ H1(0, T ) defined by (2.2).

To derive a priori estimates, we now study the properties of the coefficients appearing in (4.5). Note that
thanks to Proposition 4.1 vε is bounded above and below independently of t and ε. From the uniform bound-
edness of ∂tρ̃

ε, 0 < ∂tρ̃
ε < K, we deduce that bε = J−1∂2ϕ(ρ0, ρ̃ε, x3)∂tρ̃

ε is bounded above and below
independently of t and ε. However, it is not possible to bound M above and below independently of V (ρε).

Proposition 4.3. The matrix M ε is symmetric, positive definite and satisfies for all ξ ∈ R
3, almost all

x ∈ Ω, t > 0,

1
μ

1
1 + V (ρε)2

|ξ|2 ≤ (M εξ, ξ) ≤ μ(1 + V (ρε)2)|ξ|2

|(∂tM
εξ, ξ)| ≤ μ

(
1 + V (ρε)2 + V (∂tρ

ε)2
) |ξ|2,

for some positive constant μ independent of ε and t.

Proof. A straightforward calculation shows that one eigenvalue of (J ε/Dε)M ε is equal to 1, a second eigenvalue
is bounded above by 1 + |∂x1f

ε|2 + |∂x2f
ε|2 + |J ε|2, and below by |∂x3f

ε|2, whereas the third is bounded above
by |∂x3f

ε|2 and below by |J ε|2/(1 + |∂x1f
ε|2 + |∂x2f

ε|2). From the bound (4.3) on the oscillations of ρ̃ε and
the smoothness of ρ0 we obtain the first bound. The proof the second bound is similar. We have

|(∂tM
εξ, ξ)| ≤ μ

(
|∂tρ̃

ε| ‖∇D‖C0(Ω̄) + |∂23ϕ| + |∂33ϕ|
)

(M εξ, ξ)

+ μ

∣∣∣∣∣∣∂t

⎛
⎝ 1 0

0 1 ∂x′fε

(∂x′fε)T |∂x′fε|2 + |J ε|2

⎞
⎠ ξ · ξ

∣∣∣∣∣∣
≤ μ

(
1 + V (ρε)2 + V (∂tρ

ε)2
) |ξ|2,

where we used in addition the bounds on the oscillations ∂tρ̃
ε and the smooth dependence of Dε on the

macroscopic variable. �
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Proposition 4.3 indicates that the horizontal rates of variations V (ρε) and V (∂tρ
ε) affects the ellipticity of

the system. The following proposition bounds these variations in terms of cε.

Proposition 4.4. The following estimates hold

V (ρε) + V (∂tρ
ε) ≤ μ

(
‖ρ0‖C1([0,1]2) + ‖c̃ε‖L∞((0,T )×Ωε

0)
)
, for t ∈ (0, T ), x ∈ (0, 1)2,

where μ is a universal constant.

Proof. Note that system (2.2) can be integrated in an implicit form, namely

ρε
i (t) = K − (K − ρ0(iε)) exp

(
−
∫ t

0

cs(s, i, ε)√
1 + cs2(s, i, ε)

ds

)
.

This expression is implicit as cs(s, i, ε) depends on ρε
i . We thus obtain that

|ρε
i (t) − ρε

j(t)| ≤ ∣∣ρ0(iε) − ρ0(jε)
∣∣+K

∣∣∣∣∣
∫ t

0

cs(s, i, ε)√
1 + cs2(s, i, ε)

− cs(s, j, ε)√
1 + cs2(s, j, ε)

ds

∣∣∣∣∣
≤ ∥∥ρ0

∥∥
C1([0,1]2)

|i− j| ε+K

∫ t

0

|cs(s, i, ε) − cs(s, j, ε)| ds

≤ ∥∥ρ0
∥∥

C1([0,1]2)
|i− j| ε

+ Kt‖c̃ε‖L∞((0,T )×Ωε
0) (|B(iε, r0) \B(jε, r0)| + |B(jε, r0) \B(iε, r0)|) .

If |i− j| ≤ 2, |B(iε, r0) \B(jε, r0)| ≤ 4ε, therefore

V (ρε) ≤ μ
(∥∥ρ0

∥∥
C1([0,1]2)

+ ‖c̃ε‖L∞((0,T )×Ωε
0)
)
.

The proof is similar for V (∂tρ
ε), using (2.2),

∣∣∣∣ d
dt
ρε

i (t) −
d
dt
ρε

j(t)
∣∣∣∣ ≤ ∣∣ρε

i (t) − ρε
j(t)
∣∣+K

∣∣∣∣∣ cs(t, i, ε)√
1 + cs2(t, i, ε)

− cs(t, j, ε)√
1 + cs2(t, j, ε)

∣∣∣∣∣
≤ ∥∥ρ0

∥∥
C1([0,1]2)

|i− j| ε+ 8εK(t+ 1)‖c̃ε‖L∞((0,T )×Ωε
0). �

Next, we show that all weak solutions are bounded in appropriate norms by the initial nutrient concentration,
and that a non-negative initial condition guarantees that cε stays positive for all time, and therefore can be
interpreted as a nutrient concentration.

