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STABILITY OF RETARDED SYSTEMS WITH SLOWLY VARYING
COEFFICIENT

MIicHAEL TosiF Gir!

Abstract. The “freezing” method for ordinary differential equations is extended to multivariable
retarded systems with distributed delays and slowly varying coefficients. Explicit stability conditions
are derived. The main tool of the paper is a combined usage of the generalized Bohl-Perron principle
and norm estimates for the fundamental solutions of the considered equations.
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1. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

Stability of linear nonautonomous systems with delay has been investigated by many authors, cf. [6,8], etc.
Besides, the basic method for the stability analysis is the direct Lyapunov method. By that method many very
strong results are obtained. But finding Lyapunov’s type functionals for retarded systems is usually difficult.
An interesting approach to obtaining explicit stability conditions for vector equations were established, in the
papers [13,14]. That approach is based on deriving bounds for the norms of system solutions. About other
explicit stability conditions see the fundamental survey [11]. But to the best of our knowledge, the general
linear vector functional differential equations with slowly varying coefficients were almost not investigated in
the available literature.

Let R™ be a real Euclidean space with the scalar product (.,.), Euclidean norm |.||, = /(.,.) and identity
matrix I. For an n x n-matrix A, ||A|l, = sup,cp~ [|A2]|n/]|2]|n. Put Ry = [0, 00).

Consider in R™ the equation

i(t) = /On R(t,dr)z(t —7) (t>0;i(t) = dz/dt) (1.1)

where R(t, ) is an n X n- matrix-valued function defined on R4 x X, where X' is the set of the Borel subsets of
[0,7)]. Besides, R(.,.) is additive in the second argument and its variation in that argument is uniformly bounded
with respect to the first argument on R, . The integral in (1.1) is understood as the vector Riemann-Stieltjes
integral, that is the limit of the sums

M—1
Z R(t,A;M)):E(t — ’T’S,M)) as mgx\A;M)\ — 0.
k=1
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Here A,(CM) = s,(fﬁ - s,gM), 0= s(()M) < ng) <...< SS\I/}/I) =1 and T,EM) € A,(CM) (k=1,...,M).

We extend the “freezing” method for ordinary differential equations cf. [1,7,12] and [3], Section 3.2, to
equation (1.1). Besides, explicit exponential stability conditions are derived. They considerably generalize and
improve Theorem 9.3.1 from [3], and generalize Theorem 4.15 from [5].

It is assumed that there is a positive constant ¢, such that

/On IR(t,dr) — R(s,d7)||n < q |t — 5| (t,5 > 0). (1.2)

The integral in (1.2) means the limit of the sums

M—1
> IR AM) = R(s, AP
k=1

as maxy |A,(€M)\ — 0. For example, consider the equation

m

50 = Yo A0 [ ol = Didpn(r) (1.3)

k=1
where p, are nondecreasing scalar functions and Ay (t) are variable n X n-matrices with the properties

148 (8) = Ak (s)ln < gr |t = ] (£, 5 = 0) and sup [ Ax()[[n < 00 (1.4)
t>

with g, = const. >0 (k=1,...,m). Then (1.2) holds, with

q="Y i var(u),
k=1

where var(py) denotes the variation of puy.
A solution of (1.1) is an absolutely continuous function which satisfies that equation on (0, c0) almost every-
where with the initial condition

z(t) = ¢(t) (-n<t<0) (1.5)

for a given continuous vector function ¢(t) defined on [—n,0]. Existence results and stability definitions can be
found for instance in [6, 8].

Recall that a differentiable in ¢ function G(¢,%1) (¢t > t; > 0) is the fundamental solution to (1.1) if it satisfies
that equation in ¢ and the initial conditions

G(t,t) =1, G(t,tl) =0 (t <t1, t1 > 0)

For a fixed s > 0, consider the “frozen” equation
n
J(t) = / Ris,dr)y(t — ) (t>0). (1.6)
0

Since (1.6) is an autonomous equation, the fundamental solution Gy(t,t;) to equation (1.6) is defined by
Go(t,t1) = Go(t — t1), where G,(t) is a matrix-valued function satisfying that equation and the initial con-
ditions

Go(04) =1, G4(t) =0 (t < 0). (1.7)

Now we are in a position to formulate our main result.
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Theorem 1.1. Let the conditions (1.2) and
A 1
cimsup [ G0t < |
s>0.J0 q

hold. Then equation (1.1) is exponentially stable.

