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STABILITY OF RETARDED SYSTEMS WITH SLOWLY VARYING
COEFFICIENT

Michael Iosif Gil1

Abstract. The “freezing” method for ordinary differential equations is extended to multivariable
retarded systems with distributed delays and slowly varying coefficients. Explicit stability conditions
are derived. The main tool of the paper is a combined usage of the generalized Bohl-Perron principle
and norm estimates for the fundamental solutions of the considered equations.

Mathematics Subject Classification. 34K20

Received February 10, 2011. Revised July 8, 2011
Published online September 27, 2011.

1. Introduction and statement of the main result

Stability of linear nonautonomous systems with delay has been investigated by many authors, cf. [6, 8], etc.
Besides, the basic method for the stability analysis is the direct Lyapunov method. By that method many very
strong results are obtained. But finding Lyapunov’s type functionals for retarded systems is usually difficult.
An interesting approach to obtaining explicit stability conditions for vector equations were established, in the
papers [13, 14]. That approach is based on deriving bounds for the norms of system solutions. About other
explicit stability conditions see the fundamental survey [11]. But to the best of our knowledge, the general
linear vector functional differential equations with slowly varying coefficients were almost not investigated in
the available literature.

Let Rn be a real Euclidean space with the scalar product (., .), Euclidean norm ‖.‖n =
√

(., .) and identity
matrix I. For an n× n-matrix A, ‖A‖n = supz∈Rn ‖Az‖n/‖z‖n. Put R+ = [0,∞).

Consider in R
n the equation

ẋ(t) =
∫ η

0

R(t, dτ)x(t − τ) (t ≥ 0; ẋ(t) = dx/dt) (1.1)

where R(t, δ) is an n× n- matrix-valued function defined on R+ ×Σ, where Σ is the set of the Borel subsets of
[0, η]. Besides, R(., .) is additive in the second argument and its variation in that argument is uniformly bounded
with respect to the first argument on R+. The integral in (1.1) is understood as the vector Riemann-Stieltjes
integral, that is the limit of the sums

M−1∑
k=1

R(t,Δ(M)
k )x(t− τ

(M)
k ) as max

k
|Δ(M)

k | → 0.
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Here Δ(M)
k = s

(M)
k+1 − s

(M)
k , 0 = s

(M)
0 < s

(M)
1 < . . . < s

(M)
M = η and τ (M)

k ∈ Δ
(M)
k (k = 1, . . . ,M).

We extend the “freezing” method for ordinary differential equations cf. [1, 7, 12] and [3], Section 3.2, to
equation (1.1). Besides, explicit exponential stability conditions are derived. They considerably generalize and
improve Theorem 9.3.1 from [3], and generalize Theorem 4.15 from [5].

It is assumed that there is a positive constant q, such that
∫ η

0

‖R(t, dτ) −R(s, dτ)‖n ≤ q |t− s| (t, s ≥ 0). (1.2)

The integral in (1.2) means the limit of the sums

M−1∑
k=1

‖R(t,Δ(M)
k ) −R(s,Δ(M)

k )‖n

as maxk |Δ(M)
k | → 0. For example, consider the equation

ẋ(t) =
m∑

k=1

Ak(t)
∫ η

0

x(t− τ)dμk(τ) (1.3)

where μk are nondecreasing scalar functions and Ak(t) are variable n× n-matrices with the properties

‖Ak(t) −Ak(s)‖n ≤ qk |t− s| (t, s ≥ 0) and sup
t≥0

‖Ak(t)‖n <∞ (1.4)

with qk = const. ≥ 0 (k = 1, . . . ,m). Then (1.2) holds, with

q =
m∑

k=1

qk var(μk),

where var(μk) denotes the variation of μk.
A solution of (1.1) is an absolutely continuous function which satisfies that equation on (0,∞) almost every-

where with the initial condition
x(t) = φ(t) (−η ≤ t ≤ 0) (1.5)

for a given continuous vector function φ(t) defined on [−η, 0]. Existence results and stability definitions can be
found for instance in [6, 8].

Recall that a differentiable in t function G(t, t1) (t ≥ t1 ≥ 0) is the fundamental solution to (1.1) if it satisfies
that equation in t and the initial conditions

G(t, t) = I, G(t, t1) = 0 (t < t1, t1 ≥ 0).