Lemma 4.5. For any weak solution of the problem (4.4), the maximum principle holds, that is,

‖c̃ε‖L∞((0,T )×Ωε
0) ≤ max

Ω
(c0), and c̃ε ≥ 0. (4.6)

Furthermore, the following estimates hold

‖c̃ε‖L∞((0,T )×Ωε
0) + ‖∂tc̃

ε‖L2(0,T ;L2(Ωε
0)) + ‖∇c̃ε‖L∞(0,T ;L2(Ωε

0)) + ε1/2‖c̃ε‖L∞(0,T ;L2(Γε
0))

≤ μ, (4.7)

where μ depends on ‖c0‖H1(Ωε
0), ‖c0‖L∞(Ωε

0), ‖ρ0‖C1([0,1]2) and K only.
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Proof. Choosing c̃ε as a test function in (4.5) we obtain

1
2

τ∫
0

d
dt

∫
Ωε

0

|c̃ε|2vε dx′dwdt+

τ∫
0

∫
Ωε

0

(1
2
|c̃ε|2(−∂tv

ε) + ∂w c̃
εbε c̃ε

)
dx′dwdt

+

τ∫
0

∫
Ωε

0

M ε∇c̃ε · ∇c̃ε dx′dwdt = −ελ
τ∫

0

∫
Γε

0

vε|c̃ε|2 dγεdt.

Note that |∂tv
ε| =

∣∣∂tρ̃
ε∂2

23ϕ(ρ0, ρ̃ε, x3)|J ε|−2
∣∣ is bounded independently of t and ε.

The third term can be estimated by comparing it with the quadratic gradient term, namely∣∣∣∣∣∣∣
τ∫

0

∫
Ωε

0

∂wc̃
εbε c̃ε dx′dwdt

∣∣∣∣∣∣∣ ≥
1
2

τ∫
0

∫
Ωε

0

DεJ ε|∂w c̃
ε|2 dx′dwdt

1
2

τ∫
0

∫
Ωε

0

1
DεJ ε

|bε|2 |c̃ε|2 dx′dwdt.

To proceed, note that the lower bound on M ε shown in Proposition 4.3 still holds (with a different μ) if 1
2D

εJ ε

is subtracted from M ε
33. Thus,

−1
2

τ∫
0

∫
Ωε

0

DεJ ε|∂w c̃
ε|2 dx′dwdt+

τ∫
0

∫
Ωε

0

M ε∇c̃ε · ∇c̃ε dx′dwdt ≥
τ∫

0

∫
Ωε

0

1
μ(1 + V (ρε)2)

|∇c̃ε|2dx′dwdt,

and we have obtained

∫
Ωε

0

|c̃ε(τ)|2 dx′dw +

τ∫
0

∫
Ωε

0

1
μ(1 + V (ρε)2)

|∇c̃ε|2dx′dwdt+ ε

τ∫
0

∫
Γε

0

vε|c̃ε|2 dγdt (4.8)

≤
∫
Ωε

0

|c0|2 dx+

τ∫
0

∫
Ωε

0

(
1
J ε

|bε|2 + |∂tv
ε|
)
|c̃ε|2dx′dwdt. (4.9)

which, thanks to Gronwall’s Lemma implies that

‖c̃ε‖L∞(0,T ;L2(Ωε
0))

≤ μ‖c0‖L2(Ωε
0)

where μ is independent of ε. Alternatively, choosing as a test function min(c̃ε, 0), or max(c̃ε − α, 0), for any
constant α yields, following the same steps,

‖min(c̃ε, 0)‖L∞(0,T ;L2(Ωε
0))

≤ C‖min(c0, 0)‖2
L2(Ωε

0)
,

and
‖max(c̃ε − α, 0)‖L∞(0,T ;L2(Ωε

0))
≤ C‖max(c0 − α, 0)‖2

L2(Ωε
0)
,

which proves (4.6), choosing α = max
Ω

(c0) in the second case. Using now (4.6) in (4.8), together with the bounds

on V (ρε) given by Proposition 4.4, we have

∫
Ωε

0

|c̃ε(τ)|2 dx′dw +

τ∫
0

∫
Ωε

0

|∇c̃ε|2dx′dwdt+ ε

τ∫
0

∫
Γε

0

|c̃ε|2 dγεdt ≤ μ

⎛
⎜⎝1 +

τ∫
0

∫
Ωε

0

|c̃ε|2dx′dwdt

⎞
⎟⎠,
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where μ is independent of ε. Applying Gronwall’s Lemma again shows that

‖∇c̃ε‖L2(0,T ;L2(Ωε
0))

+ ‖c̃ε‖L2(0,T ;L2(Γε
0))

≤ μ (4.10)

where μ is independent of ε. Using ∂tc̃
ε as a test function in (4.5) we obtain

τ∫
0

∫
Ωε

0

|∂tc̃
ε|2vε dx′dwdt +

1
2

τ∫
0

d
dt

∫
Ωε

0

M ε∇c̃ε∇c̃ε dx′dwdt− 1
2

τ∫
0

∫
Ωε

0

∂tM
ε∇c̃ε∇c̃εdx′dwdt

+

τ∫
0

∫
Ωε

0

bε∂w c̃
ε∂tc̃

εdx′dwdt = −ελ
2

τ∫
0

d
dt

∫
Γε

0

vε|c̃ε|2dγdt+ ε
λ

2

τ∫
0

∫
Γε

0

|c̃ε|2∂tv
εdγdt.