This theorem is proved in Section 5.

2. EQUATIONS “CLOSE” TO ORDINARY DIFFERENTIAL ONES

879

Let us point a stability criterion which is more convenient than Theorem 1.1 in the case of the equation

@(t) = At)x(t) + /0 " Ro(t,dr)a(t — 1) (> 0),

(2.1)

where Ro(t,0) is an n X n matrix-valued function defined on Ry x X and A(t) for any ¢ > 0 is an n X n
Hurwitzian matrix. Besides, Ry(t,.) is additive in the second argument and its variation is uniformly bounded

in t € [0,00). That is,

n
V(Roy) := sup/ |Ro(s,dr)]|. < oc.
0

s>0

It is assumed that
|A(t) — A(s)|[n < qolt — s| (£, s > 0).

Theorem 2.1. Let the conditions (2.2),

At 1
VA 1= Ssu e dt <
4 3218/0 et < Ty

and

> 1-vaV(R
Xo = sup/ A | ap < L= 2AV o)
s>0J0 q0

hold. Then equation (2.1) is exponentially stable.

This theorem is also proved in Section 5. For instance, consider the equation

B(t) = A@t)a(t) + Y A(t)z(t — h) (t > 0)
k=1

where hy, = const > 0 and Ag(t) are n x n-matrices with the properties sup;~g [[Ax(t)[[n < oo (k=1,...

In the considered case

V(Ro) =sup ) _ [ Ak(s)]n.

5 k=1

About simple estimates for [eA(®)||,, see [3], Section 3.2.

,m).
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3. EQUATION WITH ONE DISTRIBUTED DELAY

In this section we illustrate Theorem 1.1 in the case of the system

i) = () [ alt = 7)du(r), (3.1)

where p is a scalar nondecreasing function of a bounded variation var(u), and A(t) is a negative definite
Hermitian n x n-matrix, satisfying (2.2). Hence, condition (1.2) holds with

q = qo var(p). (3:2)

Furthermore, for a fixed s > 0, consider the equation

(1) = As) /0 "t = P)du(r). (3.3)
Put
Bult) = [ (e = r)an(r)
Reduce equation (3.3) to the diagonal form:
&j(t) = Aj(s)Bur;(t) (j=1,...,n), (3.4)

where \;(s) are the eigenvalues of A(s). Let X ;(¢) be the fundamental solution of the scalar equation (3.4).
Assume that

Ji(s) == /OOO X, (0l <00 (j=1,...,n). (3.5)

Then the fundamental solution Gy (t) to (3.3) satisfies the equality I |G ()] ndt = max; J;(s). The inequality

X < (I+wvi(p) sup sz(s) where vy (p) == /O77 Tdu(T),

§20,j=1,...,n
holds according to Lemma 5.8 proved below. Now Theorem 1.1 implies

Theorem 3.1. If the conditions (2.2), (3.5) and

var(u) go (1+vi(p)) _ sup  Ji(s) <1

hold, then system (3.1) is exponentially stable.
Furthermore, let

k(z)=2z+ /O77 exp(—z7)du(r) (z € C).

So k(z) is the characteristic function of the scalar equation

U
v+ / y(t —7)dp(r) = 0. (3.6)
0
The fundamental solution of (3.6) is

1 ctioco
Xu(t) = —/ e*'k1(2)dz (c = const.).
&

210 Jeioo
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Hence,
1

HEZAG%XNW’

en var(p) < 1, (3.7)

If

then as it was to shown in the paper [4], we have X, (t) > 0 and X,(t) — 0 as t — o0. So

1 > 1 1
ww”sé‘nmwzaazmmowem. (3.8)

Assume that

1
sup Ak (s)| < ———, 3.9
320,k=1,4“,n| k( )| € Var(/i)n ( )
and
= in  inf .
=, el 0
Then by (3.8) we have J;(s) < m (j <n). Now Theorem 3.1 implies
Corollary 3.2. Let the conditions (2.2), (3.9) and
qo(1 +v1(p)) < var(u)¢? (3.10)
hold. Then (3.1) is exponentially stable.
4. EXAMPLE
Consider the system
&1+ (a1 + by cos (wt))z1(t —n) + ¢ sin (wt)zo(t —n) =0,
T2 + (ag + bg cos (wt))z2(t —n) + ¢ sin (wt)z1(t —n) =0, (4.1)

with positive constants w, a1, as, b1, be and ¢, satisfying the condition by + ¢ < ai (k = 1,2). Rewrite (4.1) as
& = Az(t)z(t —n), where
_ (a1 +bicos(wt) csin (wt)
As(t) = ( csin (wt)  ag + bacos (wt) |-
Simple calculations show that this matrix satisfies (2.2) with

g < q, = w[b% + b2+ 202]1/2.