For a fixed s ≥ 0, consider the “frozen” equation

ẏ(t) =
∫ η

0

R(s, dτ)y(t− τ) (t > 0). (1.6)

Since (1.6) is an autonomous equation, the fundamental solution Ĝs(t, t1) to equation (1.6) is defined by
Ĝs(t, t1) = Ĝs(t − t1), where Ĝs(t) is a matrix-valued function satisfying that equation and the initial con-
ditions

Ĝs(0+) = I, Ĝs(t) = 0 (t < 0). (1.7)

Now we are in a position to formulate our main result.
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Theorem 1.1. Let the conditions (1.2) and

χ := sup
s≥0

∫ ∞

0

t‖Ĝs(t)‖ndt <
1
q

(1.8)

hold. Then equation (1.1) is exponentially stable.

This theorem is proved in Section 5.

2. Equations “close” to ordinary differential ones

Let us point a stability criterion which is more convenient than Theorem 1.1 in the case of the equation

ẋ(t) = A(t)x(t) +
∫ η

0

R0(t, dτ)x(t − τ) (t > 0), (2.1)

where R0(t, δ) is an n × n matrix-valued function defined on R+ × Σ and A(t) for any t ≥ 0 is an n × n
Hurwitzian matrix. Besides, R0(t, .) is additive in the second argument and its variation is uniformly bounded
in t ∈ [0,∞). That is,

V (R0) := sup
s≥0

∫ η

0

‖R0(s, dτ)‖n <∞.

It is assumed that
‖A(t) −A(s)‖n ≤ q0|t− s| (t, s ≥ 0). (2.2)

Theorem 2.1. Let the conditions (2.2),

νA := sup
s≥0

∫ ∞

0

‖eA(s)t‖ndt <
1

V (R0)

and

χ̂0 := sup
s≥0

∫ ∞

0

t‖eA(s)t‖ndt <
1 − νAV (R0)

q0
(2.3)

hold. Then equation (2.1) is exponentially stable.

This theorem is also proved in Section 5. For instance, consider the equation

ẋ(t) = A(t)x(t) +
m∑

k=1

Ak(t)x(t − hk) (t ≥ 0)

where hk = const > 0 and Ak(t) are n × n-matrices with the properties supt≥0 ‖Ak(t)‖n < ∞ (k = 1, . . . ,m).
In the considered case

V (R0) = sup
s

m∑
k=1

‖Ak(s)‖n.

About simple estimates for ‖eA(s)t‖n see [3], Section 3.2.
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3. Equation with one distributed delay

In this section we illustrate Theorem 1.1 in the case of the system

ẋ(t) = A(t)
∫ η

0

x(t− τ)dμ(τ), (3.1)

where μ is a scalar nondecreasing function of a bounded variation var(μ), and A(t) is a negative definite
Hermitian n× n-matrix, satisfying (2.2). Hence, condition (1.2) holds with

q = q0 var(μ). (3.2)

Furthermore, for a fixed s ≥ 0, consider the equation

ẋ(t) = A(s)
∫ η

0

x(t− τ)dμ(τ). (3.3)

Put
Eμw(t) =

∫ η

0

w(t− τ)dμ(τ).

Reduce equation (3.3) to the diagonal form:

ẋj(t) = λj(s)Eμxj(t) (j = 1, . . . , n), (3.4)

where λj(s) are the eigenvalues of A(s). Let Xs,j(t) be the fundamental solution of the scalar equation (3.4).
Assume that

Jj(s) :=
∫ ∞

0

|Xs,j(t)|dt <∞ (j = 1, . . . , n). (3.5)

Then the fundamental solution Ĝs(t) to (3.3) satisfies the equality
∫ ∞
0 ‖Ĝs(t)‖ndt = maxj Jj(s). The inequality

χ ≤ (1 + v1(μ)) sup
s≥0,j=1,...,n

J2
j (s) where v1(μ) :=

∫ η

0

τdμ(τ),

holds according to Lemma 5.8 proved below. Now Theorem 1.1 implies

Theorem 3.1. If the conditions (2.2), (3.5) and

var(μ) q0 (1 + v1(μ)) sup
s≥0,j=1,...,n

J2
j (s) < 1

hold, then system (3.1) is exponentially stable.