Since bε is bounded independently of t and ε, we can write

τ∫
0

∫
Ωε

0

bε∂wc̃
ε∂tc̃

εdx′dwdt ≤ δ

τ∫
0

∫
Ωε

0

|∂tc̃
ε|2dx′dwdt+ Cδ

τ∫
0

∫
Ωε

0

|∂w c̃
ε|2dx′dwdt,

with δ = min vε/2 and Cδ = ‖b‖2
L∞((0,T )×Ωε

0)/(2δ). From (4.10), we deduce that the last term is bounded
independently of ε and time, thus, we obtain

τ∫
0

∫
Ωε

0

|∂tc̃
ε|2 dx′dwdt +

1
2

τ∫
0

d
dt

∫
Ωε

0

M ε∇c̃ε∇c̃ε dx′dwdt+ ε

∫
Γε

0

vε|c̃ε|2dγ

≤ μ+ ε

∫
Γε

0

|c0|2 dγ +
1
2

τ∫
0

∫
Ωε

0

∂tM
ε∇c̃ε∇c̃εdx′dwdt

≤ μ,

where we used the bounds on ∂tM given by Proposition 4.3, the L2 bound (4.10) and the L∞ bound (4.6).
Together with (4.6), this last bound implies (4.7). �

Corollary 4.6. The interpolated root length ρ̃ε, and its time derivative ∂tρ̃
ε satisfy

‖∇x′ ρ̃ε‖L∞((0,T )×(0,1)2) + ‖∇x′∂tρ̃
ε‖L∞((0,T )×(0,1)2) ≤ μ

(
‖ρ0‖C1([0,1]2) + max

Ω
c0
)
,

where μ is an universal constant.

Proof. Thanks to Proposition 4.4 and the L∞ bound on c̃ε given by Lemma 4.5, we have

V (ρε) + V (∂tρ
ε) ≤ μ

(
‖ρ0‖C1([0,1]2) + max

Ω
c0
)
, for t ∈ (0, T ), x ∈ (0, 1)2.

Since ρ̃ε linearly interpolates in x′ between the values of ρε, this implies the result. �

4.3. Existence and uniqueness

We can now state the main result of this section
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Proposition 4.7. For every ε > 0, there exists a unique weak solution of (4.4). That solution satisfies the
following estimate

‖c̃ε‖L∞(0,T ;L∞(Ωε
0)

+ ‖∂tc̃
ε‖L2(0,T ;L2(Ωε

0)) + ‖∇c̃ε‖L∞(0,T ;L2(Ωε
0)) + ε1/2‖c̃ε‖L∞((0,T );L2(Γε

0)) ≤ μ,

where μ depends on ‖c0‖H1(Ωε
0), ‖c0‖L∞(Ωε

0), ‖ρ0‖C1((0,1)2) and K only.
Furthermore, 0 ≤ c̃ε ≤ max

Ω
(c0) for all times t and almost all x ∈ Ωε

0.

Proof of Proposition 3.1. By performing the inverse change of variable, Proposition 4.7 shows that problem
(2.1) is well-posed. �

The rest of the section is devoted to the proof of this result. Because the problem is non-linear, we shall first
prove existence by a fixed point argument.

Setting cε0(t, x) = c0(x), we define for all n ≥ 0 the interpolated length the root lengths ρε
i,n, by the following

system of differential equations

d
dtρ

ε
i,n = cs(t,i,n,ε)√

1+cs2(t,i,n,ε)
(K − ρε

i,n) for 1 ≤ i ≤ Nε, (4.11)

ρε
i.n(0) = ρ0(εx′i),

where

cs(t, i, n, ε) =
∫

Ωε
n,t∩B(iε,r0)

cεn(t, x) dx,

the integral being calculated on

Ωε
n,t = Ω \

(
Nε⋃
i=1

Si ×
(
0, ρε

i,n(t)
))

.

We then define c̃εn+1 - thus by a change of variable, cεn - as the solution of the linear evolution problem

v (ρ̃ε
n) ∂tc̃

ε
n+1 + b (ρ̃ε

n) ∂w c̃
ε
n+1 −∇ · (M (ρ̃ε

n)∇c̃εn+1) = 0 in (0, T )× Ωε
0,

M (ρ̃ε
n)∇c̃εn+1 · ν = −εv (ρ̃ε

n)λc̃εn+1 on (0, T ) × Γε
0, (4.12)

M (ρ̃ε
n)∇c̃εn+1 · ν = 0 on (0, T ) × (∂Ωε

0 \ Γε
0),

c̃εn+1 = c0(x′, w) in Ωε
0, at t = 0.

The ˜ representing, as before, interpolated quantities. Naturally, if (cn, ρn) = (cn+1, ρn+1), then (cn, ρn) is a
solution of (2.1). The existence of weak solutions to (4.4) is given by the following proposition

Proposition 4.8. Given ε > 0, up to the possible extraction of a sub-sequence, the sequence cεn converges weakly
in H1(0, T ;H1(Ωε

0)) to a weak solution cε of (4.4).

Proof. We first verify that

(
t,
(
ρε

i,n

)
1≤i≤Nε

)
→
(

cs(t, i, n, ε)√
1 + cs2(t, i, n, ε)

(K − ρε
i,n)

)
1≤i≤Nε

is Lipschitz-continuous with respect to ρε
i,n. Given (ρa,ε

i,n)1≤i≤Nε and (ρb,ε
i,n)1≤i≤Nε , we have

∣∣∣∣∣
(

Ω \
(

Nε⋃
i=1

Si ×
(
0, ρa,ε

i,n(t)
))) \

(
Ω \

(
Nε⋃
i=1

Si ×
(
0, ρb,ε

i,n(t)
)))∣∣∣∣∣ ≤ με max

i

∣∣∣ρa,ε
i,n(t) − ρb,ε

i,n(t)
∣∣∣ ,
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where με does not depend on ρa,ε
i,n(t) or ρb,ε

i,n(t) (and can be replaced by 1, since |Ω| = 1), thus |csa(t, i, n, ε)− csb(t ,

i, n, ε)| ≤ ‖c̃εn‖L∞((0,T )×Ωε
0) maxi

∣∣∣ρa,ε
i,n(t) − ρb,ε

i,n(t)
∣∣∣ which is a Lipschitz bound provided ‖c̃εn‖L∞((0,T )×Ωε

0) is
bounded. Thanks to Lemma 4.5, we know that for all n ≥ 1,

‖c̃εn‖L∞((0,T )×Ωε
0)