By the Herschgorin theorem, cf. [10], the eigenvalues A1 2(t) of As(t) satisfy the inequalities |ax + Ak (t)| < bi +c,
and therefore

Ak (t)] < m’?x(ak +bp+c¢), and [A\(t)] > (= rr}cin(a;c —bp—c) (k=1,2).
Thus ¢ > (p. In addition, var(x) = 1 and vy (1) = 1. So (3.9) is provided by
1
b — 4.2
c—l—m}gx(ak+ k)<677’ (4.2)

and (3.10) is provided by
qu(1+n) < G. (4.3)
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Consequently, if (4.2) and (4.3) hold, then by Corollary 3.2 system (4.1) is exponentially stable.
For instance, consider the system

&1+ (10 + cos (wt))x1(t — 0.02) + sin (wt)z2(t —0.02) =0,

%o + (10 + cos (wt))z2(t — 0.02) + sin (wt)zq(t —0.02) = 0. (4.4)
So

a; =ay=10,b; = by =c; =co = 1,7 =10.02 and ¢y < 2w.

By the above mentioned Herschgorin theorem, the eigenvalues A; 2(t) satisfy the inequalities |10 + g (¢)| < 2,
and therefore
[A(t)] <12, and [M\p(t)] > ¢ =8 (k= 1,2).

In addition, var(u) = 1 and v1 (1) = 0.02. So (4.2) holds, since 12 < 1/0.02e. Thus condition (4.3) holds, if
2.04w < 64. Consequently, system (4.4) is exponentially stable, provided

_ 64
Y504

5. PROOFS

Let C(£2) = C(£2,R™) be the space of continuous real vector functions f(¢) = (f;(t))}—, defined and bounded
on a set {2 with the sup-norm

1fllec2) = sup [Lf ()]ln-
ten
By C(2) = C(£2,R") we denote the same space with the norm

1llow) = max suplf;(®)].

Introduce in C'(£2) the operator
A = [ K(e.s)1()as, (51)

where K(t,s) = (Kjk(t,s))} ;- is a real matrix function defined on {2 x {2, continuous in the first argument
and satisfying

n
raim e sup [ 37 10 9)]ds < . (5:2)
J=1.nie Qk:l

Put ||A||é(n) = SUPywec(02) HAw”C'(Q)/Hw”C‘(Q)'

Lemma 5.1. Let A be defined by (5.1) and condition (5.2) hold. Then ||A||C(n) =TA.

Proof. Tt is simple to show that

Al < max [ 31Kt s)lds = 7a. (53)

boJer o
Let jo and o € 2 be such that

TA:/ > [ Kjon(to, s)|ds. (5.4)
Q=1
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Take h(s) = (hi(s))p_; with hy(s) = signum Kj ,(to, s). Then we have

0=,

k=1 2 p=1

provided j # jo. In addition,
(Ah)Jo to) / Z ‘Kjok to, s)|ds.

But according to (5.2),

(AR); ()] < /Q S K tor 9)lds (G # o).
k=1

ZKJ’“ t,s)hi(s)ds —/ ZKﬂk t, s)(signum K x(to, s))ds

883

So [|Ah[l¢(m) = Ta. Taking into account that [signum Kjk(to,s)| = 1, we have [|A]lzo) = 1 and therefore

ARl &y /1Pl ¢(m) = Ta- This and (5.3) prove the result.

Furthermore, due to the variation of constants formula the equation

n
— [ Ranyt -+ f0) (2 0)
0
with a given vector function f and the zero initial condition

y(t) =0 (t < 0)

t):/o G(t,7)f(r)dr

is equivalent to the equation

Let G,,(t, s) be the entries of G(t, s).

Corollary 5.2. Let a solution of problem (5.5), (5.6) be bounded on Ry for any f € C(R4). Then

.....