Furthermore, let

k(z) = z +
∫ η

0

exp(−zτ)dμ(τ) (z ∈ C).

So k(z) is the characteristic function of the scalar equation

ẏ +
∫ η

0

y(t− τ)dμ(τ) = 0. (3.6)

The fundamental solution of (3.6) is

Xμ(t) =
1

2πi

∫ c+i∞

c−i∞
eztk−1(z)dz (c = const.).
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Hence,
1

k(z)
=

∫ ∞

0

e−ztXμ(t)dt.

If
eη var(μ) < 1, (3.7)

then as it was to shown in the paper [4], we have Xμ(t) ≥ 0 and Xμ(t) → 0 as t→ ∞. So

1
|k(iω)| ≤

∫ ∞

0

Xμ(t)dt =
1

k(0)
=

1
var(μ)

(ω ∈ R). (3.8)

Assume that
sup

s≥0,k=1,...,n
|λk(s)| < 1

e var(μ)η
, (3.9)

and
ζ := min

k=1,...,n
inf
s≥0

|λk(s)| > 0.

Then by (3.8) we have Jj(s) ≤ 1
var(μ)ζ (j ≤ n). Now Theorem 3.1 implies

Corollary 3.2. Let the conditions (2.2), (3.9) and

q0(1 + v1(μ)) < var(μ)ζ2 (3.10)

hold. Then (3.1) is exponentially stable.

4. Example

Consider the system

ẋ1 + (a1 + b1 cos (ωt))x1(t− η) + c sin (ωt)x2(t− η) = 0,
ẋ2 + (a2 + b2 cos (ωt))x2(t− η) + c sin (ωt)x1(t− η) = 0, (4.1)

with positive constants ω, a1, a2, b1, b2 and c, satisfying the condition bk + c < ak (k = 1, 2). Rewrite (4.1) as
ẋ = A2(t)x(t − η), where

A2(t) = −
(
a1 + b1 cos (ωt) c sin (ωt)

c sin (ωt) a2 + b2 cos (ωt)

)
.

Simple calculations show that this matrix satisfies (2.2) with

q0 ≤ qω = ω[b21 + b22 + 2c2]1/2.

By the Herschgorin theorem, cf. [10], the eigenvalues λ1,2(t) of A2(t) satisfy the inequalities |ak +λk(t)| ≤ bk +c,
and therefore

|λk(t)| ≤ max
k

(ak + bk + c), and |λk(t)| ≥ ζ0 := min
k

(ak − bk − c) (k = 1, 2).

Thus ζ ≥ ζ0. In addition, var(μ) = 1 and v1 (μ) = η. So (3.9) is provided by

c+ max
k

(ak + bk) <
1
e η

, (4.2)

and (3.10) is provided by
qω(1 + η) < ζ2

0 . (4.3)
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Consequently, if (4.2) and (4.3) hold, then by Corollary 3.2 system (4.1) is exponentially stable.
For instance, consider the system

ẋ1 + (10 + cos (ωt))x1(t− 0.02) + sin (ωt)x2(t− 0.02) = 0,
ẋ2 + (10 + cos (ωt))x2(t− 0.02) + sin (ωt)x1(t− 0.02) = 0. (4.4)

So
a1 = a2 = 10, b1 = b2 = c1 = c2 = 1, η = 0.02 and q0 ≤ 2ω.

By the above mentioned Herschgorin theorem, the eigenvalues λ1,2(t) satisfy the inequalities |10 + λk(t)| ≤ 2,
and therefore

|λk(t)| ≤ 12, and |λk(t)| ≥ ζ0 = 8 (k = 1, 2).

In addition, var(μ) = 1 and v1 (μ) = 0.02. So (4.2) holds, since 12 < 1/0.02e. Thus condition (4.3) holds, if
2.04ω < 64. Consequently, system (4.4) is exponentially stable, provided

ω <
64

2.04
·

5. Proofs

Let C(Ω) = C(Ω,Rn) be the space of continuous real vector functions f(t) = (fj(t))n
j=1 defined and bounded

on a set Ω with the sup-norm
‖f‖C(Ω) = sup

t∈Ω
‖f(t)‖n.