≤ max
Ω

(c0),

and

‖c̃εn‖L∞((0,T )×Ωε
0) + ‖∂tc̃

ε
n‖L2(0,T ;L2(Ωε

0)) + ‖∇c̃εn‖L∞(0,T ;L2(Ωε
0))

+ ‖c̃εn‖L∞(0,T ;L2(Γε
0))

≤ μ,

where μ is independent of n, thus the Lipschitz bound is valid for all n. Additionally there exists a sub-sequence,
still indexed by n, converging weakly to a limit c̃ε in L∞ (0, T ;H1(Ωε

0)
) ∩H1(0, T ;L2(Ωε

0)). In particular this
convergence is strong in L2((0, T )× Ωε

0). From the implicit formula

ρε
i,n(t) = K − (K − ρ0(iε)) exp

(
−
∫ t

0

cs(s, i, ε, n)√
1 + cs2(s, i, ε, n)

ds

)

we deduce that any given n,m ≥ 0 we have

|ρε
i,n(t) − ρε

i,m(t)| ≤ K

∣∣∣∣∣exp

(
−
∫ t

0

cs(s, i, ε, n)√
1 + cs2(s, i, ε, n)

ds

)
− exp

(
−
∫ t

0

cs(s, i, ε,m)√
1 + cs2(s, i, ε,m)

ds

)∣∣∣∣∣
≤ K

∣∣∣∣∣
∫ t

0

cs(s, i, ε, n)√
1 + cs2(s, i, ε, n)

− cs(s, i, ε,m)
1 + cs2(s, i, ε,m)

ds

∣∣∣∣∣
≤ K

∣∣∣∣
∫ t

0

|cs(s, i, ε, n)− cs(s, i, ε,m, s)|ds
∣∣∣∣

≤ K

1 −K

∫ t

0

∫
Ωε

0

|c̃εn − c̃εm|dxds+K max
Ω̄

(
c0
)
max

i

∫ t

0

|ρε
i,n(t) − ρε

i,m(t)|dt, (4.13)

where for the last inequality we used Proposition 4.1 and the Lipschitz bound derived above. Therefore, thanks
to Gronwall’s Lemma, for all t ∈ [0, T ],

max
i

∣∣ρε
i,n(t) − ρε

i,m(t)
∣∣ ≤ μ ‖c̃εn − c̃εm‖L1((0,T )×Ωε

0) ,

where μ is a constant independent of n, m and t. This means that

lim
n→∞ ‖ρ̃ε

n − ρ̃ε‖L∞((0,T )×[0,1]2) = 0,

and in turn that, due to continuity of v, b, f , J and M ,

(v (ρ̃ε
n) , b (ρ̃ε

n) , f (ρ̃ε
n, ·) , J (ρ̃ε

n) , M (ρ̃ε
n)) → (v (ρ̃ε) , b (ρ̃ε) , f (ρ̃ε, ·) , J (ρ̃ε) , M (ρ̃ε))

the convergence being strong in L∞((0, T )×Ωε
0). We can therefore safely pass to the limit as n tends to infinity

in the weak formulation of problem (4.12), and obtain that the limit cε satisfies (4.4). �

The proof of Proposition 4.7 will be complete once we show that the solution is unique, which is the subject
of the next proposition.
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Proposition 4.9. Given ε > 0, the weak solution c̃ε ∈ L2(0, T ;H1(Ωε
0)), ∂tc̃

ε ∈ L2(0, T ;L2(Ωε
0)) to Problem

(4.4) is unique.

Proof. Suppose there are two solution, the first one indexed by a and the second by b, e.g. cεa and cεb. From the
implicit equation

ρε
i (t) = K − (K − ρ0(iε)) exp

(
−
∫ t

0

cs(i, ε, s)√
1 + cs2(i, ε, s)

ds

)
, t ∈ (0, T ),

following the same steps as in the derivation of the bound (4.13) we obtain

‖ρ̃ε
a − ρ̃ε

b‖L∞((0,t)×(0,1)2) ≤ μ‖c̃εa − c̃εb‖L1((0,t)×Ωε
0) (4.14)

for a constant μ independent of c̃εa, c̃εb, t and ε, and this in turn implies

|v (ρ̃ε
a) − v (ρ̃ε

b) | + |b (ρ̃ε
a) − b (ρ̃ε

b) | + |M (ρ̃ε
a) −M (ρ̃ε

b) | ≤ με‖c̃εa − c̃εb‖L1((0,t)×Ωε
0), (4.15)

where με depends on ε, but is independent of c̃εa, c̃εb and t. Comparing the weak variational formulations (4.5)
defining c̃εa and c̃εb, we have