Indeed, this result at once follows from the previous lemma.
Let x(t) be a solution of problem (1.1), (1.5). Put

#(0) ift >0,
e(t):{¢gt)) if —n<t<0

and yo(t) = z(t) — 6(t). We can write df(t)/dt =0 (¢ > 0) and

n

go(t) = [ R(t,dr)yo(t —7) +9(t) (t=0),

0

t) = /071 R(t,dr)0(t — 7).

Hence, by the variation of constants formula we have

where

/Gts s)ds (> 0).

But z(t) = yo(t) + 0(t). We thus have proved the following result.
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Lemma 5.3. A solution of problem (1.1), (1.5) can be represented by the equality

2(t) = 6(0) + /O Gt 1)o(t)dt (¢ > 0).

Following [5], page 371, we will say that equation (5.5) satisfies the Perron condition, if for any f € C(R4), a
solution of problem (5.5), (5.6) is bounded.

Lemma 5.4. If equation (5.5) satisfies the Perron condition, then a solution of (1.1) is bounded.

Proof. We have

where

/0 G(t, syi(s)ds / G(t,5) / Rls, dr)os —mds| < ollcion / 1G(t,5)n / | R(s, dr)||ds

S ‘
n

t
< V(R)[¢llcq—nop sup / 1G(t, )|l nds,
t>0 Jo

n
V(R) == sup/ |R(t,dT)||nds.
t>0 Jo
So by Corollary 5.2 and the previous lemma we have the inequality

Izllory) < molldllcr—n,0 (5.9)
where .
mo =1+ V(R) sup/ G, 5)||nds.
>0 Jo
This proves the lemma. O
Lemma 5.5. If equation (5.5) satisfies the Perron condition, then (1.1) is exponentially stable.
Proof. Substituting

z1(t) = e a(t) (5.10)
with an € > 0 into (1.1), we obtain the equation
U
%1(t) = ex1(¢) +/ e R(t,dT)x1(t —T) (t>0). (5.11)
0

Put ;
GF(t) = /0 G(t, 5)f(s)ds.

Under the hypothesis of the theorem, G is defined on the whole space C' (0,00). By the Banach theorem [9],
Section 2, G is bounded on C(0, c0). Clearly, it is bounded on C(0,T),T < oo. Consider also the equation

Ge(t) = eye(t) + / LT Rt APyt — 7) + (1),

According to (5.5),

G000 = [t any =) o) - [ eTd R a7

_ /0 " AR ATt — 7) — (D) = £.(0),
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where

7
£t = —en®) + [ (1= )R Ayt - 7).
0
Consequently, y — y. = G f.. For simplicity put |y|7 = supg<i<7 |Y(@)|ln (T < 00). Then

[felr < [yelr(e+ V(R)(e™ - 1)).

So
Welr < ylr + ye|7|Glr(e + V(R) (e - 1)).

Thus for a sufficiently small €,
[Yelr < lylr(1 = |Glr(e+ V(R)(e" — 1)) 7"

Hence, letting ¢ — oo, by the Banach-Steinhaus theorem, we get

1yellc.00) < 1Wlle.00) (1 = [Glleo,00) (€ + V(R) (e — 1))
By the previous lemma, 7 is bounded. Now (5.10) proves the exponential stability. As claimed. O

The latter lemma generalizes Theorem 4.15 from [5], and therefore it generalizes the Bohl-Perron principle
for ordinary differential equations to functional differential equations.

Proof of Theorem 1.1. For a vector-valued function u defined on [—n, 00) and a fixed s > 0, put

E(s)u(t) = /0 " R(s,dryu(t — 7).

Then (5.5) can be written as
y(t) = E(s)y(t) + [E(t) — E(s)]y(t) + f(?)-

By the Variation of Constants formula

y(t) =/O Gt — t)[(E(t) — B(s)y(t1) + f(t1)]dts. (5.12)

Thanks to condition (1.2), for all s <t we obtain

< qlt = s[llyllco,)- (5.13)

n

NE®) — E(s)]y(t)] = H / "[R(t.d7) — R(s.dm)ly(t - )

Note that for an € > 0, we have

oo € 1 0o R
|16l < [1éold; [ a6 ol <o

where

RN 1
v =sup [ G0t + 2
s>0J0 €

Now (5.12) and (5.13) imply

t
Iyl < ellfllers) + HZ‘JHC(O,t)/O Gs(t —t1)|lnglts — s|dt;.
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Take s = t. Then
t . t .
[ Gt = tllltr —sldts = [ [Gate = ) ute — 1)
0 0
t [e'e]
~ [Gu@ludu < [ 1Guw)llpudu < x.
0 0