By Ĉ(Ω) = Ĉ(Ω,Rn) we denote the same space with the norm

‖f‖Ĉ(Ω) = max
j=1,...,n

sup
t∈Ω

|fj(t)|.

Introduce in Ĉ(Ω) the operator

Af(t) =
∫

Ω

K(t, s)f(s)ds, (5.1)

where K(t, s) = (Kjk(t, s))n
j,k=1 is a real matrix function defined on Ω × Ω, continuous in the first argument

and satisfying

τA := max
j=1,...,n

sup
t∈Ω

∫
Ω

n∑
k=1

|Kjk(t, s)|ds <∞. (5.2)

Put ‖A‖Ĉ(Ω) = supw∈C(Ω) ‖Aw‖Ĉ(Ω)/‖w‖Ĉ(Ω).

Lemma 5.1. Let A be defined by (5.1) and condition (5.2) hold. Then ‖A‖Ĉ(Ω) = τA.

Proof. It is simple to show that

‖A‖Ĉ(Ω) ≤ max
t,j

∫
Ω

n∑
k=1

|Kjk(t, s)|ds = τA. (5.3)

Let j0 and t0 ∈ Ω be such that

τA =
∫

Ω

n∑
k=1

|Kj0k(t0, s)|ds. (5.4)
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Take h(s) = (hk(s))n
k=1 with hk(s) = signum Kj0k(t0, s). Then we have

(Ah)j(t) :=
∫

Ω

n∑
k=1

Kjk(t, s)hk(s)ds =
∫

Ω

n∑
k=1

Kjk(t, s)(signum Kj0k(t0, s))ds

provided j �= j0. In addition,

(Ah)j0 (t0) =
∫

Ω

n∑
k=1

|Kj0k(t0, s)|ds.

But according to (5.2),

|(Ah)j(t)| ≤
∫

Ω

n∑
k=1

|Kj0k(t0, s)|ds (j �= j0).

So ‖Ah‖Ĉ(Ω) = τA. Taking into account that |signum Kj0k(t0, s)| = 1, we have ‖h‖Ĉ(Ω) = 1 and therefore
‖Ah‖Ĉ(Ω)/‖h‖Ĉ(Ω) = τA. This and (5.3) prove the result. �

Furthermore, due to the variation of constants formula the equation

ẏ(t) =
∫ η

0

R(t, dτ)y(t− τ) + f(t) (t ≥ 0) (5.5)

with a given vector function f and the zero initial condition

y(t) = 0 (t ≤ 0) (5.6)

is equivalent to the equation

y(t) =
∫ t

0

G(t, τ)f(τ)dτ. (5.7)

Let Gjk(t, s) be the entries of G(t, s).

Corollary 5.2. Let a solution of problem (5.5), (5.6) be bounded on R+ for any f ∈ C(R+). Then

max
t≥0,j=1,...,n

∫ t

0

n∑
k=1

|Gjk(t, s)|ds <∞.

Indeed, this result at once follows from the previous lemma.
Let x(t) be a solution of problem (1.1), (1.5). Put

θ(t) =
{
φ(0) if t ≥ 0,
φ(t) if −η ≤ t ≤ 0

and y0(t) = x(t) − θ(t). We can write dθ(t)/dt = 0 (t ≥ 0) and

ẏ0(t) =
∫ η

0

R(t, dτ)y0(t− τ) + ψ(t) (t ≥ 0), (5.8)

where
ψ(t) =

∫ η

0

R(t, dτ)θ(t − τ).

Hence, by the variation of constants formula we have

y0(t) =
∫ t

0

G(t, s)ψ(s)ds (t ≥ 0).

But x(t) = y0(t) + θ(t). We thus have proved the following result.
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Lemma 5.3. A solution of problem (1.1), (1.5) can be represented by the equality

x(t) = φ(0) +
∫ t

0

G(t, t1)ψ(t1)dt1 (t ≥ 0).

Following [5], page 371, we will say that equation (5.5) satisfies the Perron condition, if for any f ∈ C(R+), a
solution of problem (5.5), (5.6) is bounded.

Lemma 5.4. If equation (5.5) satisfies the Perron condition, then a solution of (1.1) is bounded.