τ∫
0

∫
Ωε

0

((v (ρ̃ε
a) + v (ρ̃ε

b))∂t (c̃εa − c̃εb)φ+ (b (ρ̃ε
a) + b (ρ̃ε

b))∂w (c̃εa − c̃εb)φ) dx′dwdt

+

τ∫
0

∫
Ωε

0

((M (ρ̃ε
a) +M (ρ̃ε

b))∇ (c̃εa − c̃εb)∇φ) dx′dwdt

+ε

τ∫
0

∫
Γε

0

λ(v (ρ̃ε
a) + v (ρ̃ε

b)) (c̃εa − c̃εb)φdγεdt

= −
τ∫

0

∫
Ωε

0

((v (ρ̃ε
a) − v (ρ̃ε

b))∂t (c̃εa + c̃εb)φ+ (b (ρ̃ε
a) − b (ρ̃ε

b))∂w (c̃εa + c̃εb)φ) dx′dwdt

−
τ∫

0

∫
Ωε

0

((M (ρ̃ε
a) −M (ρ̃ε

b))∇ (c̃εa + c̃εb)∇φ) dx′dwdt

−ε
τ∫

0

∫
Γε

0

λ(v (ρ̃ε
a) − v (ρ̃ε

b)) (c̃εa + c̃εb)φdγεdt.

Combining the a priori bounds (4.11) satisfied by both cεa and cbε and (4.15), we see that the right hand side
of the above expression is bounded from above by

με‖cεa − cεb‖L1((0,τ)×Ωε
0)

(‖∇φ‖L2((0,τ)×Ωε
0)

+ ‖φ‖L2((0,τ)×Ωε
0)

+
√
ε‖φ‖L2((0,τ)×Γε

0)

)
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where με is independent of cεa, cεb and τ . On the other hand, taking φ = cεa − cεb and arguing as in Lemma 4.5,
the left hand side is bounded from below by

μ

⎛
⎜⎝∫

Ωε
0

|c̃εa(τ) − c̃εb(τ)|2 dx′dw +

τ∫
0

∫
Ωε

0

|∇(c̃εa − c̃εb)|2dx′dwdt + ε

τ∫
0

∫
Γε

0

|c̃εa − c̃εb|2 dγdt

⎞
⎟⎠

− 1
μ

τ∫
0

∫
Ωε

0

|c̃εa − c̃εb|2dx′dwdt

where μ is independent of cεa, cεb and τ . Thus, altogether,

μ

2

⎛
⎜⎝∫

Ωε
0

|c̃εa(τ) − c̃εb(τ)|2 dx′dw +

τ∫
0

∫
Ωε

0

|∇(c̃εa − c̃εb)|2dx′dwdt + ε

τ∫
0

∫
Γε

0

|c̃εa − c̃εb|2 dγdt

⎞
⎟⎠

≤ 1
μ

τ∫
0

∫
Ωε

0

|c̃εa − c̃εb|2dx′dwdt+
(με)2

2μ
‖cεa − cεb‖2

L1((0,τ)×Ωε
0)
.

So in particular ∫
Ωε

0

|c̃εa(τ) − c̃εb(τ)|2 dx′dw ≤ με

τ∫
0

∫
Ωε

0

|c̃εa − c̃εb|2dx′dwdt

where με again represent a constant independent of cεa, cεb and τ . Thanks to Gronwall’s Lemma, this implies
that c̃εa = c̃εb. �

5. Convergence to a limit problem by homogenization

In this section, we show that the weak solution (cε, ρε
i ) of (2.1)–(2.2) converges to a solution of a limit problem

independent of ε. As we will see, the limit problem has a unique solution. It is therefore sufficient to prove the
result for a sub-sequence.

5.1. Existence of weak and two-scale limits

To derive a limit model, we first extend the domain of definition of the nutrient concentration c̃ε from Ωε
0 to

Ω, using classical results [1,8].

Lemma 5.1. There exists an extension c̃ε of c̃ε from H1(Ωε
0) into H1(Ω) such that

‖c̃ε‖L2(Ω) ≤ μ‖c̃ε‖L2(Ωε
0), and ‖∇c̃ε‖L2(Ω) ≤ μ‖∇c̃ε‖L2(Ωε

0),

where the constant μ depends on Y , Z and ||ρ0||C([0,1]2) only.

Remark. Note that the root stems do not intersect the boundary of the periodic cell, and therefore classical
extension results [1,8] apply. Note in particular, that near the boundary ∂Ωε

0 ∩ {x3 = 0} it is suffices to extend
cε by reflection in the horizontal direction.

For c̃ε ∈ L2(0, T ;H1(Ωε
0))∩H1(0, T ;L2(Ωε

0)) we define ĉε(·, t) := c̃ε(·, t) almost everywhere in time. Since the
extension operator is linear and bounded and Ωε

0 does not depend on t we obtain that
ĉε ∈ L2(0, T ;H1(Ω)) ∩H1(0, T ;L2(Ω)) and additionally

‖∂tĉ
ε‖L2((0,T )×Ω) ≤ μ‖∂tc̃

ε‖L2((0,T )×Ωε
0).
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In the sequel, we identify c̃ε with its extension. Since c̃ε is now defined on Ω, and with appropriately
bounded partial derivatives thanks Lemma 4.5, passing to the limit (up to a possible sub-sequence) is quite
standard in homogenization theory, using, for example, the notion of two-scale convergence (see [2,3,14]). We
distinguish between the two-scale convergence in a domain and two-scale convergence of a sequence defined on
the boundary of the micro-structure. The ε-scaling in the two-scale convergence on the oscillating boundary
Γ̃ε

0 = ∪N(ε)
i=0 (0, ρ0(iε)) × ∂Sε

i is essential, since the surface area of Γ̃ε
0 is of order ε−1.