Thus ||lyllco,) < callfllery) +axllvllco,- Now the condition gx < 1 implies

cillfllery
Ylowr,) < ————
lyllc(r. 1= gx

So for any bounded f the solution to (5.5), (5.6) is uniformly bounded. Now Lemma 5.5 proves the
theorem. ]

To prove Theorem 2.1, consider the equation
n
(t) = A()a(t) + / dy Ro(t, T)a(t — ) + f (1) (5.14)
0

and denote by U(t, s) (t > s > 0) the evolution operator of the equation

y(t) = A{t)y(t)- (5.15)

Introduce the operator U by

Lemma 5.6. Let the condition

HU”C(O,OO) < (5.16)

1
V(Ro)’
hold. Then any solution of (5.14) with f € C(R4+) and the zero initial condition satisfies the inequality
2]l c0,00) < (1= V(R)Tllc0,00) 1T 0,000 | Fll 0,009
Proof. Put
n
Epz(t) = / d;Ro(t,7)z(t — 7).
0

Equation (5.14) is equivalent to the following one:

o) = [ UC.5)(FBua(s) + 1(5)ds.

Hence, .
Zllc(0,00) < NUNlc(0,00) (1 E0Z]lc(0,00) + 1 fl0(0,00))-
It is simple to check that [[Eoz|lc(,00) < V(Ro)l[Eoz|c(0,00). Hence, by (5.16) we arrive at the required

result. O
The previous lemma and Lemma 5.5 imply

Corollary 5.7. Let conditions (2.2) and (5.16) hold. Then equation (2.1) is exponentially stable.
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Proof of Theorem 2.1. Consider the equation
(t) = A(t)x(t) + f(t) (5.17)
with the zero inintial condition z(0) = 0. Rewrite it as
@(t) = A(s)z(t) + (A(t) — As))z(t) + f(2)-
Hence

xm=i/e“““hmAun—Aw»mn»+ﬂnﬂwL

0
Take s = t. Then

z()]ln < /0 le =D [I(A(tr) — A(®))a(t1)l|dts + o,

where

t oo
co = sups1t1p/ e ) lndts < | flle(ry) Sup/ e dty < vallfllor,).
s 0 s 0

Thus, by (2.2), for any T < oo,
T
wNWUWnSQrHENPWUW"/ [eAOT=1) |, — Tlaty
t<T t<T 0
T
§%+%mwmmu/HJWWMus%+%%wmmmm
t<T 0 t<T

By (2.3), we have ¢oxo < 1. So

I#]lo(ry) < (1 —qoXo0) o = (1= qoXo) " vallfllor,)-

That is,
1Ullc(0,00) < (1 = goX0) ™ -
Now condition (2.3) implies (5.16). Hence, the required results is due to Corollary 5.7. O

To prove the next lemma, which is a basis of the proof of Theorem 3.1, consider the equation

i(t) = /O " Ru(dr)a(t — 1), (5.18)

where R; is additive with

Vi(Ry) = /OWT|R1(dT)|n < 0.

Lemma 5.8. Let Y(t) =tZ(t), where Z(t) is the fundamental solution to (5.18). If, in addition,
121 = [ 120t <,

then [V < [[Z]12: (1 + Vi(Ry).
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Proof. By (5.18)
i%ﬂ:tZ@y+Zu):t/mRﬂdﬂZ@—r)+Zu)
0

:/Oan(d’T)(t—’T)Z(t—T)+/nTRl(dT)Z(t—T)+Z(t).

0
Thus, .
Y (t) :/O Ri(d7)Y (t — 1) + F(t)
where ;
Pt) = /0 PR Z(—7) + 2(2).
Hence,

Y(t) = /0 20— )Pt )dt.

By the Young inequality for convolutions, cf. [2], page 141, Theorem 9.4.1, ||Y | z1 < | Z]| 1 ||F || But || F||p: <
| Z]| (1 4+ Vi(R1)). We thus have established the required result. O

Concluding remarks: We have established explicit exponential stability conditions for a class of linear mul-
tivariable retarded systems with slowly varying coefficients. As the example shows, in appropriate situations
these conditions enable us to avoid the constructing of the Lyapunov type functionals.
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