Proof. We have∥∥∥∥
∫ t

0

G(t, s)ψ(s)ds
∥∥∥∥

n

≤
∥∥∥∥
∫ t

0

G(t, s)
∫ η

0

R(s, dτ)φ̂(s− τ)ds
∥∥∥∥

n

≤ ‖φ‖C[−η,0]

∫ t

0

‖G(t, s)‖n

∫ η

0

‖R(s, dτ)‖nds

≤ V (R)‖φ‖C[−η,0] sup
t≥0

∫ t

0

‖G(t, s)‖nds,

where
V (R) := sup

t≥0

∫ η

0

‖R(t, dτ)‖nds.

So by Corollary 5.2 and the previous lemma we have the inequality

‖x‖C(R+) ≤ m0‖φ‖C[−η,0], (5.9)

where

m0 := 1 + V (R) sup
t≥0

∫ t

0

‖G(t, s)‖nds.

This proves the lemma. �

Lemma 5.5. If equation (5.5) satisfies the Perron condition, then (1.1) is exponentially stable.

Proof. Substituting
x1(t) = eεtx(t) (5.10)

with an ε > 0 into (1.1), we obtain the equation

ẋ1(t) = εx1(t) +
∫ η

0

eετR(t, dτ)x1(t− τ) (t > 0). (5.11)

Put

Ĝf(t) =
∫ t

0

G(t, s)f(s)ds.

Under the hypothesis of the theorem, Ĝ is defined on the whole space C(0,∞). By the Banach theorem [9],
Section 2, Ĝ is bounded on C(0,∞). Clearly, it is bounded on C(0, T ), T <∞. Consider also the equation

ẏε(t) = εyε(t) +
∫ η

0

eετdτR(t, dτ)yε(t− τ) + f(t).

According to (5.5),

d
dt

(y − yε)(t) =
∫ η

0

dτR(t, dτ)y(t − τ) − εyε(t) −
∫ η

0

eετdτR(t, dτ)yε(t− τ)

=
∫ η

0

dτR(t, dτ)(y(t − τ) − yε(t)) = fε(t),
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where

fε(t) = −εyε(t) +
∫ η

0

(1 − eετ )dτR(t, dτ)yε(t− τ).

Consequently, y − yε = Ĝfε. For simplicity put |y|T = sup0≤t≤T ‖y(t)‖n (T <∞). Then

|fε|T ≤ |yε|T (ε+ V (R)(eεη − 1)).

So
|yε|T ≤ |y|T + |yε|T |Ĝ|T (ε+ V (R)(eεη − 1)).

Thus for a sufficiently small ε,

|yε|T ≤ |y|T (1 − |Ĝ|T (ε+ V (R)(eεη − 1)))−1.

Hence, letting t→ ∞, by the Banach-Steinhaus theorem, we get

‖yε‖C(0,∞) ≤ ‖y‖C(0,∞)(1 − ‖Ĝ‖C(0,∞)(ε+ V (R)(eεη − 1)))−1.

By the previous lemma, x1 is bounded. Now (5.10) proves the exponential stability. As claimed. �

The latter lemma generalizes Theorem 4.15 from [5], and therefore it generalizes the Bohl-Perron principle
for ordinary differential equations to functional differential equations.

Proof of Theorem 1.1. For a vector-valued function u defined on [−η,∞) and a fixed s ≥ 0, put

E(s)u(t) =
∫ η

0

R(s, dτ)u(t− τ).

Then (5.5) can be written as
ẏ(t) = E(s)y(t) + [E(t) − E(s)]y(t) + f(t).

By the Variation of Constants formula

y(t) =
∫ t

0

Ĝs(t− t1)[(E(t1) − E(s))y(t1) + f(t1)]dt1. (5.12)

Thanks to condition (1.2), for all s ≤ t we obtain

‖[E(t) − E(s)]y(t)‖n =
∥∥∥∥
∫ η

0

[R(t, dτ) −R(s, dτ)]y(t − τ)
∥∥∥∥

n

≤ q|t− s|‖y‖C(0,t). (5.13)

Note that for an ε > 0, we have
∫ ∞

0

‖Ĝs(t)‖ndt ≤
∫ ε

0

‖Ĝs(t)‖ndt+
1
ε

∫ ∞

ε

t‖Ĝs(t)‖n ≤ c1

where

c1 = sup
s≥0

∫ ε

0

‖Ĝs(t)‖ndt+
1
ε
χ.