Lemma 5.2. There exist functions c̃, c̃1, ρ̃ and a sub-sequences of (c̃ε) and (ρε) (denoted again by (c̃ε), (ρε))
such that

c̃ε ⇀ c̃ weakly in L2(0, T,H1(Ω)), ∂tc̃
ε ⇀ ∂tc̃ weakly in L2(0, T ;L2(Ω)),

c̃ε → c̃ strongly in L2(0, T ;Hs(Ω)), 1/2 < s < 1,
lim
ε→0

ε||c̃ε − c||2
L2((0,T )×Γ̃ε

0)
= 0,

∂tc̃
ε ⇀ ∂tc̃ in the sense of two-scale convergence,

∇c̃ε ⇀ ∇c̃+ ∇y c̃1 in the sense of two-scale convergence, with c̃1 ∈ L2((0, T ) × Ω;H1
#(Z)),

ρ̃ε → ρ strongly in L∞((0, T ) × (0, 1)2),
∂tρ̃

ε → ∂tρ strongly in L2(0, T ;L∞((0, 1)2)),

where H1
#(Z) = {f ∈ H1(Z) s.t. f is Z-periodic}.

Furthermore, ρ̃ε → ρ uniformly in C0
(
[0, T ]× [0, 1]2

)
.

Proof. The weak convergence of a sub-sequence follows from a priori estimates in Lemma 4.5. The strong
convergence of c̃ε in L2(0, T ;Hs(Ω)) is due to the Aubin-Lions Lemma and the compact embedding of H1(Ω)
in Hs(Ω) for 1/2 < s < 1. The convergence of L2((0, T ) × Γ̃ε

0)-Norm follows from the strong convergence of c̃ε

in L2(0, T ;Hs(Ω)), definition of the Hs-norm and a standard scaling argument, see [13]. Since c̃ε is bounded
in L2(0, T ;H1(Ω)) and ∂tc̃

ε is bounded in L2(0, T ;L2(Ω)), the compactness theorem for two-scale convergence
implies the convergence (a for sub-sequence) of c̃ε, ∂tc̃

ε, and ∇c̃ε in the two-scale sense.
To show the strong convergence of ρ̃ε, we argue the proof of Proposition 4.9 and (4.14) becomes

|ρεm

i (t) − ρεn

i (t)| ≤ μ‖c̃εm − c̃εn‖L1((0,t)×Ωε
0),

where the constant μ is independent of i, εn,εm and t. Thus the strong convergence of c̃ε in L2 ((0, T )× Ω)
implies the strong convergence of ρ̃ε to ρ in L∞ ((0, T )× Ω). The strong convergence of ∂tρ̃

ε follows from the
ode (2.2) defining ρε and from the strong convergences of ρ̃ε and c̃ε. Thanks to Corollary 4.6 and Arzela-Ascoli
Theorem, the convergence of ρ̃ε is in fact uniform in the sense of continuous functions on C0

(
[0, T ]× [0, 1]2

)
. �

5.2. Proof of Theorem 3.2.

In this section, we will show that the solution of the microscopic model (2.1)-(2.3) converges to the unique
solution ρ ∈W 1,∞(0, T ;L∞((0, 1)2)), c ∈ L2(0, T ;H1(Ω)) ∩H1(0, T ;L2(Ω)) of the system

|Y |∂tc1 −∇ · (D(x) (d ∗ +|Y |)∇c1) + λ |∂S| c1 = 0 in Ω ∩ {x : 0 < x3 < ρ(t, x′)},
∂tc2 −∇ · (D(x)∇c2) = 0 in Ω ∩ {x : ρ(t, x′) < x3 < 1},

c1 − c2 = 0, and (d ∗ +|Y |)∇c1 · ν −∇c2 · ν = 0 on {x3 = ρ(t, x′)},
D(x)∇c1 · ν = 0 on ∂Ω ∩ {x : 0 < x3 < ρ(t, x1, x2)},
D(x)∇c2 · ν = 0 on ∂Ω ∩ {x : ρ(t, x1, x2) < x3 < 1},
c(t = 0, x) = c0 in Ω0,

where c = c1 in Ω ∩ {x : 0 < x3 < ρ(t, x1, x2)} and c = c2 in Ω ∩ {x : ρ(t, x1, x2) < x3 < 1}.
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Convergence.
Due to the strong convergences of ρ̃ε and c̃ε we obtain that ρ satisfies the equation

∂tρ =
c̃s(t, x′)√

1 + c̃s2(t, x′)
(K − ρ) in (0, T )× (0, 1)2, (5.1)

with

c̃s(t, x′) =
∫

Ω∩B((x′,ρ0(x′)),r0)

c̃(t, x′, w)v(ρ) dx′dw.

To derive the macroscopic equation for c we rewrite equation (4.5) in the following weak form

T∫
0

∫
Ω

χΩε
0

(
v(ρ̃ε)∂tc̃

εφ+ b(ρ̃ε)∂w c̃
εφ+M(ρ̃ε)∇c̃ε∇φ

)
dx′dwdt = −ε

T∫
0

∫
Γε

0

λ v(ρ̃ε) c̃εφdγεdt.