Now (5.12) and (5.13) imply

‖y‖C(0,t) ≤ c1‖f‖C(R+) + ‖y‖C(0,t)

∫ t

0

‖Ĝs(t− t1)‖nq|t1 − s|dt1.
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Take s = t. Then
∫ t

0

‖Ĝs(t− t1)‖n|t1 − s|dt1 =
∫ t

0

‖Ĝt(t− t1)‖n(t− t1)dt1

=
∫ t

0

‖Ĝt(u)‖nudu ≤
∫ ∞

0

‖Ĝt(u)‖nudu ≤ χ.

Thus ‖y‖C(0,t) ≤ c1‖f‖C(R+) + qχ‖y‖C(0,t). Now the condition qχ < 1 implies

‖y‖C(R+) ≤
c1‖f‖C(R+)

1 − qχ
·

So for any bounded f the solution to (5.5), (5.6) is uniformly bounded. Now Lemma 5.5 proves the
theorem. �

To prove Theorem 2.1, consider the equation

ẋ(t) = A(t)x(t) +
∫ η

0

dτR0(t, τ)x(t − τ) + f(t) (5.14)

and denote by U(t, s) (t ≥ s ≥ 0) the evolution operator of the equation

ẏ(t) = A(t)y(t). (5.15)

Introduce the operator Û by

Ûf(t) =
∫ t

0

U(t, s)f(s)ds.

Lemma 5.6. Let the condition
‖Û‖C(0,∞) <

1
V (R0)

, (5.16)

hold. Then any solution of (5.14) with f ∈ C(R+) and the zero initial condition satisfies the inequality

‖x‖C(0,∞) ≤ (1 − V (R0)‖Û‖C(0,∞))−1‖Û‖C(0,∞)‖f‖C(0,∞).

Proof. Put

E0x(t) =
∫ η

0

dτR0(t, τ)x(t − τ).

Equation (5.14) is equivalent to the following one:

x(t) =
∫ t

0

U(t, s)(E0x(s) + f(s))ds.

Hence,
‖x‖C(0,∞) ≤ ‖Û‖C(0,∞)(‖E0x‖C(0,∞) + ‖f‖C(0,∞)).

It is simple to check that ‖E0x‖C(0,∞) ≤ V (R0)‖E0x‖C(0,∞). Hence, by (5.16) we arrive at the required
result. �

The previous lemma and Lemma 5.5 imply

Corollary 5.7. Let conditions (2.2) and (5.16) hold. Then equation (2.1) is exponentially stable.
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Proof of Theorem 2.1. Consider the equation

ẋ(t) = A(t)x(t) + f(t) (5.17)

with the zero inintial condition x(0) = 0. Rewrite it as

ẋ(t) = A(s)x(t) + (A(t) −A(s))x(t) + f(t).

Hence

x(t) =
∫ t

0

eA(s)(t−t1)[(A(t1) −A(s))x(t1) + f(t1)]dt1.

Take s = t. Then

‖x(t)‖n ≤
∫ t

0

‖eA(t)(t−t1)‖‖(A(t1) −A(t))x(t1)‖dt1 + c0,

where

c0 := sup
s

sup
t

∫ t

0

‖eA(s)(t−t1)‖n‖f(t1)‖ndt1 ≤ ‖f‖C(R+) sup
s

∫ ∞

0

‖eA(s)t1‖ndt1 ≤ νA‖f‖C(R+).

Thus, by (2.2), for any T <∞,

sup
t≤T

‖x(t)‖n ≤ c0 + q0 sup
t≤T

‖x(t)‖n

∫ T

0

‖eA(t)(T−t1)‖|t1 − T |dt1

≤ c0 + q0 sup
t≤T

‖x(t)‖n

∫ T

0

‖eA(t)u‖udu ≤ c0 + q0χ̂0 sup
t≤T

‖x(t)‖n.

By (2.3), we have q0χ̂0 < 1. So

‖x‖C(R+) ≤ (1 − q0χ̂0)−1c0 = (1 − q0χ̂0)−1νA‖f‖C(R+).

That is,
‖Û‖C(0,∞) < (1 − q0χ̂0)−1νA.

Now condition (2.3) implies (5.16). Hence, the required results is due to Corollary 5.7. �

To prove the next lemma, which is a basis of the proof of Theorem 3.1, consider the equation

ẋ(t) =
∫ η

0

R1(dτ)x(t − τ), (5.18)

where R1 is additive with

V1(R1) :=
∫ η

0

τ‖R1(dτ)‖n <∞.

Lemma 5.8. Let Y (t) = tZ(t), where Z(t) is the fundamental solution to (5.18). If, in addition,

‖Z‖L1 =
∫ ∞

0

‖Z(t)‖ndt <∞,

then ‖Y ‖L1 ≤ ‖Z‖2
L1(1 + V1(R1)).
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Proof. By (5.18)

Ẏ (t) = tŻ(t) + Z(t) = t

∫ η

0

R1(dτ)Z(t− τ) + Z(t)

=
∫ η

0

R1(dτ)(t − τ)Z(t − τ) +
∫ η

0

τR1(dτ)Z(t − τ) + Z(t).

Thus,

Ẏ (t) =
∫ η

0

R1(dτ)Y (t− τ) + F (t)

where
F (t) =

∫ η

0

τR(dτ)Z(t − τ) + Z(t).

Hence,

Y (t) =
∫ t

0

Z(t− t1)F (t1)dt1.

By the Young inequality for convolutions, cf. [2], page 141, Theorem 9.4.1, ‖Y ‖L1 ≤ ‖Z‖L1‖F‖L1. But ‖F‖L1 ≤
‖Z‖L1(1 + V1(R1)). We thus have established the required result. �

Concluding remarks: We have established explicit exponential stability conditions for a class of linear mul-
tivariable retarded systems with slowly varying coefficients. As the example shows, in appropriate situations
these conditions enable us to avoid the constructing of the Lyapunov type functionals.

References

[1] B.F. Bylov, B.M. Grobman, V.V. Nemyckii and R.E. Vinograd The Theory of Lyapunov Exponents. Nauka, Moscow (1966)
(in Russian).

[2] D.J. Garling, Inequalities. A Jorney into Linear Analysis. Cambridge, Cambridge Univesity Press (2007).

[3] M.I. Gil, Stability of Finite and Infinite Dimensional Systems. Kluwer, NewYork (1998).

[4] M.I. Gil, The Aizerman-Myshkis problem for functional-differential equations with causal nonlinearities. Functional Differential
Equations 11 (2005) 175–185.

[5] A. Halanay, Differential Equations: Stability. Oscillation, Time Lags. Academic Press, NY (1966)

[6] J.K. Hale and S.M.V. Lunel, Introduction to Functional Differential Equations. Springer, New York (1993).

[7] N.A. Izobov, Linear systems of ordinary differential equations. Itogi Nauki i Tekhniki. Mat. Analis. 12 (1974) 71–146 (Russian).

[8] V. Kolmanovskii and A. Myshkis, Applied Theory of Functional Differential Equations. Kluwer (1999).

[9] S.G. Krein, Linear Equations in a Banach Space. Nauka, Moscow (1971) (in Russian).

[10] M. Marcus and H. Minc, A Survey of Matrix Theory and Matrix Inequalities. Allyn and Bacon, Boston (1964).

[11] J.-P. Richard, Time-delay systems: an overview of some recent advances and open problems. Automatica 39 (2003) 1667–1694.

[12] R. Vinograd, An improved estimate in the method of freezing. Proc. Amer. Soc. 89 (1983) 125–129.

[13] A. Zevin and M. Pinsky, Delay-independent stability conditions for time-varying nonlinear uncertain systems. IEEE Trans.
Automat. Contr. 51 (2006) 1482–1485.

[14] A. Zevin and M. Pinsky, Sharp bounds for Lyapunov exponents and stability conditions for uncertain systems with delays.
IEEE Trans. Automat. Contr. 55 (2010) 1249–1253.


	Introduction and statement of the main result
	Equations ``close'' to ordinary differential ones
	Equation with one distributed delay
	Example
	Proofs
	References