To pass to the two-scale limit, we choose a test function φ = ψ1(t, x)+εψ2(t, x, x′
ε ) and integrate by parts. Using

the uniform convergence of ρ̃ε, the two-scale convergence of c̃ε, ∂tc̃
ε and ∇c̃ε, the strong two-scale convergence

of χΩε
0
, and the continuity of the coefficients v, b and M , we obtain

T∫
0

∫
Ω

χΩε
0
v(ρ̃ε)∂tc̃

ε

(
ψ1(t, x) + εψ2

(
t, x,

x′

ε

))
dx′dwdt →

T∫
0

∫
Ω

(
|Y |χΩ1

0
+ χΩ2

0

)
∂tc̃ψ1(t, x)v(ρ)dx′dwdt,

T∫
0

∫
Ω

χΩε
0
b(ρ̃ε)∂w c̃

ε

(
ψ1(t, x) + εψ2

(
t, x,

x′

ε

))
dxdt →

T∫
0

∫
Ω

(|Y |χΩ1
0
∂w c̃+ χΩ2

0
∂w c̃)b(ρ)ψ1(t, x) dx′dwdt,

and

T∫
0

∫
Ω

χΩε
0
M(ρ̃ε)∇c̃ε · ∇(ψ1 + εψ2)dx′dwdt

→
T∫

0

∫∫
Ω×Y

χΩ1
0
D̃(x,w)M(ρ)(∇c̃ + ∇y c̃1) · (∇ψ1 + ∇yψ2)dy dx′dwdt

+

T∫
0

∫∫
Ω×Z

χΩ2
0
D̃(x,w)M(ρ)(∇c̃ + ∇y c̃1) · (∇ψ1 + ∇yψ2)dy dx′dwdt,

where ∇y = (∂y1 , ∂y2 , 0)T , Ω1
0 = Ω ∩ {(x′, x3) : 0 < x3 < ρ0(x′)} and Ω2

0 = Ω ∩ {(x′, x3) : ρ0(x′) < x3 < 1}, and

M(ρ) =
1

J (ρ)

⎛
⎜⎜⎝

1 0 ∂x1f (ρ, ·)
0 1 ∂x2f (ρ, ·)

∂x1f (ρ, ·) ∂x2f (ρ, ·) |∂x1f (ρ, ·) |2 + |∂x2f (ρ, ·) |2 + |J (ρ) |2

⎞
⎟⎟⎠ .
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The boundary integral can be rewritten as

ε

T∫
0

∫
Γε

0

λv(ρ̃ε)c̃ε (ψ1 + εψ2)dγdt =

ε

T∫
0

∫
Γ̃ε

0

(
λ(v(ρ̃ε) − v(ρ))c̃ε (ψ1 + εψ2) + λv(ρ)c̃ε (ψ1 + εψ2)

)
dγdt

+ ε

T∫
0

∫
Sε

ρ0

λv(ρ̃ε)c̃ε (ψ1 + εψ2)dγdt,

where Γ̃ε
0 = ∪N(ε)

i=0 (0, ρ0(iε)) × ∂Sε
i , S

ε
ρ0 = ∪N(ε)

i=0 S
ε
i × ρ0(iε) and Γε

0 = Γ̃ε
0 ∪ Sε

ρ0 . To show the convergence
of the boundary integral over Γ̃ε

0 we use the notion of two-scale convergence on the periodic surfaces of the
micro-structure, see e.g. [3,13]. The surface area of Γ̃ε

0 is of order ε−1, thus the L2-norm over Γε
0 of the test

functions ψ1 and ψ2 scaled by ε1/2 is bounded.
We write

ε

T∫
0

∫
Γ̃ε

0

∣∣∣λ(v(ρ̃ε) − v(ρ))c̃ε (ψ1 + εψ2)
∣∣∣dγεdt

≤ μ||c̃ε||L∞((0,T )×Γ̃ε
0)||ρ̃ε − ρ||L∞((0,T )×∂Sε)

(
ε||ψ1||2L2((0,T )×Γ̃ε

0)
+ ε2||ψ2||2L2((0,T )×Γ̃ε

0)

)
,

and from the uniform boundedness of c̃ε and the continuous convergence of ρ̃ε to ρ in ((0, T )×∂Sε) we conclude
that the right-hand-side tends to zero with ε→ 0.

For the second integral, we write

λε

T∫
0

∫
Sε

ρ0

|v(ρ̃ε)c̃ε (ψ1 + εψ2)|dγdt

≤ μ||c̃ε||L∞((0,T )×Sε
ρ0)||ρ̃ε||L∞((0,T )×Sε

ρ0)

(
ε||ψ1||2L2((0,T )×Sε

ρ0) + ε2||ψ2||2L2((0,T )×S̃ε
ρ0)

)
,

and again the right-hand side tends to zero with ε→ 0.
Thank to Lemma 5.2 we have lim

ε→0
ε||c̃ε − c||2

L2((0,T )×Γ̃ε
0)

= 0, and therefore

ε

T∫
0

∫
Γε

0

λv(ρ̃ε)c̃ε (ψ1 + εψ2)dγεdt →
τ∫

0

∫
Ω1

0

∫
∂S

λv(ρ)c̃ ψ1 dγ′ydxdt.
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Altogether, we have obtained that passing to the limit (along a subsequence) in the variational formulation
(4.5) leads to the following identity

T∫
0

∫
Ω

(
χΩ1

0
|Y |(v(ρ)∂tc̃+ b(ρ)∂w c̃)ψ̃1 + χΩ2

0
(v(ρ)∂t c̃+ b(ρ)∂w c̃))ψ̃1

)
dx′dwdt

+

T∫
0

∫
Ω

∫
Y

χΩ1
0
D̃(x′, w)M(ρ)(∇c̃ + ∇y c̃1) · (∇ψ̃1 + ∇yψ̃2)dydx′dwdt

+

T∫
0

∫
Ω

∫
Z

χΩ2
0
D̃(x′, w)M(ρ)(∇c̃ + ∇y c̃1) · (∇ψ̃1 + ∇yψ̃2)dydx′dwdt

= −
T∫

0

∫
Ω

∫
∂S

χΩ1
0
λv(ρ)c̃ ψ̃1 dγ′dx′dwdt.

Choosing ψ1 = 0, we note that c1 depends linearly in the components of ∇c̃. The rest of the proof is classical in
homogenization theory. Changing variables back from w to x3, the weak formulation of the equation satisfied
by for c(t, x), with c̃(t, x′, f(ρ, t, x′, x3)) = c(t, x′, x3) is

T∫
0

∫
Ω

(
χΩ1

t
|Y |∂tc+ χΩ2

t
∂tc
)
ψ1dxdt+

T∫
0

∫
Ω

∫
Y

χΩ1
t

3∑
i,j=1

D1
ij(x)∂xic ∂xjψ1dxdt

+

T∫
0

∫
Ω

χΩ2
t
D(x)∇c · ∇ψ1dxdt = −

T∫
0

∫
Ω

∫
∂S

χΩ1
t
λ cψ1 dγ′dxdt,

where Ω1
t = Ω ∩ {(x′, x3) : 0 < x3 < ρ(t, x′)} and Ω2

t = Ω ∩ {(x′, x3) : ρ(t, x′) < x3 < 1}, and where D1
ij(x, t) is

given by D1
i3 = D1

3i = D(x)δi3, and for 1 ≤ i ≤ 2 and 1 ≤ j ≤ 2,

D1
ij(x) = D(x)

(
|Y | δij +

∫
Y

∂yiωjdy
)
,

where ωj are Z periodic solutions of

− Δyωj = 0 in Y, −∇y(wj − yj) · ν = 0 on ∂S. (5.2)

they are uniquely defined if a normalisation condition is chosen. Because of the symmetries of the problem,∫
Y ∂y1ω1dy =

∫
Y ∂y2ω2dy, and

∫
Y ∂y2ω1dy =

∫
Y ∂y1ω2dy = 0. We have obtained that D1 is diagonal, and given

by D1
33 = D(x) and D1

11 = D1
11 = D(x) (|Y | + d∗), as announced.

Finally, the convergence of initial data follows from the strong convergence of ρε, the two-scale convergence
of cε and of ∂tc

ε and from the identity
T∫

0

∫
Ωε

0

v(ρε)∂tc
εψ(x,

x

ε
)ξ(t)dx′dt = −

∫
Ωε

0

v(ρε
0)c

0ψ(x,
x

ε
)ξ(0)dx′

−
T∫

0

∫
Ωε

0

cεψ(x,
x

ε
)(∂tv(ρε)ξ(t) + v(ρε)∂tξ(t))dx′dt,

with ξ ∈ C∞([0, T ]), ξ(T ) = 0 and ψ ∈ C∞(Ω × Z).
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This conclude the proof of convergence, up to sub-sequences. We shall now show the uniqueness of the
solution of the limit problem, which will imply the convergence of the entire sequence of microscopic problems.

Uniqueness.

The uniqueness of solution to the macroscopic problem (3.1)–(3.3) follows from a variant of the proof of
uniqueness for the ε dependent problem. Integrating the equation defining ρ implicitly, we obtain

ρ(t, x′) = K − (K − ρ0(x′)) exp

(
−
∫ t

0

cs(s, x′)√
1 + cs2(s, x′)

ds

)
.

Following the same steps that in Proposition 4.4 and Lemma 4.5, we verify the maximum principle holds for c,
and that

|∇x′ρ| ≤ μ

(
‖ρ0‖C1([0,1]2) + max

Ω
c0
)
.

Then, given any two solutions (ρa, c̃a) and (ρb, c̃b), where the˜corresponds to the change of domain from Ωt to
Ω0 we obtain, as in Proposition 4.9 that

sup
(0,1)2×(0,T )

|ρa − ρb| + sup
(0,1)2×(0,T )

|∇x′ρa −∇x′ρb| ≤ μ‖c̃a − c̃b‖L1(Ω0×(0,T )).

Repeating then the computation done Proposition 4.9, we obtain for any τ < T ,

∫
Ω0

|c̃a(τ) − c̃b(τ)|2 dx′dw ≤ μ

τ∫
0

∫
Ω0

|c̃a − c̃b|2dx′dwdt

and the conclusion follows from Gronwall’s Lemma.

6. Concluding remarks

Using homogenization techniques we derived a macroscopic model for nutrient diffusion and plant root growth
from a microscopic description on the scale of a single root. We have shown the convergence of the sequence of
solutions of full problem involving interactions at the microscopic scale to a solution of a macroscopic problem
defined in the homogeneous domain Ω. The influence of the micro-structure problem appears in the diffusion
coefficient and in the absorption term in the macroscopic model in a suitably averaged form. An essential
feature of the microscopic problem is the non-local nature of the root growth rate. This feature is preserved
in the limit. We view this model as a first step towards a more precise modelling of the dependence of root
growth on the nutrient concentration. To clarify the presentation, we restricted ourselves to a very simple root
geometry. One improvement of this model could be to make the growth rate of the roots depend on the quantity
of nutrient available very locally around the root. This would mean, for example, to allow r0, the radius of the
ball centred around each root tip which determines each root growth rate, to depend on ε. Another variant
would be to allow the velocity to depend upon for point-wise values of the nutrient concentration at the tip of
the roots. We do not know however if such assumptions would lead to well-posed models.

A second natural generalization would be to allow roots to growth directions to depend on other factors than
gravity, leading to complex root networks. This will be the subject of future studies.
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